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Abstract

We show that raw degradation features can effectively guide deep restoration
models, providing accurate degradation priors to facilitate better restoration. While
networks that do not consider them for restoration forget gradually degradation
during the learning process, model capacity is severely hindered. To address this,
we propose a Prompting image Restorer, termed as PromptRestorer. Specifically,
PromptRestorer contains two branches: a restoration branch and a prompting
branch. The former is used to restore images, while the latter perceives degradation
priors to prompt the restoration branch with reliable perceived content to guide the
restoration process for better recovery. To better perceive the degradation which is
extracted by a pre-trained model from given degradation observations, we propose
a prompting degradation perception modulator, which adequately considers the
characters of the self-attention mechanism and pixel-wise modulation, to better
perceive the degradation priors from global and local perspectives. To control the
propagation of the perceived content for the restoration branch, we propose gated
degradation perception propagation, enabling the restoration branch to adaptively
learn more useful features for better recovery. Extensive experimental results show
that our PromptRestorer achieves state-of-the-art results on 4 image restoration
tasks, including image deraining, deblurring, dehazing, and desnowing.

1 Introduction

Image restoration aims to recover clear high-quality images from given degraded ones. It is highly
ill-posed since only degraded images can be exploited, statistical observations are thus required to
well-pose the problems [37, 67, 66, 41, 42]. Although conventional approaches can recover images
to some extent, they typically involve solving optimization algorithms that are difficult due to the
non-convexity and non-smooth problems. Additionally, the observations may not always hold, which
can cause algorithms to fail.

With the emergence of convolutional neural networks (CNNs) [48] and Transformers [22, 45], which
perform well at implicitly learning the priors from large-scale data, learning-based methods have
dominated recent image restoration tasks and achieved impressive performance [81, 51, 103, 72, 61,
93, 33, 13]. However, these methods are usually built without explicitly considering the specific
degradation information, which accordingly limits model capacity (Case 1 in Fig. 1). An alternative
approach is to design a conditional branch to learn additional information to provide the restoration
network with useful content for modulation [30, 17, 34, 35] (Case 2 in Fig. 1). However, we note
that while conditional branches in these models are learnable, they may not effectively provide
degradation information, as the optimizable parameters result in gradually clearer features during the
learning process, leading to the degradation vanishing which accordingly limits model performance.

*These authors equally contribute to this work.
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Figure 1: (a) compares different restoration frameworks. Unlike existing approaches that are built
within the architectures such as Cases 1-2, which are unable to memorize the degradation well during
the learning process, we propose a prompting method (Case 3) that directly exploits raw degradation
features extracted by a pre-trained model from the given degradation observations to guide restoration.
In (b), we observe that both Cases 1-2 outperform our method in early iterations, as they effectively
memorize degraded information. However, both Cases 1-2 experience degradation vanishing with
further iterations (better demonstrated in Sec. 4.3), while our prompting method persists in guiding
the restoration network with accurate degradation priors, accordingly producing better restoration
quality. In (c), visual performance demonstrates that our prompting method recovers sharper images.
Quantitative results are reported in Tab. 5.

Recently, prompt learning has been shown an effective tool to improve model performance by
designing various prompts [115, 98, 104, 23, 114, 46, 53, 43]. The prompt usually serves as the
guidance tool to correct the networks toward better results [28]. However, prompt learning still
keeps a margin for image restoration, and existing prompts may not be suitable for image restoration
since they cannot effectively model degradation priors well. Hence, we ask: Is there a reasonable
prompting manner to correct degraded image restoration networks to facilitate better recovery?

