
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MINIOPT: REASONING TO MODEL AND SOLVE GEN-
ERAL OPTIMIZATION PROBLEMS WITH LIMITED RE-
SOURCES

Anonymous authors
Paper under double-blind review

ABSTRACT

Modeling and solving optimization problems via large language models (LLMs)
has attracted increasing attention recently. Although both prompt-based and
learning-based methods have achieved progress, they remain limited by their re-
liance on large data volumes, high-quality annotations, expensive intermediate
step verification, and huge computational overhead. From a data privacy perspec-
tive, a low-cost localized deployment of small-scale LLMs is of significant value.
To train a small-scale LLM with excellent optimization generalization under lim-
ited resources, this paper proposes a reasoning to model and solve paradigm called
MiniOpt based on reinforcement learning (RL) with verifiable reward. To reduce
the demand for training data, MiniOpt adopts two-stage RL training. In the first
stage the model quickly learns the model-and-solve paradigm and in the second
stage it acquires strong optimization generalization ability. To reduce the cost of
verifying the response of LLMs, OptReward in MiniOpt verifies the complete-
ness of problem modeling and avoids the need for content validation. The above
techniques enable the training of small-scale LLMs with strong optimization gen-
eralization ability under limited resources, thereby resulting in low inference cost
for localized deployment and usage. Extensive experiments show that MiniOpt-
3B exhibits strong optimization generalization across various optimization types
and scenarios. For models with parameters fewer than 10B, MiniOpt-3B achieves
the highest average solving accuracy (SA). For models with more than 10B param-
eters, MiniOpt-3B still shows competitive performance. Notably, MiniOpt-3B in-
dicates superior SA on the hard OptMATH-Bench while only consuming 37.64%
of the average output tokens required by DeepSeek-R1. The code is available at
https://anonymous.4open.science/r/MiniOpt-6194.

1 INTRODUCTION

Optimization problems are ubiquitous in real-world scenarios, profoundly affecting diverse domains,
including industrial production and transportation planning (Song et al., 2023; Li et al., 2025b).
While traditional optimization solvers are efficient, their application heavily relies on expert knowl-
edge, requiring the manual conversion of problems described in natural language into precise math-
ematical formulations or code, which is a process that both time-consuming and non-generalizable.
The rise of LLMs has opened new pathways for the automated modeling and solving of optimization
problems using natural language descriptions (Deng et al., 2024; Sun et al., 2024; Li et al., 2025a),
bringing them closer to practical application scenarios. Representative work like LLMOPT (Jiang
et al., 2025) or Text2Zinc (Singirikonda et al., 2025) significantly advances this field by parsing
natural language descriptions into structured formulation, which are a unified general expression for
optimization problems, and subsequently generating solution codes efficiently.

However, deploying such LLM-based approaches faces three critical bottlenecks. First, ensuring
accurate text generations on a smaller parameter scale requires Supervised Fine-Tuning (SFT) with
a large amount of high-quality training data (Wu et al., 2025; Lu et al., 2025). However, obtaining
such data is very difficult, often requires a lot of time and effort, and is prone to errors (Xiao et al.,
2025b). Second, it is challenging to verify whether the result generated meets the requirements (Zhai
et al., 2025). The non-verifiability of this task also exposes the limitations of the learning-based

1

https://anonymous.4open.science/r/MiniOpt-6194

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

solving paradigm. It is a barrier to the accuracy of the final result. Finally, to ensure the reliability
of the result, common methods include reflection or self-correction mechanisms (Jiang et al., 2025;
Li et al., 2025c), or multi-agent chains (AhmadiTeshnizi et al., 2024). However, these methods
significantly multiply the computational overhead. These disadvantages pose significant barriers to
implementing LLMs with powerful optimization-solving capabilities in the business scenarios of
small and medium-sized enterprises or even on mobile devices. At the same time, considering data
privacy issues, it is significant to locally deploy small-scale LLMs with strong performance while
reducing training costs, including the volume and quality of training data.

To address these problems, this paper proposes a framework called MiniOpt to train a small-scale
LLM with excellent optimization generalization under limited resources. To reduce the demand for
data volume, MiniOpt adopts a two-stage RL training pipeline. Before conducting RL training, an
SFT warm-up is applied to enable the model to get effective rewards in the early stages of RL. Sub-
sequently, in the first RL stage, the model rapidly acquires the model-and-solve paradigm. In the
second RL stage, training is conducted on a high-quality data subset obtained through type-scenario
guided data selection, yielding strong optimization generalization (Jiang et al., 2025). The RL pro-
cess is training using the proposed OptGRPO algorithm, which enhances data utilization efficiency
and improves the model’s ability to solve complex problems. To reduce the validation cost, we in-
troduce OptReward in MiniOpt, which will perform three tasks: validating data format, ensuring the
completeness of optimization problem modeling, and verifying solution accuracy. This encourages
the model to learn in accordance with the model-and-solve paradigm. The framework enables the
training of small-parameter LLMs with strong optimization generalization capabilities under limited
resources, making localized deployment of LLMs for optimization feasible, thereby resulting in low
inference cost for localized deployment and usage. Moreover, due to the high solving efficiency of
MiniOpt-3B, reducing token usage also leads to considerable economic benefits.

Building upon the aforementioned methodology, this paper conducts extensive experiments with
MiniOpt-3B on 9 benchmarks across different optimization types and problem scenarios. The re-
sults demonstrate its high optimization generalization capability. Compared to baselines below 10B
parameters, MiniOpt-3B achieves the best performance. When evaluated against baselines exceed-
ing 10B parameters, MiniOpt-3B exhibits only a 1.57% lower average solving accuracy (SA) than
DeepSeek-R1, 0.37% higher than GPT-5 and outperforms LLMOPT-14B by 2.13% in average SA.
Notably, MiniOpt Pareto dominates other baselines in terms of both parameter scale and the SA
metric. On the hard OPTMATH-Bench, MiniOpt-3B has a higher SA than DeepSeek-R1 and only
consumes about 37.64% of DeepSeek-R1’s token count. Furthermore, results from ablation studies
indicate that RL training contributes most significantly to MiniOpt-3B.

The subsequent sections review the related work, introduce the MiniOpt framework, present exper-
imental results and analysis, provide an in-depth discussion, and finally conclude the paper.

2 RELATED WORK

LLMs for Modeling and Solving Optimization Problems. For modeling and solving optimization
problems with LLMs, there are already a variety of benchmarks (Huang et al., 2025b; AhmadiTesh-
nizi et al., 2024; Yang et al., 2024b). Challenging benchmarks like OptMATH (Lu et al., 2025) and
NL4Opt (Huang et al., 2025a) have led to numerous studies utilizing LLMs to solve optimization
problems. Prompt-based approaches such as OptiMUS (AhmadiTeshnizi et al., 2024), CoE (Xiao
et al., 2024) and LEAN-LLM-OPT (Liang et al., 2025) utilizes the powerful generation capability of
LLMs to generate the solver code of the optimization problem through multi-stage pipeline, without
performing any post-training. Learning-based methods enhance LLMs’ capabilities in modeling and
solving mathematical problems. For example, LLaMoCo (Ma et al., 2024) proposes an SFT-based
framework comprising a meticulously designed instruction set and a two-stage training methodol-
ogy that incorporates contrastive learning warm-up followed by SFT. LLMOPT (Jiang et al., 2025)
and NER4OPT (Dakle et al., 2023; Singirikonda et al., 2025) adopts a two-stage training process of
modeling the optimization problems first and then solving them by generating solution code.

Reinforcement Learning with Verifiable Reward. While Reinforcement Learning from Human
Feedback (RLHF) (Ouyang et al., 2022) plays a crucial role in post-training alignment, it suffers
from high annotation costs and inherent human bias (Xiao et al., 2025b). Reinforcement Learning
with Verifiable Reward (RLVR) (Lambert et al., 2024) leverages externally grounded, easily verifi-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

able rewards (e.g., rule-based reward) to provide dense and structurally simple supervision (Wang
et al., 2024; Xie et al., 2025; Gao et al., 2024). Its practicality is especially valuable in real-world
black-box systems (Zhang et al., 2025; Xin et al., 2025; Pan et al., 2025), where verification is typ-
ically feasible only at the output stage, making RLVR a broadly applicable framework for aligning
LLMs. In the field LLMs for solving optimization problems, SIRL (Chen et al., 2025) and OR-
R1 (Ding et al., 2025) significantly improves the model’s performance through the RLVR training
paradigm.

3 METHODOLOGY: THE PROPOSED MINIOPT

3.1 OVERVIEW

This paper studies how to endow small-scale LLMs with strong optimization generalization under
tight data and compute budgets. We introduce MiniOpt, whose framework is shown in Figure 1.
MiniOpt introduces the reasoning process within the model-and-solve paradigm for optimization
problems, the reward function and algorithm used for RL training, and the training pipeline for
small-scale models. Through this framework, MiniOpt formulates the path from a natural language
problem to an executable solver code as a single verifiable end-to-end task.

3.2 REASONING TO MODEL AND SOLVE PARADIGM

As shown in subfigure (a) in Figure 1, we introduce a reasoning to model and solve paradigm
that turns a natural language optimization problem into a single verifiable objective. The paradigm
is enforced by two compulsory and machine-parsable segments <think>...</think> and
<answer>...</answer>.

The first segment, enclosed by <think>...</think>, carries all modeling contents. It performs
an analysis of the problem statement, specifies a complete five-element formulation inspired by
LLMOPT (Jiang et al., 2025) and determines the appropriate open-source solver. Specifically, the
optimization problem can be described as minimizing the objective function f(x) subject to the
constraints G(x) ≤ c, where the x ∈ X ⊆ RD is the D-dimensional decision variables, and
I = {1, 2, . . . , D} is the index sets. X is the feasible region, and c ∈ Rm provides the upper
bounds. The constants in f(x) and G(x) form the parameters set, which also includes c. The five-
element formulation, M = (Variables,Objective,Constraints,Sets,Parameters) map one-to-
one to the components of an optimization problem. More details about the five-element formulation
are provided in Appendix C.

During the reasoning process, to enhance the capability of LLM for solving optimization problems
across diverse optimization types, it will analyze the problem during the thinking (i.e., reasoning)
phase and select different open-source solvers for the given problem depending on the optimiza-
tion types and the characteristics of the solvers, thereby ensuring an optimized match between the
problem and the solver. Solver selection is guided by a prompt, which is introduced in Appendix M.

The second segment, enclosed by <answer>...</answer>, converts the five-element formu-
lation into an executable Pyomo program that models the problem, invokes the solver, solves the
instance, and prints the numerical answer. By constraining responses in this manner, we collapse
the action space from free-form language to a programmable artifact whose intermediate structure
and final result can be deterministically parsed and verified. The <answer> segment must im-
plement the blueprint as a single python code fence containing a complete Pyomo script. Because
these outputs are easy to verify, the OptReward in Section 3.4.1 can score format, five-element for-
mulation, and accuracy based on rules via an automated procedure, providing low-cost supervision.
During the training process, the prompt corresponding to this paradigm is shown in Appendix N.

3.3 TRAINING PIPELINE OF MINIOPT

Based on the paradigm described in Section 3.2 and the key techniques introduced in Section 3.4,
we propose a training pipeline that enables MiniOpt to learn from limited resource constraints while
achieving powerful solving performance and strong optimization generalization. This pipeline be-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Help the model earn
effective rewards

early in the RL process

Rapidly learn
the model-and-solve

paradigm

Optimization
generalization
improvement

Small-scale
Model

Strong Optimization
Generalization &

Low Inference Cost

LLM-3B MiniOpt-3B

LoRA SFT RL Stage-1 RL Stage-2

Peak-chasingWarm-up Fast-adapting

(b) MiniOpt Training Pipeline with SFT Warm-up and Two-stage RL

(c) Efficient Training for Optimization Generalization

OptReward Make Intermediate Process Easy to Verify

Format Score

Five-element Score

Accuracy Score

The integrity of the <think> tags in the response

The integrity of the five-element math model

The executability and solving accuracy of code

OptReward

 Reasoning Rationality
 Modeling Correctness
 Solving Accuracy

OptGRPO Adapting GRPO to RL Training for Optimization Problems

Remove KL penalty
to discover high-reward
behaviors quickly

The asymmetric clipping
allows the rare but crucial
reasoning/code token to grow

Accumulate loss over tokens
to improve sample efficiency
under limited budgets

(a) Reasoning to Model and Solve Paradigm

MiniOpt

<answer>
```python
from pyomo.environ import …   
```

</answer>

MiniOpt trains the small-scale LLM with high optimization generalization
performance. The five-element math model is automatically generated and
a solver is adaptively selected. The Pyomo code generated by the model
can accurately model and solve the original problem.

