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a b s t r a c t 

Nucleus detection in histology images is a fundamental step for cellular-level analysis in computational 

pathology. In clinical practice, quantitative nuclear morphology can be used for diagnostic decision mak- 

ing, prognostic stratification, and treatment outcome prediction. Nucleus detection is a challenging task 

because of large variations in the shape of different types of nucleus such as nuclear clutter, heteroge- 

neous chromatin distribution, and irregular and fuzzy boundaries. To address these challenges, we aim 

to accurately detect nuclei using spatially constrained context-aware correlation filters using hierarchical 

deep features extracted from multiple layers of a pre-trained network. During training, we extract con- 

textual patches around each nucleus which are used as negative examples while the actual nucleus patch 

is used as a positive example. In order to spatially constrain the correlation filters, we propose to con- 

struct a spatial structural graph across different nucleus components encoding pairwise similarities. The 

correlation filters are constrained to act as eigenvectors of the Laplacian of the spatial graphs enforcing 

these to capture the nucleus structure. A novel objective function is proposed by embedding graph-based 

structural information as well as the contextual information within the discriminative correlation filter 

framework. The learned filters are constrained to be orthogonal to both the contextual patches and the 

spatial graph-Laplacian basis to improve the localization and discriminative performance. The proposed 

objective function trains a hierarchy of correlation filters on different deep feature layers to capture the 

heterogeneity in nuclear shape and texture. The proposed algorithm is evaluated on three publicly avail- 

able datasets and compared with 15 current state-of-the-art methods demonstrating competitive perfor- 

mance in terms of accuracy, speed, and generalization. 

© 2021 Elsevier B.V. All rights reserved. 

1. Introduction 

Nucleus detection in cancer Whole Slide Images (WSIs) stained 

with Hematoxylin and Eosin (H&E) dyes is a fundamental step in 

computational pathology ( Javed et al. (2020c) ; Hu et al. (2009) ; 

Lucchinetti et al. (2011) ; Bui et al. (2019) ; Dunne and Going (2001) ; 

Javed et al. (2019, 2018a) ). In clinical practice, manual analysis 

of individual nuclei is a laborious task, and it also suffers from 

inter-observer and intra-observer variability ( Andrion et al. (1995) ; 

López et al. (2012) ). Pathologists often use nuclear features to as- 
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sess the degree of malignancy in the tumor microenvironment 

( Gurcan et al. (2009) ). Automatic detection of nuclei can serve 

as a useful tool for downstream analysis to make better de- 

cisions in cancer diagnosis, prognostication, and therapy plan- 

ning ( Javed et al. (2020d) ; Demir and Yener (0 0 0 0) ; Xing and 

Yang (2016) ; Veta et al. (2014) ; Gurcan et al. (2009) ). However, nu- 

cleus detection is a challenging task because of the nuclear clutter 

and diverse nuclear morphology such as varying chromatic texture, 

shape, and size ( Gurcan et al. (2009) ; Xing and Yang (2016) ). More- 

over, computational challenges also arise because WSIs are multi- 

gigapixel images or three-dimensional arrays stored in a multi- 

resolution format, and may contain billions of pixels at the highest 

resolution. For example, the WSI in Fig. 1 (a) at the highest mag- 

nification level (40 ×) has the dimensions of 90K ×44 K pixels and 
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(a) Input CRC WSI

(b) Input Tile: @500 x 500 pixels 

2.5mm

(e) 
proposed algorithm

(d) 
SC-CNN method

(c) Nuclear shape, texture and 

Fig. 1. An example of multi-gigapixel whole slide image of colorectal cancer and the results of the proposed algorithm for nucleus detection compared with current state- 

of-the-art SC-CNN method ( Sirinukunwattana et al. (2016) ) under varying nuclear shape, morphology, texture, and clutteredness. For better visualization of cluttered nuclei 

and complex tumor epithelial, regions of interest are enlarged in the black boxes with nuclei ground truth locations and detection results. The detected nuclei are marked 

by black dots, while the ground truth nuclei are represented as thicker cyan dots for visualization purposes. 

contains tens of thousands of cell nuclei. Fig. 1 also shows the re- 

sults of nucleus detection by our proposed algorithm and the state- 

of-the-art SC-CNN method ( Sirinukunwattana et al. (2016) ) under 

varying nuclear shape, size, texture, and clutter. 

In the past few years, a number of potential methods have 

been reported for automatic detection of the nucleus in the 

literature such as ( Höfener et al. (2018) ; Shi et al. (2018) ; 

Xing and Yang (2016) ; Gurcan et al. (2009) ; Veta et al. (2014) ; 

Demir and Yener (0 0 0 0) ; Xue and Ray (2017) ; Su et al. (2016) ; 

Ahmad et al. (2018) ; Xing et al. (2019) ; Koohababni et al. (2018) ; 

Graham et al. (2019) ; Sirinukunwattana et al. (2016) ; 

Xie et al. (2018) ). A few challenging datasets for different 

cancer tissue types have also been made available for nucleus 

detection and classification ( Sirinukunwattana et al. (2016) ; 

Graham et al. (2019) ; Su et al. (2016) ). Interested readers 

are encouraged to explore more details for nucleus detection 

in recent surveys ( Su et al. (2016) ; Xing and Yang (2016) ; 

Gurcan et al. (2009) ; Veta et al. (2014) ; Demir and Yener (0 0 0 0) ; 

Irshad et al. (2013) ). 

The existing nucleus detection methods ( Xing and Yang (2016) ) 

can be categorized into classical machine learning methods 

( Adiga et al. (2006) ; Yan et al. (2008) ; Su et al. (2014) ; 

Sommer et al. (2012) ) and recent deep learning meth- 

ods ( Sirinukunwattana et al. (2016) ; Graham et al. (2019) ; 

Su et al. (2016) ). In classical machine learning methods, hand- 

crafted features such as intensity and histogram are used with 

support vector machines and random decision forest classifiers to 

estimate the nuclear probability map. Adiga et al. used distance 

transform function for nucleus detection in breast cancer histol- 

ogy images ( Adiga et al. (2006) ). Yan et al. also used Euclidean 

distance transform to identify nucleus for watershed segmentation 

in fluorescence images ( Yan et al. (2008) ). Li et al. used intensity 

features in the distance map and then Gaussian filter for noise 

suppression ( Li et al. (2009) ). Despite the improvements, distance 

transform-based methods do not work well for densely clustered 

nuclei. Supervised learning methods have also been proposed to 

address the complex rich heterogeneous nature of histopathology 

images ( Su et al. (2014) ; Sommer et al. (2012) ). These methods 

usually train binary classifiers to reduce false detection. Some 

classical methods also assume individual nucleus as round or 

circular objects. This assumption does not hold in cases involving 

elongated and irregularly shaped nuclei ( Xing and Yang (2016) ). 

The deep learning methods ( Xie et al. (2018) ; 

Sirinukunwattana et al. (2016) ; Graham et al. (2019) ; 

Koohababni et al. (2018) ; Xing et al. (2019) ) train an end-to-end 

convolutional neural network for generating nuclear probability 
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maps. These networks are invariant to nuclear size, texture, and 

morphology. Xing et al. proposed three different deep convolu- 

tional neural networks (CNNs) models for brain tumor, pancreatic, 

and breast cancer histology images for the purpose of nucleus 

detection ( Xing et al. (2015) ). Xie et al. proposed structured 

regression-based CNN which generates proximity patch with 

fast scanning strategy for nucleus detection ( Xie et al. (2015) ). 

Sirinukuwattana et al. proposed locality sensitive deep learning 

approach for nucleus detection ( Sirinukunwattana et al. (2016) ). 

In their approach, a spatially constrained CNN is employed to 

generate a probability map for a given input image using a sliding 

window strategy. Recently, Graham et al. proposed a deep CNN 

model for simultaneous segmentation and classification of the nu- 

cleus ( Graham et al. (2019) ). While deep learning-based methods 

perform well, they often struggle with the detection of cluttered 

nuclei which are quite common in the tumor microenvironment. 

Besides, when trained CNN models are applied to test data in a 

sliding window manner, processing large-scale images become 

computationally expensive. In general, deep learning methods 

require a large amount of training data which may not always be 

available. Moreover, deep learning approaches are resource-hungry 

requiring expensive computational systems ( Xing and Yang (2016) ). 

