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ABSTRACT

Modeling and solving optimization problems via large language models (LLMs)
has attracted increasing attention recently. Although both prompt-based and
learning-based methods have achieved progress, they remain limited by their re-
liance on large data volumes, high-quality annotations, expensive intermediate
step verification, and huge computational overhead. From a data privacy perspec-
tive, a low-cost localized deployment of small-scale LLMs is of significant value.
To train a small-scale LLM with excellent optimization generalization under lim-
ited resources, this paper proposes a reasoning to model and solve paradigm called
MiniOpt based on reinforcement learning (RL) with verifiable reward. To reduce
the demand for training data, MiniOpt adopts two-stage RL training. In the first
stage the model quickly learns the model-and-solve paradigm and in the second
stage it acquires strong optimization generalization ability. To reduce the cost of
verifying the response of LLMs, OptReward in MiniOpt verifies the complete-
ness of problem modeling and avoids the need for content validation. The above
techniques enable the training of small-scale LLMs with strong optimization gen-
eralization ability under limited resources, thereby resulting in low inference cost
for localized deployment and usage. Extensive experiments show that MiniOpt-
3B exhibits strong optimization generalization across various optimization types
and scenarios. For models with parameters fewer than 10B, MiniOpt-3B achieves
the highest average solving accuracy (SA). For models with more than 10B param-
eters, MiniOpt-3B still shows competitive performance. Notably, MiniOpt-3B in-
dicates superior SA on the hard OptMATH-Bench while only consuming 37.64%
of the average output tokens required by DeepSeek-R1. The code is available at
https://anonymous.4open.science/r/MiniOpt-6194.

1 INTRODUCTION

Optimization problems are ubiquitous in real-world scenarios, profoundly affecting diverse domains,
including industrial production and transportation planning (Song et al., 2023; Li et al., 2025b).
While traditional optimization solvers are efficient, their application heavily relies on expert knowl-
edge, requiring the manual conversion of problems described in natural language into precise math-
ematical formulations or code, which is a process that both time-consuming and non-generalizable.
The rise of LLMs has opened new pathways for the automated modeling and solving of optimization
problems using natural language descriptions (Deng et al., 2024; Sun et al., 2024; Li et al., 2025a),
bringing them closer to practical application scenarios. Representative work like LLMOPT (Jiang
et al., 2025) or Text2Zinc (Singirikonda et al., 2025) significantly advances this field by parsing
natural language descriptions into structured formulation, which are a unified general expression for
optimization problems, and subsequently generating solution codes efficiently.

However, deploying such LLM-based approaches faces three critical bottlenecks. First, ensuring
accurate text generations on a smaller parameter scale requires Supervised Fine-Tuning (SFT) with
a large amount of high-quality training data (Wu et al., 2025; Lu et al., 2025). However, obtaining
such data is very difficult, often requires a lot of time and effort, and is prone to errors (Xiao et al.,
2025b). Second, it is challenging to verify whether the result generated meets the requirements (Zhai
et al., 2025). The non-verifiability of this task also exposes the limitations of the learning-based
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solving paradigm. It is a barrier to the accuracy of the final result. Finally, to ensure the reliability
of the result, common methods include reflection or self-correction mechanisms (Jiang et al., 2025;
Li et al., 2025c), or multi-agent chains (AhmadiTeshnizi et al., 2024). However, these methods
significantly multiply the computational overhead. These disadvantages pose significant barriers to
implementing LLMs with powerful optimization-solving capabilities in the business scenarios of
small and medium-sized enterprises or even on mobile devices. At the same time, considering data
privacy issues, it is significant to locally deploy small-scale LLMs with strong performance while
reducing training costs, including the volume and quality of training data.

To address these problems, this paper proposes a framework called MiniOpt to train a small-scale
LLM with excellent optimization generalization under limited resources. To reduce the demand for
data volume, MiniOpt adopts a two-stage RL training pipeline. Before conducting RL training, an
SFT warm-up is applied to enable the model to get effective rewards in the early stages of RL. Sub-
sequently, in the first RL stage, the model rapidly acquires the model-and-solve paradigm. In the
second RL stage, training is conducted on a high-quality data subset obtained through type-scenario
guided data selection, yielding strong optimization generalization (Jiang et al., 2025). The RL pro-
cess is training using the proposed OptGRPO algorithm, which enhances data utilization efficiency
and improves the model’s ability to solve complex problems. To reduce the validation cost, we in-
troduce OptReward in MiniOpt, which will perform three tasks: validating data format, ensuring the
completeness of optimization problem modeling, and verifying solution accuracy. This encourages
the model to learn in accordance with the model-and-solve paradigm. The framework enables the
training of small-parameter LLMs with strong optimization generalization capabilities under limited
resources, making localized deployment of LLMs for optimization feasible, thereby resulting in low
inference cost for localized deployment and usage. Moreover, due to the high solving efficiency of
MiniOpt-3B, reducing token usage also leads to considerable economic benefits.

Building upon the aforementioned methodology, this paper conducts extensive experiments with
MiniOpt-3B on 9 benchmarks across different optimization types and problem scenarios. The re-
sults demonstrate its high optimization generalization capability. Compared to baselines below 10B
parameters, MiniOpt-3B achieves the best performance. When evaluated against baselines exceed-
ing 10B parameters, MiniOpt-3B exhibits only a 1.57% lower average solving accuracy (SA) than
DeepSeek-R1, 0.37% higher than GPT-5 and outperforms LLMOPT-14B by 2.13% in average SA.
Notably, MiniOpt Pareto dominates other baselines in terms of both parameter scale and the SA
metric. On the hard OPTMATH-Bench, MiniOpt-3B has a higher SA than DeepSeek-R1 and only
consumes about 37.64% of DeepSeek-R1’s token count. Furthermore, results from ablation studies
indicate that RL training contributes most significantly to MiniOpt-3B.

The subsequent sections review the related work, introduce the MiniOpt framework, present exper-
imental results and analysis, provide an in-depth discussion, and finally conclude the paper.

2 RELATED WORK

LLMs for Modeling and Solving Optimization Problems. For modeling and solving optimization
problems with LLMs, there are already a variety of benchmarks (Huang et al., 2025b; AhmadiTesh-
nizi et al., 2024; Yang et al., 2024b). Challenging benchmarks like OptMATH (Lu et al., 2025) and
NL4Opt (Huang et al., 2025a) have led to numerous studies utilizing LLMs to solve optimization
problems. Prompt-based approaches such as OptiMUS (AhmadiTeshnizi et al., 2024), CoE (Xiao
et al., 2024) and LEAN-LLM-OPT (Liang et al., 2025) utilizes the powerful generation capability of
LLMs to generate the solver code of the optimization problem through multi-stage pipeline, without
performing any post-training. Learning-based methods enhance LLMs’ capabilities in modeling and
solving mathematical problems. For example, LLaMoCo (Ma et al., 2024) proposes an SFT-based
framework comprising a meticulously designed instruction set and a two-stage training methodol-
ogy that incorporates contrastive learning warm-up followed by SFT. LLMOPT (Jiang et al., 2025)
and NER4OPT (Dakle et al., 2023; Singirikonda et al., 2025) adopts a two-stage training process of
modeling the optimization problems first and then solving them by generating solution code.

Reinforcement Learning with Verifiable Reward. While Reinforcement Learning from Human
Feedback (RLHF) (Ouyang et al., 2022) plays a crucial role in post-training alignment, it suffers
from high annotation costs and inherent human bias (Xiao et al., 2025b). Reinforcement Learning
with Verifiable Reward (RLVR) (Lambert et al., 2024) leverages externally grounded, easily verifi-
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able rewards (e.g., rule-based reward) to provide dense and structurally simple supervision (Wang
et al., 2024; Xie et al., 2025; Gao et al., 2024). Its practicality is especially valuable in real-world
black-box systems (Zhang et al., 2025; Xin et al., 2025; Pan et al., 2025), where verification is typ-
ically feasible only at the output stage, making RLVR a broadly applicable framework for aligning
LLMs. In the field LLMs for solving optimization problems, SIRL (Chen et al., 2025) and OR-
R1 (Ding et al., 2025) significantly improves the model’s performance through the RLVR training
paradigm.

3 METHODOLOGY: THE PROPOSED MINIOPT

3.1 OVERVIEW

This paper studies how to endow small-scale LLMs with strong optimization generalization under
tight data and compute budgets. We introduce MiniOpt, whose framework is shown in Figure 1.
MiniOpt introduces the reasoning process within the model-and-solve paradigm for optimization
problems, the reward function and algorithm used for RL training, and the training pipeline for
small-scale models. Through this framework, MiniOpt formulates the path from a natural language
problem to an executable solver code as a single verifiable end-to-end task.

3.2 REASONING TO MODEL AND SOLVE PARADIGM

As shown in subfigure (a) in Figure 1, we introduce a reasoning to model and solve paradigm
that turns a natural language optimization problem into a single verifiable objective. The paradigm
is enforced by two compulsory and machine-parsable segments <think>...</think> and
<answer>...</answer>.

The first segment, enclosed by <think>...</think>, carries all modeling contents. It performs
an analysis of the problem statement, specifies a complete five-element formulation inspired by
LLMOPT (Jiang et al., 2025) and determines the appropriate open-source solver. Specifically, the
optimization problem can be described as minimizing the objective function f(x) subject to the
constraints G(x) ≤ c, where the x ∈ X ⊆ RD is the D-dimensional decision variables, and
I = {1, 2, . . . , D} is the index sets. X is the feasible region, and c ∈ Rm provides the upper
bounds. The constants in f(x) and G(x) form the parameters set, which also includes c. The five-
element formulation, M = (Variables,Objective,Constraints,Sets,Parameters) map one-to-
one to the components of an optimization problem. More details about the five-element formulation
are provided in Appendix C.

During the reasoning process, to enhance the capability of LLM for solving optimization problems
across diverse optimization types, it will analyze the problem during the thinking (i.e., reasoning)
phase and select different open-source solvers for the given problem depending on the optimiza-
tion types and the characteristics of the solvers, thereby ensuring an optimized match between the
problem and the solver. Solver selection is guided by a prompt, which is introduced in Appendix M.

