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Abstract

Electrolyte solutions play a fundamental role in a vast range of important industrial
and biological applications. Yet their thermodynamic and kinetic properties still
can not be predicted from first principles. There are three central challenges that
need to be overcome to achieve this. Firstly, the dynamic nature of these solutions
requires long time scale simulations. Secondly, the long-range Coulomb interac-
tions require large spatial scales. Thirdly, the short-range quantum mechanical
(QM) interactions require an expensive level of QM theory. Here, we demonstrate
a methodology to address these challenges. Data from a short ab initio molecu-
lar dynamics (AIMD) simulation of aqueous sodium chloride is used to train an
equivariant graph neural network interatomic potential (NNP) that can reliably
reproduce the short-range QM forces and energies at a moderate computational
cost. This NNP is combined with a continuum solvent description of the long-range
electrostatic interactions to enable stable long time and large spatial scale simula-
tions. From these simulations, ion-water and ion-ion radial distribution functions
(RDFs), as well as ionic diffusivities, can be determined. The ion-ion RDFs are
then used in a continuum solvent approach to calculate the osmotic and activity co-
efficients. Good experimental agreement is demonstrated up to the solubility limit
of sodium chloride in water. This result implies that classical electrostatic theory
can describe electrolyte solution over a remarkably wide concentration range as
long as it is combined with an accurate description of the short-range interactions.
This approach should be applicable to determine the thermodynamic and kinetic
properties of many important electrolyte solutions for which experimental data is
insufficient.

1 Introduction

Our understanding of the liquid state lies far behind that of the solid-state or gas phase. Perhaps
nothing better demonstrates this than the fact that we cannot even predict how much simple table
salt can be dissolved in water(Benavides et al., 2016; Panagiotopoulos, 2020). The prediction of
important kinetic properties, such as diffusivities, is also not currently possible(Panagiotopoulos,
2020).
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One of the most fundamental, yet most difficult to calculate properties of electrolyte solutions is their
activity coefficients. The centrality of the activity coefficients is highlighted by the fact that they can
be directly related to many important properties such as the chemical equilibria, solubilities, osmotic
pressure and reaction rates(Robinson and Stokes, 1959; Logan, 1967).

While the fundamental importance of this problem is obvious, it is also of immense direct practical
concern. Activity coefficients and diffusivities are essential for modelling many important systems
that involve electrolyte solutions. These systems are ubiquitous throughout chemistry, biology,
geology and chemical engineering. For example, batteries, mineral processing, CO2 capture and
conversion all rely centrally on electrolyte solutions.

The prediction of the properties of electrolyte solutions has been a central and fundamental problem
in the field of physical chemistry for over a century. Debye-Hückel theory, a continuum solvent model
developed in 1923, accurately predicts activity coefficients at very low concentrations where the
known long-range electrostatic interactions dominate over the unknown short-range QM interactions,
which it neglects(Robinson and Stokes, 1959). Efforts to model properties at higher concentrations
rely on the use of adjustable parameters. These parameters are invariably fitted to reproduce experi-
mental measurements(Weerasinghe and Smith, 2003; Fyta and Netz, 2012; Dočkal et al., 2020). The
most prominent example of this are the Pitzer equations(Pitzer, 1972). This is a crude solution as
there are large gaps and uncertainties in existing experimental databases(May and Rowland, 2017;
Vaque Aura et al., 2021). For example, the activity coefficients of even relatively simple electrolyte
solutions such as rubidium hydroxide and lithium bicarbonate have never been measured to the best
of our knowledge.

The fundamental challenge associated with predicting these quantities is that they require large scale
well converged molecular simulation to capture long-range electrostatic interactions, combined with
a high level of accuracy to capture the short-range interactions, only possible with sophisticated
quantum chemical methods(Duignan et al., 2014, 2021). Hence, ab initio nolecular dynamics
(AIMD) simulations with density functional theory (DFT) are too computationally expensive to
reliably converge properties such as ion-ion radial distribution functions (RDFs) or diffusivities at
low concentrations. Additionally, the density functional approximations (DFAs) used in AIMD can
have non-negligible errors(Riera et al., 2017; Paesani et al., 2019; Wagle et al., 2021; Duignan et al.,
2020).