In this work, we propose a nucleus detection algorithm us- 

ing correlation filters which have been previously employed 

for visual object tracking application ( Bolme et al. (2010) ; 

Henriques et al. (2014) ; Fiaz et al. (2019) ). Compared to the end- 

to-end deep learning, the correlation filters are computationally 

effective and require a significantly less amount of training data 

( Henriques et al. (2014) ). The correlation filters are also flexible 

and can detect complex and irregular-shaped nuclei without re- 

quiring handcrafted features. 

In the current work, we formulate the nucleus detection prob- 

lem as learning a set of robust and nucleus-specific correlation fil- 

ters which have not been previously thoroughly investigated for 

such tasks. In the proposed algorithm, a set of training nuclei 

patches are cropped from histology images and 2-D Gaussian- 

shape response maps are considered as the ground truth nuclei 

regression targets. We aim to learn filters such that the maximum 

response is obtained when convolved with a nucleus region by 

solving a ridge regression problem. Nuclei in the test patches are 

then detected by a circular convolution operation which is imple- 

mented using Fast Fourier Transform (FFT) ( Bolme et al. (2010) ; 

Henriques et al. (2014) ). The performance of correlation filters may 

degrade because of the wide variations in the nuclear shape, tex- 

ture, and morphology. To address these challenges, we propose 

to train correlation filters on multiple layers of deep features us- 

ing a pre-trained VGG-19 model on a large-scale tissue images 

dataset ( Kather et al. (2019) ). We also propose the correlation fil- 

ters to be learned in a structure-aware manner by constructing a 

graph across different nucleus components. The correlation filters 

are constrained to be eigenvectors of the Laplacian of the nuclei 

structure graph. Also, in order to improve the localization, we pro- 

pose the correlation filter to be context-aware because the contex- 

tual information improves the discriminative ability of the filter. 

Benefiting from the high generalizability of CNNs as feature ex- 

tractors ( Sharif Razavian et al. (2014) ), correlation filters trained 

on features extracted from multiple layers of CNN are effective in 

capturing nuclear semantics as well as localization. Deep layers of 

CNNs are more effective to capture semantics; however, they are 

not ideal for capturing fine-grained spatial details required for nu- 

cleus localization. On the contrary, shallow layers are precise in lo- 

calization but do not capture nuclear semantic information. There- 

fore, training correlation filters on both shallow and deep CNN lay- 

ers is important to capture both nuclear semantics and localization. 

In addition to directly utilizing deep features, we also pro- 

pose to construct nuclear structure graphs using deep features 

at multiple levels. These graphs encode the pairwise similarity 

among different nuclear components thus enriching multiple lev- 

els of information to handle nuclear shape and texture variations. 

Using these graphs, we compute Laplacian matrices which have 

previously been used for graph partitioning, subspace-based data 

clustering, visual tracking, and moving object segmentation tasks 

( Yin et al. (2015) ; Javed et al. (2017, 2016, 2018b, 2020b, 2020a) ; 

Giraldo et al. (2020) ). We constrain the correlation filters to be or- 

thogonal to the Laplacian basis to better discriminate different nu- 

clear components from the non-nuclear regions and also to discern 

each nucleus from the remaining nuclei in case of clutter. Such a 

synergy nurtures the proposed correlation filters with robustness 

to nuclear size, texture, and morphological variations while en- 

hancing their localization capacity. Another limitation of correla- 

tion filters is the undesired boundary effects caused by the circular 

shifts of the training patches which may lead to degraded perfor- 

mance ( Ahmad et al. (2018) ). To address this problem, we propose 

to exploit local contextual information in the learning phase. The 

motivation here is that the surroundings of the nuclei can enhance 

the detection performance, especially if there is a non-nuclear re- 

gion. The correlation filters are also constrained to be orthogonal to 

the contextual basis to better differentiate nuclear and non-nuclear 

regions. 

Our proposed algorithm, dubbed as Spatially Constrained 

Context-aware hierarchical Deep Correlation Filters (SCC-DCF) for 

nucleus detection, is tested on three publicly available datasets in- 

cluding two colon cancer histology datasets CRCHistoPhenotypes 

( Sirinukunwattana et al. (2016) ) and CoNSeP ( Graham et al. (2019) ) 

and a third multi-organ histology images PanNuke dataset 

( Gamper et al. (2020) ). Our proposed algorithm is compared with 

15 existing state-of-the-art methods and demonstrated superior 

performance. Following are the main contributions of this work: 

• The correlation filters have not been thoroughly investigated 

for nucleus detection in computational pathology; we fill this 

research gap and demonstrate the strength of the correlation 

filters in terms of both accuracy and computational complex- 

ity. We also demonstrate the favorable performance of the pro- 

posed algorithm by using less training data. 
• We propose to use deep features hierarchy and train a set of 

correlation filters which improves the nucleus detection perfor- 

mance as compared to classical color or stain features used in 

previous studies. 
• In order to ensure the correlation filter to be structure-aware, 

we propose a spatial graph encoding pairwise similarities of 

nuclei different components. The filter is constrained to be or- 

thogonal to the Laplacian basis of this spatial graph to address 

the unwanted boundary effects. 
• We also incorporate local contextual information in the correla- 

tion filters which are encoded by selecting neighboring patches 

around each nucleus to improve nuclear localization. 
• We proposed a novel objective function by incorporating struc- 

tural constraints and the contextual information of each nu- 

cleus into the discriminative correlation filters framework. The 

objective function is solved using Alternating Direction Meth- 

ods of Multiplier (ADMM) with a closed-form solution to each 

sub-problem. 

The rest of the paper is organized as follows: Section 2 presents 

related work, Section 3 describes the main steps of our proposed 

algorithm, Section 4 presents experimental evaluations while the 

conclusion and future directions are provided in Section 5 . 

2. Literature review 

Over the past few years, several methods have been proposed 

for nucleus detection in routine H&E histology images ( Xing and 
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Yang (2016) ; Irshad et al. (2013) ). In classical machine learning 

methods, Difference of Gaussian (DoG) ( Cosatto et al. (2008) ), 

Laplacian of Gaussian (LoG) ( Byun et al. (2006) ), Marker-based 

watershed approaches ( Grau et al. (2004) ; Yang et al. (2006) ), 

H-minima ( Cheng et al. (2008) ), Morphological operation-based 

methods ( Park et al. (2012) ; Yang et al. (2006) ), Maximally Stable 

Extremal Region (MSER) ( Matas et al. (2004) ), Radial Symmetry- 

based Voting Methods ( Xing et al. (2013) ; Qi et al. (2011) ), and su- 

pervised learning based on support vector machines and Random 

Decision Forest (RDF) classifiers ( Mao et al. (2006) ) have attracted 

significant attention. 

Cosatto et al. proposed difference of Gaussian (DoG) fol- 

lowed by Hough transform to find radially symmetrical shapes 

( Cosatto et al. (2008) ). However, this method demonstrated de- 

graded performance in the case of clustered nuclei. To ad- 

dress this issue, Byun et al. employed Laplacian of Gaussian 

(LoG) filter in which nuclear size is known a priori on reti- 

nal images ( Byun et al. (2006) ). The scale-normalized LoG fil- 

ter was used to detect cells on phase-contrast microscopy images 

( Lindeberg (1998) ). However, these methods also failed in clut- 

terred nuclei which exhibit weak boundaries. To tackle this is- 

sue, Al-Kofahi et al. have introduced a multi-scale LoG filter con- 

strained by a Euclidean distance map ( Al-Kofahi et al. (2009) ). 

LoG-based methods are usually sensitive to large variations in nu- 

clear size and the absence of clear nucleus boundaries ( Xing and 

Yang (2016) ). In order to handle nuclei clutteredness challenges, 

marker-based watershed approaches are widely utilized to locate 

and split close-by nucleus ( Grau et al. (2004) ; Yang et al. (2006) ). 

For instance, a variant of marker-controlled watershed segmenta- 

tion using H-minima transform of nuclear shape is investigated 

( Jung and Kim (2010) ). Although, H-minima based methods aim to 

reduce the false detection, they provide only limited robustness to 

a nucleus with heterogeneous texture. 

Binary morphological filtering-based methods with a certain 

structuring element are also employed for nucleus detection 

( Park et al. (2012) ; Yang et al. (2006) ). Park et al. have proposed 

an improved erosion operation that exploits a noise-robust mea- 

surement of convexity as the stopping criterion ( Park et al. (2012) ). 

