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Abstract

State-of-the-art parameter-efficient fine-tuning
methods rely on introducing adapter modules be-
tween the layers of a pretrained language model.
However, such modules are trained separately for
each task and thus do not enable sharing infor-
mation across tasks. In this paper, we show that
we can learn adapter parameters for all layers
and tasks by generating them using shared hyper-
networks, which condition on task, adapter posi-
tion, and layer id in a transformer model. This
parameter-efficient multi-task learning frame-
work allows us to achieve the best of both worlds
by sharing knowledge across tasks via hypernet-
works while enabling the model to adapt to each
individual task through task-specific adapters.
Experiments on the well-known GLUE bench-
mark show improved performance in multi-task
learning while adding only 0.29% parameters per
task. We additionally demonstrate substantial per-
formance improvements in few-shot domain gen-
eralization across a variety of tasks. Our code
is publicly available in https://github.com/
rabeehk/hyperformer.

1 Introduction

Transfer learning from pretrained large-scale language
models yields state-of-the-art results in a variety of
tasks (Devlin et al., 2019; Radford et al., 2018; Liu
et al., 2019b). As a highly expressive and abstract
framework, Raffel et al. (2020) explored the land-
scape of transfer learning by converting text-based
natural language processing (NLP) problems into a
sequence-to-sequence format to train a unified model
on several tasks simultaneously. Multi-task learning
with pretrained language models (Ruder, 2017) is
appealing for multiple reasons: 1) Training individual
models per task results in higher computational costs,
which hinders deployment and maintenance. These
costs are substantially reduced by training a single
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Figure 1: Left: Adapter integration in the T5 model.
Right:  Our HYPERFORMER adapter architecture.
Following Houlsby et al. (2019), we include adapter
modules after the two feed-forward layers. The Adapter
hypernetwork h!; produces the weights (UL and D) for
task-specific adapter modules conditioned on an input
task embedding I.. Similarly, the layer normalization
hypernetwork A% \ generates the conditional layer nor-
malization parameters (3, and -y.). During training, we
only update layer normalizations in T5, hypernetworks,
and task embeddings. The compact HYPERFORMER++
shares the same hypernetworks across all layers and tasks
and computes the task embedding based on task, layer id,
and position of the adapter module (§2.4).

model. 2) Fine-tuning the model across multiple tasks
allows sharing information between the different
tasks and positive transfer to other related tasks.
Specifically, when target datasets have limited training
data, multi-task learning improves the performance
compared to individually trained models (Liu et al.,
2019a; Ratner et al., 2018). However, multi-task
fine-tuning can result in models underperforming on
high-resource tasks due to constrained capacity (Ari-
vazhagan et al., 2019; McCann et al., 2018). An
additional issue with multi-task fine-tuning is the
potential for task interference or negative transfer,
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where achieving good performance on one task can
hinder performance on another (Wang et al., 2019c).

As an alternative to fine-tuning (Howard and Ruder,
2018), adapter layers (Houlsby et al., 2019) insert
a small number of additional parameters per task
into the model. During fine-tuning, only the adapter
modules, layer normalizations, and parameters of
the final classification layer are updated, while the
original pretrained model parameters remain frozen.
Such task-specific adapters eliminate negative task
interference by encapsulating task-specific informa-
tion (Pfeiffer et al., 2020). However, so far there has
not been an effective and parameter-efficient way to
share information across multiple adapters to enable
positive transfer to low-resource and related tasks.

To address this problem and to enable sharing in-
formation across tasks while reaping the benefits of
adapter layers, as depicted in Figure 1, we propose
HYPERFORMER++, which employs a compact hyper-
network (Ha et al., 2017; Oswald et al., 2020) shared
across tasks and layers. The hypernetwork learns to
generate task and layer-specific adapter parameters,
conditioned on task and layer id embeddings. The hy-
pernetwork is jointly learned between all tasks and is
thus able to share information across them, while neg-
ative interference is minimized by generating separate
adapter layers for each task. For each new task, our
model only requires learning an additional task em-
bedding, reducing the number of trained parameters.

We use the encoder-decoder TS5 model (Raffel et al.,
2020) as the underlying model for our experiments
and evaluate on the standard GLUE benchmark (Wang
et al., 2019b). We achieve strong gains over both
the TS5gase model as well as adapters (Houlsby et al.,
2019). To our knowledge, this is the first time that
adapters have been successfully integrated into a state-
of-the-art encoder-decoder model beyond machine
translation (Bapna and Firat, 2019), demonstrating
that our method effectively balances sharing informa-
tion across tasks while minimizing negative transfer.