𝒥𝒥𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝜃𝜃 = 𝔼𝔼𝑞𝑞~𝑃𝑃 𝑄𝑄 ,{𝑜𝑜𝑖𝑖}𝑖𝑖=1
𝐺𝐺 ~𝜋𝜋𝑜𝑜𝑜𝑜𝑜𝑜(�|𝑞𝑞)

1
∑𝑖𝑖=1𝐺𝐺 |𝑜𝑜𝑖𝑖|

�
𝑖𝑖=1

𝐺𝐺

�
𝑡𝑡=1

|𝑜𝑜𝑖𝑖|

min[
𝜋𝜋𝜃𝜃(𝑜𝑜𝑖𝑖,𝑡𝑡|𝑞𝑞, 𝑜𝑜𝑖𝑖,<𝑡𝑡)
𝜋𝜋𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜(𝑜𝑜𝑖𝑖,𝑡𝑡|𝑞𝑞, 𝑜𝑜𝑖𝑖,<𝑡𝑡)

𝐴̂𝐴𝑖𝑖,𝑡𝑡, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝜋𝜋𝜃𝜃(𝑜𝑜𝑖𝑖,𝑡𝑡|𝑞𝑞, 𝑜𝑜𝑖𝑖,<𝑡𝑡)
𝜋𝜋𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜(𝑜𝑜𝑖𝑖,𝑡𝑡|𝑞𝑞, 𝑜𝑜𝑖𝑖,<𝑡𝑡)

, 1 − 𝜀𝜀𝑙𝑙𝑙𝑙𝑙𝑙 , 1 + 𝜀𝜀ℎ𝑖𝑖𝑖𝑖𝑖 𝐴̂𝐴𝑖𝑖,𝑡𝑡]

Optimization Problem:
A school is planning its budget for the upcoming

academic year. The main expense categories are...

<think>
We need to formulate it as an integer linear
programming problem ...
Five-Element Model: - ## Variables: ...

- ## Objective: ... - ## Constraints: ...
- ## Sets: ... - ## Parameters: ...

... The best choice is ``cbc`` solver ...
</think>

OptReward, OptGRPO OptReward, OptGRPO

Figure 1: The framework of MiniOpt. Sub-figure (a) demonstrates the reasoning to model and solve
paradigm of MiniOpt, encompassing problem modeling and solver adaptation during the thinking
(i.e., reasoning) process of RL, and solution code generation in the response. Sub-figure (b) il-
lustrates the training pipeline of MiniOpt, which involves sequential execution of SFT warm-up
followed by two-stage RL. Sub-figure (c) presents the reward function OptReward and training al-
gorithm OptGRPO used in MiniOpt’s RL training.

gins with a lightweight SFT warm-up followed by two-stage RL under OptReward. The illustration
of the training pipeline is shown in subfigure (b) in Figure 1.

3.3.1 WARM-UP BASED ON LIGHTWEIGHT SFT

Small scale LLMs struggle to produce an end-to-end, executable trajectory for complex optimization
tasks, thus if a model lacks fundamental problem-solving capabilities for operations optimization,
directly applying reinforcement learning may lead to sparse rewards and result in unstable training.

We therefore apply an SFT warm-up whose purpose is to provide a run-through capability, thereby
allowing the model to obtain effective rewards in the early stages of RL training. This SFT warm-
up does not adopt the reasoning to model and solve paradigm introduced in Section 3.2. Instead,
it establishes a starting point upon which our two-stage RL can subsequently focus on paradigm
acquisition and optimization generalization. The training data for warm-up are constructed from
OptMATH-Train. For each instance, we prompt Qwen2.5-Coder-32B-Instruct (Hui et al., 2024) us-
ing the prompt in Appendix L to rewrite the original GurobiPy program into an equivalent Pyomo
implementation and to select an appropriate open-source solver according to the detected structure.
Every rewritten instance is executed and only those that compile, solve, and print the correct struc-
ture are retained. The remaining data serves as a candidate pool for the next stage of the two-stage
RL training.

3.3.2 THE TWO-STAGE RL

After undergoing SFT warm-up, the models can conduct RL training more effectively. We em-
ploy a two-stage RL training under the same reward function (OptReward) for paradigm acquisition
and optimization generalization, respectively. Both stages share the pipeline of parsing, executing,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

and scoring in Section 3.2 and the OptReward of Sections 3.4.1, they differ in training data and
hyperparameter setting. Algorithmically, both stages use the same OptGRPO (cf. paragraphs in
Section 3.4.2).

Stage-1 aims to enable the model to acquire the reasoning to model and solve Paradigm: the model
must generate a valid <think>/<answer> pair, produce the executable Pyomo code, and make
a coherent solver choice. To this end we train on 1,585 relatively easy problems, so that most signal
arises from the formatting and structural components of OptReward, rapidly improving executability
and the ability to solve the optimization problem of natural language description.

Stage-2 focuses on optimization generalization once the paradigm is established. The training dis-
tribution shifts to the problems with diverse optimization types and problem scenario, and the opti-
mization emphasis moves to the accuracy score, encouraging refined modeling and solving behaviors
(e.g., variable/constraint formulation and solver selection).

Based on the annotations of optimization types and problem scenario tags this paper assigned to
each instance in OptMATH-Train, we sample a data subset from the candidate pool mentioned in
Section 3.3.1 subject to two constraints: (i) type-uniform coverage, with exactly 600 instances per
type, and (ii) within each type, the scenario frequencies match the distribution in the full dataset.
The resulting data serves as the training data for the second stage of RL. While the dataset of the
first stage is the union of the NL4Opt (AhmadiTeshnizi et al., 2024) and ICML Competition (Yang
et al., 2024b) training splits. Detailed information on the construction of the training set is provided
in the Appendix E.

Such a training strategy makes efficient use of limited data and reduces training costs, and ultimately
allows for strong optimization generalization of LLMs with even small parameters and limited com-
putational resources.

3.4 EFFICIENT TRAINING FOR OPTIMIZATION GENERALIZATION

Building upon the reasoning to model and solve paradigm mentioned in Section 3.2, we propose two
key components for the RL training of MiniOpt as shown in subfigure(c) in Figure 1. An informative
and easily verifiable reward function OptReward, and an improved algorithm OptGRPO builds upon
GRPO (Shao et al., 2024).

3.4.1 OPTREWARD: VERIFIABLE REWARDS DESIGNED FOR MINIOPT

Based on the reasoning to model and solve paradigm described in section 3.2, we propose OptRe-
ward, including three automatically computed components: formatting correctness, structural suffi-
ciency, and numerical accuracy. Each component is derived from deterministic parsing or execution
of the output, It ensures the completeness of the modeling of problems but also enables verification
to scale with machine time, yielding substantially lower verification costs.

Format Score: The format score Sfmt validates the response format. A response must contain
exactly one <think>...</think> and one <answer>...</answer> in the correct order.
If all conditions hold, we assign Sfmt = +1, otherwise Sfmt = −1. If the specified format is not
present in the response, we deterministically set the remaining components to their error defaults,
Sfive = −1 and Sacc = −2, so that the total reward immediately reaches the global minimum.
This forces the model to adopt the correct response format early in training and prevents expensive
evaluation of malformed samples.

Five-element Score: To avoid ground-truth labeling of five-element content and the bias it may
introduce, we use a presence-based rule aligned with the paradigm in Section 3.2. Conditional on
valid formatting, we compute the five-element score Sfive. In the <think> segment, the model
response is expected to include five labeled summaries starting with “## Sets:”, “## Parameters:”,
“## Variables:”, “## Objective:”, and “## Constraints:”. Each present summary adds 0.2 scores; if
none is present we assign Sfive = −1. This structure shaping keeps the modeling blueprint parsable.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Sfive =


0.2

5∑
k=1

Ik, if
5∑

k=1

Ik ≥ 1 ,

−1, if
5∑

k=1

Ik = 0 ,

(1)

where Ik = 1 if the k-th required element ek is present in the <think> segment, and Ik = 0
otherwise. (e1, . . . , e5) = (Sets,Parameters,Variables,Objective,Constraints).

Accuracy Score: The accuracy score is obtained by executing the Pyomo program contained in
<answer>. Failure to extract a program or to complete execution yields Sacc = −2. When
execution succeeds, we retrieve the optimal objective value f̂ from the model output and compare it
with the ground-truth value f⋆; if they are equal, we assign Sacc = 2, otherwise Sacc = −1.5.

Sacc =


+2, if execution succeeds and f̂ = f⋆,

−1.5, if execution succeeds but f̂ ̸= f⋆,

−2, if no executable code or execution fails .

(2)

Combining the components with the formatting gate yields the total OptReward as follow:

R =

{
−4, if Sfmt = −1,

Sfmt + Sfive + Sacc, if Sfmt = 1.
(3)

By OptReward, the format score enforces the strict <think>/<answer> format, the five-element
score shapes a complete modeling blueprint in the think phase, and the accuracy score certifies cor-
rectness through equality of optimal objective values, enabling low-cost verifiable RL for problems
in the field of optimization.

3.4.2 OPTGRPO: TRAINING SMALL-SCALE LLMS WITH LIMITED RESOURCES

GRPO (Shao et al., 2024) is an efficient RL algorithm, which replaces the critic model with a group
baseline and updates the policy at the group level so that improves training stability and efficiency.
The details of the algorithm are introduced in Appendix D. In order to adapt to the designed OptR-
ward and Two-Stage RL in this paper, taking inspiration from the previous work on the improvement
of GRPO like DAPO (Yu et al., 2025), we introduces three modifications, with the goal of achieving
stronger optimization generalization within a limited budget.

First, building upon the strict gating already provided by OptReward through formatting score and
five-element score, we set the coefficient on the KL penalty β = 0 to remove the KL penalty to
encourage greater exploration by the model. This approach does not jeopardize stability while fa-
cilitating faster discovery of high-reward behaviors. Second, to prevent entropy collapse and allow
rare but crucial reasoning/code tokens to grow, we replace symmetric clipping with an asymmetric
interval [1 − εlow, 1 + εhigh] with a higher upper clipping threshold εhigh than the lower threshold
εlow. This relaxes the trust region on probability increases while keeping a firm lower bound on de-
creases, which empirically improves executability in stage-1 RL training and supports generalization
in stage-2 RL training. Following Specifically, we raise εhigh to 0.28 during the training. Finally, to
improve sample efficiency, critical for small-scale LLMs under limited data and verification budgets,
instead of optimizing a sequence-averaged loss, we accumulate the loss over tokens and normalize
by the total number of tokens in the group

∑
i |oi|, which can yield denser learning signals for long

outputs. The final loss of OptGRPO is as follows:

JOptGRPO(θ) = Eq∼P (Q),{oi}G
i=1∼πθold (·|q)

1∑G
i=1 |oi|

G∑
i=1

|oi|∑
t=1

min

[
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
Âi,t, clip(

πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
, 1− εlow, 1 + εhigh)Âi,t

]
. (4)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4 EXPERIMENT

We evaluate MiniOpt models on diverse optimization benchmarks spanning multiple types and sce-
narios to assess whether small scale parameter LLMs (3B/7B/14B) can achieve strong optimization
generalization ability. We report Solving Accuracy (SA) as primary metrics, SA presents the propor-
tion of output solutions of executed code that are numerically equal to the optimal solution provided
from the labels of benchmarks. We use Execution Rate (ER) as a supplement that shows the pro-
portion of generated code samples that run successfully without errors. Comparisons cover general
LLMs, general reasoning LLMs, prompting-based baselines and learning-based baselines. The ex-
periments aim to answer four key questions below.

(Q1) Optimization Generalization Ability at Small-Scale LLMs: To what extent can MiniOpt
at 3B/7B/14B achieve high SA across types and scenarios, and how does it compare with larger
reasoning LLMs and prior learning-based approaches?

(Q2) Pareto Front of Performance vs. Cost: What is the limit of the scale of model parameters
for achieving strong optimization generalization?

(Q3) Importance of the Training Pipeline of MiniOpt: How critical are the lightweight SFT
warm-up and the two-stage RL to the performance of MiniOpt?

(Q4) Importance of the Reasoning to Model and Solve Paradigm and OptReward: How do the
proposed paradigm and the corresponding Opt Reward contribute to boost SA and ER in solving
optimization problems?

The four questions are answered sequentially in the following sections, which first provide a detailed
introduction to the experiments and then present an analysis of the results.

4.1 EXPERIMENTAL SETUP

Since widely-used packages like Gurobi and COPT are close-source, generating code for them may
entail licensing costs, and a model’s generalization capability across different modeling languages
and solvers depends on the proportion of relevant corpora in its pre-training and post-training data.
Therefore, following established practices (Jiang et al., 2025), we adopted the open-source, solver-
agnostic Pyomo modeling language as the language for our training and inference solver code.