The answer is in the riddle. This paper proposes the PromptRestorer, a Prompting image Restorer,
to overcome degradation vanishing in image restoration via promoting by exploring degradation
input itself for better restoration (Case 3 in Fig. 1). Our idea is simple: we directly exploit the raw
degraded features extracted by a pre-trained model from the degraded inputs to generate more reliable
prompting content to guide image restoration. Raw degraded features preserve accurately degraded
information, which can consistently prompt the restoration network with accurate degraded priors,
enabling the restoration network to perceive the degradation for better restoration. Hence, we design
the PromptRestorer, which consists of two branches: (a) the restoration branch and (b) the prompting
branch. The former is used to restore images and the latter is used to generate reliable prompting
features to guide the restoration network for better restoration. To better perceive the degradation, we
propose a Prompting Degradation Perception Modulator (PromptDPM), which consists of Global
Prompting Perceptor (G2P) and Local Prompting Perceptor (L.2P). The G2P adequately exploits the
self-attention mechanism to form global prompting attention, while the L2P considers the pixel-level
perception to build local prompting content. To control the propagation of perceived features in
the restoration branch, we propose Gated Degradation Perception Propagation (GDP), enabling the
restoration network to adaptively learn more useful features to facilitate better restoration.

The main contributions of this work are summarized below:

» We propose PromptRestorer, which is the first approach to our knowledge that takes advan-
tage of the prompting learning for general image restoration by considering raw degradation
features in restoration, enabling the restoration model to overcome degradation vanishing
while consistently retaining the degradation priors to facilitate better restoration.

* We propose a prompting degradation perception modulator that is used to perceive degra-
dation from global and local perspectives, which is able to provide the restoration network



with more reliable perceived content learned from the degradation priors, enabling it to
better guide the restoration process.

* We propose gated degradation perception propagation that exploits a gating mechanism to
control the propagation of the perceived features, enabling the model to adaptively learn
more useful features for better image restoration.

Fig. 1 summarises framework comparisons, and their learning curves and visual performance. Deeper
analysis and discussion about them are provided in Sec. 4.2.

2 Related Work

In this section, we review image restoration, conditional modulation, and prompt learning.

Image Restoration. Recently, CNN-based architectures [110, 112, 103, 4, 24, 102, 89, 91, 87, 19,
88, 117] and Transformer-based models [96, 56, 49, 12, 93, 93] have been shown to outperform
conventional restoration approaches [37, 83, 64, 47, 7, 79]. These learning-based methods usually
adopt U-Net architectures [50, 18, 103, 100, 1, 93, 108, 101], which have been demonstrated the
effectiveness because of hierarchical multi-scale representation and effective learning between shallow
and deeper layers by skip connection [111, 59, 102, 31]. We refer the readers to recent excellent
literature reviews on image restoration [5, 54, 82], which summarise the main designs in deep image
restoration models.

Although these models have achieved promising performance, they do not explicitly take degradation
into consideration for model design which is vital for restoration, limiting the model capacity.

Conditional Modulation. Conditional modulation usually involves implicitly modulating the ad-
ditional content to guide the restoration [30, 10, 16, 17, 36, 35, 34, 60, 57, 92]. These approaches
usually contain two branches: a basic network and a conditional network. The conditional network
provides additional information to guide the basic network for restoration via spatial feature transform
(SFT) [92]. Among these methods, blur kernel [30], semantics [92], and degraded input [57, 16]
which serve as the additional conditions are broadly known.

The learnable nature of the conditional network in these models does not effectively provide degrada-
tion information for the basic network. As parameters are optimized in the learning process, features
become gradually clear.

Prompt Learning. Prompt learning methods have been studied broadly in natural language process-
ing (NLP) [75, 78, 8]. Due to high effectiveness, prompt learning is recently used in vision-related
tasks [115, 98, 104, 23, 114, 46, 53,43, 71, 29, 40, 86, 28]. In vision prompt learning, many works
seek useful prompts to correct task networks toward better performance [28].

Although prompt learning has shown promise in various vision tasks, it still keeps a margin in general
image restoration. This paper proposes an effective prompting method, enabling the restoration model
to overcome the degradation vanishing in the learning process for better restoration.

3 PromptRestorer

Our goal aims to overcome degradation vanishing and better perceive degradation in deep restoration
models to improve image recovery quality. To achieve this, we introduce a prompting strategy that
helps the model consistently memorize degradation information, enabling it to prompt restoration with
better degradation for better restoration. To better perceive degradation, we propose the Prompting
Degradation Perception Modulator (PromptDPM), which can provide more reliable perceived
content to guide the restoration network. To control the propagation of the perceived content, we
propose the Gated Degradation Perception Propagation (GDP), enabling the restoration network to
adaptively learn more useful features for better restoration.