Yuan et al. proposed to segment all nuclei with the help of thresh- 

olding, followed by morphological operation, distance transform, 

and watershed segmentation ( Yang et al. (2006) ). The centroids 

of the individual segmented nuclei were used as the detected 

points. However, these methods may not work well on a nucleus 

with heterogeneous intensity and cluttered background. To han- 

dle these issues, Maximally Stable Extremal Region (MSER) detec- 

tor is also used to locate the nucleus ( Matas et al. (2004) ). By 

assuming that cells are approximately circular or elliptical, Parvin 

et al. introduced a kernel-based radial voting method to iteratively 

localize nucleus, which is relatively insensitive to image noise 

( Parvin et al. (2007) ). Several other radial voting-based methods 

were also presented for automatic nucleus detection in pathology 

images ( Xing et al. (2013) ; Qi et al. (2011) ). 

Supervised methods have also been proposed in the literature 

to solve the binary classification problem. Mao et al. have proposed 

a supervised learning approach for nucleus detection and segmen- 

tation in bladder cancer images ( Mao et al. (2006) ). A supervised 

learning method has also been proposed for mitotic cell detec- 

tion in breast cancer images ( Sommer et al. (2012) ). A key limi- 

tation of these approaches is the lack of feature relevance for nu- 

cleus detection and the reduced capacity to accommodate a broad 

spectrum of nuclear shape, color, and texture variations remains 

limited. 

Deep learning methods have recently become very popu- 

lar to perform nucleus detection in histology images, because 

of their ability to perform feature discovery and generaliza- 

tion model ( Xie et al. (2018) ; Sirinukunwattana et al. (2016) ; 

Graham et al. (2019) ; Koohababni et al. (2018) ; Xing et al. (2019) ). 

Cruz et al. showed that a deep learning architecture outperforms 

methods based on handcrafted features ( Cruz-Roa et al. (2013) ). 

Ciregan et al. used Deep CNN for automatic detection of mitotic 

cells in breast cancer histology images ( Cire ̧s an et al. (2013) ). Xie 

et al. proposed a structural regression model for CNN, where a nu- 

cleus center is detected if it has the maximum value in the prox- 

imity map ( Xie et al. (2015) ). Xu et al. proposed a stacked sparse 

autoencoder, where it learns high-level features of a nucleus cen- 

troid and then a softmax classifier is used to separate nucleus 

and non-nucleus image patches ( Xu et al. (2014) ). Sirinukunwat- 

tana et al. proposed SC-CNN method uses a regression approach 

to find the likelihood of a pixel being the center of a nucleus 

( Sirinukunwattana et al. (2016) ). The probability values are topo- 

logically constrained in a way that in the vicinity of nucleus cen- 

ter the probability is higher. In ( Xing et al. (2016) ), a combination 

of CNNs for nucleus segmentation and a dictionary learning tech- 

nique is proposed for refining segmentation. Hou et al. proposed a 

sparse convolutional autoencoder for simultaneous nucleus detec- 

tion and feature extraction ( Hou et al. (2019) ). In their method, the 

detection is based on a fairly deep network of 15 layers compris- 

ing of multiple CNN branches that perform detection, segmenta- 

tion, and image reconstruction. Koohababni et al. proposed mix- 

ture density networks in CRC WSIs ( Koohababni et al. (2018) ). 

Xie et al. proposed a multi-task learning method based on deep 

CNN encoder-decoder module ( Xie et al. (2018) ). Nucleus segmen- 

tation approaches are also proposed for nucleus centroid detection, 

but these methods require precisely annotated nucleus boundary 

( Graham et al. (2019) ). Similarly, other segmentation methods such 

as NODE ( Pinckaers and Litjens (2019) ) can also be adapted to 

segment the nucleus instead of glandular structure segmentation. 

More recently, Tofighi et al. proposed shape prior deep networks 

for nucleus detection ( Tofighi et al. (2019) ). 

Existing deep learning approaches for nucleus detection are 

promising; however, they require a significant amount of training 

data and expensive computational platforms to cater to the high 

computational requirements. In contrast, our goal here is to pro- 

pose an algorithm that can be trained using much smaller train- 

ing datasets that can be executed on typical desktop machines. 

The proposed SCC-DCF algorithm is a hybrid approach combin- 

ing both classical correlation filters with deep features as well 

as graph-based structural constraints and nucleus contextual in- 

formation to get the improved nucleus detection performance. 

To the best of our knowledge, such an algorithm has not been 

previously proposed for nucleus detection problem in histology 

images. 

3. The proposed method 

A block diagram of the proposed Spatially Constrained Context- 

aware Deep Correlation Filter (SCC-DCF) algorithm for nucleus de- 

tection is shown in Fig. 2 . The main components of the proposed 

algorithm consist of pre-processing steps, deep features extraction, 

spatial graph construction, and training a set of robust correlation 

filters across different convolutional layers. In the first step, we 

crop a set of m × m nuclei patches from the training histology im- 

ages where each nucleus is kept at the center of the patch. We also 

extract k contextual patches of the same size around each nucleus 

containing 50 % overlap with a nucleus patch and 50 % contextual 

information. These patches are selected in the same way for all 

nuclei covering k neighboring regions to reduce unwanted bound- 

ary effects during the correlation filter learning. In the second step, 

we input these training nuclei patches into the VGG-19 network 

for deep features extraction. We use a pre-trained model which is 

trained on a 100K tissue images dataset ( Kather et al. (2019) ) and 

we extract deep features from each of the five convolutional lay- 
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Fig. 2. Schematic illustration of our proposed SCC-DCF algorithm for nucleus detection in histology images. Steps (a)-(g) in red color show the training pipeline. Step (a) 

shows input whole slide image of colorectal cancer from CRCHistoPhenotypes dataset ( Sirinukunwattana et al. (2016) ). Step (b) shows training histology image with ground 

truth nuclei locations at 20x magnification level. Step (c) shows training nuclei patches of size 31 × 31 pixels where each nucleus is kept at the center. Step (d) shows 

contextual patches around j-th nucleus patch. Step (e) shows the deep features extraction of j-th nucleus using pre-trained VGG-19 model ( Kather et al. (2019) ). Step (f) 

shows the construction of spatial graph at each features hierarchy. Step (g) represents the objective function minimization and learning optimal correlation filters for each 

layer. Steps (h)-(m) in blue color show the testing pipeline where the learnt correlation filters are convolved on the test histology image and maximum response is computed 

for all layers for nucleus detection. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

ers. In the third step, we compute the spatial structure graph by 

computing pairwise distances among different nuclei components 

using deep features. At each level of the hierarchy, a different spa- 

tial graph is constructed to capture the nucleus structure at that 

particular level. In the fourth step, we train a set of correlation 

filters on the deep features and enforce these filters to be orthog- 

onal to the Laplacian basis of the spatial graph as well as to the 

contextual basis. A novel objective function is formulated incorpo- 

rating multiple layers of deep features, and the information con- 

tained in the spatial graphs as well as contextual patches around 

each nucleus. This objective function is solved using the ADMM 

method with a closed-form solution. In the testing stage, we first 

extract the deep features from a test image followed by convolv- 

ing the set of trained correlation filters. We compute the response 

of each filter on the corresponding deep feature of the test image 

and select the response with maximum amplitude where the peak 

of the filter shows the potential nucleus location. In the following 

subsections, we describe each component of the proposed SCC-DCF 

algorithm in more detail. 

3.1. Pre-Processing steps 

The hematoxylin dye is basic in nature and binds to the acidic 

DNA or RNA in the nucleus during the staining process. Therefore, 

most of the nucleus detection methods are designed by process- 

ing the hematoxylin channel only. We also extract the hematoxylin 

channel from the training and testing images using a color decon- 

volution method ( Ruifrok et al. (2001) ). In addition, the log trans- 

formation is applied to suppress the noise. The pixel values are 

then normalized to have a zero mean and unit variance for consis- 

tent intensity. These input images are zero-padded and multiplied 

by a cosine window to address the border effects of the convolu- 

tion. 