In summary, we make the following contributions:
(1) We propose a parameter-efficient method for multi-
task fine-tuning based on hypernetworks and adapter
layers. (2) We demonstrate that our method scales
more efficiently than prior work. (3) We provide em-
pirical results on GLUE demonstrating the effective-
ness of the proposed method on multi-task learning.
(4) We perform extensive few-shot domain transfer
experiments, which reveal that the captured shared
knowledge can positively transfer to unseen in-domain
tasks. We release our code to facilitate future work.

2 HYPERFORMER

In this section, we present our HYPERFORMER
model, which integrates hypernetwork-based adapter
layers into a multi-task transformer model. In §2.4,
we introduce a parameter-efficient variant of this
model, called HYPERFORMER++.

Problem formulation: We consider a general
multi-task learning problem, where we are given the
data from a set of tasks {D, }1_ b where T is the
total number of tasks and D, = {(x%,y%)} fV:T | shows
the training data for 7-th task with N samples. We
assume we are also given a large-scale pretrained
language model fg(.) parameterized by 6 that
computes the output for input =% . Standard multi-task
fine-tuning minimizes the following loss on the
training set:

) ()

where [ is typically the cross-entropy loss, and w,
shows the sampling weight for 7-th task. Our goal
is to finetune the pretrained model in a multi-task
learning setup efficiently, while allowing sharing
information across tasks and at the same time,
enabling the model to adapt to each individual task.
The key idea of our approach, depicted in Figure
1, is to learn a parametric task embedding {1 }7_,
for each task, and then feed these task embeddings
to hypernetworks parameterized by v that generate
the task-specific adapter layers (Houlsby et al.,
2019). We insert adapter modules within the layers
of a pretrained model, making the final model of
X, (x%, 0, I,) parameterized by v that computes
the output for input mﬁ. During training, we only
train hypernetwork parameters v, task embeddings
{I;}1_,, and layer normalizations in f(.), while the
rest of the pretrained model parameters 0 are fixed:
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The hypernetworks capture the shared information
across tasks in a multi-task learning model enabling
positive transfer between related domains and trans-
ferable tasks, while adapters are reducing negative
interference, encapsulating task-specific information.

Base model: All of our models are built on top
of the state-of-the-art TS transformer model (Raffel



et al., 2020). This model frames text-based language
tasks as sequence-to-sequence problems. TS consists
of an encoder-decoder Transformer (Vaswani et al.,
2017) with minor modifications (Raffel et al., 2020).
The model is trained simultaneously on multiple
tasks, obtaining state-of-the-art performance across
a diverse set of tasks. We use the TS framework as
it enables training a universal model that interfaces
with many language tasks. Our model has three
main components: 1) task conditional adapter layers;
2) task conditional layer normalizations; and 3)
hypernetworks that generate task-specific parameters.
We next describe these components.

2.1 Task Conditional Adapter Layers

Prior work has shown that fine-tuning all parameters
of the model can result in a sub-optimal solution,
particularly for resource-limited datasets (Peters et al.,
2019). As an alternative to fine-tuning all the model’s
parameters, prior work (Houlsby et al., 2019; Rebuffi
et al., 2018; Stickland and Murray, 2019) inserted
small modules called adapter layers within layers of
a pretrained model, as shown in Figure 1. Adapters
introduce no change to the structure or parameters
of the original model.

In this work, we propose conditional adapter
modules, in which we generate the adapters weights
based on input task embeddings using shared
hypernetworks (Ha et al., 2017), which capture
information across tasks that can be used to positively
transfer to other relevant tasks.

Each layer of a transformer model consists of
an attention block and a feed-forward block, each
followed by a skip connection. Following Houlsby
et al. (2019), as depicted in Figure 1, we introduce
a conditional adapter layer after each block before the
skip connection. The conditional adapter layer A%
for layer [ consists of a down-projection, D! € R4,
GeLU non-linearity (Hendrycks and Gimpel, 2016),
and up-projection UL € R where h is the input
dimension, and d is the bottleneck dimension for the
adapter layer, mathematically defined as:

Al (@)= LN (UL(GeLU(DL (@) )+, ()

where « is the input hidden state and LN' is the
conditional layer norm defined in the next section.
We generate adapter weights (UL, DL) through a
hypernetwork described in §2.3.

2.2 Task Conditional Layer Normalization

Conventional layer normalization (Ba et al., 2016) is
defined as:

. mz —
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where © is the element-wise multiplication between
two vectors, and 4L and BL are learnable parameters
with the same dimension as x%. Values of p, and
o show the mean and standard deviation of training
data for the 7-th task.

To allow the layer normalization inside adapters
to adapt to each task, inspired by Perez et al. (2018);
De Vries et al. (2017), we generate v%, BL via a
hypernetwork as a function of task embeddings (§2.3).

2.3 Task Conditioned Hypernetworks

In order to have a model that can share information
while being able to adapt to each individual task, we
generate the parameters of task conditional adapter
layers and layer normalization using hypernetworks.
A hypernetwork is a network that generates the
weights of another network (Ha et al., 2017).