3.1 Overall Pipeline

Fig. 2 shows the framework of our PromptRestorer, which contains two branches: (a) the restoration
branch and (b) the prompting branch. The restoration branch is used to restore images, where each
block is prompted by the prompting branch. The prompting branch first generates the accurate
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Figure 2: Overall pipeline of our PromptRestorer. PromptRestorer contains two branches: (a) the
restoration branch and (b) the prompting branch. The restoration branch is used to restore images,
where each block (¢) in CGT is prompted by the prompting branch. The prompting branch first
generates precise degradation features extracted by a pre-trained model from degradation observations,
then these features prompt the restoration branch to facilitate better restoration via PromptDPM (d).

degradation feature extracted by a pre-trained model, and then the feature is to prompt the restoration
branch, enabling the restoration branch to better perceive the degradation prior for better recovery.

Restoration Branch. Given a degraded input image I € R *W >3 we first applies a 3 x 3 convolution
as the feature extraction to obtain low-level embeddings X, € R¥*WXC': where H x W denotes
the spatial dimension and C' is the number of channels. Next, the shallow features X, gradually
are hierarchically encoded into deep features X; € RT*TXIC | After encoding the degraded input
into low-resolution latent features X3 € R5 %% %30 the decoder progressively recovers the high-
resolution representations. Finally, a reconstruction layer which contains 4 Transformer blocks as the
refinement followed by a 3 x 3 convolution is applied to decoded features to generate residual image
S € RHXWX3 (o which degraded image is added to obtain the restored output image: H=I+S.
Both encoder and decoder at [- level consist of multiple Continuous Gated Transformers (CGT) with
expanding channel capacity. To help better recovery, the encoder features are concatenated with the
decoder features via skip connections [74] by 1x1 convolutions.

Prompting Branch. The prompting branch, as shown in Fig. 2(b), aims to generate and perceive
degradation features and then provide useful guidance content for the restoration branch. We note
VQGAN [25] has been demonstrated that it can generate high-quality images while representing the
features of input images. However, it tends to damage image structure after vector quantization [116,
11, 32]. To avoid this problem, we only exploit the encoder of pre-trained VQGAN to represent the
deep features of the degraded inputs. We first use the pretrained encoder to extract degraded features
Y, € R %7 XIC; where [ denotes the I- level layer in the pre-trained encoder. Then, the degraded
features are exploited to generate reliable prompting content to prompt the restoration branch by
PromptDPM (see Sec. 3.2). The generated prompting content is transmitted to each CGT to guide the
restoration branch.

Continuous Gated Transformers. CGT exploits the perceived features from PromptDPM to
provide the Transformer block with more reliable content to overcome degradation vanishing to
facilitate better restoration. Each CGT consists of three Transformer blocks (Fig. 2(c)) with residual
connections [38] and the input in each block is gated by GDP (see Sec. 3.3) to control the propagation
of perceived features. Let P, G, and T respectively denote the operations of PromptDPM (expressed
in (2)), GDP (expressed in (7)), and Transformer, the features flow in k" block in one CGT at I- level
encoder/decoder, which can be expressed as:

Xp = T(Gp-1); Goo1 = G(Xp—1, Py); P = P(Xi—1, Yy), (1)
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Figure 3: (a) Global Prompting Perceptor (G2P); (b) Local Prompting Perceptor (L2P).

where X, means the output of k" Transformer block in one CGT, especially X is the downsam-
pled/upsampled features at (I — 1)- level encoder/decoder; P; refers to the generated features of
PromptDPM at [-level layer; G _; means the gated features between X _1 and P;, which serves as
the input of k" Transformer block. Each Transformer block consists of multi-head attention [101]
followed by an improved ConvNeXt [62] as the feed-forward network (see Fig. 2(c)).