The second segment, enclosed by <answer>...</answer>, converts the five-element formu-
lation into an executable Pyomo program that models the problem, invokes the solver, solves the
instance, and prints the numerical answer. By constraining responses in this manner, we collapse
the action space from free-form language to a programmable artifact whose intermediate structure
and final result can be deterministically parsed and verified. The <answer> segment must im-
plement the blueprint as a single python code fence containing a complete Pyomo script. Because
these outputs are easy to verify, the OptReward in Section 3.4.1 can score format, five-element for-
mulation, and accuracy based on rules via an automated procedure, providing low-cost supervision.
During the training process, the prompt corresponding to this paradigm is shown in Appendix N.

3.3 TRAINING PIPELINE OF MINIOPT

Based on the paradigm described in Section 3.2 and the key techniques introduced in Section 3.4,
we propose a training pipeline that enables MiniOpt to learn from limited resource constraints while
achieving powerful solving performance and strong optimization generalization. This pipeline be-
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(b) MiniOpt Training Pipeline with SFT Warm-up and Two-stage RL

(c) Efficient Training for Optimization Generalization

OptReward Make Intermediate Process Easy to Verify

Format Score

Five-element Score

Accuracy Score

The integrity of the <think> tags in the response

The integrity of the five-element math model

The executability and solving accuracy of code 

OptReward

 Reasoning Rationality
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(a) Reasoning to Model and Solve Paradigm

MiniOpt

<answer>
```python
from pyomo.environ import …   
```

</answer>

MiniOpt trains the small-scale LLM with high optimization generalization
performance. The five-element math model is automatically generated and
a solver is adaptively selected. The Pyomo code generated by the model
can accurately model and solve the original problem.
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𝐴̂𝐴𝑖𝑖,𝑡𝑡, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝜋𝜋𝜃𝜃(𝑜𝑜𝑖𝑖,𝑡𝑡|𝑞𝑞, 𝑜𝑜𝑖𝑖,<𝑡𝑡)
𝜋𝜋𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜(𝑜𝑜𝑖𝑖,𝑡𝑡|𝑞𝑞, 𝑜𝑜𝑖𝑖,<𝑡𝑡)
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Optimization Problem: 
A school is planning its budget for the upcoming 

academic year. The main expense categories are...

<think>
We need to formulate it as an integer linear 
programming problem ...
**Five-Element Model**:  - ## Variables: ...

- ## Objective: ...   - ## Constraints: ...
- ## Sets: ...   - ## Parameters: ...

... The best choice is ``cbc`` solver ...
</think>

OptReward, OptGRPO OptReward, OptGRPO

Figure 1: The framework of MiniOpt. Sub-figure (a) demonstrates the reasoning to model and solve
paradigm of MiniOpt, encompassing problem modeling and solver adaptation during the thinking
(i.e., reasoning) process of RL, and solution code generation in the response. Sub-figure (b) il-
lustrates the training pipeline of MiniOpt, which involves sequential execution of SFT warm-up
followed by two-stage RL. Sub-figure (c) presents the reward function OptReward and training al-
gorithm OptGRPO used in MiniOpt’s RL training.

gins with a lightweight SFT warm-up followed by two-stage RL under OptReward. The illustration
of the training pipeline is shown in subfigure (b) in Figure 1.

3.3.1 WARM-UP BASED ON LIGHTWEIGHT SFT

Small scale LLMs struggle to produce an end-to-end, executable trajectory for complex optimization
tasks, thus if a model lacks fundamental problem-solving capabilities for operations optimization,
directly applying reinforcement learning may lead to sparse rewards and result in unstable training.

We therefore apply an SFT warm-up whose purpose is to provide a run-through capability, thereby
allowing the model to obtain effective rewards in the early stages of RL training. This SFT warm-
up does not adopt the reasoning to model and solve paradigm introduced in Section 3.2. Instead,
it establishes a starting point upon which our two-stage RL can subsequently focus on paradigm
acquisition and optimization generalization. The training data for warm-up are constructed from
OptMATH-Train. For each instance, we prompt Qwen2.5-Coder-32B-Instruct (Hui et al., 2024) us-
ing the prompt in Appendix L to rewrite the original GurobiPy program into an equivalent Pyomo
implementation and to select an appropriate open-source solver according to the detected structure.
Every rewritten instance is executed and only those that compile, solve, and print the correct struc-
ture are retained. The remaining data serves as a candidate pool for the next stage of the two-stage
RL training.

3.3.2 THE TWO-STAGE RL

After undergoing SFT warm-up, the models can conduct RL training more effectively. We em-
ploy a two-stage RL training under the same reward function (OptReward) for paradigm acquisition
and optimization generalization, respectively. Both stages share the pipeline of parsing, executing,
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and scoring in Section 3.2 and the OptReward of Sections 3.4.1, they differ in training data and
hyperparameter setting. Algorithmically, both stages use the same OptGRPO (cf. paragraphs in
Section 3.4.2).

Stage-1 aims to enable the model to acquire the reasoning to model and solve Paradigm: the model
must generate a valid <think>/<answer> pair, produce the executable Pyomo code, and make
a coherent solver choice. To this end we train on 1,585 relatively easy problems, so that most signal
arises from the formatting and structural components of OptReward, rapidly improving executability
and the ability to solve the optimization problem of natural language description.

Stage-2 focuses on optimization generalization once the paradigm is established. The training dis-
tribution shifts to the problems with diverse optimization types and problem scenario, and the opti-
mization emphasis moves to the accuracy score, encouraging refined modeling and solving behaviors
(e.g., variable/constraint formulation and solver selection).

Based on the annotations of optimization types and problem scenario tags this paper assigned to
each instance in OptMATH-Train, we sample a data subset from the candidate pool mentioned in
Section 3.3.1 subject to two constraints: (i) type-uniform coverage, with exactly 600 instances per
type, and (ii) within each type, the scenario frequencies match the distribution in the full dataset.
The resulting data serves as the training data for the second stage of RL. While the dataset of the
first stage is the union of the NL4Opt (AhmadiTeshnizi et al., 2024) and ICML Competition (Yang
et al., 2024b) training splits. Detailed information on the construction of the training set is provided
in the Appendix E.

Such a training strategy makes efficient use of limited data and reduces training costs, and ultimately
allows for strong optimization generalization of LLMs with even small parameters and limited com-
putational resources.

3.4 EFFICIENT TRAINING FOR OPTIMIZATION GENERALIZATION

Building upon the reasoning to model and solve paradigm mentioned in Section 3.2, we propose two
key components for the RL training of MiniOpt as shown in subfigure(c) in Figure 1. An informative
and easily verifiable reward function OptReward, and an improved algorithm OptGRPO builds upon
GRPO (Shao et al., 2024).

3.4.1 OPTREWARD: VERIFIABLE REWARDS DESIGNED FOR MINIOPT

Based on the reasoning to model and solve paradigm described in section 3.2, we propose OptRe-
ward, including three automatically computed components: formatting correctness, structural suffi-
ciency, and numerical accuracy. Each component is derived from deterministic parsing or execution
of the output, It ensures the completeness of the modeling of problems but also enables verification
to scale with machine time, yielding substantially lower verification costs.

Format Score: The format score Sfmt validates the response format. A response must contain
exactly one <think>...</think> and one <answer>...</answer> in the correct order.
If all conditions hold, we assign Sfmt = +1, otherwise Sfmt = −1. If the specified format is not
present in the response, we deterministically set the remaining components to their error defaults,
Sfive = −1 and Sacc = −2, so that the total reward immediately reaches the global minimum.
This forces the model to adopt the correct response format early in training and prevents expensive
evaluation of malformed samples.

Five-element Score: To avoid ground-truth labeling of five-element content and the bias it may
introduce, we use a presence-based rule aligned with the paradigm in Section 3.2. Conditional on
valid formatting, we compute the five-element score Sfive. In the <think> segment, the model
response is expected to include five labeled summaries starting with “## Sets:”, “## Parameters:”,
“## Variables:”, “## Objective:”, and “## Constraints:”. Each present summary adds 0.2 scores; if
none is present we assign Sfive = −1. This structure shaping keeps the modeling blueprint parsable.
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Sfive =


0.2

5∑
k=1

Ik, if
5∑

k=1

Ik ≥ 1 ,

−1, if
5∑

k=1

Ik = 0 ,

(1)

where Ik = 1 if the k-th required element ek is present in the <think> segment, and Ik = 0
otherwise. (e1, . . . , e5) = (Sets,Parameters,Variables,Objective,Constraints).

Accuracy Score: The accuracy score is obtained by executing the Pyomo program contained in
<answer>. Failure to extract a program or to complete execution yields Sacc = −2. When
execution succeeds, we retrieve the optimal objective value f̂ from the model output and compare it
with the ground-truth value f⋆; if they are equal, we assign Sacc = 2, otherwise Sacc = −1.5.

Sacc =


+2, if execution succeeds and f̂ = f⋆,

−1.5, if execution succeeds but f̂ ̸= f⋆,

−2, if no executable code or execution fails .

(2)

Combining the components with the formatting gate yields the total OptReward as follow:

R =

{
−4, if Sfmt = −1,

Sfmt + Sfive + Sacc, if Sfmt = 1.
(3)

By OptReward, the format score enforces the strict <think>/<answer> format, the five-element
score shapes a complete modeling blueprint in the think phase, and the accuracy score certifies cor-
rectness through equality of optimal objective values, enabling low-cost verifiable RL for problems
in the field of optimization.

3.4.2 OPTGRPO: TRAINING SMALL-SCALE LLMS WITH LIMITED RESOURCES

GRPO (Shao et al., 2024) is an efficient RL algorithm, which replaces the critic model with a group
baseline and updates the policy at the group level so that improves training stability and efficiency.
The details of the algorithm are introduced in Appendix D. In order to adapt to the designed OptR-
ward and Two-Stage RL in this paper, taking inspiration from the previous work on the improvement
of GRPO like DAPO (Yu et al., 2025), we introduces three modifications, with the goal of achieving
stronger optimization generalization within a limited budget.