As for the solvers employed, the key consideration lies in their ability to select the appropriate
solver for a specific optimization type. For instance, GLPK only supports linear programming and
integer programming and is incapable of solving nonlinear problems. Therefore, this paper selects
four types of solvers to cover the solving requirements of as many optimization problem types as
possible, so as to automatically adapt to the problem types when generating the solving code.

The evaluation encompasses nine benchmarks about operations research optimization: NL4Opt
(Ramamonjison et al., 2022), Mamo (Easy and Complex subsets) (Huang et al., 2025b), Indus-
tryOR (Huang et al., 2025a), NLP4LP (AhmadiTeshnizi et al., 2024), ComplexOR (Xiao et al.,
2024), OptMATH (Lu et al., 2025), OptiBench (Yang et al., 2025b), and ICML Competition (Yang
et al., 2024b). We follow the same setting in LLMOPT (Jiang et al., 2025) to ensure consistency
and comparability. For the newly included datasets, OptMATH-Bench and OptiBench, we adhere to
their original data splits provided by the authors. For ICML Competition dataset, we use it exclu-
sively as out-of-distribution test data to evaluate the generalization capability of our model.

To validate the correctness of the solutions obtained by MiniOpt and all baselines, this paper com-
pares their log files generated during the execution process against the ground-truth solutions pro-
vided by the benchmarks. A solution is deemed correct if the log file yields a non-empty match with
the ground-truth; otherwise, it is considered unsuccessful.

4.2 ANALYSIS OF OPTIMIZATION GENERALIZATION

In this section, we compare MiniOpt with general LLMs (Qwen2.5 Series, DeepSeek-V3), general
reasoning LLMs (Qwen3 Series, DeepSeek-R1, Gemini-2.5-Pro, GPT-5), prompt-based methods
(Chain-of-Experts, OptiMUS, Reflexion), learning-based methods (OptMATH-7B, LLMOPT-14B,
Step-OPt-8B/7B/3B), demonstrating the optimization generalization capability of MiniOpt. The

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Comparison of the SA metric across 9 benchmarks with rankings (NL4Opt, ICML Compe-
tition, Mamo Easy, Mamo Complex, NLP4LP, ComplexOR, IndustryOR, OptiBench, OptMATH-
Bench). Bold indicates 1st,

::::
wavy

::::::::
underline indicates 2nd, underline indicates 3rd. “Rank∗” repre-

sents the result of sorting methods among parameter sizes below 10B.

Category Models / Methods Avg. Rank Rank∗ NL4Opt ICML.C Mamo.E Mamo.C NLP4LP Com.OR Indus.OR OptiBench OptMATH-
Bench

General Models

Qwen2.5-3B-Instruct 9.98 22 11 19.13 18.78 17.18 2.37 18.60 0.00 2.00 11.74 0.00
Qwen2.5-7B-Instruct 30.05 17 8 53.48 51.71 35.58 4.27 55.37 16.67 13.00 35.54 4.82
Qwen2.5-14B-Instruct 43.59 12 - 67.39 63.17 80.21 15.64 67.36 22.22 22.00 41.65 12.65
DeepSeek-V3 57.81 4 - 78.26

:::
77.56 84.82 26.54

:::
79.34 44.44 26.00 64.13 39.16

General Models
(Thinking)

Qwen3-4B 10.25 21 10 16.52 17.56 13.80 6.64 15.29 5.56 2.00 11.90 3.01
Qwen3-8B 19.77 19 9 30.87 29.51 23.93 9.95 34.71 11.11 6.00 28.26 3.61
Qwen3-14B 22.54 18 - 24.35 22.68 36.20 11.37 19.42 38.89 15.00 22.31 12.65
DeepSeek-R1 58.51 3 - 83.91 75.37 74.54 39.81 69.83 44.44 32.00

:::
66.94 39.76

Gemini-2.5-Pro 57.04 5 - 78.26 71.22 65.95 30.81 73.55 50.00 28.00 61.32
:::

54.21
GPT-5 56.57 7 - 80.43 73.66 58.12 23.22 73.14 61.11 26.00 64.63 48.80

Prompt-based
Methods

Chain-of-Experts 41.03 14 - 66.52 56.59 63.65 22.75 59.09 33.33 19.00 45.29 3.01
OptiMUS 18.76 20 - 13.48 33.17 37.27 11.85 18.18 16.67 8.00 26.61 3.61
Reflexion 41.28 13 - 56.52 52.20 84.82 18.01 53.72 38.89 19.00 41.16 7.23

Learning-based
Models

Step-OPT-LLaMA-3.2-3B 39.61 15 6 70.00 26.59 68.10 36.49 63.64 38.89 17.00 26.78 9.04
Step-OPT-LLaMA-3-8B 50.80 10 4 75.22 68.54 79.45 50.71 64.88 27.78 27.00 49.75 13.86
Step-OPT-Qwen2.5-3B 36.15 16 7 41.30 38.54 75.31 20.85 53.31 27.78 21.00 40.00 7.23
Step-OPT-Qwen2.5-7B 47.42 11 5 77.83 57.32 69.33

:::
50.24 48.35 38.89 27.00 48.76 9.04

OptMATH-7B 52.37 9 3 78.70 66.83 84.20 34.12 68.60 33.33 19.00 52.23 34.34
LLMOPT-14B 54.81 8 - 80.28 75.35

:::
89.53 44.08 73.42 35.29

:::
29.00 53.83 12.50

Ours
MiniOpt-3B 56.94 6

:
2 83.04 68.05 85.43 35.07 73.55 50.00 21.00 53.55 42.77

MiniOpt-7B
:::

62.76
:
2 1

:::
89.13

:::
77.56 88.34 38.39

:::
79.34 55.56 26.00 59.34 51.20

MiniOpt-14B 66.10 1 - 92.17 86.34 90.80 33.65 79.75 61.11 27.00 67.44 56.63

information on these methods can be found in Appendix B. Tables 1 summarizes SA on nine bench-
marks that span 7 optimization types and 22 scenarios, and the statistics on problem categories and
scenarios are provided in Appendix A.2. The ER metrics for all the methods on the nine benchmarks
and its analysis can be found in the Appendix F.

Overall Performance (Answer to Q1). Across all nine benchmarks, MiniOpt-7B achieved the
strongest average performance among all baselines. Notably, MiniOpt-3B surpassed all prompt-
based and learning-based methods. For instance, compared to LLMOPT-14B, the state-of-the-art
learning-based model, MiniOpt-3B achieved an average SA that is 2.13% higher. When compared
to DeepSeek-V3 and DeepSeek-R1, MiniOpt-3B scored 0.87% and 1.57% lower, respectively. Fur-
thermore, as a higher-parameter variant of MiniOpt, MiniOpt-14B achieves the highest average SA
of 66.10%, significantly raising the performance ceiling of MiniOpt in practical applications.

Besides, SIRL (Chen et al., 2025) is not included in Table 1 because the paper was accepted only
shortly before our submission deadline. Although it proposes a reasoning model training pipeline,
the important issue of improving the optimization generalization ability of small-scale models with
limited data and computing resources has not been studied. According to the results presented in the
SIRL paper (Chen et al., 2025), MiniOpt-7B outperforms the SIRL-Qwen2.5-7B model of similar
size by 22.20% solving accuracy on the hard OptMATH-Bench benchmark.

Competitiveness of Small-Scale Models (Answer to Q1). MiniOpt remains competitive even at
smaller scales. MiniOpt-3B reaches 56.94% SA on average, this performance already matching or
exceeding several much larger reasoning models (e.g., the average SA higher than GPT-5 at 56.57%)
and clearly outperforming general-purpose 14B post-trained models (e.g., +13.35% over Qwen2.5-
14B-Instruct on average). Performance grows smoothly with scale under the same training pipeline,
The average SA metric grows by +5.82% when parameters increase from 3B to 7B, and by +9.16%
when further scaled to 14B.

Challenging Benchmarks (Answer to Q1). On the most demanding sets that require faithful mod-
eling and solver usage, MiniOpt shows clear advantages. On the latest challenging benchmark
OptMATH-Bench, MiniOpt-14B achieves 56.63% SA, outperforming Gemini-2.5-Pro (54.21%) and
GPT-5 (48.80%). Even on extremely high-dimensional test sets such as Indus.OR, where small-
parameter MiniOpt does not attain the highest SA due to limitations in instruction following, it still
delivers competitive performance levels in both metrics.

Breadth across Types and Scenarios (Answer to Q1). To rigorously evaluate the optimization
generalization, we analyze the SA of MiniOpt-7B and MiniOpt-3B across three optimization types
and three application scenarios under two difficulty levels. At the medium-difficulty OptiBench,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

MiniOpt-7B achieved 59% (M), 74% (T), 68% (L), and 65% (LP), 63% (IP), 45% in Mixed-Integer
Linear Programming (MILP). MiniOpt-3B scored 55% (M), 71% (T), 59% (L), and 60% (LP),
58% (IP), 38% (MILP). On the hard-difficulty OptMATH-Bench, MiniOpt-7B achieved 58% (M),
56% (T), 57% (L), and 55% (LP), 100% (IP), 56% (MILP). MiniOpt-3B attained 43% (M), 56%
(T), 76% (L), and 73% (LP), 67% (IP), 47% (MILP). These results reflect consistent and scalable
generalization across optimization types, problem scenarios, and difficulty levels. In order to in-
vestigate whether the pipeline training in this paper would impair other abilities of the LLMs, we
also discussed the generalization performance of MiniOpt-3B and 7B under different tasks except
optimization problems. Detailed information is presented in Appendix J.

4.3 PARETO FRONT OF PERFORMANCE VS. COST

101 102

Parameter Size (B)

10

20

30

40

50

60

So
lv

in
g

A
cc

ur
ac

y
(%

)

Solving Accuracy vs. Parameter Size

Qwen2.5-3B-Instruct

Qwen2.5-7B-Instruct

Qwen2.5-14B-Instruct

DeepSeek V3

Qwen3-4B

Qwen3-8B
Qwen3-14B

DeepSeek R1

Chain-of-Experts

OptiMUS

Reflexion

OptMATH-7B
LLMOPT-14B

Step-Opt-llama3.2-3B

Step-Opt-llama3-8B

Step-Opt-Qwen2.5-3B

Step-Opt-Qwen2.5-7B

MiniOpt-3B

MiniOpt-7B
MiniOpt-14B

General Models
General Models (Thinking)
Prompt-based Methods
Learning-based Models
Ours

Figure 2: Comparison of average SA against
model parameter scales for various methods.
MiniOpt is the Pareto optimal among com-
pared methods.

Analysis of the Pareto Front (Answer to Q2). Fig-
ure 2 and Figure 5 in Appendix H indicate that
MiniOpt series (represented by the solid red line
establishes a new and superior Pareto front in the
performance-versus-cost trade-off. Since the param-
eter size of GPT-5 and Gemini-2.5-Pro have not
been disclosed, we do not label these two models
in the figures). As the scale of the model increases,
the average SA performance of MiniOpt also grows
steadily. The MiniOpt-14B variant achieves the
highest average SA of 66.10% among all mod-
els. It achieves a comprehensive performance lead
while having substantially fewer parameters than
top-tier general reasoning models such as DeepSeek-
R1. Compared to the similar modeling and solving
model Step-OPT, Step-OPT-LLaMA-3-8B achieves
an average SA of 50.80% across 9 benchmarks,
while the proposed MiniOPT attains an average SA
of 62.76%. When the parameter scale of both mod-
els are reduced to 3B, Step-OPT-LLaMA-3.2-3B ex-
hibit a performance drop of 11.19%. For Step-OPT-
Qwen2.5, the SA degradation is 11.27%, while Min-
iOPT only decreased by 5.82%. This indicates that
the key advantage of MiniOPT lies in its ability to
maintain superior performance even with reduced parameter scale. From the perspective of capa-
bility density (Xiao et al., 2025a), MiniOPT effectively achieves lower parameter requirements and
inference costs while preserving comparable performance.