The hypernetworks capture the shared information,
while the generated task conditional adapters and
layer normalization allow the model to adapt to each
individual task to reduce negative task interference.

Learned task embedding: We first compute a task
embedding I.- € R? for each individual task using a
task projector network h;(.), which is a multi-layer
perceptron consisting of two feed-forward layers and
a ReL.U non-linearity:

I‘r:hl(z‘r)7 (5)

where z, € R can be a learnable parameter or any
pretrained task features (Vu et al., 2020), and the task
projector network h(.) learns a suitable compressed
task embedding from input task features. In this work,
we consider a parametric z- to allow end-to-end
training which is convenient in practice.!

Removing task prefixes: The TS5 model prepends
task-specific prefixes to the input sequence for
conditioning.  For instance, when training on
CoLLA (Warstadt et al., 2019), cola sentence: is
prepended to each sample. Instead, we remove task
prefixes and use task embeddings for conditioning.

Task conditioned hypernetworks: We consider
simple linear layers as hypernetworks that are
functions of input task embeddings I.-. We introduce
these hypernetworks in each layer of the transformer.
We define hypernetwork h!,(.) that generates task
conditional adapter weights (UL, D):

'We ran some pilot experiments with pretrained task
embeddings (Vu et al., 2020), but did not observe extra benefits.
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where WU' € R@xh)xt gng WwD' ¢ Rbxd)xt
are the respective hypernetwork parameters. We
additionally define the hypernetwork A% () that
computes the layer normalization parameters:

(4,8L) = hn (L) = (W W) L, )
where W' € RPXt and WA' e RhX?,

24 HYPERFORMER++

A downside of introducing a separate hypernetwork
in each layer of the Transformer is that it increases the
overall number of parameters. We, therefore, propose
to share hypernetworks across transformer layers.
By having a shared hypernetwork that is reusable,
this strategy results in a substantial reduction in the
number of parameters. However, reapplying the same
hypernetwork across all the layers introduces weight
sharing across target parameters, which may not be
desirable. To allow for a flexible parameterization of
task conditional adapters/layer normalization, for a
transformer of L layers, we introduce a set of layer
id embeddings Z = {l;}L_,, and adapter position
embeddings P = {p; }Jz»:l, which specify the position
of adapter layers in each transformer block (after
the attention layer or feed-forward layer), which are
used as additional inputs to the hypernetworks. For
simplicity, we consider I; ER’, p; €R’, and z, €R’.
We feed a concatenation of (z,l;,p;) to a similar
task projector network /2 as in Eq. (5):

IT:h/I(ZTaliupj)v )]
which is then followed by a shared layer normaliza-
tion to compute final task embeddings I- €R? to the
hypernetwork. This way, the hypernetwork is able
to produce distinct weights for each task, adapter po-
sition, and layer of a transformer. Furthermore, layer
id and adapter position embeddings are parameters
that are learned via back-propagation, allowing us to
train the whole model end-to-end conveniently.

3 Experiments

Datasets: Following Raffel et al. (2020), we
evaluate the performance of the models on the GLUE
benchmark (Wang et al., 2019b). This benchmark
covers multiple tasks of paraphrase detection (MRPC,
QQP), sentiment classification (SST-2), natural
language inference (MNLI, RTE, QNLI), and
linguistic acceptability (CoL.A).> The original test

2Following Raffel et al. (2020); Devlin et al. (2019), as a

common practice, due to the adversarial nature of WNLI with
respect to the training set, we do not experiment with WNLI.

sets are not publicly available, and following Zhang
et al. (2021), for datasets fewer than 10K samples
(RTE, MRPC, STS-B, CoLLA), we divide the original
validation set in half, using one half for validation and
the other for the test. For the other larger datasets, we
split 1k samples from the training set as our validation
data and test on the original validation set.

Experimental details: We use the HuggingFace
implementation (Wolf et al., 2020a) of the T5
model (Raffel et al., 2020). We fine-tune all
models with a constant learning rate of 0.0003 and
following Raffel et al. (2020), we use 2'8 = 262144
steps in all experiments. We save a checkpoint
every 1000 steps for all models (see also §A). Raffel
et al. (2020) report the results based on the best
checkpoint for each task independently. In contrast,
we focus on the more realistic setting where we report
the results on a single checkpoint with the highest
average validation performance across all tasks. The
hyperparameters are selected in the same manner.
In contrast to prior work (Houlsby et al., 2019), we
do not learn a separate output layer for each task but
instead share a frozen output layer for all the tasks,
which makes our setting more parameter-efficient
than prior work and is an advantage of multi-task
learning with encoder-decoder models.?