First, building upon the strict gating already provided by OptReward through formatting score and
five-element score, we set the coefficient on the KL penalty β = 0 to remove the KL penalty to
encourage greater exploration by the model. This approach does not jeopardize stability while fa-
cilitating faster discovery of high-reward behaviors. Second, to prevent entropy collapse and allow
rare but crucial reasoning/code tokens to grow, we replace symmetric clipping with an asymmetric
interval [1 − εlow, 1 + εhigh] with a higher upper clipping threshold εhigh than the lower threshold
εlow. This relaxes the trust region on probability increases while keeping a firm lower bound on de-
creases, which empirically improves executability in stage-1 RL training and supports generalization
in stage-2 RL training. Following Specifically, we raise εhigh to 0.28 during the training. Finally, to
improve sample efficiency, critical for small-scale LLMs under limited data and verification budgets,
instead of optimizing a sequence-averaged loss, we accumulate the loss over tokens and normalize
by the total number of tokens in the group

∑
i |oi|, which can yield denser learning signals for long

outputs. The final loss of OptGRPO is as follows:

JOptGRPO(θ) = Eq∼P (Q),{oi}G
i=1∼πθold (·|q)

1∑G
i=1 |oi|

G∑
i=1

|oi|∑
t=1

min

[
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
Âi,t, clip(

πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
, 1− εlow, 1 + εhigh)Âi,t

]
. (4)
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4 EXPERIMENT

We evaluate MiniOpt models on diverse optimization benchmarks spanning multiple types and sce-
narios to assess whether small scale parameter LLMs (3B/7B/14B) can achieve strong optimization
generalization ability. We report Solving Accuracy (SA) as primary metrics, SA presents the propor-
tion of output solutions of executed code that are numerically equal to the optimal solution provided
from the labels of benchmarks. We use Execution Rate (ER) as a supplement that shows the pro-
portion of generated code samples that run successfully without errors. Comparisons cover general
LLMs, general reasoning LLMs, prompting-based baselines and learning-based baselines. The ex-
periments aim to answer four key questions below.

(Q1) Optimization Generalization Ability at Small-Scale LLMs: To what extent can MiniOpt
at 3B/7B/14B achieve high SA across types and scenarios, and how does it compare with larger
reasoning LLMs and prior learning-based approaches?

(Q2) Pareto Front of Performance vs. Cost: What is the limit of the scale of model parameters
for achieving strong optimization generalization?

(Q3) Importance of the Training Pipeline of MiniOpt: How critical are the lightweight SFT
warm-up and the two-stage RL to the performance of MiniOpt?

(Q4) Importance of the Reasoning to Model and Solve Paradigm and OptReward: How do the
proposed paradigm and the corresponding Opt Reward contribute to boost SA and ER in solving
optimization problems?

The four questions are answered sequentially in the following sections, which first provide a detailed
introduction to the experiments and then present an analysis of the results.

4.1 EXPERIMENTAL SETUP

Since widely-used packages like Gurobi and COPT are close-source, generating code for them may
entail licensing costs, and a model’s generalization capability across different modeling languages
and solvers depends on the proportion of relevant corpora in its pre-training and post-training data.
Therefore, following established practices (Jiang et al., 2025), we adopted the open-source, solver-
agnostic Pyomo modeling language as the language for our training and inference solver code.

As for the solvers employed, the key consideration lies in their ability to select the appropriate
solver for a specific optimization type. For instance, GLPK only supports linear programming and
integer programming and is incapable of solving nonlinear problems. Therefore, this paper selects
four types of solvers to cover the solving requirements of as many optimization problem types as
possible, so as to automatically adapt to the problem types when generating the solving code.

The evaluation encompasses nine benchmarks about operations research optimization: NL4Opt
(Ramamonjison et al., 2022), Mamo (Easy and Complex subsets) (Huang et al., 2025b), Indus-
tryOR (Huang et al., 2025a), NLP4LP (AhmadiTeshnizi et al., 2024), ComplexOR (Xiao et al.,
2024), OptMATH (Lu et al., 2025), OptiBench (Yang et al., 2025b), and ICML Competition (Yang
et al., 2024b). We follow the same setting in LLMOPT (Jiang et al., 2025) to ensure consistency
and comparability. For the newly included datasets, OptMATH-Bench and OptiBench, we adhere to
their original data splits provided by the authors. For ICML Competition dataset, we use it exclu-
sively as out-of-distribution test data to evaluate the generalization capability of our model.

To validate the correctness of the solutions obtained by MiniOpt and all baselines, this paper com-
pares their log files generated during the execution process against the ground-truth solutions pro-
vided by the benchmarks. A solution is deemed correct if the log file yields a non-empty match with
the ground-truth; otherwise, it is considered unsuccessful.

4.2 ANALYSIS OF OPTIMIZATION GENERALIZATION

In this section, we compare MiniOpt with general LLMs (Qwen2.5 Series, DeepSeek-V3), general
reasoning LLMs (Qwen3 Series, DeepSeek-R1, Gemini-2.5-Pro, GPT-5), prompt-based methods
(Chain-of-Experts, OptiMUS, Reflexion), learning-based methods (OptMATH-7B, LLMOPT-14B,
Step-OPt-8B/7B/3B), demonstrating the optimization generalization capability of MiniOpt. The
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Table 1: Comparison of the SA metric across 9 benchmarks with rankings (NL4Opt, ICML Compe-
tition, Mamo Easy, Mamo Complex, NLP4LP, ComplexOR, IndustryOR, OptiBench, OptMATH-
Bench). Bold indicates 1st,

::::
wavy

::::::::
underline indicates 2nd, underline indicates 3rd. “Rank∗” repre-

sents the result of sorting methods among parameter sizes below 10B.

Category Models / Methods Avg. Rank Rank∗ NL4Opt ICML.C Mamo.E Mamo.C NLP4LP Com.OR Indus.OR OptiBench OptMATH-
Bench

General Models

Qwen2.5-3B-Instruct 9.98 22 11 19.13 18.78 17.18 2.37 18.60 0.00 2.00 11.74 0.00
Qwen2.5-7B-Instruct 30.05 17 8 53.48 51.71 35.58 4.27 55.37 16.67 13.00 35.54 4.82
Qwen2.5-14B-Instruct 43.59 12 - 67.39 63.17 80.21 15.64 67.36 22.22 22.00 41.65 12.65
DeepSeek-V3 57.81 4 - 78.26

:::
77.56 84.82 26.54

:::
79.34 44.44 26.00 64.13 39.16

General Models
(Thinking)

Qwen3-4B 10.25 21 10 16.52 17.56 13.80 6.64 15.29 5.56 2.00 11.90 3.01
Qwen3-8B 19.77 19 9 30.87 29.51 23.93 9.95 34.71 11.11 6.00 28.26 3.61
Qwen3-14B 22.54 18 - 24.35 22.68 36.20 11.37 19.42 38.89 15.00 22.31 12.65
DeepSeek-R1 58.51 3 - 83.91 75.37 74.54 39.81 69.83 44.44 32.00

:::
66.94 39.76

Gemini-2.5-Pro 57.04 5 - 78.26 71.22 65.95 30.81 73.55 50.00 28.00 61.32
:::

54.21
GPT-5 56.57 7 - 80.43 73.66 58.12 23.22 73.14 61.11 26.00 64.63 48.80

Prompt-based
Methods

Chain-of-Experts 41.03 14 - 66.52 56.59 63.65 22.75 59.09 33.33 19.00 45.29 3.01
OptiMUS 18.76 20 - 13.48 33.17 37.27 11.85 18.18 16.67 8.00 26.61 3.61
Reflexion 41.28 13 - 56.52 52.20 84.82 18.01 53.72 38.89 19.00 41.16 7.23

Learning-based
Models

Step-OPT-LLaMA-3.2-3B 39.61 15 6 70.00 26.59 68.10 36.49 63.64 38.89 17.00 26.78 9.04
Step-OPT-LLaMA-3-8B 50.80 10 4 75.22 68.54 79.45 50.71 64.88 27.78 27.00 49.75 13.86
Step-OPT-Qwen2.5-3B 36.15 16 7 41.30 38.54 75.31 20.85 53.31 27.78 21.00 40.00 7.23
Step-OPT-Qwen2.5-7B 47.42 11 5 77.83 57.32 69.33

:::
50.24 48.35 38.89 27.00 48.76 9.04

OptMATH-7B 52.37 9 3 78.70 66.83 84.20 34.12 68.60 33.33 19.00 52.23 34.34
LLMOPT-14B 54.81 8 - 80.28 75.35

:::
89.53 44.08 73.42 35.29

:::
29.00 53.83 12.50

Ours
MiniOpt-3B 56.94 6

:
2 83.04 68.05 85.43 35.07 73.55 50.00 21.00 53.55 42.77

MiniOpt-7B
:::

62.76
:
2 1

:::
89.13

:::
77.56 88.34 38.39

:::
79.34 55.56 26.00 59.34 51.20

MiniOpt-14B 66.10 1 - 92.17 86.34 90.80 33.65 79.75 61.11 27.00 67.44 56.63

information on these methods can be found in Appendix B. Tables 1 summarizes SA on nine bench-
marks that span 7 optimization types and 22 scenarios, and the statistics on problem categories and
scenarios are provided in Appendix A.2. The ER metrics for all the methods on the nine benchmarks
and its analysis can be found in the Appendix F.

Overall Performance (Answer to Q1). Across all nine benchmarks, MiniOpt-7B achieved the
strongest average performance among all baselines. Notably, MiniOpt-3B surpassed all prompt-
based and learning-based methods. For instance, compared to LLMOPT-14B, the state-of-the-art
learning-based model, MiniOpt-3B achieved an average SA that is 2.13% higher. When compared
to DeepSeek-V3 and DeepSeek-R1, MiniOpt-3B scored 0.87% and 1.57% lower, respectively. Fur-
thermore, as a higher-parameter variant of MiniOpt, MiniOpt-14B achieves the highest average SA
of 66.10%, significantly raising the performance ceiling of MiniOpt in practical applications.