Recent exciting advances in the field of deep learning,(Mater and Coote, 2019; Noé et al., 2020;
White, 2021) and specifically neural network potentials (NNPs) (Behler, 2021; Kocer et al., 2022)
can enable a solution to this problem. NNPs are highly flexible functions that efficiently map atomic
coordinates to energies/forces. They are trained to reproduce ab initio data and can then be used to
run much longer time scale molecular dynamics (MD) simulations than is possible with AIMD itself.
Several recent works demonstrate the power of this method applied to the simulation of electrolyte
solutions(Hellström and Behler, 2017; Jinnouchi et al., 2020; Shi et al., 2022; Zhang et al., 2022;
Wang and Cheng, 2022; Zhang et al., 2022; Dajnowicz et al., 2022).

It has recently been demonstrated that the Neural Equivariant Interatomic Potential (NequIP)(Batzner
et al., 2022) method requires remarkably low training data requirements compared to other NNP
methods. This is attributable to the use of an equivariant architecture, which encodes the known
rotational symmetries of space(Batatia et al., 2022). A potential limitation of this approach is that
it cannot currently describe long-range interactions, which is a significant concern for electrolyte
solutions where long-range electrostatic interactions are essential(Yue et al., 2021). However,
continuum solvent models are known to provide a reliable description of long-range electrostatic
interactions, hence the success of Debye-Hückel theory at low concentrations.

Here, we outline a new method of combining a continuum solvent theory description of long-range
electrostatic interactions with NNP MD to describe the short-range interactions, overcoming the
respective limitations of each approach. This method enables the prediction of osmotic and activity
coefficients and diffusivities of sodium chloride from first principles with no empirically fitted
parameters using only moderate computational resources.
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Figure 1: A depiction of the workflow used to compute electrolyte solution properties. Coordinates
and forces/energies from an AIMD simulation are used to train a NNP. The NNP is used to run long
time and large spatial scale MD simulations. Correction forces and long range Coulomb interactions
are computed separately and added to the simulations. The coordinates from the MD simulations are
used to compute important experimental properties.

2 Methodology

Fig. 1 presents a depiction of the overall workflow used to compute the activity coefficients and
diffusivities of sodium and chloride in water. In brief, a 10 ps AIMD simulation of 2.4 M NaCl in
water is performed using CP2K(Hutter et al., 2014) with the strongly constrained and appropriately
normed (SCAN)(Sun et al., 2015) DFA including an additional correction term to correct for the over
stabilisation of hydrogen bonds associated with this DFA(Duignan et al., 2020). These correction
terms are parametrised using MP2/CCSD(T) level calculations performed with ORCA(Neese, 2012)
on small clusters extracted from AIMD simulations. NequIP(Batzner et al., 2022) is then used to train
a NNP using 2500 frames of coordinates and forces extracted from this short simulation to produce a
mapping between the coordinates and the energies/forces. A continuum solvent model description of
the long-range electrostatic interactions, i.e., long-range dielectrically screened Coulomb interactions
between the ions are computed at every time step. These forces/energies are removed from the
training/validation data prior to training the NNP. The long-range electrostatic Coulomb interactions
are computed separately and added to the forces and energies predicted by the NNP to run much
longer time scale and larger spatial scale MD simulations. This approach is a form of delta learning.
These long simulations can be used to compute properties that are inaccessible with AIMD such
as diffusivities and well converged ion-water and ion-ion radial distribution functions (RDFs). The
validity of this method is demonstrated in the computational details section where we show that it
adequately reproduces the ion-ion RDFs for a classical point charge water model.