Baselines: We compare to the strong adapter base-
line (Houlsby et al., 2019). Following Houlsby et al.
(2019), we add adapters modules for each task after
the two feed-forward modules in each transformer
block of the T5 model. As suggested in Houlsby et al.
(2019), we train the layer normalization parameters
inside the TS model, per task. We refer to this method
as Adapters. We additionally propose a variant of
this model, in which we share all layer normalization
parameters (TS5 and adapters) across all tasks. We
refer to this model as Adaptersi. We compare our
models to the state-of-the-art T5 model, in which we
fine-tune all parameters of the model on all tasks. We
refer to this method as TSgyar /TSgase in €Xperiments.

Sampling tasks: During training, we sample tasks
with conventional temperature-based sampling with

temperature 7" =10 for all methods. We sample dif-
/T N;

nglN T
and N; is the number of training samples for the 7-
th task. We did not experiment with more complex

sampling strategies (Raffel et al., 2020) or tuning of 7.

ferent tasks proportional to pi where p, =

3 According to our initial experiments, fine-tuning the final out-
put layer did not improve performance for adapter-based methods.



#Total #Trained
Model N params/ | CoLA SST-2 MRPC QQP STS-B MNLI QNLI RTE | Avg
params
per task
Single-Task Training
TSemaLL 8.0x 100% 46.81 9047 86.21/90.67 91.02/87.96 89.11/88.70 82.09 9021 59.42 | 82.06
Adaptersgya, 148x0.01  0.74% 40.12 8944  85.22/89.29 90.04/86.68 83.93/83.62 81.58 89.11  55.80 | 79.53
TSpase 8.0x 100% 5485 92.19 88.18/91.61 91.46/88.61 89.55/89.41 8649 91.60 67.39 | 84.67
Adapterspse € 1+8x0.01  0.87% 5949 9346 88.18/91.55 90.94/88.01 87.44/87.18 8638 92.26 68.84 | 84.88
Multi-Task Training
TSsuars # 1.0x 12.5% 50.67 91.39 84.73/88.89 89.53/86.31 88.70/88.27 81.04 89.67 5942 | 81.69
Adapterstsyare 1.05x 0.68% 39.87 90.01 88.67/91.81 88.51/84.77 88.15/87.89 7995 89.60 60.14 | 80.85
HYPERFORMERgy . 1.45x 5.80% 47.64  91.39  90.15/92.96 88.68/85.08 87.49/86.96 81.24 9039 6522 | 8247
HYPERFORMER++gya | 1.04X 0.50% 53.96 90.59 84.24/88.81 88.44/84.46 87.73/87.26 80.69 90.39  71.01 | 82.51
TSpase ® 1.0x 12.5% 54.88 9254 90.15/93.01 91.13/88.07 88.84/88.53 85.66 92.04 75.36 | 8547
Adapterstgase 1.07x 0.82% 61.53  93.00 90.15/9291 90.47/87.26 89.86/89.44 86.09 93.17 70.29 | 85.83
HYPERFORMERg,se 1.54x 6.86% 61.32  93.80 90.64/93.33 90.13/87.18 89.55/89.03 86.33 92.79 78.26 | 86.58
HYPERFORMER++p,ge | 1.02X 0.29% 63.73  94.03 89.66/92.63 90.28/87.20 90.00/89.66 85.74  93.02 75.36 | 86.48

Table 1: Performance of all models on the GLUE tasks. For each method, we report the total number of parameters
across all tasks and the number of parameters that are trained for each task as a multiple and proportion respectively of
the corresponding single-task TS5 model. For MNLI, we report accuracy on the matched validation set. For MRPC and
QQP, we report accuracy and F1. For STS-B, we report Pearson and Spearman correlation coefficients. For CoLA, we
report Matthews correlation. For all other tasks, we report accuracy. Adapterst refers to our proposed variant of adapters
with shared layer normalizations. Our HYPERFORMER++ obtains a better score on average compared to full fine-tuning
and Adapterst, while being more parameter-efficient. #: Our re-implementation of Raffel et al. (2020), ¥: Applying
method of Houlsby et al. (2019) on T5. Bold fonts indicate the best results in each block.

3.1 Results on the GLUE Benchmark

Table 1 shows the results on GLUE for single-task
and multi-task training. We experiment with reduc-
tion factors of r = {8,16,32} for all adapter-based
methods, where r = %. We report the results both
with TSgya, (6 layers and 60M parameters) and
TS5gase models (12 layers and 222M parameters).

Overall, our proposed HYPERFORMER++ obtains
strong gains over Adapters (82.51 versus 79.53 for
TS5qua. and 86.48 versus 84.88 for TS5g.e) While
being more parameter-efficient.

Our variant of Adaptersf, which shares layer norms
across tasks, outperforms prior work (Houlsby et al.,
2019), which does not share such information (80.85
versus 79.53 for TS5 and 85.83 versus 84.88 for
T5gase). This demonstrates that in encoder-decoder
models such as TS more sharing of information
across tasks is beneficial.