Besides, SIRL (Chen et al., 2025) is not included in Table 1 because the paper was accepted only
shortly before our submission deadline. Although it proposes a reasoning model training pipeline,
the important issue of improving the optimization generalization ability of small-scale models with
limited data and computing resources has not been studied. According to the results presented in the
SIRL paper (Chen et al., 2025), MiniOpt-7B outperforms the SIRL-Qwen2.5-7B model of similar
size by 22.20% solving accuracy on the hard OptMATH-Bench benchmark.

Competitiveness of Small-Scale Models (Answer to Q1). MiniOpt remains competitive even at
smaller scales. MiniOpt-3B reaches 56.94% SA on average, this performance already matching or
exceeding several much larger reasoning models (e.g., the average SA higher than GPT-5 at 56.57%)
and clearly outperforming general-purpose 14B post-trained models (e.g., +13.35% over Qwen2.5-
14B-Instruct on average). Performance grows smoothly with scale under the same training pipeline,
The average SA metric grows by +5.82% when parameters increase from 3B to 7B, and by +9.16%
when further scaled to 14B.

Challenging Benchmarks (Answer to Q1). On the most demanding sets that require faithful mod-
eling and solver usage, MiniOpt shows clear advantages. On the latest challenging benchmark
OptMATH-Bench, MiniOpt-14B achieves 56.63% SA, outperforming Gemini-2.5-Pro (54.21%) and
GPT-5 (48.80%). Even on extremely high-dimensional test sets such as Indus.OR, where small-
parameter MiniOpt does not attain the highest SA due to limitations in instruction following, it still
delivers competitive performance levels in both metrics.

Breadth across Types and Scenarios (Answer to Q1). To rigorously evaluate the optimization
generalization, we analyze the SA of MiniOpt-7B and MiniOpt-3B across three optimization types
and three application scenarios under two difficulty levels. At the medium-difficulty OptiBench,
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MiniOpt-7B achieved 59% (M), 74% (T), 68% (L), and 65% (LP), 63% (IP), 45% in Mixed-Integer
Linear Programming (MILP). MiniOpt-3B scored 55% (M), 71% (T), 59% (L), and 60% (LP),
58% (IP), 38% (MILP). On the hard-difficulty OptMATH-Bench, MiniOpt-7B achieved 58% (M),
56% (T), 57% (L), and 55% (LP), 100% (IP), 56% (MILP). MiniOpt-3B attained 43% (M), 56%
(T), 76% (L), and 73% (LP), 67% (IP), 47% (MILP). These results reflect consistent and scalable
generalization across optimization types, problem scenarios, and difficulty levels. In order to in-
vestigate whether the pipeline training in this paper would impair other abilities of the LLMs, we
also discussed the generalization performance of MiniOpt-3B and 7B under different tasks except
optimization problems. Detailed information is presented in Appendix J.

4.3 PARETO FRONT OF PERFORMANCE VS. COST
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Figure 2: Comparison of average SA against
model parameter scales for various methods.
MiniOpt is the Pareto optimal among com-
pared methods.

Analysis of the Pareto Front (Answer to Q2). Fig-
ure 2 and Figure 5 in Appendix H indicate that
MiniOpt series (represented by the solid red line
establishes a new and superior Pareto front in the
performance-versus-cost trade-off. Since the param-
eter size of GPT-5 and Gemini-2.5-Pro have not
been disclosed, we do not label these two models
in the figures). As the scale of the model increases,
the average SA performance of MiniOpt also grows
steadily. The MiniOpt-14B variant achieves the
highest average SA of 66.10% among all mod-
els. It achieves a comprehensive performance lead
while having substantially fewer parameters than
top-tier general reasoning models such as DeepSeek-
R1. Compared to the similar modeling and solving
model Step-OPT, Step-OPT-LLaMA-3-8B achieves
an average SA of 50.80% across 9 benchmarks,
while the proposed MiniOPT attains an average SA
of 62.76%. When the parameter scale of both mod-
els are reduced to 3B, Step-OPT-LLaMA-3.2-3B ex-
hibit a performance drop of 11.19%. For Step-OPT-
Qwen2.5, the SA degradation is 11.27%, while Min-
iOPT only decreased by 5.82%. This indicates that
the key advantage of MiniOPT lies in its ability to
maintain superior performance even with reduced parameter scale. From the perspective of capa-
bility density (Xiao et al., 2025a), MiniOPT effectively achieves lower parameter requirements and
inference costs while preserving comparable performance.

4.4 ABLATION STUDY

Importance of the Reasoning to Model and Solve Paradigm and OptReward (Answer to Q4).
We ablate core components of MiniOpt-3B and report results of the SA metric in Table 2 and the ER
metric in Table 6 in Appendix G. As evidenced in Table 2, each module of the proposed reasoning to
model and solve paradigm demonstrates substantial contributions to modeling and solving optimiza-
tion problems with smaller-scale models under limited training resources. Among these, RL pro-
vides the most significant improvement, highlighting the importance of the proposed paradigm. The
reasoning to model and solve paradigm and OptReward together turn free-form generation into a ver-
ifiable formulation, which are easy to verify. Removing them and keeping only a final-answer signal
(w/o OptReward) drops averages to 52.44% and 83.39% (∆ SA=–4.50%, ∆ ER= –4.65%), respec-
tively. The largest losses appear where the problems are challenging: Com.OR (∆ SA = –16.67%,
∆ ER = –16.67%), Indus.OR (∆ SA = -3.00%, ∆ ER = –6.00%), and OptMATH-Bench (∆ SA =
–4.82%, ∆ ER = –10.24%). These patterns align with the roles of the three reward components:
the format score enforces the labels <think> and <answer> in the responses are complete; the
five-element score shapes the intermediate blueprint, so the models learns to extract problem struc-
ture before coding; the Accuracy Score certifies numerical correctness by executing the Pyomo code
and comparing the returned optimum with the reference. In combination, this reasoning to model
and solve paradigm, together with verifiable reward, steers learning toward structurally consistent

9
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Table 2: Ablation study (MiniOpt-3B) on the SA metric across 9 benchmarks.
Category Model / Method Avg. NL4Opt ICML.C Mamo.E Mamo.C NLP4LP Com.OR Indus.OR OptiBench OptMATH-Bench

Ablations

MiniOpt-3B 56.94 83.04 68.05 85.43 35.07 73.55 50.00 21.00 53.55 42.77
MiniOpt-3B w/o SFT Warm-up 53.59 83.91 70.00 83.28 33.65 68.18 38.89 15.00 53.88 35.54
MiniOpt-3B w/o RL 39.25 52.61 48.29 80.06 25.12 60.33 16.67 15.00 34.71 20.48
MiniOpt-3B w/o Two-stage RL 54.12 83.48 69.02 82.67 33.65 69.01 44.44 16.00 53.88 34.94
MiniOpt-3B w/o Data Selection 53.50 78.70 68.05 84.82 30.81 72.31 38.89 19.00 52.89 36.75
MiniOpt-3B w/ Random Selection 50.94 83.48 69.76 82.98 29.38 70.66 27.78 14.00 52.73 27.71
MiniOpt-3B w/o OptReward 52.44 78.70 66.83 82.52 33.18 70.25 33.33 18.00 51.24 37.95
MiniOpt-3B w/ GRPO 48.33 70.87 60.00 81.29 32.23 65.70 27.78 17.00 45.79 34.34
MiniOpt-3B w/ DAPO 54.57 83.48 70.24 84.66 27.49 73.14 44.44 18.00 54.17 34.94

behaviors, yielding higher SA and ER across various optimization problems. For a detailed ablation
analysis of the proposed model-and-solve paradigm, the training process, and the significance of
OptReward and OptGRPO, please see Appendix G.

5 DISCUSSION

Exploration of Models with Smaller Parameter Scale. To further explore the performance of
MiniOpt with smaller parameter scales, thereby better balancing the trade-off between parameters
and performance, we deploy MiniOpt-1.5B with the same reasoning to model and solve paradigm
(Section 3.2), OptReward (Section 3.4.1), and training pipeline (Section 3.3). The results shown
in Table 7 and 8 in Appendix I demonstrate that when the model scale is reduced from 3B to 1.5B,
MiniOpt achieves an average SA of 46.15% and an average ER of 80% across the 9 benchmarks, still
surpassing all baselines except for learning-based methods, maintaining a strong competitiveness.

Dimensionality Scalability Issue. Our empirical results show that MiniOpt-3B can correctly model
optimization problems with dimensionalities as high as 72 on the OptMATH-Bench task and 80 on
the Mamo Complex task. This constitutes a remarkably strong performance for models of such lim-
ited scale, which highlights that the MiniOpt pipeline effectively enhances the model’s optimization
modeling capacity and retains robust generalization even in high-dimensional settings. For prob-
lems with even higher dimensionality, the descriptions of numerical parameters typically become
substantially longer. Such extended input sequences inherently pose a significant challenge to the
comprehension capabilities of small-scale models. As corroborating evidence, larger models such
as MiniOpt-7B successfully solve problems up to 109 dimensions on the OptMATH-Bench task.

Cost Savings of MiniOpt and Generality of Base Models. We find that MiniOpt-3B achieves a
3.01% higher SA than DeepSeek-R1 on the OptMATH-Bench while using 62.4% fewer average out-
put tokens. For MiniOpt-7B, the corresponding improvements are 11.44% higher SA and a 39.6%
reduction in average output tokens. More details and discussions are provided in Appendix K. This
demonstrates that MiniOpt constitutes a general framework capable of enabling small-scale models
to achieve strong optimization generalization under constrained data and computational resources.
Furthermore, although Qwen2.5 series models are adopted as the base model in this paper, we have
also conducted experiments with different base models and obtained closely aligned results.