3.2 Prompting Degradation Perception Modulator

To better perceive the degradation to prompt the restoration network with more reliable perceived
content from the degradation priors, we propose the PromptDPM (see Fig. 2(d)). The PromptDPM
consists of 1) Global Prompting Perceptor (G2P, introduced in Sec. 3.2.1) and 2) Local Prompting
Perceptor (L2P, introduced in Sec. 3.2.2) to respectively perceive the degradation from global and
local perspectives, enabling to generate more useful content to guide the restoration branch. From a

restoration tensor X € RE*WxC and 5 degradation tensor Y € RHX WX@, we prompt X with Y:
P(X,Y) = W, ([P} (X, Y), wloeal(X, Y)] ) + X, @

where Welobal(. .y and Wlocal(. ) respectively denote the operations of G2P and L2P; C[-, -] means
the concatenation at channel dimension; W), (-) refers to the 1 x 1 point-wise convolution.

3.2.1 Global Prompting Perceptor

The G2P, shown in Fig. 3(a), fully exploits the self-attention mechanism to form the global prompting
attention induced by the degraded features. The G2P contains the global perception attention
followed by an improved ConvNeXt [62]. Our global perception attention consists of 1) Query-
Induced Attention (Q-InAtt) and 2) Key-Value-Induced Attention (KV-InAtt). The Q-InAtt
considers re-forming the query vector induced by degradation features to build a representative
query to perform attention, while the KV-InAtt re-considers key and value vectors induced by other
degradation counterparts to search for more similar content with the restoration query. From a
layer normalized restoration tensor X € R *WxC our G2P first generates restoration query (Q),
key (K), and value (V) projections from the restoration features. It is achieved by applying 1x1
convolutions to aggregate pixel-wise cross-channel context followed by 3x3 depth-wise convolutions
W4(+) to encode channel-wise spatial context, yielding Q=W W, X, K=WW,X, and V=W,;W,X.

Meanwhile, we similarly convert the degradation tensor Y € R *WxC into degradation query

(Q). key (K), and value (V) projections: Q=W W, Y, K=W,W,Y, and V=W W, Y. Then, we
respectively conduct Q-InAtt and KV-InAtt:

Aquan = Agac (W, (C[Q. Q1). K, V )i Axviman = Axvanac (Q W, (CIK, K]), W €IV, V1) ),

A . . 3)
where .A(.) (Q, K, V) = V - Softmax (K -Q/ a); Here, « is a learnable scaling parameter to control



the magnitude of the dot product of K and Q before applying the softmax function. Similar to the
conventional multi-head SA [22], we divide the number of channels into ‘heads’ and learn separate
attention maps. Then two induced attentions are fused and followed by an improved ConvNeXt:

A" = W, (ClAqmaw, Akvinad]) + X3 A = W, WaoW, W (LN(A')) + A, )

where the W, W, 0W,Wy(-) means the improved ConvNeXt shown in the latter of Fig. 2(c); LN(+)
means the operation of layer normalization [6].

3.2.2 Local Prompting Perceptor

The L2P, as shown in Fig. 3(b), adequately considers the pixel-level degradation perception, enabling
to better perceive degradation from spatially neighboring pixel positions. The L2P consists of a
local perception modulator followed by a separable depth-level convolution. The local perception
modulator contains two core components: 1) Degradation-Induced Band (Deg-InBan) and 2)
Restoration-Induced Band (Res-InBan). The former is achieved by exploiting the degradation
features to induce spatially useful content from restoration content to guide restoration gating
fusion, while the latter utilizes the deep restoration features to induce more useful features from
another degradation counterpart to form the degradation gating. Given the degradation tensor
Y € REXWXC "we first exploit the point-wise convolution and 3 x 3 depth-wise convolution to

encode two degradation projections, yielding Q=W WY and K=WX WEY. Meanwhile, the
restoration tensor X € R¥*WxC are also encoded into two restoration projections: Q:WdQ Wz? X
and K=W X WpK X. Then, we respectively conduct Deg-InBan and Res-InBan:

ZDeg—InBan =0 (qude(C[é, QD) O] K; ZRes-1nBan = 6 O] 0(W¢Wd(C[K, KD)7 (5)

where o (-) denotes the sigmoid function that controls the gating level. Then, the perceived features
in the two bands are fused via concatenation and 1 x 1 convolution and followed by a depth-level
separable convolution W,¢Wy(+):

Z/ = Wp (C [ZDeg—lnBam ZRes—lnBanD +X,Z = Wp(de(Z/) + Z,~ (6)