Our proposed HYPERFORMER obtains consistent
improvement over our proposed Adapterst method.
We attribute this improvement to the ability to learn
the shared information across tasks through our hyper-
networks. Interestingly, HYPERFORMER++ obtains
similar performance as HYPERFORMER while being
more than an order of magnitude more parameter-
efficient. Adapter modules thus seem to be similar
enough so that much of their information can be mod-
eled by a single, appropriately conditioned network.

Compared to single-task fine-tuning of all param-

eters, our methods on average improve the results by
0.45 for T54a. and 1.81 for TS5z, With substantial
improvement on low-resource datasets like CoLA
(63.73 versus 54.85) and RTE (75.36 versus 67.39)
due to shared hypernetworks that capture the shared
information and enable positive transfer effects.

We also report the total number of parameters and
trainable parameters for all methods in Table 1. For
adapter-based methods, the number of parameters
varies based on the adapter size (we report all numbers
with r=32). The multiple in terms of the number of
parameters of HYPERFORMER++,¢: With regard to
T5gase is 1.02x with only 0.29% trainable parameters
per task. Note that by keeping the output layer frozen
for Adaptersgy,;, and Adaptersgase, they require
5.51x and 2.53x fewer parameters respectively com-
pared to a direct application of prior work (Houlsby
et al., 2019). Despite using more efficient baselines,
compared to Adaptersgasg, HYPERFORMER++3, ¢ Te-
quires 3x fewer trainable parameters.

3.2 Few-shot Domain Transfer

Finally, we assess how well a trained HYPERFORMER
can generalize to new tasks. We evaluate performance
on 5 tasks and 7 datasets. In particular, we consider
1) the natural language inference (NLI) datasets
SciTail (Khot et al., 2018), and CB (De Marneffe
et al., 2019) from SuperGLUE (Wang et al., 2019a)
2) the question answering (QA) dataset BoolQ (Clark



et al., 2019a); 3) the sentiment analysis datasets
IMDB (Maas et al., 2011) and Yelp Polarity (Zhang
et al., 2015); and 4) the paraphrase detection dataset
PAWS (Baldridge et al., 2019); 5) the question
classification dataset TREC (Li and Roth, 2002).

For CB and BoolQ, since test sets are not available,
we divide the validation sets in half, using one half
for validation and the other for testing. For Yelp
polarity, TREC, and IMDB, since validation sets are
not available, we similarly divide the test sets to form
validation sets. For the rest, we report on the original
test sets.

We consider the models trained on GLUE reported
in Table 1 and evaluate them on the test set after the
few-shot fine-tuning on each target training data. For
Adapterst and our method, we use the adapter and the
task embedding respectively trained on the most sim-
ilar GLUE task for initialization, i.e. MNLI for NLI,
QNLI for QA, SST-2 for sentiment analysis, and QQP
for paraphrase detection. Following prior evidence
of positive transfer from NLI to other tasks (Conneau
and Kiela, 2018; Yin et al., 2020; Phang et al., 2018),
we initialize the out-of-domain TREC from MNLIL
We show the results of full fine-tuning of all model’s
parameters, Adapterst, and HYPERFORMER++*
in Table 2. Our method significantly surpasses the
baselines on the majority of settings.

3.3 Low-resource Fine-tuning
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Figure 2: Results on GLUE for the various number of
training samples per task (100,500,1000,2000,4000). We
show mean and standard deviation across 5 seeds.

Given that our model HYPERFORMER ++3,4: has
substantially fewer trainable parameters than TS5z,
we investigate whether it generalizes better in a
low-resource setting. We subsample each individual
task in GLUE for varying training sizes. We train
the models for 15,000 steps, which we found to be

“We finetune hypernetworks and task embeddings parameters.
We also tried only fine-tuning the task embedding but found