An important caveat is that although the simulation appears to be very stable for NaCl, while
attempting to generalise to other electrolytes and to increase the number of parameters in the model
we have observed some stability issues. This is a known issue for NNPs (Stocker et al., 2022; Fu
et al., 2022) where it has been observed that stability does not necessarily correlate with the mean
error metrics. We believe this is an important area of future research.

To further reduce computational demand, we use a new continuum solvent approach to determine the
behaviour at many concentrations using MD simulation at a single concentration. To do this we extract
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the short-range non-electrostatic contribution to the ion-ion potential of mean force (PMF)(Roux
and Simonson, 1999; Kalcher and Dzubiella, 2009) using the modified Poisson-Boltzmann equation
(MPBE). In spherical coordinates, this equation is given by:

−εrεo
1

r2
d

dr
(r2 dφ(r)

dr
) =∑

i

qiρi(r) (1)

where εrεo gives the dielectric constant of water, r is the distance from a central ion, φ(r) is the
electrostatic potential, qi is the charge on each species in solution and ρi(r) is the density of ions as a
function of distance from a central ion. The density is approximated with the following expression:

ρi(r) = ρi exp [−β (qiφ(r) +WSR(r))] (2)

where ρi is the bulk concentration of ions, β is the thermodynamic beta ( 1
kBT

) and WSR(r) is the
short-range contribution to the potential of mean force between the ions. Note if we set WSR(r) to be
a hard sphere repulsion and linearise the exponential we arrive at classical Debye-Hückel theory. As
ρi(r)
ρi

is equivalent to the radial distribution function we use the RDFs from molecular simulation at
one concentration (2.4 M) to determine WSR(r) by self consistently solving MPBE equation until
the RDF predicted by MPBE matches the simulation prediction of the RDF. Once this short-range
non-electrostatic PMF is determined, the MPBE equation can be used to quickly compute the RDF at
many concentrations.

The osmotic coefficients over the whole solubility range of NaCl are then computed using the virial
approach(Rasaiah and Friedman, 1968; Kalcher and Dzubiella, 2009; Vrbka et al., 2009). These are
then converted to activity coefficients via the Gibbs-Duhem equation. More detailed computational
information regarding these calculations is provided in the computational details section below.

3 Results and Discussion

The ion-water RDFs calculated from the 1 ns NNP MD are shown in Fig. 2a and 2b. The RDFs are
very well converged and agree well with previous work(Dellostritto et al., 2020; Caruso and Paesani,
2021; Duignan et al., 2020).

The computed diffusivities of sodium and chloride ions in water computed with the NNP MD
simulation are consistent with experiment, (Fig. 3) suggesting that the simulation can reproduce
important experimental properties of these ions in water without being trained to do so.

The ion-ion RDFs determined with NNP MD at 2.4 M are shown in Fig. 4. The NNP MD predicts
similar peaks for the contact ion pair and solvent separated ion pair. This is consistent with other
AIMD simulations of this system with several other DFAs(Timko et al., 2010; Duignan et al., 2016;
Yao and Kanai, 2018). While we are not aware of any AIMD calculation of the Na-Na RDF, the
small shoulder has not been observed before in classical MD, this may potentially be an artifact of
the larger mean error in the forces on the Na ions.
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Figure 3: Sodium and chloride ion diffusivities computed from NNP MD simulation compared with
experimental data(Vitagliano and Lyons, 1956)
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Figure 4: Sodium-sodium, sodium-chloride and chloride-chloride RDFs computed from 1 ns NNP
MD simulation.

The short-range non-electrostatic contribution to the ion-ion interactions are depicted in Fig. 5. These
are calculated using the self consistent solution of the MPBE method as described below. These
are the solvent averaged interaction free energies of the ions in water with the long range Coulomb
interaction removed. They are all close to 0 beyond 8 Å, confirming they are short range and the
simulation cell is sufficiently large. The desolvation barrier associated with removing the water from
around the sodium ion is clearly visible in the Na-Na and Na-Cl PMF.