4.4 ABLATION STUDY

Importance of the Reasoning to Model and Solve Paradigm and OptReward (Answer to Q4).
We ablate core components of MiniOpt-3B and report results of the SA metric in Table 2 and the ER
metric in Table 6 in Appendix G. As evidenced in Table 2, each module of the proposed reasoning to
model and solve paradigm demonstrates substantial contributions to modeling and solving optimiza-
tion problems with smaller-scale models under limited training resources. Among these, RL pro-
vides the most significant improvement, highlighting the importance of the proposed paradigm. The
reasoning to model and solve paradigm and OptReward together turn free-form generation into a ver-
ifiable formulation, which are easy to verify. Removing them and keeping only a final-answer signal
(w/o OptReward) drops averages to 52.44% and 83.39% (∆ SA=–4.50%, ∆ ER= –4.65%), respec-
tively. The largest losses appear where the problems are challenging: Com.OR (∆ SA = –16.67%,
∆ ER = –16.67%), Indus.OR (∆ SA = -3.00%, ∆ ER = –6.00%), and OptMATH-Bench (∆ SA =
–4.82%, ∆ ER = –10.24%). These patterns align with the roles of the three reward components:
the format score enforces the labels <think> and <answer> in the responses are complete; the
five-element score shapes the intermediate blueprint, so the models learns to extract problem struc-
ture before coding; the Accuracy Score certifies numerical correctness by executing the Pyomo code
and comparing the returned optimum with the reference. In combination, this reasoning to model
and solve paradigm, together with verifiable reward, steers learning toward structurally consistent

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 2: Ablation study (MiniOpt-3B) on the SA metric across 9 benchmarks.
Category Model / Method Avg. NL4Opt ICML.C Mamo.E Mamo.C NLP4LP Com.OR Indus.OR OptiBench OptMATH-Bench

Ablations

MiniOpt-3B 56.94 83.04 68.05 85.43 35.07 73.55 50.00 21.00 53.55 42.77
MiniOpt-3B w/o SFT Warm-up 53.59 83.91 70.00 83.28 33.65 68.18 38.89 15.00 53.88 35.54
MiniOpt-3B w/o RL 39.25 52.61 48.29 80.06 25.12 60.33 16.67 15.00 34.71 20.48
MiniOpt-3B w/o Two-stage RL 54.12 83.48 69.02 82.67 33.65 69.01 44.44 16.00 53.88 34.94
MiniOpt-3B w/o Data Selection 53.50 78.70 68.05 84.82 30.81 72.31 38.89 19.00 52.89 36.75
MiniOpt-3B w/ Random Selection 50.94 83.48 69.76 82.98 29.38 70.66 27.78 14.00 52.73 27.71
MiniOpt-3B w/o OptReward 52.44 78.70 66.83 82.52 33.18 70.25 33.33 18.00 51.24 37.95
MiniOpt-3B w/ GRPO 48.33 70.87 60.00 81.29 32.23 65.70 27.78 17.00 45.79 34.34
MiniOpt-3B w/ DAPO 54.57 83.48 70.24 84.66 27.49 73.14 44.44 18.00 54.17 34.94

behaviors, yielding higher SA and ER across various optimization problems. For a detailed ablation
analysis of the proposed model-and-solve paradigm, the training process, and the significance of
OptReward and OptGRPO, please see Appendix G.

5 DISCUSSION

Exploration of Models with Smaller Parameter Scale. To further explore the performance of
MiniOpt with smaller parameter scales, thereby better balancing the trade-off between parameters
and performance, we deploy MiniOpt-1.5B with the same reasoning to model and solve paradigm
(Section 3.2), OptReward (Section 3.4.1), and training pipeline (Section 3.3). The results shown
in Table 7 and 8 in Appendix I demonstrate that when the model scale is reduced from 3B to 1.5B,
MiniOpt achieves an average SA of 46.15% and an average ER of 80% across the 9 benchmarks, still
surpassing all baselines except for learning-based methods, maintaining a strong competitiveness.

Dimensionality Scalability Issue. Our empirical results show that MiniOpt-3B can correctly model
optimization problems with dimensionalities as high as 72 on the OptMATH-Bench task and 80 on
the Mamo Complex task. This constitutes a remarkably strong performance for models of such lim-
ited scale, which highlights that the MiniOpt pipeline effectively enhances the model’s optimization
modeling capacity and retains robust generalization even in high-dimensional settings. For prob-
lems with even higher dimensionality, the descriptions of numerical parameters typically become
substantially longer. Such extended input sequences inherently pose a significant challenge to the
comprehension capabilities of small-scale models. As corroborating evidence, larger models such
as MiniOpt-7B successfully solve problems up to 109 dimensions on the OptMATH-Bench task.

Cost Savings of MiniOpt and Generality of Base Models. We find that MiniOpt-3B achieves a
3.01% higher SA than DeepSeek-R1 on the OptMATH-Bench while using 62.4% fewer average out-
put tokens. For MiniOpt-7B, the corresponding improvements are 11.44% higher SA and a 39.6%
reduction in average output tokens. More details and discussions are provided in Appendix K. This
demonstrates that MiniOpt constitutes a general framework capable of enabling small-scale models
to achieve strong optimization generalization under constrained data and computational resources.
Furthermore, although Qwen2.5 series models are adopted as the base model in this paper, we have
also conducted experiments with different base models and obtained closely aligned results.

6 CONCLUSION

This paper proposes a novel reasoning to model and solve paradigm and the small scale model,
MiniOpt-3B, achieves higher performance with a small-scale parameter and limited resources. We
explore the optimization generalization of the model in various types of optimization, problem sce-
narios, and high-variable dimensions. Empirical results demonstrate that MiniOpt exhibits strong
generalization performance under these varying conditions. Furthermore, this study explores the
minimum parameter scale required for MiniOpt to maintain competitive performance. Future work
includes exploring efficient modeling and solving methods for optimization problems with high-
dimensional variables or a large number of constraints.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS AND REPRODUCIBILITY STATEMENT

Ethics. This work does not involve any human subjects, personal data, or sensitive information. All
the test datasets used are publicly available, and no proprietary or confidential information is used.

Reproducibility. Experimental settings are described in Section 4.1 and datasets included
in Appendix E. The code is available at https://anonymous.4open.science/r/
MiniOpt-6194.

LLM USAGE STATEMENT

No LLMs were used in the research ideation and paper writing of this work.

REFERENCES

Ali AhmadiTeshnizi, Wenzhi Gao, and Madeleine Udell. OptiMUS: Scalable optimization mod-
eling with (MI)LP solvers and large language models. In Advances in Forty-first International
Conference on Machine Learning, Vienna, Austria, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code. CoRR, abs/2107.03374, 2021.

Yitian Chen, Jingfan Xia, Siyu Shao, Dongdong Ge, and Yinyu Ye. Solver-Informed RL: Grounding
large language models for authentic optimization modeling. CoRR, abs/2505.11792, 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. CoRR, abs/2110.14168, 2021.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit S.
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, Luke Marris, Sam Petulla, Colin
Gaffney, Asaf Aharoni, Nathan Lintz, Tiago Cardal Pais, Henrik Jacobsson, Idan Szpektor, Nan-
Jiang Jiang, Krishna Haridasan, Ahmed Omran, Nikunj Saunshi, Dara Bahri, Gaurav Mishra, Eric
Chu, Toby Boyd, Brad Hekman, Aaron Parisi, Chaoyi Zhang, Kornraphop Kawintiranon, Tania
Bedrax-Weiss, Oliver Wang, Ya Xu, Ollie Purkiss, Uri Mendlovic, Ilaı̈ Deutel, Nam Nguyen,
Adam Langley, Flip Korn, Lucia Rossazza, Alexandre Ramé, Sagar Waghmare, Helen Miller,
Nathan Byrd, Ashrith Sheshan, Raia Hadsell Sangnie Bhardwaj, Pawel Janus, Tero Rissa, Dan
Horgan, Sharon Silver, Ayzaan Wahid, Sergey Brin, Yves Raimond, Klemen Kloboves, Cindy
Wang, Nitesh Bharadwaj Gundavarapu, Ilia Shumailov, Bo Wang, Mantas Pajarskas, Joe Hey-
ward, Martin Nikoltchev, Maciej Kula, Hao Zhou, Zachary Garrett, Sushant Kafle, Sercan Arik,
Ankita Goel, Mingyao Yang, Jiho Park, Koji Kojima, Parsa Mahmoudieh, Koray Kavukcuoglu,
Grace Chen, Doug Fritz, Anton Bulyenov, Sudeshna Roy, Dimitris Paparas, Hadar Shemtov, Bo-
Juen Chen, Robin Strudel, David Reitter, Aurko Roy, Andrey Vlasov, Changwan Ryu, Chas Le-
ichner, Haichuan Yang, Zelda Mariet, Denis Vnukov, Tim Sohn, Amy Stuart, Wei Liang, Minmin
Chen, Praynaa Rawlani, Christy Koh, JD Co-Reyes, Guangda Lai, Praseem Banzal, Dimitrios
Vytiniotis, Jieru Mei, and Mu Cai. Gemini 2.5: Pushing the frontier with advanced reasoning,
multimodality, long context, and next generation agentic capabilities. CoRR, abs/2507.06261,
2025.

Parag Pravin Dakle, Serdar Kadioglu, Karthik Uppuluri, Regina Politi, Preethi Raghavan, SaiKr-
ishna Rallabandi, and Ravisutha Srinivasamurthy. Ner4Opt: Named entity recognition for opti-
mization modelling from natural language. In Integration of Constraint Programming, Artificial

11

https://anonymous.4open.science/r/MiniOpt-6194
https://anonymous.4open.science/r/MiniOpt-6194

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Intelligence, and Operations Research - 20th International Conference, volume 13884, pp. 299–
319, Nice, France, 2023.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-
gang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,
Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi
Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li,
Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang,
Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun
Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan
Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J.
Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang,
Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng
Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting Pan, T. Wang,
Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, and Wangding Zeng. DeepSeek-V3 technical report.
CoRR, abs/2412.19437, 2024.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng
Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen,
R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu
Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, and S. S. Li. DeepSeek-R1: Incentivizing
reasoning capability in LLMs via reinforcement learning. CoRR, abs/2501.12948, 2025.

Haoxuan Deng, Bohao Zheng, Yirui Jiang, and Trung Hieu Tran. CAFA: Coding as auto-formulation
can boost large language models in solving linear programming problem. In The 4th Workshop on
Mathematical Reasoning and AI at NeurIPS’24, 2024. URL https://openreview.net/
forum?id=xC2xtBLmri.

Zezhen Ding, Zhen Tan, Jiheng Zhang, and Tianlong Chen. Or-r1: Automating modeling and
solving of operations research optimization problem via test-time reinforcement learning, 2025.
URL https://arxiv.org/abs/2511.09092.

Jiaxuan Gao, Shusheng Xu, Wenjie Ye, Weilin Liu, Chuyi He, Wei Fu, Zhiyu Mei, Guangju Wang,
and Yi Wu. On designing effective RL reward at training time for LLM reasoning. CoRR,
abs/2410.15115, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In 9th International Confer-
ence on Learning Representations, 2021a.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2), 2021b.

Chenyu Huang, Zhengyang Tang, Shixi Hu, Ruoqing Jiang, Xin Zheng, Dongdong Ge, Benyou
Wang, and Zizhuo Wang. ORLM: A customizable framework in training large models for au-
tomated optimization modeling. Operations Research, May 2025a. ISSN 1526-5463. doi:
10.1287/opre.2024.1233.

12

https://openreview.net/forum?id=xC2xtBLmri
https://openreview.net/forum?id=xC2xtBLmri
https://arxiv.org/abs/2511.09092

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xuhan Huang, Qingning Shen, Yan Hu, Anningzhe Gao, and Benyou Wang. LLMs for mathematical
modeling: Towards bridging the gap between natural and mathematical languages. In Findings of
the Association for Computational Linguistics 2025, pp. 2678–2710, Albuquerque, New Mexico,
2025b.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, An Yang, Rui Men, Fei Huang, Xingzhang Ren, Xuancheng Ren, Jingren
Zhou, and Junyang Lin. Qwen2.5-Coder technical report. CoRR, abs/2409.12186, 2024.

Caigao Jiang, Xiang Shu, Hong Qian, Xingyu Lu, Jun Zhou, Aimin Zhou, and Yang Yu. LLMOPT:
learning to define and solve general optimization problems from scratch. In Advances in The
Thirteenth International Conference on Learning Representations, Singapore, 2025.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics, 2017.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard H. Hovy. RACE: large-scale ReAd-
ing comprehension dataset from examinations. In Martha Palmer, Rebecca Hwa, and Sebastian
Riedel (eds.), Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing, 2017.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik,
Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm,
Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. TÜLU
3: Pushing frontiers in open language model post-training. CoRR, abs/2411.15124, 2024.

Jinyuan Li, Yi Chu, Yiwen Sun, Mengchuan Zou, and Shaowei Cai. AutoPBO: LLM-powered
optimization for local search PBO solvers. CoRR, abs/2509.04007, 2025a.

Kai Li, Fei Liu, Zhenkun Wang, Xialiang Tong, Xiongwei Han, Mingxuan Yuan, and Qingfu Zhang.
Ars: Automatic routing solver with large language models. CoRR, abs/2502.15359, 2025b.

Xiaozhe Li, Jixuan Chen, Xinyu Fang, Shengyuan Ding, Haodong Duan, Qingwen Liu, and Kai
Chen. OPT-BENCH: evaluating LLM agent on large-scale search spaces optimization problems.
CoRR, abs/2506.10764, 2025c.