3.2. Deep feature extraction 

We input the nuclei patches extracted from pre-processed 

training images and the contextual patches to the VGG-19 network 

for deep features extraction. We employ a VGG model which is 

trained for tissue classification ( Kather et al. (2019) ) and we ex- 

tract deep features from each of the five convolutional layers. The 

earlier convolutional layers include features from conv1-2, conv2-2 , 

and conv3-4 , while later convolutional layers consist of conv4-4 and 

conv5-5 . The use of convolutional feature maps helps to encode the 

varying nuclear shapes and texture appearances ( Fig. 2 (e)). As the 

data propagates along with CNN, the semantic discrimination be- 

tween different nuclei categories becomes strong, and the spatial 

resolution gradually reduces which helps in capturing coarse as 

well as fine information for nucleus localization. The pooling oper- 

ations in the VGG-network result in the gradual reduction of spa- 

tial resolution with the increasing depth of the convolutional lay- 

ers. However, low spatial resolution is insufficient for the accurate 

localization of the nucleus. We address this issue by resizing each 

feature map to the same size as the input image size of n = m × m 

pixels with bilinear interpolation and create input features matrix 

X l ∈ R 

n ×d , where d is the number of channels at the l-th level in 

the hierarchy. Since we have N number of nuclei, therefore, we 

concatenate X l matrices into a global data matrix M l ∈ R 

n ×(N×d) 

such that a row in this matrix is a concatenation of the corre- 

sponding nucleus locations across all nuclei. The deep features vi- 

sualization is shown in Fig. ( 2 (e)). 

3.3. Proposed SCC-DCF formulation 

Our aim is to learn a discriminative nucleus detection filter that 

can be applied to the test histology images to infer the locations of 

the nuclei. The correlation filter allows for dense sampling around 

the nucleus at a low computational cost. This is achieved by mod- 

eling all possible translations of the nucleus within a patch as 

cyclic shifts ( Henriques et al. (2014) ) as shown in Fig. 3 We con- 

catenate all the cyclic shifts of X l into a data matrix A 

l ∈ R 

n ×n ×d 

resulting in circulant structure of this matrix. Such a structure fa- 

cilitates a very efficient solution. If we multiply such a matrix with 

a filter w in vectorized form, it is equivalent to convolving the nu- 

cleus by that filter in the spatial domain. Let y ∈ R 

n be the regres- 

sion target which is a vectorized image of a 2D Gaussian label. 

Our aim is to learn a multi-channel filter w 

l 
i 
∈ R 

n for the l- 

th layer by using the following ridge regression problem in the 
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Fig. 3. An example of horizontal and vertical cyclic shift operation of a base nucleus patch. For illustration purpose only eight cyclic shifts are shown however in our 

algorithm pixel-wise cyclic shifts are performed. 

Fourier domain ( Hamed et al. (2013) ) as: 

argmin 
w 

l 
1 
, w 

l 
2 
, ···, w 

l 
d 

1 

2 N 

N ∑ 

j=1 

(
|| 

d ∑ 

i =1 

A 

l 
i, j w 

l 
i − y || 2 + λ1 

d ∑ 

i =1 

|| w 

l 
i || 2 

)
, (1) 

where A 

l 
i, j ∈ R 

n ×n contains all circulant shifts of the i -th channel 

of the j-th nucleus feature map at l-th layer. λ1 is a regularization 

parameter and N is the total number of training nuclei patches. 

The objective function in Eq. (1) is convex and has a unique global 

minimum. By taking gradient with respect to w 

l and equating to 

zero leads to a closed-form solution for the filter. For the sake of 

simplicity, we ignore the superscript l and we consider A i, j and w 

for a particular layer. 

In order to reduce the boundary effects of correlation filters, we 

introduce contextual information in the objective function defined 

by Eq. (1) . For each vectorized nucleus patch a j , we extract r con- 

textual patches c j,k , where 1 ≤ k ≤ r, covering 50 % nucleus patch 

and 50 % contextual information. The contextual information con- 

sists of the pixels outside the current nuclei patch. These pixels 

mainly contain non-nuclei regions however they may also contain 

parts of the other nuclei. The regression target labels are selected 

as zero for these contextual patches. This is because our aim is to 

enforce the correlation filter to generate a very low response on 

the contextual information of the nucleus and generate a high re- 

sponse on the nucleus itself. The same circulant shift operations 

are applied on each nucleus patch a j as well as its contextual 

patches c j,k to get C i, j,k , where 1 ≤ i ≤ d. The objective function de- 

fined by Eq. (1) incorporating contextual information can then be 

formulated as follows: 

argmin 
w 1 , w 2 , ···, w d 

1 

2 N 

N ∑ 

j=1 

( 

|| 
d ∑ 

i =1 

A i, j w i − y || 2 

+ λ2 

r ∑ 

k =1 

d ∑ 

i =1 

|| C i, j,k w i || 2 + λ1 

d ∑ 

i =1 

|| w i || 2 
) 

, (2) 

where in the second term minimizing || C i, j,k w i || 2 means that filter 

w i is enforced to be orthogonal to the contextual patches C i, j,k . It is 

because while computing matrix-vector multiplication, inner prod- 

ucts are computed between the rows of C i, j,k and w i . Each row of 

C i, j,k is a circulant shifted version of the contextual patch there- 

fore minimization of || C i, j,k w i || 2 enforces w i to be close to being 

orthogonal to each shifted version of the contextual patch. In or- 

der to make the correlation filter to be nucleus structure-aware, we 

propose to construct a spatial graph across different components of 

the nucleus. Since, the Laplacian matrix of this graph encodes the 

nucleus structure, therefore; we constrained the correlation filter 

to be orthogonal to these Laplacian basis. The proposed SCC-DCF 

objective function is formulated as follows: 

argmin 
w 1 , w 2 , ···, w d 

1 

2 N 

N ∑ 

j=1 

(
|| 

d ∑ 

i =1 

A i, j w i − y || 2 

+ λ2 

r ∑ 

k =1 

d ∑ 

i =1 

|| C i, j,k w i || 2 
)

+ 

λ1 

2 

d ∑ 

i =1 

|| B w i || 2 , (3) 

where B is the Laplacian basis of the spatial graph constructed 

across all deep feature channels and it encodes the spatial nucleus 

structure. In the following sub-sections, we provide more details of 

the graph construction and objective function. 

3.4. Spatial graph regularization 

For each level of the hierarchy, the deep features are com- 

puted using a deep neural network and a different spatial graph 

G l is computed capturing the nuclear appearance variations at that 

level. 

Let G l = ( V l , Z l ) be an undirected weighted spatial graph at l-th 

level, where V l and Z l are the vertices and the edge weighted adja- 

cency matrices. Vertex V l (i ) ∈ R 

n ×d contains feature values for the 

i -th nucleus across d channels which is represented as a row vec- 

tor in the features matrix M l . Since, the correlation filter preserves 

the nucleus structure on the Riemann manifold ( Yin et al. (2015) ), 

therefore; the spatial nucleus structure ensures that if two nodes 

V l (i ) and V l ( j) are close in a data manifold then there correspond- 

ing filter coefficients should also be close. We consider spatial 

closeness among the nuclei feature maps, encoded, in the graph 

G l using k -nearest neighbor method ( Muja and Lowe (2014) ). First, 

we search for the closest neighbors for all the rows in the features 

matrix M l based on the Euclidean distance, where each vertex is 

connected to its k -nearest neighbors, so that if V l (i ) and V l ( j) are 

in the k -nearest neighbors of each other, we set: 

Z l (i, j) = exp 

(
−|| V l (i ) −V l ( j) || 2 2 

2 σ 2 
s 

)
, (4) 

where σs is a smoothing parameter and its value is the aver- 

age distance among the vertices in G l . If two vertices V l (i ) and 

V l ( j) are within the k -nearest neighbors then they are connected: 
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Z l (i, j) > 0 , otherwise, Z l (i, j) = 0 . The normalized Laplacian matrix 

L l is computed using the weighted adjacency matrix Z l as: 

L l = I − D 

− 1 
2 Z l D 

− 1 
2 , (5) 

where D ∈ R 

n ×n is the degree matrix with its i -th diagonal element 

being equal to the sum of the i -th row of Z l and I ∈ R 

n ×n is the 

identity matrix. The eigenvectors of L l act as Laplacian basis which 

encodes the nuclei structural information captured by the graph 

G l . To enforce the correlation filter to be structure-aware, we con- 

strained w i to act as the eigenvector of L l . For this purpose, we 

generalize the eigenvalue problem w 

� 
i 
L l w i to be minimized inde- 

pendently for each channel as: 