3.3 Gated Degradation Perception Propagation

The GDP aims to control the propagation of the perceived degradation, enabling to adaptively
learn more useful features in Transformer blocks to facilitate better restoration. Given the output
restoration tensor X;,_; € RHXWxC of (k — 1)™ Transformer block in one CGT and the perceived
tensor P; € REXWXC ywhich is the output feature of one PromptDPM at I- level, the input of k"

Transformer block can be obtained by gating the X;_; with P; by 1 x 1 convolution and gated
control function sigmoid o (-) with residual learning [39]:

Q(Xk—h Pl) =o(WpP)0Xp_1 + Xp_1. @)

3.4 Learning Strategy

To train the network, two objective loss functions are adopted, including image reconstruction loss
(L;) for pixel recovery and frequency loss (L s) for detail enhancement [18]:

L =L+ My, where £; = |H — H|y; L = || F(H) — F(H)|1, ®)

where H denotes the ground truth image; F denotes the Fast Fourier transform; A is a weight that is
empirically set to be 0.1.

4 Experiment

We evaluate PromptRestorer on benchmarks for 4 image restoration tasks: (a) deraining, (b) de-
blurring, (¢) desnowing, and (d) dehazing. We train separate models for different image restoration
tasks. Our PromptRestorer employs a 3-level encoder-decoder. From level-1 to level-3, the number of
CGT is [2, 3, 6], attention heads are [2, 4, 8], and number of channels is [48, 96, 192]. The expanding
channel capacity factor (8 is 4. For downsampling and upsampling, we adopt pixel-unshuffle and
pixel-shuffle [77], respectively. We train models with AdamW optimizer with the initial learning rate
3e~* gradually reduced to 1e~% with the cosine annealing [63]. The patch size is set as 256 x 256.



Table 1: Image deraining results. Our PromptRestorer advances recent 14 state-of-the-arts on average.

Method Test100 [107] Rain100H [97] Rain100L [97] Test2800 [27] Test1200 [106] Average
PSNRT  SSIMt | PSNRT SSIM{ | PSNRt SSIMt | PSNRT  SSIMT | PSNRT SSIMT | PSNR{  SSIM 1
DerainNet [26] 2.77 0.810 14.92 0.592 27.03 0.884 2431 0.861 2338 0.835 22.48 0.796
SEMI [95] 2235 0.788 16.56 0.486 25.03 0.842 24.43 0.782 26.05 0.822 22.88 0.744
DIDMDN [106] 22.56 0.818 1735 0.524 2523 0.741 28.13 0.867 29.65 0.901 24.58 0.770
UMRL [99] 24.41 0.829 26.01 0.832 20.18 0.923 29.97 0.905 30.55 0.910 28.02 0.880
RESCAN [55] 25.00 0.835 26.36 0.786 29.80 0.881 31.29 0.904 30.51 0.882 28.59 0.857
PreNet [72] 24.81 0.851 26.77 0.858 32.44 0.950 31.75 0916 31.36 0911 29.42 0.897
MSPFN [44] 27.50 0.876 28.66 0.860 32.40 0933 32.82 0.930 32.39 0916 30.75 0.903
DCSEN [90] 27.46 0.887 28.98 0.887 34.70 0.961 30.96 0.903 32.92 0.937 31.00 0915
MPRNet [103] 3027 0.897 3041 0.890 36.40 0.965 33.64 0.938 3291 0916 32.73 0.921
SPAIR [69] 3035 0.909 30.95 0.892 36.93 0.969 3334 0.936 33.04 0.922 3291 0.926
Uformer [93] 29.17 0.880 30.06 0.884 36.34 0.966 3336 0.935 31.98 0.909 32.18 0.915
MAXIM-2S [84] 3117 0.922 30.81 0.903 38.06 0977 33.80 0.943 3237 0.922 33.24 0.933
Restormer [101] 32.00 0.923 31.46 0.904 38.99 0.978 34.18 0.944 33.19 0.926 33.96 0.935
SFNet [20] 3147 0.919 31.90 0.908 3821 0.974 33.69 0.937 3255 0911 33.56 0.929
PromptRestorer | 31.84 0920 | 3172 0908 | 39.04 0977 | 3440 0947 | 3327 0928 | 34.05 0.936

20.83 dB 21.89 dB 21.51dB 22.41dB 22.46 dB
(a) Input (b) RESCAN (c) DCSEN (d) MPRNet (e) Restormer  (f) PromptRestorer (g) GT

Figure 4: Image deraining example on Rain100H [97].