Kuo Liang, Yuhang Lu, Jianming Mao, Shuyi Sun, Chunwei Yang, Congcong Zeng, Xiao Jin,
Hanzhang Qin, Ruihao Zhu, and Chung-Piaw Teo. Llm for large-scale optimization model auto-
formulation: A lightweight few-shot learning approach, 2025. URL https://dx.doi.org/
10.2139/ssrn.5329027.

Hongliang Lu, Zhonglin Xie, Yaoyu Wu, Can Ren, Yuxuan Chen, and Zaiwen Wen. OptMATH:
A scalable bidirectional data synthesis framework for optimization modeling. In Forty-second
International Conference on Machine Learning, 2025.

Zeyuan Ma, Hongshu Guo, Jiacheng Chen, Guojun Peng, Zhiguang Cao, Yining Ma, and Yue-Jiao
Gong. LLaMoCo: Instruction tuning of large language models for optimization code generation.
CoRR, abs/2403.01131, 2024.

OpenAI. GPT-5 system card. https://cdn.openai.com/gpt-5-system-card.pdf,
2025.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan
Leike, and Ryan Lowe. Training language models to follow instructions with human feedback.
In Advances in Neural Information Processing Systems 35: Annual Conference on Neural Infor-
mation Processing Systems 2022, New Orleans, LA, 2022.

Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and Yizhe Zhang.
Training software engineering agents and verifiers with SWE-gym. In ICLR 2025 Third Workshop
on Deep Learning for Code, 2025.

13

https://dx.doi.org/10.2139/ssrn.5329027
https://dx.doi.org/10.2139/ssrn.5329027
https://cdn.openai.com/gpt-5-system-card.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Rindranirina Ramamonjison, Timothy Yu, Raymond Li, Haley Li, Giuseppe Carenini, Bissan Ghad-
dar, Shiqi He, Mahdi Mostajabdaveh, Amin Banitalebi-Dehkordi, Zirui Zhou, and Yong Zhang.
NL4Opt competition: Formulating optimization problems based on their natural language de-
scriptions. In Proceedings of the NeurIPS 2022 Competitions Track, volume 220, pp. 189–203,
2022.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y. K. Li,
Y. Wu, and Daya Guo. DeepSeekMath: Pushing the limits of mathematical reasoning in open
language models. CoRR, abs/2402.03300, 2024.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflex-
ion: language agents with verbal reinforcement learning. In Advances in Neural Information
Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023,
New Orleans, LA, 2023.

Akash Singirikonda, Serdar Kadioglu, and Karthik Uppuluri. Text2Zinc: A cross-domain dataset
for modeling optimization and satisfaction problems in MiniZinc. CoRR, abs/2503.10642, 2025.

Wen Song, Xinyang Chen, Qiqiang Li, and Zhiguang Cao. Flexible job-shop scheduling via graph
neural network and deep reinforcement learning. IEEE Transactions on Industrial Informatics,
19(2):1600–1610, 2023.

Yiwen Sun, Furong Ye, Xianyin Zhang, Shiyu Huang, Bingzhen Zhang, Ke Wei, and Shaowei
Cai. AutoSAT: Automatically optimize SAT solvers via large language models. CoRR,
abs/2402.10705, 2024.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-Shepherd: Verify and reinforce LLMs step-by-step without human annotations. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 9426–9439, Bangkok, Thailand, 2024.

Yang Wu, Yifan Zhang, Yurong Wu, Yuran Wang, Junkai Zhang, and Jian Cheng. Training
LLMs for optimization modeling via iterative data synthesis and structured validation. In Chris-
tos Christodoulopoulos, Tanmoy Chakraborty, Carolyn Rose, and Violet Peng (eds.), Findings
of the Association for Computational Linguistics: EMNLP 2025, pp. 12880–12896, Suzhou,
China, November 2025. Association for Computational Linguistics. ISBN 979-8-89176-335-7.
doi: 10.18653/v1/2025.findings-emnlp.691. URL https://aclanthology.org/2025.
findings-emnlp.691/.

Chaojun Xiao, Jie Cai, Weilin Zhao, Biyuan Lin, Guoyang Zeng, Jie Zhou, Zhi Zheng, Xu Han,
Zhiyuan Liu, and Maosong Sun. Densing law of llms. Nature Machine Intelligence, 7(11):
1823–1833, Nov 2025a. ISSN 2522-5839. doi: 10.1038/s42256-025-01137-0. URL https:
//doi.org/10.1038/s42256-025-01137-0.

Ziyang Xiao, Dongxiang Zhang, Yangjun Wu, Lilin Xu, Yuan Jessica Wang, Xiongwei Han, Xiaojin
Fu, Tao Zhong, Jia Zeng, Mingli Song, and Gang Chen. Chain-of-Experts: When LLMs meet
complex operations research problems. In The Twelfth International Conference on Learning
Representations, Vienna, Austria, 2024.

Ziyang Xiao, Jingrong Xie, Lilin Xu, Shisi Guan, Jingyan Zhu, Xiongwei Han, Xiaojin Fu, WingYin
Yu, Han Wu, Wei Shi, Qingcan Kang, Jiahui Duan, Tao Zhong, Mingxuan Yuan, Jia Zeng, Yuan
Wang, Gang Chen, and Dongxiang Zhang. A survey of optimization modeling meets LLMs:
Progress and future directions. In James Kwok (ed.), Proceedings of the Thirty-Fourth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-25, pp. 10742–10750. International Joint
Conferences on Artificial Intelligence Organization, 8 2025b. doi: 10.24963/ijcai.2025/1192.
Survey Track.

Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
Zhirong Wu, and Chong Luo. Logic-RL: Unleashing LLM reasoning with rule-based reinforce-
ment learning. CoRR, abs/2502.14768, 2025.

14

https://aclanthology.org/2025.findings-emnlp.691/
https://aclanthology.org/2025.findings-emnlp.691/
https://doi.org/10.1038/s42256-025-01137-0
https://doi.org/10.1038/s42256-025-01137-0

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Huajian Xin, Z. Z. Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu,
Liyue Zhang, Xuan Lu, Qiushi Du, Wenjun Gao, Haowei Zhang, Qihao Zhu, Dejian Yang, Zhibin
Gou, Z. F. Wu, Fuli Luo, and Chong Ruan. DeepSeek-Prover-V1.5: Harnessing proof assistant
feedback for reinforcement learning and monte-carlo tree search. In Advances in the Thirteenth
International Conference on Learning Representations, Singapore, 2025.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu
Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong
Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. CoRR, abs/2412.15115,
2024a.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng
Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jian Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang, Le Yu,
Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui Men,
Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang Ren,
Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger Zhang,
Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu.
Qwen3 technical report. CoRR, abs/2505.09388, 2025a.

Zhicheng Yang, Yinya Huang, Wei Shi, Liang Feng, Linqi Song, Yiwei Wang, Xiaodan Liang, and
Jing Tang. Benchmarking LLMs for optimization modeling and enhancing reasoning via reverse
socratic synthesis. CoRR, abs/2407.09887, 2024b.

Zhicheng Yang, Yiwei Wang, Yinya Huang, Zhijiang Guo, Wei Shi, Xiongwei Han, Liang Feng,
Linqi Song, Xiaodan Liang, and Jing Tang. OptiBench meets ReSocratic: Measure and improve
LLMs for optimization modeling. In The Thirteenth International Conference on Learning Rep-
resentations, Singapore, 2025b.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi
Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi
Wang, Hongli Yu, Weinan Dai, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-
Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. DAPO: an
open-source LLM reinforcement learning system at scale. CoRR, abs/2503.14476, 2025.

Haotian Zhai, Connor Lawless, Ellen Vitercik, and Liu Leqi. Equivamap: Leveraging LLMs for
automatic equivalence checking of optimization formulations. In 2nd AI for Math Workshop @
ICML 2025, 2025. URL https://openreview.net/forum?id=RvdjzNlksm.

Kechi Zhang, Ge Li, Yihong Dong, Jingjing Xu, Jun Zhang, Jing Su, Yongfei Liu, and Zhi Jin.
CodeDPO: Aligning code models with self generated and verified source code. In Advances
in the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 15854–15871, Vienna, Austria, 2025.

A DATASETS

A.1 THE INTRODUCTION OF EVALUATION DATASETS

In this section, we provide an overview of the datasets used for performance evaluation in our ex-
periments. These datasets cover a wide range of optimization types and scenarios, ensuring the
robustness and generalization of our proposed method. In our practice, we use the version of the
benchmark datasets above from https://github.com/antgroup/LLMOPT.

NL4Opt (Ramamonjison et al., 2022) dataset is curated from the NL4Opt Competition. For this
benchmark, we used the test split containing 230 annotated linear programming word problems

15

https://openreview.net/forum?id=RvdjzNlksm
https://github.com/antgroup/LLMOPT

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 3: Statistics of the optimization problem datasets

Dataset Name # of Data

NL4Opt 230
ICML.C 410
Mamo.E 652
Mamo.C 211
NLP4LP 242
Com.OR 18
Indus.OR 100
OptiBench 605
OptMATH-Bench 166

after manually removing 15 unsolvable problems from the original 245 problems. Each problem is
sourced from domains such as sales, advertising, and investment, ensuring a balanced representation.

Mamo (Huang et al., 2025b) dataset (optimization split of the original Mamo dataset) consists
of two parts: Easy LP and Complex LP. These two subsets provide 652 high-school-level and
211 undergraduate-level Linear Programming (LP) and Mixed-Integer Linear Programming (MILP)
problems, respectively.

IndustryOR (Huang et al., 2025a) is the first industrial dataset specifically designed for optimization
modeling. It incorporates data from 13 different industries and covers a variety of real-world scenar-
ios. The dataset includes real operations research problems from eight different industries, covering
five types of optimization problems, and divided into three difficulty levels. The test dataset contains
100 instances with optimal solutions.

NLP4LP (AhmadiTeshnizi et al., 2024) dataset includes 242 feasible samples sourced from opti-
mization textbooks and lecture notes. These problems cover areas such as facility location, net-
work flow, scheduling, and portfolio management. Each instance in NLP4LP includes a description,
sample parameter data file, and optimal value derived from textbook solutions or manual solving,
offering a range of complex optimization challenges of varying difficulty levels.

ComplexOR (Xiao et al., 2024) dataset is developed in collaboration with three specialists in op-
erations research. It contains 18 samples sourced from diverse references such as academic papers,
textbooks, and real-world industrial scenarios. These problems encompass a broad spectrum of
topics, including supply chain optimization, scheduling problems, and warehousing optimization,
providing comprehensive and complex optimization challenges.

OptMATH-Bench (Lu et al., 2025) is a large-scale, challenging benchmark specifically designed
to evaluate the optimization modeling capabilities of LLMs, encompassing diverse optimization
problem types across 10+ real-world application domains such as logistics, manufacturing, trans-
portation, and finance. The benchmark features significantly more complex problem descriptions
with an average length 2.9× longer than Mamo Easy, containing extended natural language contexts
and intricate constraints that pose greater challenges.

OptiBench (Yang et al., 2025b) is a comprehensive benchmark for evaluating large language mod-
els’ end-to-end optimization problem-solving capabilities. The dataset contains 605 carefully cu-
rated optimization problems that span multiple optimization types and formats. OptiBench includes
problems of Linear Programming (LP), Integer Programming (IP), and Mixed-Integer Linear Pro-
gramming (MILP), encompassing a wide range of optimization complexities.

ICML Competition (Yang et al., 2024b) dataset comprises data from the ICML 2024 Challenges on
Automated Math Reasoning - Track 3: Automated Optimization curated from the competition’s test
split. Since the original ground truth is not released by the organizers, all solutions in this dataset
are manually labeled. The dataset serves as a challenging benchmark for evaluating end-to-end
optimization reasoning and problem-solving capabilities of language models.

A.2 THE DISTRIBUTION OF OPTIMIZATION TYPES AND PROBLEM SCENARIOS OF
BENCHMARKS

To evaluate the generalization ability of the MiniOpt across different problem scenarios through ex-
periments, this paper has counted the number of optimization types and scenarios in 9 benchmarks.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

The distribution histogram of optimization types in the nine benchmarks used in this paper is shown
in Figure 3, and the distribution histogram of problem scenarios is shown in Figure 4.

CO 4 8 12 39 0 0 0 19 11

IP 4 211 23 11 2 161 167 7 291

LP 9 175 31 123 650 69 75 16 214

MILP 1 16 30 38 0 0 0 91 44

MOP 0 0 4 0 0 0 0 0 0

NLP 0 0 0 0 0 0 0 0 45

SOCP 0 0 0 0 0 0 0 33 0

Data 18 410 100 211 652 230 242 166 605

Type Com.OR ICML.C Indus.OR Mamo.C Mamo.E NL4Opt NLP4LP OptMAT
H-Bench Optibench

Figure 3: Histogram showing the distribution of optimization types across 9 benchmarks. We cate-
gorize the problems in the benchmarks into these types: Combinatorial Optimization (CO), Integer
Programming (IP), Linear Programming (LP), Mixed-Integer Linear Programming (MILP), Multi-
Objective Optimization Problems (MOP), Nonlinear Programming (NLP), Second-Order Cone Pro-
gramming (SOCP).