�l = 

d ∑ 

i =1 

w 

� 
i L l w i . (6) 

The matrix L l can also be symmetrically decomposed as: 

L l = P �P 

� = (�
1 
2 P 

� ) � �
1 
2 P 

� = B 

� 
l B l , (7) 

where P ∈ R 

n ×n is orthonormal matrix with each column being an 

eigenvector of L l , and � ∈ R 

n ×n is a diagonal matrix with its diag- 

onal element �ii being a singular value of L l (sorted as 0 ≤ �ii ≤
· · ·�nn ). The matrix B l = �

1 
2 P � is computed using all eigenvectors 

of L l . It may be considered as a combination of the scaled basis of 

the graph-Laplacian matrix L l and thus defining a manifold struc- 

ture of the nucleus. Substituting L l = B � l B l in Eq. (6) , we get: 

�l = 

d ∑ 

i =1 

w 

� 
i B 

� 
l B l w i = 

d ∑ 

i =1 

|| B l w i || 2 . (8) 

The spatial structural constraint above can be interpreted as en- 

forcing correlation filter w i in each channel to be orthogonal to 

the eigenvectors of L l . Assuming that the manifold spanned by the 

non-nuclei patches is different from the manifold spanned by the 

nuclei patches, therefore, such a correlation filter will be able to 

better discriminate the nucleus from the non-nucleus region re- 

sulting in performance improvement. 

3.5. SCC-DCF Optimization 

We optimize SCC-DCF model (3) using ADMM method by solv- 

ing one variable and fixing others ( Boyd et al. (2011) ). We first in- 

troduce two auxiliary variables as p = w and a spatial filter q = w 

to make the objective function separable. The constrained opti- 

mization problem in Lagrangian form is given by 

L ( w , p , h , q , f ) = 

1 

2 N 

N ∑ 

j=1 

( 

|| 
d ∑ 

i =1 

A i, j w i − y || 2 

+ λ2 

r ∑ 

k =1 

d ∑ 

i =1 

|| C i, j,k p i || 2 
) 

+ 

λ1 

2 

d ∑ 

i =1 

|| B q i || 2 

+ 

γ

2 

d ∑ 

i =1 

‖ 

w i − p i + h i ‖ 

2 + 

γ

2 

d ∑ 

i =1 

‖ 

w i − q i + f i ‖ 

2 
, 

(9) 

where f and h are auxilliary variables. Each sub-problem w, p, q, f , 

and h can then be solved efficiently using ADMM. 

Solving Sub-problem w : By fixing other variables in (9) exclud- 

ing w , the sub-problem w 

(t+1) at the (t + 1) -th iteration can be 

written as: 

w 

(t+1) = min 
w 1 , w 2 , ···, w d 

1 

N 

N ∑ 

j=1 

(
|| 

d ∑ 

i =1 

A i, j w i − y || 2 
)

+ γ
d ∑ 

i =1 

‖ 

w i − p i + h i ‖ 

2 + γ
d ∑ 

i =1 

‖ 

w i − q i + f i ‖ 

2 
(10) 

Using Parseval’s theorem, the above equation can be rewritten 

in the Fourier domain as: 

argmin ̂ w 

1 

N 

N ∑ 

j=1 

(
|| 

d ∑ 

i =1 ̂

 x i, j � ̂ w i −̂ y || 2 
)

+ γ
d ∑ 

i =1 

|| ̂  w i −̂ p i + ̂

 h i || 2 + γ
d ∑ 

i =1 

|| ̂  w i −̂ q i + ̂

 f i || 2 (11) 

where ̂  x i, j is the i -th column vector of deep features matrix X l for 

j-th nucleus in the Fourier domain and ̂ w i denotes the DFT of the 

filter w i . From above equation, we can see that the k -th element 

of the label ̂ y i only depends on the k -th element of the filter ̂ w i 

and sample ̂  x i, j across all d channels. Therefore, it can be further 

decomposed into n subproblems. Let V k (·) takes the k -th element 

for all d channels. Then, Eq. (11) becomes 

argmin 
V k ( ̂  w ) 

1 

N 

N ∑ 

j=1 

∥∥V k ( ̂  x j ) 
� . V k ( ̂  w ) −̂ y (k ) 

∥∥2 

+ γ
∥∥V k ( ̂  w ) − V k ( ̂  p ) + V k ( ̂

 h ) 
∥∥2 + γ

∥∥V k ( ̂  w ) − V k ( ̂  q ) + V k ( ̂
 f ) 
∥∥2 

(12) 

By taking the derivative with respect to V k ( ̂  w ) and setting it 

zero, we can get a closed-form solution 

V k ( ̂  w ) = 

(
1 
N 

∑ N 
j=1 V k ( ̂  x j ) V k ( ̂  x j ) 

� + 2 γ I 

)−1 

α, 

α = 

1 
N 

∑ N 
j=1 V k ( ̂  x j ) ̂  y (k ) + γ ( V k ( ̂  p ) − V k ( ̂

 h ) + V k ( ̂  q ) − V k ( ̂
 f )) 

(13) 

Since, V k ( ̂  x j ) V k ( ̂  x j ) 
� is a rank-1 matrix, Eq. (13) can 

be solved more efficiently using ShermanMorrison formula 

( Petersen et al. (2008) ), we have 

V k ( ̂  w ) = 

1 
2 γ

(
I −

1 
N 

∑ N 
j=1 V k ( ̂ x j ) V k ( ̂ x j ) 

� 

2 γ + 1 N 
∑ N 

j=1 V k ( ̂ x j ) 
� V k ( ̂ x j ) 

)
α (14) 

Note that Eq. (14) only contains vector multiply-add operation 

and thus can be computed efficiently. The filter w can then be ob- 

tained by the inverse DFT of ̂ w . 

Solving Sub-problem q : In Eq. (9) , fixing other variables ex- 

cluding q , the solution for sub-problem q t+1 at the (t + 1)-th iter- 

ation is given by 

q (t+1) = ( ̃  B ̃

 B 

� + λ1 I ) 
−1 (γ ˜ w + γ ˜ f ) , (15) 

where ˜ B represents the dn × dn diagonal matrix concatenated with 

d diagonal matrices Diag( B ). The vectors ˜ w and ˜ f denote the con- 

catenated vectors of w i and f i accross d-channels. 

Solving Sub-problem p : : In Eq. (9) , fixing other variables ex- 

cluding p , the solution for sub-problem p t+1 at the (t + 1)-th iter- 

ation is given by: 

p (t+1) = 

λ2 

N 

N ∑ 

j=1 

( 
r ∑ 

k =1 

˜ Q 

� 
j,k ̃

 Q j,k + λ2 I ) 
−1 (γ ˜ w + γ ˜ h ) , (16) 

where ˜ Q represents the dn × dn diagonal matrix concatenated with 

d diagonal matrices Diag( C ). The vector ˜ h denotes the concatenated 

vector of h i accross d-channels. 

Similarly, the variables h, m , and γ can be updated iteratively 

in (9) as: 

h 

(t+1) = w 

(t+1) − p (t+1) + h 

(t) 
, 

f 
(t+1) = w 

(t+1) − q (t+1) + f 
(t) 

, 

γ (t+1) = min (γ max , ργ t ) , (17) 

where ρ is a scalar term. Algorithm 1 summarizes the optimiza- 

tion procedure. 
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Algorithm 1: Proposed SCC-DCF algorithm for nucleus detec- 

tion. 

Input : N nuclei patches of size 31 × 31 pixels. 

Initialization: Input feature matrix A l ∈ R 

n ×n ×d , λ1 , λ2 , 

γ = 10 , γmax = 100 , ρ = 1 . 2 , w 

0 = 0 , h 

0 = 0 , and f 
0 = 0 . 

Compute B ∈ R 

n ×n using Eqs. (4)-(7). 

Training:while not converged (t = 0 , 1 , . ) do 

1. Compute w 

t+1 using (14). 

2. Compute q (t+1) using (15) 

3. Compute p (t+1) using (16). 

5. Update h 

(t+1) 
, f 

(t+1) 
, and γ (t+1) using (17). 

end 

Output : w , q , p 

Testing Procedure: 

1. Extract deep feaures from test image 

2. Compute response R l from each channel using Eq. (15) 

3. Compute R l using Eq. (18) and maximum response across l 

layers. 