6 CONCLUSION

This paper proposes a novel reasoning to model and solve paradigm and the small scale model,
MiniOpt-3B, achieves higher performance with a small-scale parameter and limited resources. We
explore the optimization generalization of the model in various types of optimization, problem sce-
narios, and high-variable dimensions. Empirical results demonstrate that MiniOpt exhibits strong
generalization performance under these varying conditions. Furthermore, this study explores the
minimum parameter scale required for MiniOpt to maintain competitive performance. Future work
includes exploring efficient modeling and solving methods for optimization problems with high-
dimensional variables or a large number of constraints.
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A DATASETS

A.1 THE INTRODUCTION OF EVALUATION DATASETS

In this section, we provide an overview of the datasets used for performance evaluation in our ex-
periments. These datasets cover a wide range of optimization types and scenarios, ensuring the
robustness and generalization of our proposed method. In our practice, we use the version of the
benchmark datasets above from https://github.com/antgroup/LLMOPT.

NL4Opt (Ramamonjison et al., 2022) dataset is curated from the NL4Opt Competition. For this
benchmark, we used the test split containing 230 annotated linear programming word problems
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Table 3: Statistics of the optimization problem datasets

Dataset Name # of Data

NL4Opt 230
ICML.C 410
Mamo.E 652
Mamo.C 211
NLP4LP 242
Com.OR 18
Indus.OR 100
OptiBench 605
OptMATH-Bench 166

after manually removing 15 unsolvable problems from the original 245 problems. Each problem is
sourced from domains such as sales, advertising, and investment, ensuring a balanced representation.

Mamo (Huang et al., 2025b) dataset (optimization split of the original Mamo dataset) consists
of two parts: Easy LP and Complex LP. These two subsets provide 652 high-school-level and
211 undergraduate-level Linear Programming (LP) and Mixed-Integer Linear Programming (MILP)
problems, respectively.

IndustryOR (Huang et al., 2025a) is the first industrial dataset specifically designed for optimization
modeling. It incorporates data from 13 different industries and covers a variety of real-world scenar-
ios. The dataset includes real operations research problems from eight different industries, covering
five types of optimization problems, and divided into three difficulty levels. The test dataset contains
100 instances with optimal solutions.

NLP4LP (AhmadiTeshnizi et al., 2024) dataset includes 242 feasible samples sourced from opti-
mization textbooks and lecture notes. These problems cover areas such as facility location, net-
work flow, scheduling, and portfolio management. Each instance in NLP4LP includes a description,
sample parameter data file, and optimal value derived from textbook solutions or manual solving,
offering a range of complex optimization challenges of varying difficulty levels.

ComplexOR (Xiao et al., 2024) dataset is developed in collaboration with three specialists in op-
erations research. It contains 18 samples sourced from diverse references such as academic papers,
textbooks, and real-world industrial scenarios. These problems encompass a broad spectrum of
topics, including supply chain optimization, scheduling problems, and warehousing optimization,
providing comprehensive and complex optimization challenges.

OptMATH-Bench (Lu et al., 2025) is a large-scale, challenging benchmark specifically designed
to evaluate the optimization modeling capabilities of LLMs, encompassing diverse optimization
problem types across 10+ real-world application domains such as logistics, manufacturing, trans-
portation, and finance. The benchmark features significantly more complex problem descriptions
with an average length 2.9× longer than Mamo Easy, containing extended natural language contexts
and intricate constraints that pose greater challenges.

OptiBench (Yang et al., 2025b) is a comprehensive benchmark for evaluating large language mod-
els’ end-to-end optimization problem-solving capabilities. The dataset contains 605 carefully cu-
rated optimization problems that span multiple optimization types and formats. OptiBench includes
problems of Linear Programming (LP), Integer Programming (IP), and Mixed-Integer Linear Pro-
gramming (MILP), encompassing a wide range of optimization complexities.

ICML Competition (Yang et al., 2024b) dataset comprises data from the ICML 2024 Challenges on
Automated Math Reasoning - Track 3: Automated Optimization curated from the competition’s test
split. Since the original ground truth is not released by the organizers, all solutions in this dataset
are manually labeled. The dataset serves as a challenging benchmark for evaluating end-to-end
optimization reasoning and problem-solving capabilities of language models.

A.2 THE DISTRIBUTION OF OPTIMIZATION TYPES AND PROBLEM SCENARIOS OF
BENCHMARKS

To evaluate the generalization ability of the MiniOpt across different problem scenarios through ex-
periments, this paper has counted the number of optimization types and scenarios in 9 benchmarks.
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The distribution histogram of optimization types in the nine benchmarks used in this paper is shown
in Figure 3, and the distribution histogram of problem scenarios is shown in Figure 4.

CO 4 8 12 39 0 0 0 19 11

IP 4 211 23 11 2 161 167 7 291

LP 9 175 31 123 650 69 75 16 214

MILP 1 16 30 38 0 0 0 91 44

MOP 0 0 4 0 0 0 0 0 0

NLP 0 0 0 0 0 0 0 0 45

SOCP 0 0 0 0 0 0 0 33 0

# Data 18 410 100 211 652 230 242 166 605

Type Com.OR ICML.C Indus.OR Mamo.C Mamo.E NL4Opt NLP4LP OptMAT
H-Bench Optibench

Figure 3: Histogram showing the distribution of optimization types across 9 benchmarks. We cate-
gorize the problems in the benchmarks into these types: Combinatorial Optimization (CO), Integer
Programming (IP), Linear Programming (LP), Mixed-Integer Linear Programming (MILP), Multi-
Objective Optimization Problems (MOP), Nonlinear Programming (NLP), Second-Order Cone Pro-
gramming (SOCP).

Agriculture 0 37 5 4 31 13 12 0 46
Aviation 3 2 2 2 0 2 1 12 2

Construction 0 1 1 1 42 1 1 0 8
Education 0 5 1 0 30 0 0 0 7

Energy 0 0 0 5 25 1 2 7 15
Environment 0 0 0 0 31 0 1 0 0

Finance 0 16 7 5 85 5 5 6 22
Healthcare 0 15 1 5 31 23 29 0 20
Logistics 1 27 8 32 25 21 23 22 42

Manufacturing 5 169 37 12 34 77 83 56 254
Marketing 1 9 0 0 43 2 2 0 11
Military 0 0 2 0 36 0 0 0 3

Public Utilities 0 9 1 4 7 2 2 2 19
Resources 0 15 0 12 9 11 8 3 17

Retail 0 16 4 2 31 8 9 1 19
Services 4 38 10 6 73 29 29 7 40
Sports 0 0 0 0 31 0 0 0 0

Supply Chain 2 12 7 48 31 5 3 11 11
Technology 0 0 1 3 0 0 0 1 3

Telecommunications 1 1 0 8 27 0 0 9 1
Transportation 1 31 8 57 45 23 26 9 40

Other 0 7 5 5 15 7 6 20 25
# Data 18 410 100 211 682 230 242 166 605

Scenario Com.OR ICML.C Indus.OR Mamo.C Mamo.E NL4Opt NLP4LP OptMAT
H-Bench Optibench

Figure 4: Histogram showing the distribution of optimization problem scenarios across 9 bench-
marks. We categorize the problems in the benchmarks into these scenarios: Agriculture, Avia-
tion, Construction, Education, Energy, Environment, Finance, Healthcare, Logistics, Manufacturing,
Marketing, Military, Public Utilities, Resources, Retail, Services, Sports, Supply Chain, Technol-
ogy, Telecommunications, Transportation, Other.

A.3 TRAINING DATASETS FOR SFT WARM-UP AND TWO-STAGE RL

The data volume and data sources for each stage of MiniOpt’s training process are illustrated in
Table 4.

Table 4: The number of samples in the dataset for training. Note that all data mentioned in the table
comes entirely from the training split of the corresponding dataset.

Training Stage Dataset Size Data Source

SFT Warm-up 140K OptMATH-Train
RL-Stage 1 1585 NL4Opt (Train) & ICML.C (Train)
RL-Stage 2 3000 OptMATH-Train
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B BASELINES

B.1 GENERAL MODELS

Qwen2.5-3B/7B/14B (Yang et al., 2024a). The models of the Qwen2.5 series are widely adopted
as base models or baselines. The series showcases significant enhancements such as substantially
improved knowledge, coding, and mathematical capabilities. Key features excel at instruction fol-
lowing, processing long contexts up to 128K tokens, and robustly handling structured data like
JSON.

DeepSeek-V3 (DeepSeek-AI et al., 2024). DeepSeek-V3 introduces a sparse Mixture-of-Experts
(MoE) model with 671B total parameters. It achieves training efficiency through Multi-head Latent
Attention (MLA) architecture and an auxiliary-loss-free load balancing strategy. Pretrained on 14.8T
tokens with an SFT and reinforcement learning (RL).

B.2 GENERAL REASONING MODELS

Qwen3-4B/8B/14B (Yang et al., 2025a). Qwen3 pioneers a unified architecture (0.6B to 235B) inte-
grating thinking mode (complex reasoning) and non-thinking mode (rapid responses) with dynamic
switching. Its thinking budget mechanism enables adaptive computational allocation. The series
outperforms larger MoE models in tasks such as coding, mathematics, and agent application.

DeepSeek-R1 (DeepSeek-AI et al., 2025).The DeepSeek-R1 is an enhanced model based on
DeepSeek-R1-Zero presented in this work. It’s a purely RL-driven reasoning model requiring no
SFT pretraining. As the most representative model with thinking ability, DeepSeek-R1 is an impor-
tant baseline for reasoning models.

Gemini-2.5-Pro (Comanici et al., 2025). Gemini-2.5-Pro is a powerful multimodal agent that has
excellent programming / reasoning performance and enables the processing of long video content.
The Gemini-2.5 family spans the full Pareto front of capability-cost optimization. Its integration of
long-context understanding, multimodality, and reasoning unlocks novel agentic applications.

GPT-5 (OpenAI, 2025). GPT-5 is the latest unified, router-mediated system that instantiates a spec-
trum of language-model instances ranging from a high-throughput, low-latency model (gpt-5-main)
to a deliberative, compute-intensive reasoning model (gpt-5-thinking). The router selects the appro-
priate instantiation by conditioning on conversation type, task complexity, tool requirements, and
explicit user directives, thereby optimizing both instruction adherence and inference efficiency.