Table 2: Image deblurring results. Our PromptRestorer is trained only on the GoPro dataset [65] and directly
applied to the HIDE [76] and RealBlur [73] benchmark datasets.

Nah et al. SRN DBGAN MT-RNN DMPHN Suin et al. SPAIR MIMO-UNet+ MPRNet Restormer

Benchmark ‘Metncs [65] [81]  [109] [68] [105] [80] [69] [18] [103] [101] PromptRestorer
GoPro [65] PSNR 1| 21.00 30.26 31.10 31.15 31.20 31.85  32.06 32.45 32.66 32.92 33.06
SSIM 1| 0914 0.934 0.942 0.945 0.940 0.948  0.953 0.957 0.959 0.961 0.962
HIDE [76] PSNR 1| 25.73 2836 28.94 29.15 29.09 2998  30.29 29.99 30.96 31.22 31.36
SSIM 1| 0.874 0915 0915 0.918 0.924 0.930 0931 0.930 0.939 0.942 0.944
RealBlur-R [73] PSNR 1| 3251 35.66 33.78 35.79 35.70 - - 35.54 35.99 36.19 36.06
SSIM 1| 0.841 0.947 0.909 0.951 0.948 - - 0.947 0.952 0.957 0.954
RealBlur-J [73] PSNR | 27.87 2856 2493 28.44 28.42 - 28.81 27.63 28.70 28.96 28.82
“|SSIM | 0.827 0.867 0.745 0.862 0.860 - 0.875 0.837 0.873 0.879 0.873

24.83 dB 30.40 dB 31.04 dB 31.07dB 31.68 dB 9]
(a) Degraded Image (b) Degraded Patch ~ (c) Nah et al. (d) SRN (e) MPRNet  (f) PromptRestorer (g) GT

Figure 5: Image deblurring example on GoPro [65].

4.1 Main Results

Image Deraining Results. Similar to existing methods [44, 103, 69], we report PSNR/SSIM scores
using Y channel in YCbCr color. Tab. 1 shows that our PromptRestorer outperforms current state-
of-the-art approaches when averaged across all five datasets. Compared to the recent best method
Restormer [101], PromptRestorer achieves 0.09 dB improvement on average. On individual datasets,
the gain can be as large as 0.22 dB, e.g., Test2800 [27]. In Fig. 4, we present a challenging visual
deraining example, where our PromptRestorer is able to generate a clearer result with finer details.

Image Deblurring Results. We evaluate deblurring results on both synthetic datasets (GoPro [65],
HIDE [76]) and real-world datasets (RealBlur-R [73], RealBlur-J [73]). Tab. 2 summarises the results,
where our PromptRestorer advances current state-of-the-art approaches on GoPro [65] and HIDE [76].
Compared with MPRNet [103], our PromptRestorer obtains a performance 0.12 dB gains. Fig. 5
provides a visual deblurring example. Our PromptRestorer produces a sharper result with fewer
artifacts.



Table 3: Image dehazing results on SOTS-Indoor [52] and real-world benchmarks Dense-Haze [2] and NH-
Haze [3]. Our PromptRestorer significantly advances state-of-the-arts on SOTS-Indoor [52].

Benchmark \Metrics\ DCP [37] DehazeNet [9] AODNet [51] GridNet [58] FFANet [70] MSBDN [21] UHD [113] MAXIM [84] DeHamer [33] PromptRestorer
SOTS-Indoor [52] PSNR 1| 16.61 19.82 20.51 32.16 36.39 32.77 21.75 38.11 36.63 42.54
7| SSIM 1| 0.8546 0.8209 0.8162 0.9836 0.9886 0.9812 0.8786 0.9910 0.9881 0.9945
Dense-Haze [2] PSNR 1| 11.01 9.48 12.82 14.96 12.22 15.13 12.16 - 16.62 15.86
-Ha SSIM 1| 0.4165 0.4383 0.4683 0.5326 0.4440 0.5551 0.4594 - 0.5602 0.5680
NH-Haze [3] PSNR 1| 12.72 11.76 15.69 18.33 18.13 17.97 16.05 - 20.66 20.36
SSIM 1| 0.4419 0.3988 0.5728 0.6667 0.6473 0.6591 0.4612 - 0.6844 0.7203

k=
o~
= . - B
|
PSNR 26.18 dB 29.14 dB 15.52 dB 32.77 dB 36.86 dB [e%s)
(a) Input (b) GridNet (c) MSBDN (d) UHD (e) DeHamer (f) PromptRestorer (g) GT