3.6. Nucleus detection 

Given a test histology image with deep features X l and learnt 

correlation filters w i for each channel, the correlation response R l 

at the l-th layer is then computed by 

R l = F 

−1 ( 
d ∑ 

i =1 

ˆ w 

i 
l � ˆ x 

i ∗
l ) , (18) 

where ˆ x 
i ∗
l is the complex conjugate of Fourier representation of 

feature vector x i 
l 
at l-th layer and i -th channel. In order to integrate 

the response from multiple layers, we use the max rule across all 

layers. Such late fusion schemes have already been used in visual 

object tracking applications ( Ma et al. (2015) ; Wang et al. (2018) ). 

It provides computational efficiency as well as improved perfor- 

mance due to enabling the proposed algorithm for multi-resolution 

nucleus detection. The local maxima values represent the detected 

nuclei centers. Algorithm 1 recapitulates the different steps of 

training and testing stages in our approach. 

4. Experimental evaluations 

The proposed algorithm Spatially Constrained Context-aware 

hierarchical Deep Correlation Filters (SCC-DCF) is evaluated 

quantitatively as well as qualitatively on three different his- 

tology image datasets including two colon cancer datasets 

known as CRCHistoPhenotypes ( Sirinukunwattana et al. (2016) ) 

and Colorectal Nuclear Segmentation and Phenotypes (CoNSeP) 

( Graham et al. (2019) ), and one multiple cancer types dataset 

known as PanNuke ( Gamper et al. (2020) ). 

4.1. Compared methods 

The results are compared with 15 existing state-of-the-art 

methods including: 

• Structured Regression Convolutional Neural Network (SR- 

CNN)( Xie et al. (2015) ): In this method, the last layer of the 

conventional CNN is replaced with the structured regression 

layer to encode the topological information for robust nucleus 

detection. Instead of labels, a proximity map is produced as- 

signing higher values to the nucleus center. 
• Spatially Constrained Convolutional Neural Network (SC-CNN) 

( Sirinukunwattana et al. (2016) ): This method regresses the 

likelihood of each pixel is the center of a nucleus. During train- 

ing, in the ground truth response map, high probability values 

are assigned in the vicinity of the nuclei centers. 
• Shape Prior Convolutional Neural Network (SP-CNN) 

( Tofighi et al. (2018) ): In the SP-CNN method, a set of canonical 

shapes is prepared with the help of a domain expert and used 

to perform nucleus detection using a deep neural network. 
• Tunable Shape Prior Convolutional Neural Network (TSP-CNN) 

( Tofighi et al. (2019) ): This method is the extended version 

of SP-CNN. The handcrafted canonical nuclei shapes are made 

learnable by introducing a new convolutional layer as well as 

regularization terms. 
• Stacked Sparse Auto Encoder (SSAE) ( Xu et al. (2015) ): In this 

method, a sliding window is applied on each image patch in or- 

der to extract high-level features using an auto-encoder which 

are then classified as a nuclear or non-nuclear region. 
• Crosswise SParse CNN (CSP-CNN) ( Hou et al. (2019) ): In this 

method, a convolutional autoencoder is used to decompose his- 

tology image patches into the foreground (nucleus) and back- 

ground (non-nucleus). 
• Local Isotropic Phase Symmetry measure (LIPSym) 

( Kuse et al. (2011) ): In this method, a local symmetry measure 

is used for nucleus detection. This measure is designed to give 

high values at or near the nucleus center. 
• CRImage ( Yuan et al. (2012) ): This method segments nuclei us- 

ing morphological operation, followed by distance transform, 

and watershed method. The centroid of an individual seg- 

mented nucleus is then considered as detection. 
• Vector Oriented Confidence Accumulation (VOCA) 

( Xie et al. (2018) ): It is a deep convolutional encoder-decoder- 

based method that learns a confidence score, localization 

vector, and weight of contribution for each pixel. 
• Mixture Density Networks (MDN) ( Koohababni et al. (2018) ): 

This method maps a single input image patch to a Gaussian 

probability density function of the nuclei center. If a local patch 

contains at least one nucleus, then a Gaussian mixture model is 

used to obtain the density functions. 
• Correlation Filter (CF) ( Ahmad et al. (2018) ): This is the base- 

line method of the proposed SCC-DCF algorithm. It was initially 

proposed for nucleus detection by exploiting CFs. 
• Horizontal and Vertical distances prediction Network (HoVer- 

Net) ( Graham et al. (2019) ): This method estimates vertical and 

horizontal distances of each pixel from its nearest nucleus cen- 

ter. These distances are then utilized to separate clustered nu- 

clei, resulting in improved segmentation. 
• Deep regression of the Distance map (DIST) 

( Naylor et al. (2018) ):This method segments clustered nu- 

clei by formulating the segmentation problem as a regression 

task of the distance map. 
• Micro-Net ( Raza et al. (2019) ): It is trained at multiple resolu- 

tions of the input images and it connects the intermediate lay- 

ers for better localization. It generates the output using multi- 

resolution deconvolution filters and it can handle variable ob- 

ject sizes and intensities. 
• Mask-RCNN ( He et al. (2017) ): The original Mask R-CNN is re- 

trained for the task of nucleus segmentation by using smaller 

anchor boxes ( Graham et al. (2019) ). 

For a fair comparison, the implementations were obtained from 

the original authors and their proposed parameters were used. 

4.2. Variants of the proposed SCC-DCF algorithm 

In addition, we also compared the performance of different 

variants and baselines of the proposed SCC-DCF algorithm includ- 

ing 
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• Context-Aware Correlation Filters (CACF): In this variant, no 

graph-based regularization is employed and we only utilized 

the hematoxylin channel of the histology images as used in the 

baseline CF setting ( Ahmad et al. (2018) ). 
• Deep CACF (DCACF) using deep features: This variant is 

similar to CACF except we trained CFs by using the deep 

features extracted from the pre-trained VGG-19 network 

( Kather et al. (2019) ). 
• SCC-DCF-1: In this variant, we employed principal component 

analysis for dimensionality reduction to construct the spatial 

graph. 

4.3. Experimental details 

Following the protocol in ( Sirinukunwattana et al. (2016) ), we 

consider the detections within a radius of 6 pixels from the an- 

notated ground truth center of the nucleus as true positive. In the 

case of multiple detections within the same 6 pixels region, only 

the detection closest to the ground truth center is considered as 

true positive. 

We empirically observe that the two parameters λ1 = 0 . 3 and 

λ2 = 0 . 5 , in model (3) are the best combination in all experi- 

ments. We crop the square region centered at the nucleus, in 

which the side length of the region is resized to 
√ 

5 n ( n rep- 

resents the size of the nucleus). For the construction of spatial 

graphs, we used k = 10 nearest neighbors. The optimization hyper- 

parameters are set as γ = 10 , γmax = 100 , and ρ = 1 . 3 as suggested 

in ( Danelljan et al. (2015) ). The number of contextual patches is 

also set as r = 4 . 

4.4. Datasets 

4.4.1. CRCHistoPhenotypes dataset ( Sirinukunwattana et al. (2016) ) 

This dataset 1 consists of 100 H&E stained CRC histology im- 

ages each of size 500 × 500 pixels, cropped from non-overlapping 

regions of 10 WSIs from 9 different patients, at a pixel reso- 

lution of 0.55 m/pixel (20 × optical magnification). The nuclei 

were manually annotated by an experienced pathologist. There 

is a total number of 29,756 nuclei marked at the center for 

detection purposes. The images consist of a variety of tissue 

appearances from both malignant and normal regions of WSIs. 

This is a challenging dataset with heterogeneous nuclear shapes 

and significant clutter, making the nucleus detection task diffi- 

cult more challenging. Fig. 4 shows sample tissue images of CRC 

for nucleus detection from this dataset. We have employed 2- 

fold cross-validation by using 50 images for training and the re- 

maining 50 images for testing in each fold as recommended by 

( Sirinukunwattana et al. (2016) ). 