B.3 PROMPT-BASED METHODS

Reflection (Shinn et al., 2023). Reflexion is an enhanced language agent framework utilizing feed-
back mechanisms. It enables agents to excel at sequential decision-making tasks through task feed-
back analysis and memory buffering without requiring weight updates. This framework accommo-
dates diverse feedback signals and demonstrates effectiveness across programming, math problems
and language reasoning domains.

OptiMUS (AhmadiTeshnizi et al., 2024). OptiMUS is a highly modular solver that leverages the
text understanding and generating capabilities of LLMs. It constructs specialized agents for entity
extraction, mathematical modeling, and code generation using concise prompts, while incorporating
a reflection mechanism for iterative improvement.

Chain-of-Experts (Xiao et al., 2024). Chain-of-Experts is a multi-agent framework specifically
designed for operations research optimization problems. The system features a central controller
that coordinates an interaction sequence among specialized agents, including a term interpreter,
modeling agent, and programming expert. Thus solving optimization problems through precise
coordination of multiple modules.

B.4 LEARNING-BASED MODELS

LLMOPT-14B (Jiang et al., 2025). LLMOPT is a novel framework for optimization problem solv-
ing that leverages LLMs. It begins by formulating a unified representation of optimization prob-
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lems, thereby enhancing the model’s ability to generalize across diverse types of scenarios. Based
on this unified description of five-element formulation, the framework generates the solving code.
LLMOPT uses multi-instruction SFT and KTO alignment during training to enhance modeling ac-
curacy and reduce model hallucinations.

OptMATH-Qwen2.5-7B (Lu et al., 2025). OptMATH-Qwen2.5-7B is trained end-to-end on the
OptMATH-Train dataset, it generates both mathematical formulations and solver code from problem
descriptions. The input consists of textual problem specifications, while the target output comprises
concatenated sequences. Optimization follows the standard sequence-to-sequence loss function,
enabling single-stage joint optimization of formulation and code generation.

Step-OPT-8B (Wu et al., 2025). Step-OPT is a model trained on a meticulously curated high-quality
dataset. The training set is enhanced through Scope-Evolve and Complexity-Evolve techniques,
which improve both the difficulty level and the coverage of application scenarios. Moreover, a
multi-agent and stepwise verification mechanism is employed to enhance the quality of problems
and solutions while eliminating errors present in the original dataset. Finally, supervised fine-tuning
was performed on this high-quality training dataset resulting in the Step-OPT-8B model.

C THE DETAILS OF THE FIVE-ELEMENT FORMULATION

The five-element modeling formulation is a universal mathematical model for optimization prob-
lems, which consists of five parts. We start from the following formulation:

min
x∈X⊆RD

f(x) , s.t. G(x) ≤ c , (5)

where x = (x1, x2, . . . , xD)⊤ is the D-dimensional decision variable, X is the feasible region,
f : X → R is the objective, G(x) : RD → Rm collects the constraints, and c ∈ Rm provides
the upper bounds. Among them, Variables, Objective, and Constraints correspond to x, f(x),
and G(x), while Sets and Parameters provide indices and numerical tables that instantiate and
vectorize f and G. Sets determine the dimensions and naming of decision and constraint families.
Parameters supply exogenous constants such as costs, coefficients, budgets, and demands. Vari-
ables specify domains and bounds(e.g., continuous, nonnegative, integer, or binary), which jointly
define the feasible region X ; domain-type restrictions such as “positive integers” may equivalently
be encoded as explicit constraints, and our parser maps both styles to X . Objective gives the mini-
mization or maximization expression, and Constraints provide named families of linear or nonlinear
equalities/inequalities composing G and the bound vector c. This representation naturally spans
LP/IP/MILP: integrality arises through X , linearity or nonlinearity is captured by the form of G,
and multi-objective problems can be accommodated by extending f(x) to a vector F (x) with a
scalarization scheme. The think output ends with the five-element formulation, which serves as a
modeling blueprint.

D DETAILS OF GRPO ALGORITHM

This paper proposes OptGRPO based on the improvement of the GRPO algorithm (Shao et al.,
2024). For each query, GRPO sample G responses, compute the mean and standard deviation of
their scalar rewards, and form a group-normalized advantage Âi = (ri−µ)

σ . Specifically, GRPO
optimizes the policy πθ as follows:

JGRPO(θ) = Eq∼P (Q),{oi}G
i=1∼πθold (·|q)[

G∑
i=1

|oi|∑
t=1

1

|oi|

(
min

[
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
Âi,t, clip(

πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
, 1− ε, 1 + ε)Âi,t

]

−βDKL[πθ(·|q)∥πref(·|q)]
)]

, (6)
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where q denotes queries sampled from the input dataset and o denotes the model’s outputs. ε is the
clipping threshold, β is the coefficient on the KL penalty, and DKL is the KL divergence between
the current policy πθ and the reference policy πref .

E THE PROCESSING PIPELINE OF TRAINING DATA

The processing pipeline for the SFT training set is detailed in Section 3.3.1. The resulting collection
of this pipeline is named OptMATH-Train-Pyomo, which contains approximately 140K samples.
The prompt template used in code conversion is introduced in Appendix L, and the prompt of the
solver adapter is introduced in Appendix M.

In the first stage of MiniOpt’s RL training, we employ a set of relatively easy and small-scale opti-
mization problems, for which the accuracy score is more readily maximized. This, in turn, incen-
tivizes the model to attain higher format score and five-element score, thereby accelerating mastery
of the reasoning to model and solve paradigm. Concretely, the dataset of the first stage is the union
of the NL4Opt (AhmadiTeshnizi et al., 2024) and ICML Competition (Yang et al., 2024b) training
splits, comprising 1585 problems. Each instance is presented as a natural-language prompt paired
with a reference answer and is fully compatible with our pipeline of parsing, executing, and scoring,
enabling straightforward computation of the OptReward.

The second stage of RL targets optimization generalization (Jiang et al., 2025) under a limited train-
ing budget. The objective is to construct a training set that simultaneously covers diverse optimiza-
tion types and scenarios, while preserving the scenario proportions observed in the real distribution.
Starting from the OptMATH-Train pool containing 201K problems, we label each instance with
types and scenarios using the DeepSeek-V3 (DeepSeek-AI et al., 2024), with prompt templates
and data distributions provided in Appendix O. We then sample a 3000-instance stage-2 training set
subject to two constraints: (i) type-uniform coverage, with exactly 600 instances per type; and (ii)
within each type, the scenario frequencies match the distribution in the full pool. Formally, letting
p(s) denote the overall scenario distribution in the complete pool, the target number of samples for
each scenario s under type t is allocated as nt(s) = round

(
600 · p(s)

)
, where

∑
s nt(s) = 600.

To prevent leakage, problems used during the SFT warm-up (Section 3.3.1) are excluded from con-
sideration. The resulting 3K training set is uniform across types and aligned with the scenario dis-
tribution of the data pool. Compared with random or non-selected baselines, this selection improves
overall performance of MiniOpt under the same compute budget.

F COMPARISON OF EXECUTION RATE ACROSS 9 BENCHMARKS

This section we use Execution Rate (ER), the proportion of generated code samples that run suc-
cessfully without errors. As shown in the Table 5, MiniOpt also exhibits superior text generation ca-
pabilities compared to baseline methods, which suggests its excellent code generation performance
given the problem modeling.

G ABLATION STUDY OF MINIOPT ACROSS 9 BENCHMARKS

Importance of the Training Pipeline of MiniOpt (Answer to Q3). In the training pipeline of
MiniOpt, each module plays a distinct role in improving SA and ER. First, the lightweight SFT
warm-up provides a better starting point for RL training. Without it, averages for SA and ER fall
to 53.59% and 83.66%, respectively. The decreases are ∆SA=–3.35 and ∆ER=–4.38. Second, re-
moving all RL training collapses the average performance from SA of 56.94% and ER of 88.04%
to 39.25% and 75.36%, respectively. With the sharpest drops on challenging datasets like Com.OR
(∆SA = –33.33%, ∆ER = –33.33%) and OptMATH-Bench (∆SA = –22.29%, ∆ER = –34.33%)
where accurate modeling and solver selection are indispensable. Third, collapsing the two-stage
RL removes the progressive training that first consolidates the paradigm (stage-1) and then targets
generalization (stage-2), averages drop to the SA of 54.12% and ER of 84.38% (∆ SA=–2.82%,
∆ ER=–3.66%). Moreover, the data selection of stage-2 is crucial for sample efficiency that train-
ing on the full pool (w/o Data Selection) yield the average SA of 53.58% and the average ER of
82.04% (∆SA = –3.36%, ∆ER = –6.00%), while the random selected training data (w/ Random
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Table 5: Comparison of the ER metric across 9 benchmarks with rankings (NL4Opt, ICML Compe-
tition, Mamo Easy, Mamo Complex, NLP4LP, ComplexOR, IndustryOR, OptiBench, OptMATH-
Bench). Bold indicates 1st,

::::
wavy

::::::::
underline indicates 2nd, underline indicates 3rd. “Rank∗” repre-

sents the result of sorting methods among parameter sizes below 10B.