Fig. 6a, 6b and 6c show the ion-ion RDFs computed with the MPBE at 0.1 M, 2.4 M and 4.9 M
concentrations. They show the increasing importance of the long-range Coulomb interaction at
low concentrations, which become increasingly damped at higher concentrations. Converging these
low concentration RDFs with MD simulations is difficult even with classical point charge MD as
it requires very large box sizes, hence the need for the MPBE approach. At higher concentrations,
electrostatic screening significantly reduces this long-range interaction. The short-range PMF was
determined self consistently to reproduce Fig. 4, hence it agrees perfectly with Fig. 6b.

The osmotic coefficients are then calculated from the PMFs and RDFs using the MPBE equation
and the virial approach as described below. Fig. 7a shows the resulting good experimental agree-
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Figure 5: Sodium-sodium, sodium-chloride and chloride-chloride short-range PMFs computed with
MPBE.
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Figure 6: Sodium-sodium, sodium-chloride and chloride-chloride RDFs computed with MPBE at
three concentrations.
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Figure 7: Thermodynamic properties of NaCl calculated with MPBE and the virial route compared
with experiment(Robinson and Stokes, 1959; Pitzer and Mayorga, 1973).

6



ment(Robinson and Stokes, 1959; Pitzer and Mayorga, 1973). These can be converted to activities
using the Gibbs-Duhem relation as shown in Fig. 7b. Remarkably, experimental agreement extends
up to the solubility limit of NaCl (5.4 M.) We do not rely on a concentration-dependent dielectric
constant to achieve this agreement. This means no experimental parameters are required for this
work except for the dielectric constant of pure water. It should be noted that these properties are
notoriously sensitive to small variations in the interaction potentials(Kalcher and Dzubiella, 2009).
They are therefore an excellent demonstration of the accuracy of this approach.

The consistency of our computational results with experiment throughout this section indicates that
this method is accurately reproducing the structure of aqueous sodium chloride solutions. The fact
that we achieve agreement using the MPBE equation implies that the simple classical electrostatic
theory is remarkably reliable as long as it is combined with an accurate description of short-range
interactions.

Future work should focus on extending this methodology to other ions, particularly important ions
that have never had their activities measured such as lithium bicarbonate. Further effort to improve the
accuracy of this method also needs to be undertaken. For instance the error in the force on the sodium
ion is substantially larger than the other species in the solution as shown below. This is attributable to
the numerical stability of the underlying DFA,(Lehtola and Marques, 2022) moving to a more stable
DFA such as R2SCAN should hopefully alleviate this problem(Furness et al., 2020). Additionally, it
should be feasible to use a higher level of theory such as density corrected SCAN(Dasgupta et al.,
2021) or the random phase approximation(Yao and Kanai, 2021) to generate the training data.

4 Conclusion

We have demonstrated a methodology for computing the solvation structure, the activity and osmotic
coefficients as well as the diffusivities of aqueous sodium chloride from first principles using
equivariant graph neural network interatomic potentials to describe the short-range interactions
combined with continuum solvent theory to describe the long-range interactions. While, some
challenges remain, primarily associated with the accuracy of the DFAs and the stability of the NNPs,
this work outlines a pathway for long standing problem in physical chemistry. It demonstrates that
a classical electrostatic description of electrolyte solutions is remarkably reliable as long as it is
combined with an accurate description of short-range interactions. Critically, this approach requires
only moderate computational resources. This methodology should in principle be applicable to a
much wider class of solutes and solvents allowing the prediction of many important thermodynamic
and kinetic properties of electrolyte solutions from first principles. This approach should enable
a transition away from the current reliance on limited and unreliable experimental databases for
the determination of the properties of electrolyte solutions. It also demonstrates the potential of
equivariant graph NNPs to accelerate accurate molecular simulations and provide answers to many
long-standing important scientific questions.

References
A. L. Benavides, J. L. Aragones and C. Vega, J. Chem. Phys., 2016, 144, 124504.