4.4.2. Colorectal nuclear segmentation and phenotypes (consep) 

dataset ( Graham et al. (2019) ) 

This dataset 2 consists of 41 large patches each of size 10 0 0 ×
10 0 0 pixels at 40 × resolution level. These patches were extracted 

from H & E stained 16 CRC WSIs of different patients. This dataset 

consists of 24,319 manually annotated nuclei boundaries by expe- 

rienced pathologists. The dataset was initially proposed for nucleus 

segmentation purposes; however, we employ it for nucleus detec- 

tion by estimating the centroid of each nucleus segment and us- 

ing it as ground truth. Similar to the CRCHistoPhenoypes dataset, 

this dataset also contains the challenges of heterogeneity and nu- 

clei clutteredness. Fig. 5 shows a sample tissue image for nucleus 

detection from CoNSeP dataset. We have also employed the same 

1 https://warwick.ac.uk/fac/sci/dcs/research/tia/data/crchistolabelednucleihe/ . 
2 https://warwick.ac.uk/fac/sci/dcs/research/tia/data/hovernet/ . 

training and testing splits as recommended by the original authors, 

consisting of 27 patches for training and the remaining 14 patches 

for testing ( Graham et al. (2019) ). 

4.4.3. PanNuke Dataset ( Gamper et al. (2020) ) 

The PanNuke 3 is a large and diverse dataset for nucleus seg- 

mentation and classification that has been automatically annotated 

and validated by expert pathologists. This dataset contains 481 vi- 

sual fields captured at the 40x resolution level from 19 distinct 

cancer types. Within these visual fields, 189,744 nuclei bound- 

aries are exhaustively annotated. For a fair comparison of differ- 

ent models, patches of size 256 × 256 are extracted from these 

visual fields and randomly divided into three splits. Three folds 

evaluation is performed by selecting one of split as training, an- 

other one as validation, and the remaining one as testing split. 

In case no validation data is required, the validation and training 

splits are merged together and used as training splits. For quan- 

titative comparisons, the results are the average across the three 

folds. The dataset was initially proposed for nucleus segmenta- 

tion purposes; however, we employ it for nucleus detection by 

estimating the centroid of each nucleus segment and using it as 

ground truth. Similar to the other datasets, this dataset also con- 

tains the heterogeneity and nuclei clutteredness challenges. In ad- 

dition to that, the PanNuke dataset contains a large number of 

distinct cancer types while other datasets contain only colon can- 

cer histology images. Fig. 6 shows three sample images from this 

dataset. 

4.5. Evaluation metrics 

A detected nucleus is considered to be a true positive (TP) if 

it is within 6 pixel radius from the ground truth, otherwise; the 

detection is considered to be a false positive (FP). The ground 

truth not matching with any detections considered as false nega- 

tives (FN). For quantitative evaluations of SCC-DCF and its compari- 

son with current state-of-the-art methods, we use Precision, Recall, 

and F 1 score, which is computed as: 

F 1 = 2 × Precision × Recall 

Precision + Recall 
, (19) 

where Precision is defined as T P /( T P + F P ) and Recall is T P /( T P + 

F N). The aim is to maximize the F 1 measure so that its value is 

close to one. For a detailed comparison with current state-of-the- 

art methods, we have presented precision-recall (ROC) curves for 

different methods, as shown in Figs. 8 (a)-(c). The ROC curves are 

plotted by varying the threshold values applied to the predicted 

filter response before locating local maxima to avoid false-positive 

detections. 

4.6. Evaluation on CRCHistophenotypes dataset 

4.6.1. Visual assessment 

The visual results of the proposed SCC-DCF are compared 

with current state-of-the-art methods including SC-CNN, SP-CNN, 

CF, TSP-CNN, and our variant CACF are shown in Fig. 4 . The 

ground truth nuclei are marked as blue circles while the re- 

sults of nucleus detection are marked as green circles. The re- 

sults are shown for two different sample images containing clut- 

tered tumor heterogeneity and lymphocytes. The results are dis- 

played for the maximum F 1 score for each nucleus detection 

method. 

Visual results demonstrate that the proposed SCC-DCF achieved 

excellent visual performance as it detected the majority of the 

nuclei in these images even in the presence of cluttered nuclei 

3 https://warwick.ac.uk/fac/sci/dcs/research/tia/data/pannuke . 
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Fig. 4. Comparative visual assessment of the proposed SCC-DCF algorithm with current state-of-the-art methods on CRCHistoPhenotypes dataset 

( Sirinukunwattana et al. (2016) ). The top row shows a test image with tumor heterogeneity while the test image in the bottom row shows the nuclei cluttered of 

lymphocytes. The ground truth nuclei locations are shown as blue circles, and nucleus detection results are shown as green circles. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Comparative visual assessment of the proposed SCC-DCF algorithm with current state-of-the-art methods on CoNSeP dataset ( Graham et al. (2019) ). The sample image 

shows benign epithelial nuclei heterogeneity and nuclei clutteredness. The ground truth nuclei locations are shown as blue circles and nucleus detection results are shown 

as green circles. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

and varying nuclear shapes. CF has exhibited high false-negative 

rates while TSP-CNN, SP-CNN, and CACF methods have shown 

high false-positive rates in case of tumor heterogeneity (top row). 

The majority of the methods in the second row have performed 

well except CF and CACF which have relatively high false-negative 

rates, especially in the case of cluttered nuclei clusters. Both TSP- 

CNN and SP-CNN have also shown some miss-detections in the 

case of nuclei clutter. The proposed algorithm has also shown 

excellent results in the case of overlapping and clumped nu- 

clei in the tumor epithelial region as shown in Fig. 7 . This vi- 

sual result demonstrates the localization capability of the pro- 

posed SCC-DCF algorithm leveraged by the spatial graph-based 

regularization. 

4.6.2. Quantitative analysis 

Table 1 compares the nucleus detection results of the proposed 

SCC-DCF algorithm with current state-of-the-art methods in terms 

of average precision, recall, and F 1 score. These results are re- 

ported by varying the threshold values to maximize the F 1 score. 

Overall, the proposed SCC-DCF has obtained the best F 1 score of 

91 . 4% , which is 6.20 % better than second-best performer TSP-CNN. 

Note that our variants, SCC-DCF-1 and DCACF, are the second and 

third best performers obtaining 90 . 6% and 88 . 5% F 1 score. Our vari- 

ant CACF has also obtained an 85.0 % F 1 score, which is compara- 

ble to TSP-CNN. The deep features in the DCACF method have re- 

sulted in a 3.5 % performance boost over CACF while the structural 

graph-based regularization in the proposed SCC-DCF algorithm has 
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Fig. 6. Comparative visual assessment of the proposed SCC-DCF algorithm with current state-of-the-art methods on PanNuke dataset ( Gamper et al. (2020) ). From top to 

bottom: sample images of the breast, kidney, and adrenal gland cancers containing varying nuclear shape, size, and texture are shown in each row. From left to right, results 

of the nucleus detection are shown in each column for the compared methods including SC-CNN ( Sirinukunwattana et al. (2016) ), DIST ( Naylor et al. (2018) ), HoVet-Net 

( Graham et al. (2019) ), Micro-Net ( Raza et al. (2019) ), Mask R-CNN ( He et al. (2017) ), and our proposed SCC-DCF algorithm. The ground truth nuclei locations are shown as 

blue circles while the nucleus detection results are shown as green circles. (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

Fig. 7. Visual assessment of the proposed SCC-DCF algorithm in the epithelial region showing the case of overlapping and clumped nuclei. The test image is taken from the 

CRCHistoPhenotypes dataset ( Sirinukunwattana et al. (2016) ). The ground truth nuclei locations are shown as blue circles, and nucleus detection results are shown as green 

circles. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Table 1 

Comparative performance of the proposed algorithm with existing state-of-the-art methods in terms of the average precision, recall, and F 1 score on CRCHistoPhenotypes 

dataset ( Sirinukunwattana et al. (2016) ). The best and second-best performing methods are shown in red and blue, respectively. 