Figure 6: Image dehazing example on SOTS-Indoor [52].

Table 4: Image desnowing results on CSD (2000) [65], SRRS (2000) [76], and Snow 100K (2000) [73]. Our
PromptRestorer achieves the best metrics on all datasets on the image desnowing problem.

Benchmark ‘Metrics‘DesnowNet [61] JSTASR [14] HDCW-Net [15] TransWeather [85] MSP-Former [13] Uformer [94] Restormer [101] PromptRestorer
commis el aw . wr ok e e o
ssama SN WE hm wh e W e o W
I

PSNR 24.18 dB 26.81 dB 29.07 dB 29.72 dB 34.70 dB )
(a) Input (b) JSTASR (c) HDCWNet (d) Uformer (e) Restormer  (f) PromptRestorer (g) GT

Figure 7: Image desnowing example on CSD (2000) [15].

Image Dehazing Results. We perform the image dehazing experiments on both synthetic benchmark
RESIDE SOTS-Indoor [52], and real-world hazy benchmarks Dense-Haze [2] and NH-Haze [3].
Tab. 3 summarise the quantitative results. Compared to the recent works DeHamer [33] and
MAXIM [84], our method receives 4.33 dB and 5.91 dB PSNR gains on the SOTS-Indoor, re-
spectively. On the real-world benchmark NH-Haze [3], our PromptRestorer can achieve 0.7203 of the
SSIM result, which is a new record and significantly outperforms current state-of-the-art approaches
DeHamer [33]. The results on both synthetic and real-world benchmarks have demonstrated the
effectiveness of our PromptRestorer on the image dehazing task. Fig. 6 shows the visual results,
where our PromptRestorer is more effective in removing haze than other methods.

Image Desnowing Results. For the image desnowing task, we compare our PromptRestorer on
the CSD [15], SRRS [14], and Snow 100K [61] datasets with existing state-of-the-art methods [61,
14, 15, 13, 85]. We also compare recent Transformer-based general image restoration approaches
Restormer [101] and Uformer [93]. As shown in Tab. 4, our PromptRestorer yields a 2.05 dB
PSNR improvement over the state-of-the-art approach [101] on the CSD benchmark [15]. The visual
results in Fig. 7 show that our PromptRestorer is able to remove spatially varying snowflakes than
competitors.



Table 6: Ablation experiments on PromptDPM. Each component in L2P and G2P is effective.

(a) Effect on L2P. Both Res-InBan and Deg-InBan (b) Effect on G2P. Both Q-InAtt and KV-InAtt play

play positive roles for image restoration. a positive effect on high-quality image restoration.
Experiment ‘ PSNR ‘FLOPS (G) Params (M) Experiment ‘ PSNR ‘FLOPS (G) Params (M)
wlo L2P 30.819 | 148.34 12.60 w/o G2P 30.697 123.44 10.69
w/o Res-InBan | 30.952 | 153.39 12.97 w/o Q-InAtt | 30.914 148.93 12.65
w/o Deg-InBan | 30.964 | 153.39 12.97 w/o KV-InAtt| 30.906 147.26 12.52
Full (Ours) \ 31.015 \ 157.04 13.24 Full (Ours) \ 31.015 \ 157.04 13.24

4.2 Analysis and Discussion

For ablation experiments, following [84, 20], we train the image deblurring model on GoPro
dataset [65] for 1000 epochs only and set the number of Transformer in each CGT is 1. Params
mean the number of learnable parameters. Testing is performed on the GoPro testing dataset [65].
FLOPs are computed on image size 256 x 256. Next, we describe the influence of each component
individually.