A. Z. Panagiotopoulos, J. Chem. Phys., 2020, 153, 010903.

R. A. Robinson and R. H. Stokes, Electrolyte solutions, Butterworth & Co., Devon, 1959.

S. R. Logan, Trans. Faraday Soc., 1967, 63, 3004–3008.

S. Weerasinghe and P. E. Smith, J. Chem. Phys., 2003, 119, 11342–11349.

M. Fyta and R. R. Netz, J. Chem. Phys., 2012, 136, 124103.
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5 Appendix: Computational Details

5.1 AIMD (CP2K)

We used Born-Oppenheimer ab initio molecular dynamics simulations within a constant volume NVT
(300 K) ensemble with periodic boundary conditions. The CP2K simulation suite (http:www.cp2k.org)
containing the QuickStep module for the DFT calculations (VandeVondele et al., 2005) was used
with a 0.5 fs time step. We used a double ζ basis set that has been optimized for the condensed
phase(VandeVondele and Hutter, 2007) in conjunction with GTH pseudopotentials (Goedecker et al.,
1996) optimised for SCAN(Sun et al., 2015; Hutter, 2021) and a 1200 Ry cutoff(Miceli et al., 2016;
Yao and Kanai, 2018). A Nosé-Hoover thermostat was attached to every degree of freedom to
ensure equilibration. (Martyna et al., 1992) The energies were accumulated for ≈ 10 ps after 2 ps of
equilibration. The simulation consisted of 4 sodium ions 4 chloride ions and 80 water molecules in a
box of fixed dimensions of 13.923 Å3 giving an electrolyte concentration of 2.4 M.

5.2 Hydrogen bond correction (ORCA)

An exponential repulsive correction to the hydrogen bond interaction between the oxygen atoms and
the neighbouring hydrogen atoms is added as described in a previous publication(Duignan, 2021)
as a minimal bias(Calio et al., 2020) to reduce the error in the water structure. This correction was
included in the CP2K simulation using the multiple force evaluation option with the FIST method.
This correction was fitted to remove the error in the water dimer interaction computed with MP2 level
as outlined in Ref. 58 and is given by:

A exp−br (3)
With A = 0.06 and b = 1.3 in atomic units.

It is also known that SCAN has a similar issue with describing the interaction of anions with
water(Wagle et al., 2021). We therefore also add an exponential repulsion between the chloride anion
and neighbouring hydrogen atoms. In order to determine the parameters for this correction we follow
Ref. 16 and optimise them to minimise the error in the radial component of the force on eight water
molecules surrounding a central chloride anion. The parameters are given by A = 0.04 and b = 0.7
in atomic units. The radial error is computed from the projection of the error of the total force on
the water molecule in the rClH direction and is shown in Fig. 8 along with the correction force used
to remove this error. The torque on the water molecules was also computed to confirm that this
correction potential also removes a significant error there too.

ORCA(Neese, 2012) was used to calculate the cluster forces at the MP2 level of theory. 50 clusters of
8 water molecules surrounding a chloride anion were used in the cluster correction calculation using
the same trajectories as in Ref. 16. The aug-cc-pVDZ basis set was used for the oxygen, hydrogen
and chloride atoms(Dunning, Jr., 1989). Similarly, the cc-pCVDZ basis set was used for the sodium
ion(Woon and Dunning, Jr., 1994). Frozen cores were used for the MP2 calculations. For the SCAN
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Figure 9: Learning curve for the root mean square error on the forces predicted by NequIP.
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Figure 10: Correlation between forces calculated from the ab initio MD trajectory compared with
those predicted by the NNP.

cluster energy calculations, CP2K was used with the periodicity none option and a larger cell size to
remove any box size dependence. Otherwise, the same parameters, basis sets and pseudo-potentials
as in the simulation described above were used.