Category Model / Method Avg. Rank Rank∗ NL4Opt ICML.C Mamo.E Mamo.C NLP4LP Com.OR Indus.OR OptiBench OptMATH-
Bench

General Models

Qwen2.5-3B-Instruct 17.11 21 10 31.30 28.54 21.47 7.11 28.93 5.56 10.00 20.50 0.60
Qwen2.5-7B-Instruct 41.69 18 8 66.09 68.54 40.34 19.43 71.90 16.67 30.00 53.22 9.04
Qwen2.5-14B-Instruct 63.53 14 - 82.17 80.73 86.66 59.24 84.71 38.89 52.00 61.49 25.90
DeepSeek-V3 83.50 7 - 97.83 97.32 96.63 71.56 97.93 72.22 70.00 84.79 63.25

General Models
(Thinking)

Qwen3-4B 14.15 22 11 19.57 20.00 15.18 18.48 18.18 11.11 5.00 16.20 3.61
Qwen3-8B 25.55 20 9 36.96 38.29 26.53 18.01 39.26 22.22 10.00 35.04 3.61
Qwen3-14B 31.17 19 - 28.70 25.12 40.18 30.81 22.73 61.11 27.00 27.44 17.47
DeepSeek-R1 83.07 9 - 96.09 94.15 89.72 84.83 91.32 61.11

:::
82.00 88.92 53.01

Gemini-2.5-Pro 89.65 4 - 94.35 96.10 95.86 86.26 96.28 77.78 87.00
:::
91.90

:::
81.32

GPT-5 83.26 8 - 98.08 97.32 71.47 55.92 97.52 88.89 78.00 92.07 69.88

Prompt-based
Methods

Chain-of-Experts 61.72 15 - 79.57 73.41 72.85 56.87 77.27 55.56 54.00 65.45 20.48
OptiMUS 52.13 17 - 45.22 75.85 73.77 43.60 44.63 44.44 48.00 65.95 27.71
Reflexion 80.42 10 - 91.74 91.46 97.55 67.77 95.45 83.33 66.00 81.65 48.80

Learning-based
Models

Step-OPT-LLaMA3.2-3B 67.44 13 6 98.70 48.05 90.64 73.93 99.17 66.67 60.00 48.76 21.08
Step-OPT-LLaMA-3-8B 78.29 11 4 96.96 93.90 98.93 90.05 94.63 61.11 67.00 73.72 28.31
Step-OPT-Qwen2.5-3B 59.37 16 7 54.78 58.78 97.09 42.18 81.40 61.11 50.00 67.27 21.69
Step-OPT-Qwen2.5-7B 71.76 12 5 94.78 77.56 87.73 84.83 68.18 72.22 64.00 71.24 25.30
OptMATH-7B 85.07 6 3 99.13 95.85 98.47 90.05 99.17 66.67 69.00 82.81 64.46
LLMOPT-14B 90.03 3 - 97.42 93.90 92.29 77.73 97.93 88.89 61.00 73.22 31.93

Ours
MiniOpt-3B 88.04 5

:
2 99.57 95.85 98.47 87.68 99.59 88.89 70.00 83.64 68.67

MiniOpt-7B
:::

90.61
:
2 1 99.57

:::
98.05 98.93

:::
95.26 100.00 88.89 74.00 84.30 76.51

MiniOpt-14B 92.35 1 - 99.57 98.54 98.93 97.16 100.00 88.89 77.00 89.09 81.93

Table 6: Ablation study (MiniOpt-3B) on the ER metric across 9 benchmarks.
Category Model / Method Avg. NL4Opt ICML.C Mamo.E Mamo.C NLP4LP Com.OR Indus.OR OptiBench OptMATH-Bench

Ablations

MiniOpt-3B 88.04 99.57 95.85 98.47 87.68 99.59 88.89 70.00 83.64 68.67
MiniOpt-3B w/o SFT Warm-up 83.66 99.13 96.59 98.16 84.36 98.35 66.67 68.00 84.46 57.23
MiniOpt-3B w/o RL 75.36 96.09 92.68 97.09 69.19 97.93 55.56 62.00 73.39 34.34
MiniOpt-3B w/o Two-stage RL 84.38 98.26 96.10 97.85 84.36 98.35 72.22 70.00 84.46 57.83
MiniOpt-3B w/o Data Selection 82.04 99.57 95.61 96.78 86.73 98.76 55.56 66.00 82.15 57.23
MiniOpt-3B w/ Random Selection 82.01 99.13 96.10 97.09 77.73 97.93 67.67 69.00 84.63 48.80
MiniOpt-3B w/o OptReward 83.39 98.26 95.61 97.70 83.89 97.93 72.22 64.00 82.48 58.43
MiniOpt-3B w/ GRPO 80.00 97.39 94.63 96.32 83.41 95.87 55.56 64.00 81.65 51.20
MiniOPT-3b w/ DAPO 86.82 99.13 96.34 98.77 85.31 99.17 83.33 74.00 86.94 58.43

Selection) yield SA of 50.94% and ER of 82.01% on average (∆SA = -6.00%, ∆ER = -6.03%),
indicating that type-uniform, globally scenario-aligned sampling concentrates updates where they
best improve cross-type, cross-scenario behavior. Finally, reverting our OptGRPO to the original
GRPO (w/o OptGRPO) further decreases both metrics, averages SA of 48.33% and ER of 80.00%.
The drop aligns with our algorithmic choices: removing KL part frees exploration for small-scale
LLMs; Clip-Higher part prevents entropy collapse by allowing probability increases on rare but cru-
cial reasoning/code tokens; Token-Level Loss part can enhance the impact of long output, which
is conducive to the training of the reasoning model. Together these changes improve sample effi-
ciency and training stability, which is critical for eliciting strong optimization generalization at small
parameter scales.

H COMPARISON OF AVERAGE ER AGAINST MODEL PARAMETER SCALES
FOR VARIOUS METHODS

In this chapter, we present a comparative plot of the model parameters scale and the average ER
across multiple methods, as illustrated in Figure 5.

I COMPARISON OF RESULTS BETWEEN THE MINIMUM MODEL AND MODELS
OF OTHER SCALES

As shown in Tables 7 and 8, we compared the SA and ER of four different sizes of MiniOpt (1.5B,
3B, 7B, and 14B) across 9 benchmarks, respectively.
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Figure 5: Comparison of average ER against model parameter scales for various methods. MiniOpt
is the Pareto optimal among compared methods.

Table 7: Comparison of the SA metric between MiniOpt-1.5B and larger scale counterparts across
9 benchmarks.
Solving Accuracy (SA) Avg. NL4Opt ICML.C Mamo.E Mamo.C NLP4LP Com.OR Indus.OR OptiBench OptMATH-Bench

Dataset size 230 410 652 211 242 18 100 605 166

Ours

MiniOpt-1.5B 46.15 63.48 55.37 77.15 27.01 58.68 38.89 16.00 41.98 36.75
MiniOpt-3B 56.94 83.04 68.05 85.43 35.07 73.55 50.00 21.00 53.55 42.77
MiniOpt-7B 62.76 89.13 77.56 88.34 38.89 79.34 55.56 26.00 59.34 51.20
MiniOpt-14B 66.10 92.17 86.34 90.80 33.65 79.75 61.11 27.00 67.44 56.63

J THE SEESAW ISSUE OF LLMS

We assess whether adapting our models to optimization modeling introduces a seesaw issue for
small-parameter models. After evaluating pre-training and post-training scores on six widely
used general-purpose benchmarks: MMLU (Hendrycks et al., 2021a), MATH (Hendrycks et al.,
2021b), HumanEval (Chen et al., 2021), TriviaQA (Joshi et al., 2017), RACE (Lai et al., 2017),
GSM8K (Cobbe et al., 2021), we observe that the average scores of MiniOpt-7B and MiniOpt-3B
decrease by only 1.83% and 3.05%, respectively. Notably, the 3B model even exhibits a 0.7% im-
provement on GSM8K, a proxy for mathematical reasoning. These results indicate that our training
paradigm for optimization modeling does not induce a pronounced seesaw effect. We attribute this
to two factors. First, the two-stage RL framework coupled with a verifiable OptReward constrains
learning to structural modeling correctness and executable solving efficacy, mitigating overfitting to
superficial linguistic style or lengthy chain-of-thought and thereby substantially reducing the risks
of catastrophic forgetting and cross-task seesaw effects. Second, the foundational competencies
required for optimization modeling, such as mathematical understanding, symbolic reasoning, pro-
gram synthesis, and execution, which highly overlap with those assessed by general benchmarks
such as MMLU, MATH, GSM8K, and HumanEval. Consequently, targeted reinforcement in this
domain does not overwrite existing representations, instead, it yields small positive transfer on tasks
closely aligned with modeling and solving, as exemplified by GSM8K.
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Table 8: Comparison of the ER metric between MiniOpt-1.5B and larger scale counterparts across
9 benchmarks.
Execution Rate (ER) Avg. NL4Opt ICML.C Mamo.E Mamo.C NLP4LP Com.OR Indus.OR OptiBench OptMATH-Bench

Dataset size 230 410 652 211 242 18 100 605 166

Ours

MiniOpt-1.5B 80.00 93.91 91.71 97.09 79.15 91.74 66.67 63.00 75.87 60.84
MiniOpt-3B 88.04 99.57 95.85 98.47 87.68 99.59 88.89 70.00 83.64 68.67
MiniOpt-7B 90.61 99.57 98.05 98.93 95.26 100.00 88.89 74.00 84.30 76.51
MiniOpt-14B 92.35 99.57 98.54 98.93 97.16 100.00 88.89 77.00 89.09 81.93

K DETAILED DISCUSSION ON THE EFFICIENCY OF MINIOPT TO MODEL
AND SOLVE OPTIMIZATION PROBLEMS

To validate the high efficiency of the MiniOpt model during inference, we compared the average
number of tokens generated in full responses on the OptMATH dataset by two small-parameter
models of MiniOpt and DeepSeek-R1. As shown in Table 9, MiniOpt achieves higher ER and SA
while using fewer average output tokens. This advantage stems from MiniOpt’s internalized unified
reasoning to model and solve paradigm tailored for optimization modeling problems, which guides
the model along a more efficient reasoning path during inference.

Table 9: Comparison of average output token consumption in OptMATH-Bench.

Model Avg. Token Count SA (%) ER (%)

MiniOpt-3B 1911.72 42.77 68.67
MiniOpt-7B 3068.99 51.20 76.51
DeepSeek-R1 5078.90 39.76 53.01

L SYSTEM PROMPT FOR CODE CONVERSION FROM GUROBIPY TO PYOMO

This section provides the system prompt for the large language model to convert GurobiPy code in
OptMATH-Train into Pyomo code, where the content within [·] and {·} will be replaced with the
corresponding parts.

PROMPT TEMPLATE FOR CODE CONVERSION

You are an expert in optimization problems. Your task is to convert
the given gurobipy code into pyomo code.