Agriculture 0 37 5 4 31 13 12 0 46
Aviation 3 2 2 2 0 2 1 12 2

Construction 0 1 1 1 42 1 1 0 8
Education 0 5 1 0 30 0 0 0 7

Energy 0 0 0 5 25 1 2 7 15
Environment 0 0 0 0 31 0 1 0 0

Finance 0 16 7 5 85 5 5 6 22
Healthcare 0 15 1 5 31 23 29 0 20
Logistics 1 27 8 32 25 21 23 22 42

Manufacturing 5 169 37 12 34 77 83 56 254
Marketing 1 9 0 0 43 2 2 0 11
Military 0 0 2 0 36 0 0 0 3

Public Utilities 0 9 1 4 7 2 2 2 19
Resources 0 15 0 12 9 11 8 3 17

Retail 0 16 4 2 31 8 9 1 19
Services 4 38 10 6 73 29 29 7 40
Sports 0 0 0 0 31 0 0 0 0

Supply Chain 2 12 7 48 31 5 3 11 11
Technology 0 0 1 3 0 0 0 1 3

Telecommunications 1 1 0 8 27 0 0 9 1
Transportation 1 31 8 57 45 23 26 9 40

Other 0 7 5 5 15 7 6 20 25
Data 18 410 100 211 682 230 242 166 605

Scenario Com.OR ICML.C Indus.OR Mamo.C Mamo.E NL4Opt NLP4LP OptMAT
H-Bench Optibench

Figure 4: Histogram showing the distribution of optimization problem scenarios across 9 bench-
marks. We categorize the problems in the benchmarks into these scenarios: Agriculture, Avia-
tion, Construction, Education, Energy, Environment, Finance, Healthcare, Logistics, Manufacturing,
Marketing, Military, Public Utilities, Resources, Retail, Services, Sports, Supply Chain, Technol-
ogy, Telecommunications, Transportation, Other.

A.3 TRAINING DATASETS FOR SFT WARM-UP AND TWO-STAGE RL

The data volume and data sources for each stage of MiniOpt’s training process are illustrated in
Table 4.

Table 4: The number of samples in the dataset for training. Note that all data mentioned in the table
comes entirely from the training split of the corresponding dataset.

Training Stage Dataset Size Data Source

SFT Warm-up 140K OptMATH-Train
RL-Stage 1 1585 NL4Opt (Train) & ICML.C (Train)
RL-Stage 2 3000 OptMATH-Train

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B BASELINES

B.1 GENERAL MODELS

Qwen2.5-3B/7B/14B (Yang et al., 2024a). The models of the Qwen2.5 series are widely adopted
as base models or baselines. The series showcases significant enhancements such as substantially
improved knowledge, coding, and mathematical capabilities. Key features excel at instruction fol-
lowing, processing long contexts up to 128K tokens, and robustly handling structured data like
JSON.

DeepSeek-V3 (DeepSeek-AI et al., 2024). DeepSeek-V3 introduces a sparse Mixture-of-Experts
(MoE) model with 671B total parameters. It achieves training efficiency through Multi-head Latent
Attention (MLA) architecture and an auxiliary-loss-free load balancing strategy. Pretrained on 14.8T
tokens with an SFT and reinforcement learning (RL).

B.2 GENERAL REASONING MODELS

Qwen3-4B/8B/14B (Yang et al., 2025a). Qwen3 pioneers a unified architecture (0.6B to 235B) inte-
grating thinking mode (complex reasoning) and non-thinking mode (rapid responses) with dynamic
switching. Its thinking budget mechanism enables adaptive computational allocation. The series
outperforms larger MoE models in tasks such as coding, mathematics, and agent application.

DeepSeek-R1 (DeepSeek-AI et al., 2025).The DeepSeek-R1 is an enhanced model based on
DeepSeek-R1-Zero presented in this work. It’s a purely RL-driven reasoning model requiring no
SFT pretraining. As the most representative model with thinking ability, DeepSeek-R1 is an impor-
tant baseline for reasoning models.

Gemini-2.5-Pro (Comanici et al., 2025). Gemini-2.5-Pro is a powerful multimodal agent that has
excellent programming / reasoning performance and enables the processing of long video content.
The Gemini-2.5 family spans the full Pareto front of capability-cost optimization. Its integration of
long-context understanding, multimodality, and reasoning unlocks novel agentic applications.

GPT-5 (OpenAI, 2025). GPT-5 is the latest unified, router-mediated system that instantiates a spec-
trum of language-model instances ranging from a high-throughput, low-latency model (gpt-5-main)
to a deliberative, compute-intensive reasoning model (gpt-5-thinking). The router selects the appro-
priate instantiation by conditioning on conversation type, task complexity, tool requirements, and
explicit user directives, thereby optimizing both instruction adherence and inference efficiency.

B.3 PROMPT-BASED METHODS

Reflection (Shinn et al., 2023). Reflexion is an enhanced language agent framework utilizing feed-
back mechanisms. It enables agents to excel at sequential decision-making tasks through task feed-
back analysis and memory buffering without requiring weight updates. This framework accommo-
dates diverse feedback signals and demonstrates effectiveness across programming, math problems
and language reasoning domains.

OptiMUS (AhmadiTeshnizi et al., 2024). OptiMUS is a highly modular solver that leverages the
text understanding and generating capabilities of LLMs. It constructs specialized agents for entity
extraction, mathematical modeling, and code generation using concise prompts, while incorporating
a reflection mechanism for iterative improvement.

Chain-of-Experts (Xiao et al., 2024). Chain-of-Experts is a multi-agent framework specifically
designed for operations research optimization problems. The system features a central controller
that coordinates an interaction sequence among specialized agents, including a term interpreter,
modeling agent, and programming expert. Thus solving optimization problems through precise
coordination of multiple modules.

B.4 LEARNING-BASED MODELS

LLMOPT-14B (Jiang et al., 2025). LLMOPT is a novel framework for optimization problem solv-
ing that leverages LLMs. It begins by formulating a unified representation of optimization prob-

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

lems, thereby enhancing the model’s ability to generalize across diverse types of scenarios. Based
on this unified description of five-element formulation, the framework generates the solving code.
LLMOPT uses multi-instruction SFT and KTO alignment during training to enhance modeling ac-
curacy and reduce model hallucinations.

OptMATH-Qwen2.5-7B (Lu et al., 2025). OptMATH-Qwen2.5-7B is trained end-to-end on the
OptMATH-Train dataset, it generates both mathematical formulations and solver code from problem
descriptions. The input consists of textual problem specifications, while the target output comprises
concatenated sequences. Optimization follows the standard sequence-to-sequence loss function,
enabling single-stage joint optimization of formulation and code generation.

Step-OPT-8B (Wu et al., 2025). Step-OPT is a model trained on a meticulously curated high-quality
dataset. The training set is enhanced through Scope-Evolve and Complexity-Evolve techniques,
which improve both the difficulty level and the coverage of application scenarios. Moreover, a
multi-agent and stepwise verification mechanism is employed to enhance the quality of problems
and solutions while eliminating errors present in the original dataset. Finally, supervised fine-tuning
was performed on this high-quality training dataset resulting in the Step-OPT-8B model.

C THE DETAILS OF THE FIVE-ELEMENT FORMULATION

The five-element modeling formulation is a universal mathematical model for optimization prob-
lems, which consists of five parts. We start from the following formulation:

min
x∈X⊆RD

f(x) , s.t. G(x) ≤ c , (5)

where x = (x1, x2, . . . , xD)⊤ is the D-dimensional decision variable, X is the feasible region,
f : X → R is the objective, G(x) : RD → Rm collects the constraints, and c ∈ Rm provides
the upper bounds. Among them, Variables, Objective, and Constraints correspond to x, f(x),
and G(x), while Sets and Parameters provide indices and numerical tables that instantiate and
vectorize f and G. Sets determine the dimensions and naming of decision and constraint families.
Parameters supply exogenous constants such as costs, coefficients, budgets, and demands. Vari-
ables specify domains and bounds(e.g., continuous, nonnegative, integer, or binary), which jointly
define the feasible region X ; domain-type restrictions such as “positive integers” may equivalently
be encoded as explicit constraints, and our parser maps both styles to X . Objective gives the mini-
mization or maximization expression, and Constraints provide named families of linear or nonlinear
equalities/inequalities composing G and the bound vector c. This representation naturally spans
LP/IP/MILP: integrality arises through X , linearity or nonlinearity is captured by the form of G,
and multi-objective problems can be accommodated by extending f(x) to a vector F (x) with a
scalarization scheme. The think output ends with the five-element formulation, which serves as a
modeling blueprint.

D DETAILS OF GRPO ALGORITHM

This paper proposes OptGRPO based on the improvement of the GRPO algorithm (Shao et al.,
2024). For each query, GRPO sample G responses, compute the mean and standard deviation of
their scalar rewards, and form a group-normalized advantage Âi = (ri−µ)

σ . Specifically, GRPO
optimizes the policy πθ as follows:

JGRPO(θ) = Eq∼P (Q),{oi}G
i=1∼πθold (·|q)[

G∑
i=1

|oi|∑
t=1

1

|oi|

(
min

[
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
Âi,t, clip(

πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
, 1− ε, 1 + ε)Âi,t

]

−βDKL[πθ(·|q)∥πref(·|q)]
)]

, (6)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

where q denotes queries sampled from the input dataset and o denotes the model’s outputs. ε is the
clipping threshold, β is the coefficient on the KL penalty, and DKL is the KL divergence between
the current policy πθ and the reference policy πref .

E THE PROCESSING PIPELINE OF TRAINING DATA

The processing pipeline for the SFT training set is detailed in Section 3.3.1. The resulting collection
of this pipeline is named OptMATH-Train-Pyomo, which contains approximately 140K samples.
The prompt template used in code conversion is introduced in Appendix L, and the prompt of the
solver adapter is introduced in Appendix M.

In the first stage of MiniOpt’s RL training, we employ a set of relatively easy and small-scale opti-
mization problems, for which the accuracy score is more readily maximized. This, in turn, incen-
tivizes the model to attain higher format score and five-element score, thereby accelerating mastery
of the reasoning to model and solve paradigm. Concretely, the dataset of the first stage is the union
of the NL4Opt (AhmadiTeshnizi et al., 2024) and ICML Competition (Yang et al., 2024b) training
splits, comprising 1585 problems. Each instance is presented as a natural-language prompt paired
with a reference answer and is fully compatible with our pipeline of parsing, executing, and scoring,
enabling straightforward computation of the OptReward.

The second stage of RL targets optimization generalization (Jiang et al., 2025) under a limited train-
ing budget. The objective is to construct a training set that simultaneously covers diverse optimiza-
tion types and scenarios, while preserving the scenario proportions observed in the real distribution.
Starting from the OptMATH-Train pool containing 201K problems, we label each instance with
types and scenarios using the DeepSeek-V3 (DeepSeek-AI et al., 2024), with prompt templates
and data distributions provided in Appendix O. We then sample a 3000-instance stage-2 training set
subject to two constraints: (i) type-uniform coverage, with exactly 600 instances per type; and (ii)
within each type, the scenario frequencies match the distribution in the full pool. Formally, letting
p(s) denote the overall scenario distribution in the complete pool, the target number of samples for
each scenario s under type t is allocated as nt(s) = round

(
600 · p(s)

)
, where

∑
s nt(s) = 600.

To prevent leakage, problems used during the SFT warm-up (Section 3.3.1) are excluded from con-
sideration. The resulting 3K training set is uniform across types and aligned with the scenario dis-
tribution of the data pool. Compared with random or non-selected baselines, this selection improves
overall performance of MiniOpt under the same compute budget.

F COMPARISON OF EXECUTION RATE ACROSS 9 BENCHMARKS

This section we use Execution Rate (ER), the proportion of generated code samples that run suc-
cessfully without errors. As shown in the Table 5, MiniOpt also exhibits superior text generation ca-
pabilities compared to baseline methods, which suggests its excellent code generation performance
given the problem modeling.