5.3 NNP fitting (NequIP)

Forces and energies from 2000 frames extracted from CP2K were used to train the NNP with NequIP.
500 frames were held out as a validation set. Coulomb interactions screened by the dielectric constant
of water (78.3) between all the ions were subtracted before training. These were calculated with
LAMMPS by placing appropriately screened charges on the ions to reproduce dielectric screening
of 78.3 and with the particle-particle particle-mesh method(Hockney, 1988). An equal weighting
on forces and energies was used in the default loss function(Batzner et al., 2022). We decrease the
initial learning rate of 0.01 by a decay factor of 0.5 whenever the validation RMSE in the forces has
not seen an improvement for five epochs. A radial cutoff distance of 5 Å was used. Two interaction
blocks were used with the maximum l set to one each with 8 features. Only even parity was used. All
the other parameters were set to the defaults. Fig. 9 shows the learning curve.

RMSE on the validation set was 128 meV/Å for the forces and 0.341 meV/atom for the energies. Note
it was possible to achieve a significantly lower mean error by increasing the number of parameters in
the model. However, we observed counter-intuitively, this would usually decrease the stability of the
simulation. This is consistent with other research showing that lower mean error does not necessarily
correlate with better stability(Stocker et al., 2022). Fig. 10 shows the correlation between the forces
calculated using the ab inito method with CP2K from the origianl 10 ps trajecory compared with the
predictions with NequIP. It is clear the biggest source of error by far is the force on the sodium ion.
Understanding and reducing the magnitude of this error is an important future research goal.

11



2 4 6
r [Å]

0

1

2

3

g 
(r

)

Classical MD
NNP MD

Figure 11: Comparison of a Na-Cl RDF obtained from classical point charge MD simulation with a
flexible SPC/E water model and an NNP simulation using the protocol outlined.
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Figure 12: Comparison of Na-Cl RDFs obtained from a 20.243 Å3 and a 13.923 Å3 NNP MD
simulation.

5.4 NNP MD (NequIP/LAMMPS)

The NequIP plugin for LAMMPS(Plimpton, 1995) was used to perform NVT simulations at 300
K for 1 ns. A Nosé-Hoover thermostat was attached to every degree of freedom to ensure equili-
bration. (Martyna et al., 1992) The chloride hydrogen bond exponential correction term was added
to the NNP MD simulation using tabulated data as this correction was not included in the original
CP2K SCAN simulations. The long-range Coulomb interactions were added to the simulation using
LAMMPS hybrid overlay method. Without this correction, we observed strong over stabilisation
of cation-anion pairs. The reliability of this method was verified by training on forces and energies
from a classical MD run and demonstrating that the NNP MD reproduced the ion-ion RDFs with
reasonable accuracy as shown in Fig. 11. No initial data was discarded as the initial frame was taken
from the end of the AIMD simulation. A dielectric constant of 70.7 is used to better match the
dielectric constant of SPC/E water, although this has a minimal effect.

We use constant volume simulations with a simple approximation using the ion size to estimate the
box size to avoid relying on experimental information. However, we have repeated these simulations
at the exact experimental density of sodium chloride to confirm that the RDFs remain unaltered. A
cell size of 20.243 Å3 was used which was larger than the the cell size used for the AIMD simulation
data (13.923 Å3). To demonstrate that this was reliable we performed simulations in the smaller cell
size, which shows that within the cell the agreement is good, (Fig. 12) however the larger cell size is
needed as there is still significant oscillation beyond 7 Å.

VMD(Humphrey et al., 1996) was used to create the RDFs and images in Fig. 1.
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Figure 13: Short range contribution to the sodium chloride interaction PMF calculated using either
the sodium cation as the central ion or the chloride anion as the central ion demonstrating minimal
difference.