that this achieves lower performance in the few-shot setting and
comparable performance with more samples.
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Dataset X & hod 3
Natural Language Inference
4 79.60+33  79.54+28  82.00+49
16 80.03+23  83.25+17  86.55+14
SciTail 32 81.97+13  85.006+11  85.85+14
100 84.04+07 88.22+13  88.52+07
500 88.07+07  91.27+08 91.44+06
1000 88.77+x10  91.75+08  92.34+0s
2000 91.01+10 9272105  93.40+02
4 57.78+109 S1.11x02  60.74+1666
16 7704172 7481154 76291445
CB 32 80.0+7.6 74.81+59  81.48+62
100 8593454  80.74+76  87.41+29
250 85.19+47  86.67+50  89.63+432
Question Classification
4 2811459 23.61+77  28.85169
16 40.08+126 43.45+140 49.40+95
32 6249162 59.6+70 68.94.175
TREC 100 8779207 7807+3s 88.42:17
500 93.57+13  93.65+17  94.78+14
1000 95.5+09 96.06+04  96.72+13
2000 96.87+13  97.03+07  96.92+09
Question Answering
4 50494111 53481238  48.03+43
16 56.50+71  51.37+65 5021479
BoolQ 32 5843149 5452451 5837437
100 60.10+24  58.60+16  62.03+20
500 66.49+12  66.72+07  70.04+14
1000 69.01+11  70.21+13  72.35+17
2000 71.58+08  73.60+08  74.94+06
Sentiment Analysis
4 7723430  81.55+19 8177418
16 82.74+17 8254 +10 84.06+07
32 8342+10 8339108 84.64+04
IMDB 100 84.58+06 8335108 84.74+04
500 84.99+03  85.37+05  86.00+02
1000 85.50+01  86.27+04  86.37 +04
2000 86.01+02  86.57+02  86.60+0.1
4 76.85+143  81.37+131  90.25+10
16 87.84+15  91.08+02  90.36+12
Yelp polarit 32 89.22+07  91.09+05  91.15+05
CPPORIY 100 90.19:07  90.15:07 9106206
500 90.92+02  91.52+02  92.09104
1000 91.32+02 9226106  92.50+02
2000 91.68+01  92.36+04  92.70+0.1
Paraphrase Detection
4 53.89+36  55.69100 55.58+7s
16 54.18+10 6338453  72.71+11
32 5523432 68.78+15  73.39+21
PAWS 100 T1.51424  73.82+16 7824421
500 82.81+10 85.36+06 86.3+11
1000 85.67+07 87.89+06 89.12+05
2000 88.33+06 90.41+06  90.87+03

Table 2: Few-shot domain transfer results of the models
trained on GLUE averaged across 5 seeds. We compute
accuracy for all datasets.



sufficient to allow them to converge. Figure 2 shows
the results. HYPERFORMER++g,q: substantially
improves results with limited training data, indicating
more effective fine-tuning in this regime.

4 Analysis

4.1 Parameter Efficiency

In this section, we compare the number of parameters
of HYPERFORMER++ with Adapters.

Adapters parameters: The standard setting
(Houlsby et al., 2019) employs two adapters per
layer for each task. Each adapter layer has 2hd
parameters for projection matrices (UL and Di.) and
2h parameters for the layer normalization. The total
number of parameters for Adapters for L Transformer
layers in both an encoder and a decoder across 7" tasks
is, therefore, 47'L(2hd + 2h), which scales linearly
with the number of tasks times the number of layers.

HYPERFORMER++ parameters: Our approach
learns a task feature embedding per task, consisting
of Tt parameters. We additionally employ layer id
and adapter position embeddings in the encoder and
decoder, which require 2(2+ L)t parameters, with a
fixed embedding size of ¢ for all these feature embed-
dings. We consider a separate task projector networks
h’I for encoder and decoder, which is in both cases
a two-layer MLLP, consisting of a total of 2(3te+et)
parameters, where e = 128 is the hidden dimension
for the task-projector network. Our hypernetwork
for adapters in encoder/decoder consists of 2(2thd)
parameters and our layer normalization hypernetwork
consists of 2(2th) parameters. In total, this results
in ¢(T'+4+2L) + 8te+2t(2hd+2h) parameters.

Task features Hypernetworks
The total number of parameters for hypernetworks

remains constant, while the task feature parameters
scale with the number of tasks or layers times t,
where £ =064 in our experiments.

In settings with a large number of layers and a large
number of tasks, since t << 2hd+2h and T+ L < TL,
our method is much more parameter-efficient com-
pared to Adapters. In the current setting, the term hd
is the largest term, and the factor 27'L for Adapters
is larger than the factor ¢ for HYPERFORMER++.

4.2 Do Extra Parameters Make a Difference?

While our HYPERFORMER++ is more parameter-
efficient than the baselines, the number of parameters
of HYPERFORMER per task is higher compared to
Adapterst. To confirm that the improvements of

#Total  #Trained
Model GLUE params _params/task
Adapters{ smMaALL 80.97 1.83x 10.44%
HYPERFORMER gyarr,  82.47 1.45x 5.80 %
Adapterst pasg 85.84  2.02x 12.73%
HYPERFORMER gasg 86.58 1.54x 6.86%

Table 3: Averaged test results on GLUE for HYPER-
FORMER and Adaptersf, where Adapterst has a higher
number of parameters compared to HYPERFORMER.

Model variant GLUE
HYPERFORMERgya11. 82.47
— Adapter blocks 68.37
— Conditional layer norm 79.83
— Task projector 81.56
— T5 Layer norm 81.29
— Conditional layer norm, TS Layer norm  78.92

Table 4: Impact when removing different components of
our framework. We report the average results on GLUE.