G ABLATION STUDY OF MINIOPT ACROSS 9 BENCHMARKS

Importance of the Training Pipeline of MiniOpt (Answer to Q3). In the training pipeline of
MiniOpt, each module plays a distinct role in improving SA and ER. First, the lightweight SFT
warm-up provides a better starting point for RL training. Without it, averages for SA and ER fall
to 53.59% and 83.66%, respectively. The decreases are ∆SA=–3.35 and ∆ER=–4.38. Second, re-
moving all RL training collapses the average performance from SA of 56.94% and ER of 88.04%
to 39.25% and 75.36%, respectively. With the sharpest drops on challenging datasets like Com.OR
(∆SA = –33.33%, ∆ER = –33.33%) and OptMATH-Bench (∆SA = –22.29%, ∆ER = –34.33%)
where accurate modeling and solver selection are indispensable. Third, collapsing the two-stage
RL removes the progressive training that first consolidates the paradigm (stage-1) and then targets
generalization (stage-2), averages drop to the SA of 54.12% and ER of 84.38% (∆ SA=–2.82%,
∆ ER=–3.66%). Moreover, the data selection of stage-2 is crucial for sample efficiency that train-
ing on the full pool (w/o Data Selection) yield the average SA of 53.58% and the average ER of
82.04% (∆SA = –3.36%, ∆ER = –6.00%), while the random selected training data (w/ Random

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 5: Comparison of the ER metric across 9 benchmarks with rankings (NL4Opt, ICML Compe-
tition, Mamo Easy, Mamo Complex, NLP4LP, ComplexOR, IndustryOR, OptiBench, OptMATH-
Bench). Bold indicates 1st,

::::
wavy

::::::::
underline indicates 2nd, underline indicates 3rd. “Rank∗” repre-

sents the result of sorting methods among parameter sizes below 10B.

Category Model / Method Avg. Rank Rank∗ NL4Opt ICML.C Mamo.E Mamo.C NLP4LP Com.OR Indus.OR OptiBench OptMATH-
Bench

General Models

Qwen2.5-3B-Instruct 17.11 21 10 31.30 28.54 21.47 7.11 28.93 5.56 10.00 20.50 0.60
Qwen2.5-7B-Instruct 41.69 18 8 66.09 68.54 40.34 19.43 71.90 16.67 30.00 53.22 9.04
Qwen2.5-14B-Instruct 63.53 14 - 82.17 80.73 86.66 59.24 84.71 38.89 52.00 61.49 25.90
DeepSeek-V3 83.50 7 - 97.83 97.32 96.63 71.56 97.93 72.22 70.00 84.79 63.25

General Models
(Thinking)

Qwen3-4B 14.15 22 11 19.57 20.00 15.18 18.48 18.18 11.11 5.00 16.20 3.61
Qwen3-8B 25.55 20 9 36.96 38.29 26.53 18.01 39.26 22.22 10.00 35.04 3.61
Qwen3-14B 31.17 19 - 28.70 25.12 40.18 30.81 22.73 61.11 27.00 27.44 17.47
DeepSeek-R1 83.07 9 - 96.09 94.15 89.72 84.83 91.32 61.11

:::
82.00 88.92 53.01

Gemini-2.5-Pro 89.65 4 - 94.35 96.10 95.86 86.26 96.28 77.78 87.00
:::
91.90

:::
81.32

GPT-5 83.26 8 - 98.08 97.32 71.47 55.92 97.52 88.89 78.00 92.07 69.88

Prompt-based
Methods

Chain-of-Experts 61.72 15 - 79.57 73.41 72.85 56.87 77.27 55.56 54.00 65.45 20.48
OptiMUS 52.13 17 - 45.22 75.85 73.77 43.60 44.63 44.44 48.00 65.95 27.71
Reflexion 80.42 10 - 91.74 91.46 97.55 67.77 95.45 83.33 66.00 81.65 48.80

Learning-based
Models

Step-OPT-LLaMA3.2-3B 67.44 13 6 98.70 48.05 90.64 73.93 99.17 66.67 60.00 48.76 21.08
Step-OPT-LLaMA-3-8B 78.29 11 4 96.96 93.90 98.93 90.05 94.63 61.11 67.00 73.72 28.31
Step-OPT-Qwen2.5-3B 59.37 16 7 54.78 58.78 97.09 42.18 81.40 61.11 50.00 67.27 21.69
Step-OPT-Qwen2.5-7B 71.76 12 5 94.78 77.56 87.73 84.83 68.18 72.22 64.00 71.24 25.30
OptMATH-7B 85.07 6 3 99.13 95.85 98.47 90.05 99.17 66.67 69.00 82.81 64.46
LLMOPT-14B 90.03 3 - 97.42 93.90 92.29 77.73 97.93 88.89 61.00 73.22 31.93

Ours
MiniOpt-3B 88.04 5

:
2 99.57 95.85 98.47 87.68 99.59 88.89 70.00 83.64 68.67

MiniOpt-7B
:::

90.61
:
2 1 99.57

:::
98.05 98.93

:::
95.26 100.00 88.89 74.00 84.30 76.51

MiniOpt-14B 92.35 1 - 99.57 98.54 98.93 97.16 100.00 88.89 77.00 89.09 81.93

Table 6: Ablation study (MiniOpt-3B) on the ER metric across 9 benchmarks.
Category Model / Method Avg. NL4Opt ICML.C Mamo.E Mamo.C NLP4LP Com.OR Indus.OR OptiBench OptMATH-Bench

Ablations

MiniOpt-3B 88.04 99.57 95.85 98.47 87.68 99.59 88.89 70.00 83.64 68.67
MiniOpt-3B w/o SFT Warm-up 83.66 99.13 96.59 98.16 84.36 98.35 66.67 68.00 84.46 57.23
MiniOpt-3B w/o RL 75.36 96.09 92.68 97.09 69.19 97.93 55.56 62.00 73.39 34.34
MiniOpt-3B w/o Two-stage RL 84.38 98.26 96.10 97.85 84.36 98.35 72.22 70.00 84.46 57.83
MiniOpt-3B w/o Data Selection 82.04 99.57 95.61 96.78 86.73 98.76 55.56 66.00 82.15 57.23
MiniOpt-3B w/ Random Selection 82.01 99.13 96.10 97.09 77.73 97.93 67.67 69.00 84.63 48.80
MiniOpt-3B w/o OptReward 83.39 98.26 95.61 97.70 83.89 97.93 72.22 64.00 82.48 58.43
MiniOpt-3B w/ GRPO 80.00 97.39 94.63 96.32 83.41 95.87 55.56 64.00 81.65 51.20
MiniOPT-3b w/ DAPO 86.82 99.13 96.34 98.77 85.31 99.17 83.33 74.00 86.94 58.43

Selection) yield SA of 50.94% and ER of 82.01% on average (∆SA = -6.00%, ∆ER = -6.03%),
indicating that type-uniform, globally scenario-aligned sampling concentrates updates where they
best improve cross-type, cross-scenario behavior. Finally, reverting our OptGRPO to the original
GRPO (w/o OptGRPO) further decreases both metrics, averages SA of 48.33% and ER of 80.00%.
The drop aligns with our algorithmic choices: removing KL part frees exploration for small-scale
LLMs; Clip-Higher part prevents entropy collapse by allowing probability increases on rare but cru-
cial reasoning/code tokens; Token-Level Loss part can enhance the impact of long output, which
is conducive to the training of the reasoning model. Together these changes improve sample effi-
ciency and training stability, which is critical for eliciting strong optimization generalization at small
parameter scales.

H COMPARISON OF AVERAGE ER AGAINST MODEL PARAMETER SCALES
FOR VARIOUS METHODS

In this chapter, we present a comparative plot of the model parameters scale and the average ER
across multiple methods, as illustrated in Figure 5.

I COMPARISON OF RESULTS BETWEEN THE MINIMUM MODEL AND MODELS
OF OTHER SCALES

As shown in Tables 7 and 8, we compared the SA and ER of four different sizes of MiniOpt (1.5B,
3B, 7B, and 14B) across 9 benchmarks, respectively.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

101 102

Parameter Size (B)

20

30

40

50

60

70

80

90

Ex
ec

ut
io

n
R

at
e

(%
)

Execution Rate vs. Parameter Size

Qwen2.5-3B-Instruct

Qwen2.5-7B-Instruct

Qwen2.5-14B-Instruct

DeepSeek V3

Qwen3-4B

Qwen3-8B

Qwen3-14B

DeepSeek R1

Chain-of-Experts

OptiMUS

Reflexion
OptMATH-7B

LLMOPT-14B

Step-Opt-llama3.2-3B

Step-Opt-llama3-8B

Step-Opt-Qwen2.5-3B

Step-Opt-Qwen2.5-7B

MiniOpt-3B

MiniOpt-7B

MiniOpt-14B

General Models
General Models (Thinking)
Prompt-based Methods
Learning-based Models
Ours

Figure 5: Comparison of average ER against model parameter scales for various methods. MiniOpt
is the Pareto optimal among compared methods.

Table 7: Comparison of the SA metric between MiniOpt-1.5B and larger scale counterparts across
9 benchmarks.
Solving Accuracy (SA) Avg. NL4Opt ICML.C Mamo.E Mamo.C NLP4LP Com.OR Indus.OR OptiBench OptMATH-Bench

Dataset size 230 410 652 211 242 18 100 605 166

Ours

MiniOpt-1.5B 46.15 63.48 55.37 77.15 27.01 58.68 38.89 16.00 41.98 36.75
MiniOpt-3B 56.94 83.04 68.05 85.43 35.07 73.55 50.00 21.00 53.55 42.77
MiniOpt-7B 62.76 89.13 77.56 88.34 38.89 79.34 55.56 26.00 59.34 51.20
MiniOpt-14B 66.10 92.17 86.34 90.80 33.65 79.75 61.11 27.00 67.44 56.63

J THE SEESAW ISSUE OF LLMS

We assess whether adapting our models to optimization modeling introduces a seesaw issue for
small-parameter models. After evaluating pre-training and post-training scores on six widely
used general-purpose benchmarks: MMLU (Hendrycks et al., 2021a), MATH (Hendrycks et al.,
2021b), HumanEval (Chen et al., 2021), TriviaQA (Joshi et al., 2017), RACE (Lai et al., 2017),
GSM8K (Cobbe et al., 2021), we observe that the average scores of MiniOpt-7B and MiniOpt-3B
decrease by only 1.83% and 3.05%, respectively. Notably, the 3B model even exhibits a 0.7% im-
provement on GSM8K, a proxy for mathematical reasoning. These results indicate that our training
paradigm for optimization modeling does not induce a pronounced seesaw effect. We attribute this
to two factors. First, the two-stage RL framework coupled with a verifiable OptReward constrains
learning to structural modeling correctness and executable solving efficacy, mitigating overfitting to
superficial linguistic style or lengthy chain-of-thought and thereby substantially reducing the risks
of catastrophic forgetting and cross-task seesaw effects. Second, the foundational competencies
required for optimization modeling, such as mathematical understanding, symbolic reasoning, pro-
gram synthesis, and execution, which highly overlap with those assessed by general benchmarks
such as MMLU, MATH, GSM8K, and HumanEval. Consequently, targeted reinforcement in this
domain does not overwrite existing representations, instead, it yields small positive transfer on tasks
closely aligned with modeling and solving, as exemplified by GSM8K.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 8: Comparison of the ER metric between MiniOpt-1.5B and larger scale counterparts across
9 benchmarks.
Execution Rate (ER) Avg. NL4Opt ICML.C Mamo.E Mamo.C NLP4LP Com.OR Indus.OR OptiBench OptMATH-Bench

Dataset size 230 410 652 211 242 18 100 605 166

Ours

MiniOpt-1.5B 80.00 93.91 91.71 97.09 79.15 91.74 66.67 63.00 75.87 60.84
MiniOpt-3B 88.04 99.57 95.85 98.47 87.68 99.59 88.89 70.00 83.64 68.67
MiniOpt-7B 90.61 99.57 98.05 98.93 95.26 100.00 88.89 74.00 84.30 76.51
MiniOpt-14B 92.35 99.57 98.54 98.93 97.16 100.00 88.89 77.00 89.09 81.93

K DETAILED DISCUSSION ON THE EFFICIENCY OF MINIOPT TO MODEL
AND SOLVE OPTIMIZATION PROBLEMS

To validate the high efficiency of the MiniOpt model during inference, we compared the average
number of tokens generated in full responses on the OptMATH dataset by two small-parameter
models of MiniOpt and DeepSeek-R1. As shown in Table 9, MiniOpt achieves higher ER and SA
while using fewer average output tokens. This advantage stems from MiniOpt’s internalized unified
reasoning to model and solve paradigm tailored for optimization modeling problems, which guides
the model along a more efficient reasoning path during inference.

Table 9: Comparison of average output token consumption in OptMATH-Bench.

Model Avg. Token Count SA (%) ER (%)

MiniOpt-3B 1911.72 42.77 68.67
MiniOpt-7B 3068.99 51.20 76.51
DeepSeek-R1 5078.90 39.76 53.01

L SYSTEM PROMPT FOR CODE CONVERSION FROM GUROBIPY TO PYOMO

This section provides the system prompt for the large language model to convert GurobiPy code in
OptMATH-Train into Pyomo code, where the content within [·] and {·} will be replaced with the
corresponding parts.