**Instructions:**
1. Don’t give any explanation, just provide the converted pyomo

code in the following format:
‘‘‘python
[pyomo code here]
‘‘‘
2. Please note that the following solvers are available for use: ’

glpk’, ’cbc’, ’ipopt’, ’scip’. Other solvers should not be
utilized.

3. Please add ‘from pyomo.environ import *‘ at the beginning of
your code.

4. Please print the optimal objective value at the end of the code.

**Gurobipy code:**
{gurobipy}
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M PROMPT FOR THE SOLVER SELECTION

This section provides the system prompt to guide MiniOpt models in autonomously selecting solvers
after modeling optimization problems.

PROMPT FOR SOLVER SELECTION

**Solver Selection Guide:**
- ‘‘glpk‘‘: Best for small-to-medium linear problems (LP).
- ‘‘cbc‘‘: Recommended for mixed-integer linear programming (MILP)

and larger linear problems. Handles binary/integer variables
well.

- ‘‘ipopt‘‘: Use for nonlinear problems (NLP) with continuous
variables. Does NOT support discrete variables.

- ‘‘scip‘‘: Most versatile - handles mixed-integer nonlinear
problems (MINLP), large-scale problems, and complex constraints.

**Select solver based on:**
1. Variable types (continuous vs integer/binary)
2. Linearity of objective/constraints
3. Problem scale (small: glpk/cbc, large: scip/ipopt)
4. Nonlinearity presence (use ipopt/scip)

N SYSTEM PROMPT FOR RL TRAINING

This section provides the system prompt used by MiniOpt models during reinforcement learning
(RL) training.

SYSTEM PROMPT FOR RL TRAINING

You are a helpful assistant. The assistant first thinks about the
reasoning process in the mind and then provides the user with
the answer. The reasoning process and answer are enclosed within
<think> </think> and <answer> </answer> tags, respectively, i.e

., <think> reasoning process here </think><answer> answer here
</answer>, please make sure to answer according to the above
format. Now the user asks you to solve an optimization reasoning
problem, you should:

1. Detailed reasoning about the problem within <think> </think>
tags.

2. Write the corresponding five-element model (derived from your
analysis).

3. Determine the mathematical properties of problem and select an
appropriate solver from ’glpk’, ’cbc’, ’ipopt’, ’scip’.

4. Recheck and correct if necessary at the end of the <think> </
think> section.
- Verify the five-element model fully captures the problem’s
requirements.
- Confirm no constraints/variables are missing or over-
simplified.
- Ensure the solver choice aligns with the problem’s
mathematical properties.

5. Provide the corresponding Pyomo code based on checked five-
element model within <answer> </answer> tags.

In mathematics, optimization problem can be modeled as the
following expression $\\min_{{\\boldsymbol{{x}} \\in \\mathcal{{
X}}}} f(\\boldsymbol{{x}}), {{\\rm s.t.}} G(\\boldsymbol{{x}})
\\leq \\boldsymbol{{c}}$, where $\\boldsymbol{{x}} = (x_1, x_2,
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\\ldots, x_D)ˆ\\top$ is the $D$-dimensional decision variable, $
\\mathcal{{X}} \\subset \\mathbb{{R}}ˆD$ is the feasible domain,
$f: \\mathcal{{X}} \\rightarrow \\mathbb{{R}}$ is the objective
function and the goal is to find the minima of $f$, $G(\\

boldsymbol{{x}}) \\leq \\boldsymbol{{c}}$ are the constraints of
$\\boldsymbol{{x}}$.

The above definition can be mapped to a five-element consisting of
‘‘Variables, Objective, Constraints, Sets, Parameters’’.
Variables indicate what $\\boldsymbol{{x}}$ is, Objective
describes the form of the objective function $f(\\boldsymbol{{x
}})$, and Constraints indicates the constraints $G(\\boldsymbol
{{x}})$ and $\\mathcal{{X}}$. These three can abstract the
optimization problem. Sets and Parameters are their specific
explanations: Sets describe and explain the subscripts of the
vectors or matrices in them, and Parameters supplement their
specific values.

You need to give a detailed reasoning process for the problem first
, and then write the corresponding five-element model based on
the problem description and information provided by user.

Please complete the following template to model the optimization
problem into five-element:

<think>
Your reasoning process here...

## Sets:
[You need to fill in]

## Parameters:
[You need to fill in]

## Variables:
[You need to fill in]

## Objective:
[You need to fill in]

## Constraints:
[You need to fill in]
</think>

In Pyomo, all constraints must be formulated using ’<=’, ’>=’, or
’==’. If you need to use ’>’ or ’<’, you can introduce a very
small value to transform the inequality. Please note that the
following solvers are available for use: ’glpk’, ’cbc’, ’ipopt’,
’scip’. Other solvers should not be utilized.

**Solver Selection Guide:**
- ‘‘glpk‘‘: Best for small-to-medium linear problems (LP).
- ‘‘cbc‘‘: Recommended for mixed-integer linear programming (MILP)

and larger linear problems. Handles binary/integer variables
well.

- ‘‘ipopt‘‘: Use for nonlinear problems (NLP) with continuous
variables. Does NOT support discrete variables.

- ‘‘scip‘‘: Most versatile - handles mixed-integer nonlinear
problems (MINLP), large-scale problems, and complex constraints.

**Select solver based on:**
1. Variable types (continuous vs integer/binary)
2. Linearity of objective/constraints
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3. Problem scale (small: glpk/cbc, large: scip/ipopt)
4. Nonlinearity presence (use ipopt/scip)

Please select an appropriate solver based on the type and quantity
of variables, objectives, and constraints. After thinking, when
you finally reach the five-element model, you should give the
corresponding Pyomo code within the <answer> </answer> tags, i.e
., <answer> ‘‘‘python\n code here‘‘‘ </answer>. The user will
extract the complete code you provide through the regular
expression r"‘‘‘python\n(.*?)‘‘‘" in the <answer> </answer> tags
. The execution result of the code should include the optimal
solution and the objective value. The optimal objective value
will be extracted automatically from your last printed result.

O LABELING PROMPT AND THE DATA DISTRIBUTIONS OF OPTMATH-TRAIN

This section provides the system prompts for the large language model to label the type and scenario
of problems in OptMATH-Train, where {{·}} will be replaced with the corresponding content. After
labeling, the distribution of scenarios in OptMATH-Train is displayed in Figure 6, and the distribu-
tion of types in OptMATH-Train is displayed in Figure 7

SYSTEM PROMPT FOR TYPE LABELING

Please classify the following optimization problem into one of
these technical types based on the mathematical formulation and
decision variables, not just surface-level descriptions:

1. Linear Programming (LP): Problems with linear objective function
and linear constraints, all continuous variables

2. Integer Programming (IP): Problems with linear or nonlinear
components where ALL variables are discrete/integer

3. Mixed Integer Linear Programming (MILP): Problems with linear
components containing BOTH continuous and discrete variables

4. Nonlinear Programming (NLP): Problems with nonlinear objective
function and/or nonlinear constraints (variables may be
continuous/discrete)

5. Combinatorial Optimization (CO): Problems focused on selecting/
discrete structures (graphs, permutations, sets) with typically
binary variables

6. Multi-objective Programming (MOP): Problems explicitly
optimizing multiple conflicting objectives simultaneously

7. Second-Order Cone Programming (SOCP): Problems with a linear
objective function, linear constraints, and second-order cone
constraints (e.g., \(\|Ax + b\| \leq cˆT x + d\))

# Problem:
{{Question}}

# Output
Analyze the mathematical structure step by step and classify its

type. Finally, output the type abbreviation in the following
format:

Type: Abbreviation of the type

Note:
- Focus on the fundamental mathematical formulation, not

application domain
- Check variable types (continuous/discrete/binary) and objective/

constraint linearity
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- For MOP, there must be explicit multiple objectives
- For pure discrete problems with special structures (e.g. graphs),

prefer CO over IP

SYSTEM PROMPT FOR SCENARIO LABELING

Please classify the following optimization problem into one of
these application domains based on the core decision-making
context and primary business function, not just keywords
mentioned in the problem:

1. Supply Chain: Decisions about inventory management, distribution
network, warehousing operations

2. Finance: Decisions about portfolio management, investments, risk
management, financial planning

3. Manufacturing: Decisions about production processes, quality
control, factory operations

4. Transportation: Decisions about routing, vehicle scheduling,
fleet management, traffic flow, carrier selection

5. Healthcare: Decisions about medical staff scheduling, patient
flow, hospital resources

6. Energy: Decisions about power generation, energy conservation,
grid distribution

7. Technology: Decisions about network design, data center
operations, cloud resources

8. Retail: Decisions about store operations, pricing, inventory,
equipment, store layout

9. Agriculture: Decisions about farming operations, crop planning,
irrigation

10. Logistics: Decisions about delivery operations, warehouse
management, distribution

11. Resources: Decisions about raw materials, equipment allocation,
material management

12. Marketing: Decisions about campaign planning, budget allocation
, target selection

13. Education: Decisions about course scheduling, resource
allocation in schools

14. Environment: Decisions about environmental protection,
emissions control, conservation

15. Construction: Decisions about project planning, construction
resource allocation

16. Military: Decisions about military operations, deployment,
supply management

17. Sports: Decisions about game scheduling, team formation,
strategy

18. Telecommunications: Decisions about network coverage, bandwidth
allocation

19. Aviation: Decisions about flight scheduling, crew assignment,
airport operations

20. Services: Decisions about service operations, staff scheduling,
capacity management

21. Public utilities: Decisions about utility services,
infrastructure management, service delivery

22. Other: Problems that don’t clearly fit into above categories

# Problem:
{{Question}}

# Output
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Let’s think step by step,give the analysis of the problem and
classify it into one of the above application domains.Finally,
output the name of the domain in the following format:

Category: Name of the Domain

Note:
- Focus on the fundamental business function and decision-making

context
- Don’t be misled by secondary keywords or background story
- Consider who is making the decision and what is their primary

business purpose
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Figure 6: Proportion of every scenarios of instances in OptMATH-Train (201K).
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Figure 7: Proportion of every problem types of instances in OptMATH-Train (201K).
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