Effect on Prompting. The core design of our PromptRestorer is the ‘prompting’, which ex-
ploits a pre-trained model to extract raw degradation features from the degraded observations
and then generate perceived content to guide the restoration branch (i.e., Case 3 in Fig. 1).

Compared to existing frameworks such as .
Cases 1-2 in Fig. 1, our proposed prompting Lable 5: Effect on prompting. Our method that

strategy shows superior performance, as demon- directly. exploits the raw degradation to prompt
strated in Tab. 5. Our method achieved 0.877 dB  Testoration performs better.

gains compared to Case 1, and 0.369 dB higher
than Case 2. Interestingly, the learnable con-

Case in Fig. 1| PSNR | FLOPs (G) Params (M)

dition branch in Case 22, despite consuming 1 30.138 105.58 10.16
more FLOPs and Params, results in worse perfor- 2 30.646 157.04 16.77
mance than ours. Our approach directly exploits 3 (Qurs) | 31015 | 157.04 13.24

raw degradation features to prompt restoration
with persistent degradation priors to facilitate
better recovery. Fig. 1(c) shows two examples, where our model that exploits raw degradation
features as prompting generates sharper and clearer images.

Effect on PromptDPM. We analyze the impact of PromptDPM on restoration quality in Tab. 6
by disabling one component at a time. Each model in L2P and G2P consumes similar Params and
FLOPs, while our full model achieves the best performance. Disabling L2P or G2P results in a
decrease in performance by 0.196 dB and 0.318 dB, respectively. These experiments conclusively
demonstrate the effectiveness of each component in L2P and G2P for restoration.

Effect on GDP. To understand the impact of GDP, we disable it to compare with full model in Tab. 7.

Note that the computational cost of the GDP is  Table 7: Effect on GDP. Our GDP which controls

negligible compared to disabling it as it only the degradation propagation is effective.
involves a 1 x 1 convolution and sigmoid func-

tion for the gating mechanism, while it leads to  _EXperiment | PSNR | FLOPs (G) Params (M)
a gain of 0.091 dB. This finding highlights the =~ w/o GDP | 30.924 | 154.60 12.95
significance of controlling the propagation of ; GDP (Ours)| 31.015 | 157.04 13.24

the perceived degradation features.

4.3 Visualization Understanding for Degradation Vanishing

To emphasize the understanding of degradation vanishing, we visualize the features learned in the
condition/prompting branches to better comprehend the learned status of these branches in Fig. 8.
Notably, both Cases 1-2 exhibit sharper results in later iterations compared to earlier ones, which
fail to provide the restoration branch with sufficient degraded information and cause the restoration

*We ensure fairness in the comparison by using the same network architecture in the condition branch of
Case 2 and the encoder of the pre-trained model in our network.



models to not perceive the degradation well, thereby hindering the model capacity. In contrast, as
the restoration branch needs to adapt perceived features from the PromptDPM which is to perceive
the raw degradation features from inputs, our model (Case 3) initially exhibits inferior performance
(around 20K iterations) as shown in Fig. 1(b). However, with better adaptation to the degradation
information after more iterations, the prompting branch can better prompt the restoration branch
consistently with more reliable perceived content learned from the raw degradation, enabling our
restoration branch to overcome degradation vanishing and improve restoration quality, as shown in
Fig. 1(c).

Case 1 Case 2 Case 3

stent Degraded Features

Figure 8: Visualization. We show the average features over the channel dimension in the condi-
tion/prompting branches for the second example in Fig. 1(c). We obtain GT/degraded features by
inputting GT/degraded images into the pre-trained VQGAN. As single-branch models (Case 1 in
Fig. 1) do not have condition branches, we visualize the last layer in the 1-level encoder for reference.

S Concluding Remarks

In this paper, we investigate the degradation vanishing in the learning process for image restoration. To
solve this problem, we have proposed the PromptRestorer which explores the raw degradation features
extracted by a pre-trained model from the given degraded observations to guide the restoration process
to facilitate better recovery. Extensive experiments have demonstrated that our PromptRestorer favors
against state-of-the-art approaches on 4 restoration tasks, including image deraining, deblurring,
dehazing, and desnowing.
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