PROMPT TEMPLATE FOR CODE CONVERSION

You are an expert in optimization problems. Your task is to convert
the given gurobipy code into pyomo code.

Instructions:
1. Don’t give any explanation, just provide the converted pyomo

code in the following format:
‘‘‘python
[pyomo code here]
‘‘‘
2. Please note that the following solvers are available for use: ’

glpk’, ’cbc’, ’ipopt’, ’scip’. Other solvers should not be
utilized.

3. Please add ‘from pyomo.environ import *‘ at the beginning of
your code.

4. Please print the optimal objective value at the end of the code.

Gurobipy code:
{gurobipy}

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

M PROMPT FOR THE SOLVER SELECTION

This section provides the system prompt to guide MiniOpt models in autonomously selecting solvers
after modeling optimization problems.

PROMPT FOR SOLVER SELECTION

Solver Selection Guide:
- ‘‘glpk‘‘: Best for small-to-medium linear problems (LP).
- ‘‘cbc‘‘: Recommended for mixed-integer linear programming (MILP)

and larger linear problems. Handles binary/integer variables
well.

- ‘‘ipopt‘‘: Use for nonlinear problems (NLP) with continuous
variables. Does NOT support discrete variables.

- ‘‘scip‘‘: Most versatile - handles mixed-integer nonlinear
problems (MINLP), large-scale problems, and complex constraints.

Select solver based on:
1. Variable types (continuous vs integer/binary)
2. Linearity of objective/constraints
3. Problem scale (small: glpk/cbc, large: scip/ipopt)
4. Nonlinearity presence (use ipopt/scip)

N SYSTEM PROMPT FOR RL TRAINING

This section provides the system prompt used by MiniOpt models during reinforcement learning
(RL) training.

SYSTEM PROMPT FOR RL TRAINING

You are a helpful assistant. The assistant first thinks about the
reasoning process in the mind and then provides the user with
the answer. The reasoning process and answer are enclosed within
<think> </think> and <answer> </answer> tags, respectively, i.e

., <think> reasoning process here </think><answer> answer here
</answer>, please make sure to answer according to the above
format. Now the user asks you to solve an optimization reasoning
problem, you should:

1. Detailed reasoning about the problem within <think> </think>
tags.

2. Write the corresponding five-element model (derived from your
analysis).

3. Determine the mathematical properties of problem and select an
appropriate solver from ’glpk’, ’cbc’, ’ipopt’, ’scip’.

4. Recheck and correct if necessary at the end of the <think> </
think> section.
- Verify the five-element model fully captures the problem’s
requirements.
- Confirm no constraints/variables are missing or over-
simplified.
- Ensure the solver choice aligns with the problem’s
mathematical properties.

5. Provide the corresponding Pyomo code based on checked five-
element model within <answer> </answer> tags.

In mathematics, optimization problem can be modeled as the
following expression $\\min_{{\\boldsymbol{{x}} \\in \\mathcal{{
X}}}} f(\\boldsymbol{{x}}), {{\\rm s.t.}} G(\\boldsymbol{{x}})
\\leq \\boldsymbol{{c}}$, where $\\boldsymbol{{x}} = (x_1, x_2,

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

\\ldots, x_D)ˆ\\top$ is the D-dimensional decision variable, $
\\mathcal{{X}} \\subset \\mathbb{{R}}ˆD$ is the feasible domain,
$f: \\mathcal{{X}} \\rightarrow \\mathbb{{R}}$ is the objective
function and the goal is to find the minima of f, $G(\\

boldsymbol{{x}}) \\leq \\boldsymbol{{c}}$ are the constraints of
$\\boldsymbol{{x}}$.

The above definition can be mapped to a five-element consisting of
‘‘Variables, Objective, Constraints, Sets, Parameters’’.
Variables indicate what $\\boldsymbol{{x}}$ is, Objective
describes the form of the objective function $f(\\boldsymbol{{x
}})$, and Constraints indicates the constraints $G(\\boldsymbol
{{x}})$ and $\\mathcal{{X}}$. These three can abstract the
optimization problem. Sets and Parameters are their specific
explanations: Sets describe and explain the subscripts of the
vectors or matrices in them, and Parameters supplement their
specific values.

You need to give a detailed reasoning process for the problem first
, and then write the corresponding five-element model based on
the problem description and information provided by user.

Please complete the following template to model the optimization
problem into five-element:

<think>
Your reasoning process here...

Sets:
[You need to fill in]

Parameters:
[You need to fill in]

Variables:
[You need to fill in]

Objective:
[You need to fill in]

Constraints:
[You need to fill in]
</think>

In Pyomo, all constraints must be formulated using ’<=’, ’>=’, or
’==’. If you need to use ’>’ or ’<’, you can introduce a very
small value to transform the inequality. Please note that the
following solvers are available for use: ’glpk’, ’cbc’, ’ipopt’,
’scip’. Other solvers should not be utilized.

Solver Selection Guide:
- ‘‘glpk‘‘: Best for small-to-medium linear problems (LP).
- ‘‘cbc‘‘: Recommended for mixed-integer linear programming (MILP)

and larger linear problems. Handles binary/integer variables
well.

- ‘‘ipopt‘‘: Use for nonlinear problems (NLP) with continuous
variables. Does NOT support discrete variables.

- ‘‘scip‘‘: Most versatile - handles mixed-integer nonlinear
problems (MINLP), large-scale problems, and complex constraints.

Select solver based on:
1. Variable types (continuous vs integer/binary)
2. Linearity of objective/constraints

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

3. Problem scale (small: glpk/cbc, large: scip/ipopt)
4. Nonlinearity presence (use ipopt/scip)

Please select an appropriate solver based on the type and quantity
of variables, objectives, and constraints. After thinking, when
you finally reach the five-element model, you should give the
corresponding Pyomo code within the <answer> </answer> tags, i.e
., <answer> ‘‘‘python\n code here‘‘‘ </answer>. The user will
extract the complete code you provide through the regular
expression r"‘‘‘python\n(.*?)‘‘‘" in the <answer> </answer> tags
. The execution result of the code should include the optimal
solution and the objective value. The optimal objective value
will be extracted automatically from your last printed result.

O LABELING PROMPT AND THE DATA DISTRIBUTIONS OF OPTMATH-TRAIN

This section provides the system prompts for the large language model to label the type and scenario
of problems in OptMATH-Train, where {{·}} will be replaced with the corresponding content. After
labeling, the distribution of scenarios in OptMATH-Train is displayed in Figure 6, and the distribu-
tion of types in OptMATH-Train is displayed in Figure 7

SYSTEM PROMPT FOR TYPE LABELING

Please classify the following optimization problem into one of
these technical types based on the mathematical formulation and
decision variables, not just surface-level descriptions:

1. Linear Programming (LP): Problems with linear objective function
and linear constraints, all continuous variables

2. Integer Programming (IP): Problems with linear or nonlinear
components where ALL variables are discrete/integer

3. Mixed Integer Linear Programming (MILP): Problems with linear
components containing BOTH continuous and discrete variables

4. Nonlinear Programming (NLP): Problems with nonlinear objective
function and/or nonlinear constraints (variables may be
continuous/discrete)

5. Combinatorial Optimization (CO): Problems focused on selecting/
discrete structures (graphs, permutations, sets) with typically
binary variables

6. Multi-objective Programming (MOP): Problems explicitly
optimizing multiple conflicting objectives simultaneously

7. Second-Order Cone Programming (SOCP): Problems with a linear
objective function, linear constraints, and second-order cone
constraints (e.g., \(\|Ax + b\| \leq cˆT x + d\))

Problem:
{{Question}}

Output
Analyze the mathematical structure step by step and classify its

type. Finally, output the type abbreviation in the following
format:

Type: Abbreviation of the type

Note:
- Focus on the fundamental mathematical formulation, not

application domain
- Check variable types (continuous/discrete/binary) and objective/

constraint linearity

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

- For MOP, there must be explicit multiple objectives
- For pure discrete problems with special structures (e.g. graphs),

prefer CO over IP

SYSTEM PROMPT FOR SCENARIO LABELING

Please classify the following optimization problem into one of
these application domains based on the core decision-making
context and primary business function, not just keywords
mentioned in the problem:

1. Supply Chain: Decisions about inventory management, distribution
network, warehousing operations

2. Finance: Decisions about portfolio management, investments, risk
management, financial planning

3. Manufacturing: Decisions about production processes, quality
control, factory operations

4. Transportation: Decisions about routing, vehicle scheduling,
fleet management, traffic flow, carrier selection

5. Healthcare: Decisions about medical staff scheduling, patient
flow, hospital resources

6. Energy: Decisions about power generation, energy conservation,
grid distribution

7. Technology: Decisions about network design, data center
operations, cloud resources

8. Retail: Decisions about store operations, pricing, inventory,
equipment, store layout

9. Agriculture: Decisions about farming operations, crop planning,
irrigation

10. Logistics: Decisions about delivery operations, warehouse
management, distribution

11. Resources: Decisions about raw materials, equipment allocation,
material management

12. Marketing: Decisions about campaign planning, budget allocation
, target selection

13. Education: Decisions about course scheduling, resource
allocation in schools

14. Environment: Decisions about environmental protection,
emissions control, conservation

15. Construction: Decisions about project planning, construction
resource allocation

16. Military: Decisions about military operations, deployment,
supply management

17. Sports: Decisions about game scheduling, team formation,
strategy

18. Telecommunications: Decisions about network coverage, bandwidth
allocation

19. Aviation: Decisions about flight scheduling, crew assignment,
airport operations

20. Services: Decisions about service operations, staff scheduling,
capacity management

21. Public utilities: Decisions about utility services,
infrastructure management, service delivery

22. Other: Problems that don’t clearly fit into above categories

Problem:
{{Question}}

Output

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Let’s think step by step,give the analysis of the problem and
classify it into one of the above application domains.Finally,
output the name of the domain in the following format:

Category: Name of the Domain

Note:
- Focus on the fundamental business function and decision-making

context
- Don’t be misled by secondary keywords or background story
- Consider who is making the decision and what is their primary

business purpose

Log
ist

ics

Man
ufa

ctu
rin

g

Heal
thc

are

Sup
ply

 Cha
in

Serv
ice

s

Ene
rgy

Avia
tio

n

Tele
co

mmun
ica

tio
ns

Tran
spo

rta
tio

n

Fina
nc

e
Reta

il

Con
str

uc
tio

n

Milit
ary

Edu
cat

ion

Agri
cu

ltu
re

Mark
eti

ng

Env
iro

nm
en

t
Othe

r

Tech
no

log
y
Spo

rts

Pub
lic

 ut
ilit

ies
0

10000

20000

30000

40000

50000

60000

70000

80000

C
ou

nt

78499

40632

1457114146
11227105848680

5675 5572 4616 3789
1002 692 405 361 298 176 117 17 10 2

Figure 6: Proportion of every scenarios of instances in OptMATH-Train (201K).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

MIL
P LP IP

NLP
SOCP

0

20000

40000

60000

80000

100000

120000

C
ou

nt

117817

54731

23938

3375 1106

Figure 7: Proportion of every problem types of instances in OptMATH-Train (201K).

29

	Introduction
	Related Work
	Methodology: The Proposed MiniOpt
	Overview
	Reasoning to Model and Solve Paradigm
	Training Pipeline of MiniOpt
	Warm-up Based on Lightweight SFT
	The Two-Stage RL

	Efficient Training for Optimization Generalization
	OptReward: Verifiable Rewards Designed for MiniOpt
	OptGRPO: Training Small-Scale LLMs with Limited Resources

	Experiment
	Experimental Setup
	Analysis of Optimization Generalization
	Pareto Front of Performance vs. Cost
	Ablation Study

	Discussion
	Conclusion
	Datasets
	The Introduction of Evaluation Datasets
	The Distribution of Optimization Types and Problem Scenarios of Benchmarks
	Training Datasets for SFT Warm-up and Two-Stage RL

	Baselines
	General Models
	General Reasoning Models
	Prompt-based Methods
	Learning-based Models

	The Details of the Five-Element Formulation
	Details of GRPO Algorithm
	The Processing Pipeline of Training Data
	Comparison of Execution Rate across 9 benchmarks
	Ablation Study of MiniOpt across 9 Benchmarks
	Comparison of Average ER against Model Parameter Scales for Various Methods
	Comparison of results between the minimum model and models of other scales
	The Seesaw Issue of LLMs
	Detailed Discussion on the Efficiency of MiniOpt to Model and Solve Optimization Problems
	System Prompt for Code Conversion from GurobiPy to Pyomo
	Prompt for the Solver Selection
	System Prompt for RL Training
	Labeling prompt and the data distributions of OptMATH-Train