HYPERFORMER are due to its capability of sharing
information across tasks and not the number of
parameters, as an ablation, we run the Adaptersy
with 7 = {2,4} and choose the model performing
the best on the validation set. This allows Adaptersy
to have a higher number of parameters compared to
HYPERFORMER. We report the results in Table 3
and compare them with results of HYPERFORMER
in Table 1. The results demonstrate that even with
an increased number of parameters, Adapterst is not
able to reach the performance of HYPERFORMER,
and HYPERFORMER performs substantially better.

4.3 Impact of the Framework Components

We investigate the impact of the components of our
framework including: (1) task conditional adapter
blocks; (2) task conditional layer normalization;
(3) task projection network; (4) fine-tuning of
layer normalizations in the TS model; (5) task
conditional layer normalization in adapter modules
and fine-tuning of layer normalizations inside the T5
model. We consider our small model of Table 1 and
train different variants of it. Table 4 shows the results
on GLUE, demonstrating that each component of the
model contributes positively to its final performance.

4.4 Visualization of Task Embeddings

To analyze what HYPERFORMER ++3,;: has learned
about the relations between different tasks, we visual-
ize the learned task embeddings for the models trained
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Figure 3: Visualization of learned task embeddings by
HYPERFORMER ++sE.

with the largest number of samples in Table 1 and 2.
Figure 3 illustrates the 2D vector projections of task
embeddings using PCA (Wold et al., 1987). Interest-
ingly, the observed groupings correspond to similar
tasks. This shows that learned task embeddings by
HYPERFORMER++,¢: are meaningful. For CB, an
NLI dataset despite being initialized from MNLI, af-
ter few-shot training the task embedding is closest
to RTE, another NLI dataset. This is plausible as
premises and hypotheses in both the discourse-based
CB and the news and Wikipedia-based RTE are more
complex compared to MNLI. The sentence similarity
dataset STS-B is grouped close to the MRPC para-
phrase dataset. CoLLA, which focuses on linguistic
acceptability is very different from other tasks and is
not grouped with any of the observed task embeddings.
In addition, the task embeddings for 1) all the senti-
ment analysis datasets namely SST-2, Yelp polarity,
and IMDB; 2) the two large-scale NLI datasets namely
MNLI and SciTail; 3) question answering datasets, i.e.
BoolQ and QNLI; and 4) paraphrase datasets namely
QQP and PAWS are each grouped together.

5 Related Work

Multi-task learning: Multi-task learning, i.e.,
learning a unified model to perform well on multiple
different tasks, is a challenging problem in NLP.
It requires addressing multiple challenges such as
catastrophic forgetting, and handling disproportionate
task sizes resulting in a model overfitting in low-
resource tasks while underfitting in high-resource
ones (Arivazhagan et al., 2019). Liu et al. (2019a) pro-
posed Multi-Task Deep Neural Network (MTDNN)
for learning from multiple NLU tasks. Although
MTDNN obtains impressive results on GLUE, it
applies multi-task learning as a form of pretraining
followed by task-specific fine-tuning. Concurrently

with us, Tay et al. (2021) propose a multi-task learning
method by training task-conditioned hyper networks;
however, their method is 43x less parameter efficient
compared to ours. In another line of research, Clark
et al. (2019b) proposed to learn multi-task models
with knowledge distillation. Houlsby et al. (2019)
trained adapters for each task separately, keeping
the model fixed. Stickland and Murray (2019) share
the model parameters across tasks and introduce
task-specific adapter parameters, which is more
parameter-inefficient than our method.

Hypernetworks and contextual parameter
generation: Our work is closely related to hyper-
networks (Ha et al., 2017). In a continual learning
setup, where tasks are learned sequentially, Oswald
et al. (2020) proposed a task-conditioned hypernet-
work to generate all the weights of the target model.
Our method is substantially more efficient as we do
not generate all the weights of the target model but a
very small number of parameters for adapter modules
to allow the model to adapt to each individual task
efficiently. Similarly, Jin et al. (2020) generate the
full model from task-specific descriptions in different
domains whereas we efficiently generate only small
adapter modules for each task.

Prior work also proposed meta-learning or
Bayesian approaches to generate softmax layer
parameters for new settings (Bansal et al., 2020;
Ponti et al., 2020). Meta-learning approaches are
notoriously slow to train. In addition, generating
softmax parameters requires a substantially higher
number of parameters, leaves the method unable to
adapt the lower layers of the model, and restricts their
application to classification tasks.

In contemporaneous work, Ustiin et al. (2020)
proposed a multilingual dependency parsing method
based on adapters and contextual parameter generator
networks (Platanios et al., 2018) where they generate
adapter parameters conditioned on trained input
language embeddings. Their study is limited to
multilingual dependency parsing, while our work
studies multi-task learning and applies to several tasks
thanks to the general sequence-to-sequence nature
of our model. Moreover, their number of trainable
parameters is 2.88x larger than their base model
since they employ a contextual parameter generator
in each layer. In contrast, we use a single compact
hypernetwork allowing us to efficiently condition on
multiple tasks and layers of a transformer model.