5.5 Modified Poisson-Boltzmann Equation (MPBE)

To compute WSR(r) we first assume it is 0 and then solve the MPBE equation to determine the
electrostatic potential and then determine a new estimate for WSR(r) using this rearrangement of the
expression for the density:

βWSR(r) = −βqiφ(r) − ln
ρi(r)
ρi

(4)

where ρi(r)
ρi

is the RDF taken from the NNP MD simulations. This procedure is repeated iteratively
until the RDFs predicted with the MPBE (Eq. 1) and Eq. 2 agree well with the ones obtained
from the NNP MD simulations. The boundary conditions used to solve the MPBE are the electric
field of a point charge at 2 Å and the electric potential of 0 at large separations (60 Å). These
settings ensure reliable numerical solutions are found using the shooting method implemented in
Mathematica(Wolfram Research Inc., 2019). Smoothing of the nearest 5 points (0.05 Å) was applied
to improve the convergence of the numerical differential equation solution. The ionic density is
integrated to confirm a net counter charge of +/- 1 as required to satisfy the electroneutrality condition.
The RDF is fitted up to 8.8 Å which ensures a smooth transition to the long-range only region of the
RDF. A fixed dielectric constant of water of 78.3 is used throughout.

Note that there are two ways to solve the MPBE one with the cation as the central ion and one with
the anion. Fig. 13 shows the cation-anion short-range PMF extracted using this approach for both
cases indicating minimal difference based on this assumption.

5.6 Activities and osmotic coefficients calculation

Once the short-range contributions to the PMF (WSR(r)) have been determined we can use the MPBE
to calculate the RDF at many concentrations including down to infinite dilution with minimal compu-
tational demands. WSR(r) can then be input into the virial expression for the osmotic coefficients
to estimate them at many concentration(Rasaiah and Friedman, 1968; Kalcher and Dzubiella, 2009;
Vrbka et al., 2009).

φ(ρ) = 1 − π
3
ρ∑
i,j
∫

∞

0
gij(r)

dWij(r)
dr

r3dr (5)

where Wij(r) is the ion-ion infinite dilution PMF, i.e., WSR(r) plus the Coulomb interaction. We
solve the MPBE and compute osmotic coefficients with both chloride and sodium as the central ion
taking the average of the two approaches for the final prediction.

This gives reasonable agreement with osmotic coefficients as shown in the main text. A more accurate
approximation can be obtained with the Hyper-Netted Chain (HNC) closure of the Ornstein–Zernike
(OZ) equation,(Kalcher and Dzubiella, 2009; Vrbka et al., 2009) which incorporates ion correlation
effects. However, the relative consistency of the PMF methods using the cation or the anion as the
central molecule (Fig. 13) indicates that this effect can plausibly be neglected. And extracting the
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correct short-range PMF to use in the OZ equation is very difficult without the MPBE method used
here.

We do not use a concentration-dependent dielectric constant as this would require the method to
be empirically parameterised and this effect will be incorporated into the PMF which is fitted to
reproduce the RDF.

The Gibbs-Duhem relationship between osmotic and activity coefficients is used to convert osmotic
coefficients into activities:

lnγ = φ − 1 + ∫
m

0

φ(m) − 1
m

dm (6)

Experimental densities(Herrington et al., 1986; Sipos et al., 2000; Lide, 2007) were used to convert
theoretical osmotic coefficients from the McMillan-Mayer to the Lewis-Randal level to enable
the correct thermodynamic comparison(Friedman, 1972; Simonin, 1996). Experimental values are
obtained from the Pitzer equations and converted to molarity again using experimental densities(Pitzer
and Mayorga, 1973).

5.7 Diffusion coefficients calculation

Diffusion coefficients were computed from the mean squared displacements (MSD) of sodium and
chloride ions in our NNP MD trajectories. This conversion was carried out using the diffusion
coefficient-MSD relationship described below:

D = MSD

6t
(7)

The results were finally adjusted by finite size corrections(Yeh and Hummer, 2004). Here, we
have used the experimental value for the viscosity of pure water when determining the finite size
correction. Experimental values (Vitagliano and Lyons, 1956) for the value of sodium and chloride
ion diffusivities in a 2.4 M NaCl solution were used to validate the results.
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