6 Conclusion

We propose a parameter-efficient method for
multi-task fine-tuning. Our approach is to train shared
hypernetworks to generate task-specific adapters
conditioned on the task, layer id, and adapter position
embeddings. The shared hypernetworks capture the
knowledge across tasks and enable positive transfer
to low-resource and related tasks, while task-specific
layers allow the model to adapt to each individual
task. Extensive experiments show that our method
obtains strong improvement over multi-task learning
on the GLUE benchmark, and substantially improves
the in-domain task generalization.
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A Experimental Details

Computing infrastructure: We run the experi-
ments in Table 1 on 4 GPUs, and the rest of the experi-
ments on 1 GPU on a heterogeneous cluster with Tesla
V100, Tesla A100, Tesla P4, and GTX1080ti GPUs.

Hyperparameters: We use a batch size of 64 for
TSguar and 32 for TS, to fit the GPU memory. We
set the dimension of the task feature embedding (z;)
to ¢ =512, and the dimension of the task embedding
(I;) to t =64. For low-resource fine-tuning in §3.3,
we use reduction factors of {16,32,64}.

Data pre-processing: We download all datasets
from the HuggingFace Datasets library (Wolf et al.,
2020b). Following Raffel et al. (2020), we cast all
datasets into a sequence-to-sequence format, and
recast STS-B as a 21-class classification task by round-
ing its target scores to their nearest increment of 0.2.

Performance evaluation: Table 5 and 6 present
the efficiency evaluation in terms of memory, and
time for all the methods measured on the GLUE
benchmark. We report the time for 1000 training steps.
Our approach has several attractive properties. Our
HYPERFORMER++3,g: approach offers a much better
memory usage with low-overhead, while HYPER-
FORMERg,g: and T5g,sp cause substantial memory
overhead. In dealing with large-scale transformer mod-
els like T3, efficient memory usage is of paramount
importance. Second, in terms of training time, our
method is much faster than Adapters{p,sz. Relative to
T5gase, HYPERFORMER++3,¢; increases the training
time by 30.49%, while Adaptersigzag: causes the
substantial training time overhead of 84.93%.

Model Memory A%
TSsask 776 (GB) -
AdaptersTgase 595(GB) -23.32%
HYPERFORMERgsr 7.60 (GB) -2.06%
HYPERFORMER++5,x  5.81 (GB) -25.13

Table 5: The required memory for all methods. A% is
the relative difference with respect to T5gasg.

Model Time A%
TSease 551 (min) -
Adaptersfpase 10.19 (min) 84.93%
HYPERFORMERg g 7.92 (min) 43.74%
HYPERFORMER++5,s 7.19 (min) 30.49%

Table 6: Training time for all methods. A% is the relative
difference with respect to TSpask-

Impact of adapter’s bottleneck size on the perfor-
mance Similar to (Houlsby et al., 2019), adapter’s
reduction factor needs to be set per dataset. Ta-
ble 7 shows the validation performance of HYPER-
FORMER++ on the GLUE tasks for different adapters’
reduction factors. While the pattern may not be al-
ways consistent, generally, smaller datasets seem to
benefit more from smaller bottleneck size, i.e., less pa-
rameters for adapters, while the opposite is the case for
larger datasets, which require more modeling capacity.



Model | r | CoLA SST-2 MRPC QQP STS-B MNLI QNLI RTE | Avg

HYPERFORMER++gya | 8 | 42.13  98.60  82.76/87.72 90.69/87.55 84.92/84.18 82.3 9540 7883 | 83.19
HYPERFORMER++gyu, | 16 | 4260  97.8 84.73/89.12  88.99/85.33 85.69/85.12 81.96 93.69 7591 | 82.81
HYPERFORMER++gya, | 32 | 4990  96.00 83.74/88.50 89.29/85.79 85.99/85.41 81.28 91.79 7299 | 82.79

HYPERFORMER++g,: | 8 | 5486 9730 88.18/91.55 94.59/92.91 89.77/89.69 8589  96.10 84.67 | 87.77
HYPERFORMER++g,sz | 16 | 53.83  98.00 88.18/91.61 94.89/93.33 90.12/89.65 8594 9650 83.94 | 87.82
HYPERFORMER++g,g: | 32 | 5558 9720 89.66/92.42 93.19/91.08 88.96/88.57 8582 94.19 81.75 | 87.13

Table 7: Validation performance of HYPERFORMER++ on the GLUE tasks for different reduction factors r={8,16,32}.
For MNLI, we report accuracy on the matched validation set. For MRPC and QQP, we report accuracy and F1. For
STS-B, we report Pearson and Spearman correlation coefficients. For CoLA, we report Matthews correlation. For all
other tasks, we report accuracy.