Evaluation Measures SC-CNN TSP-CNN SP-CNN SR-CNN SSAE CSP-CNN LIPSym CRImage VOCA MDN CF CACF DCACF SCC-DCF-1 SCC-DCF 

Precision 0.781 0.848 0.803 0.783 0.617 0.788 0.725 0.657 0.831 0.788 0.762 0.842 0.925 0.922 0.981 

Recall 0.823 0.857 0.843 0.804 0.644 0.886 0.517 0.461 0.863 0.882 0.881 0.862 0.850 0.892 0.857 

F 1 score 0.802 0.852 0.823 0.793 0.630 0.834 0.604 0.542 0.847 0.832 0.812 0.850 0.885 0.906 0.914 

Fig. 8. Comparison of the proposed SCC-DCF, DCACF, and CACF algorithms with other state-of-the-art methods including TSP-CNN ( Tofighi et al. (2019) ), SP-CNN 

( Tofighi et al. (2018) ), SC-CNN ( Sirinukunwattana et al. (2016) ), Hover-Net ( Graham et al. (2019) ), Mask-RCNN ( He et al. (2017) ), DIST ( Naylor et al. (2018) ), and Micro- 

Net ( Raza et al. (2019) ), in terms of precision-recall curves for nucleus detection on CRCHistoPhenotypes, CONSEP, and PanNuke datasets. Isolines in (a)-(c) indicate regions 

of the same F 1 scores. 

further improved 2.90 % performance over DCACF. The VOCA has 

obtained 84.7 % performance and CSP-CNN has obtained 83.4 % F 1 
score. 

Fig. 8 (a) shows the ROC curves of the best-performing meth- 

ods, including SP-CNN, TSP-CNN, SC-CNN, CACF, DCACF, and our 

proposed SCC-DCF algorithm. The isolines corresponding to the re- 

gions of the same F 1 score are also shown in the background. It can 

be seen that the ROC curve for the proposed SCC-DCF algorithm 

approaches around 91 . 4% F 1 score, while the TSP-CNN remains the 

second-best method which obtained around 85.0 % F 1 score. 

4.7. Evaluation on consep dataset 

4.7.1. Visual assessment 

Fig. 5 shows the visual comparisons of the SCC-DCF algorithm 

with SC-CNN, HoVer-Net, and Mask-RCNN on a challenging test im- 

age of the CoNSeP dataset. The sample image contains tumor het- 

erogeneity and the nuclei clutter with varying shapes. The ground 

truth nuclei are shown as blue circles, and nucleus detection re- 

sults are shown as green circles. 

SC-CNN has shown more false positives compared to the other 

methods, especially in the case of clustered nuclei. The localization 

of the proposed algorithm is significantly better compared to the 

other methods. The performance of HoVer-Net and Mask-RCNN has 

also remained low. Overall, the proposed algorithm has obtained 

the maximum true positive rate compared to the other methods. 

4.7.2. Quantitative analysis 

The proposed SCC-DCF algorithm is evaluated on the CoN- 

SeP dataset quantitatively and compared with SC-CNN, CF, HoVer- 

Net, Mask-RCNN, Micro-Net, DIST, CACF, DCACF, and SCC-DCF-1 

as shown in Table 2 by following the same experimental proto- 

cols defined in ( Sirinukunwattana et al. (2016) ). For the case of 

nucleus segmentation-based methods such as HoVer-Net, Mask- 

RCNN, Micro-Net, and DIST, the centroid of the segmented nu- 

cleus is considered as a nucleus detection and used for perfor- 

mance comparison. The other methods TSP-CNN and SP-CNN are 

Table 2 

Comparative performance of the proposed algorithm 

with existing state-of-the-art methods in terms of 

the average precision, recall, and F 1 score on CoNSeP 

dataset ( Graham et al. (2019) ). The best and second- 

best performing methods are shown in red and blue, 

respectively. 

Methods Precision Recall F 1 score 

SC-CNN 0.751 0.803 0.737 

CF 0.742 0.788 0.703 

HoVer-Net 0.766 0.817 0.753 

Mask-RCNN 0.743 0.719 0.713 

Micro-Net 0.750 0.809 0.747 

DIST 0.769 0.765 0.728 

CACF 0.787 0.777 0.755 

DCACF 0.814 0.837 0.794 

SCC-DCF-1 0.837 0.808 0.822 

SCC-DCF 0.875 0.823 0.848 

only compared on the CRCHistoPhenotypes dataset because the 

training codes are not available, therefore these methods can not 

be trained on new datasets. The proposed SCC-DCF algorithm has 

obtained a maximum average F 1 score of 84.8 % while the vari- 

ants SCC-DCF-1, DCACF, and CACF obtained 82.2 % , 79.4 % , and 75.5 % 

F 1 score. The nearest competitor is the nuclear segmentation- 

based method HoVer-Net which obtained 75.3 % F 1 score. Since the 

CoNSeP dataset is more challenging than the CRCHistoPhenotypes 

dataset; therefore, the performance of all compared methods is re- 

duced by 6.0 % to 9.0 % . 

Fig. 8 (b) shows the ROC curves comparison of the proposed 

SCC-DCF algorithm with SC-CNN, HoVer-Net, DCACF, CACF, and 

Mask-RCNN on the CoNSeP dataset. The precision-recall curve for 

the proposed SCC-DCF algorithm approaches to around 84.0 % F 1 
score. Also, the recall range of 0.50 to 0.90 SCC-DCF algorithm ROC 

curve is significantly higher than the compared methods. 
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Table 3 

Comparative performance of the proposed algo- 

rithm with existing state-of-the-art methods in 

terms of the average precision, recall, and F 1 
score on PanNuke dataset ( Gamper et al. (2020) ). 

The best and second-best performing methods are 

shown in red and blue, respectively. 

Methods Precision Recall F 1 score 

SC-CNN 0.67 0.60 0.63 

HoVer-Net 0.82 0.79 0.80 

Mask-RCNN 0.76 0.68 0.72 

Micro-Net 0.78 0.82 0.80 

DIST 0.74 0.71 0.73 

CACF 0.78 0.69 0.73 

DCACF 0.77 0.75 0.76 

SCC-DCF-1 0.79 0.80 0.79 

SCC-DCF 0.84 0.83 0.83 

4.8. Evaluation on pannuke dataset 

4.8.1. Visual assessment 

Fig. 6 shows the visual comparisons of the SCC-DCF algorithm 

with SC-CNN, DIST, HoVer-Net, Micro-Net, and Mask-RCNN on a 

challenging test images of the PanNuke dataset. These sample im- 

ages belong to breast, kidney, and adrenal gland cancer types 

and contain tumor heterogeneity with varying nuclear shapes and 

sizes. The ground truth nuclei are shown as blue circles, and nu- 

cleus detection results are shown as green circles. 

SC-CNN has shown more false positives compared to other 

methods in these test images. The nuclear segmentation methods 

DIST, Hover-Net, and Micro-Net show good nucleus detection re- 

sults for the kidney cancer test image in the midlle. The breast 

cancer image on the top row poses a great challenge for these 

segmentation-based methods because they were not able to detect 

many nuclei. This effect is more pronounced for the Mask-RCNN 

where hardly 10 nuclei are detected out of more than 100 nuclei. 

Compared to these methods, our proposed algorithm has a very 

low false-negative rate. compared to SC-CNN and DIST methods, 

the proposed SCC-DCF has a low false-positive rate for test images. 

4.8.2. Quantitative analysis 

The proposed SCC-DCF algorithm is also evaluated on the Pan- 

Nuke dataset quantitatively and compared with SC-CNN, CF, HoVer- 

Net, Mask-RCNN, Micro-Net, DIST, CACF, DCACF, and SCC-DCF-1 as 

shown in Table 3 . The F 1 score reported in Table 3 is an average 

over three dataset folds. The proposed SCC-DCF algorithm has ob- 

tained 83.0 % F 1 score while the nearest competitors are Hover-Net 

and Micro-Net both obtaining 80.0 % F 1 score. The variant of the 

proposed algorithm SCC-DCF-1 has obtained 79.0 % F 1 score that 

shows the importance of spatial graph into the correlation filters 

framework. On this dataset, these additional constraints has re- 

sulted in a 4.0 % increase accuracy. 

Fig. 8 (c) shows the ROC curves comparison of the proposed 

SCC-DCF algorithm with SC-CNN, DIST, Mask RCNN, Micro-Net, and 

Hover-Net on the PanNuke dataset. The precision-recall curve for 

the proposed SCC-DCF algorithm approaches to around 83.0 % F 1 
score. 

4.9. Generalization evaluation 

The generalization performance of the proposed SCC-DCF al- 

gorithm is also evaluated and compared with SC-CNN, TSP-CNN, 

and SP-CNN by training these methods on the CRCHistoPhenotypes 

dataset and testing on the CoNSeP dataset, as shown in Table 4 . 

The proposed algorithm achieved best F 1 score of 62 . 9% among the 

compared methods which is 21.90 % less than its own performance 

on CoNSeP dataset ( Table 2 ) and 28.50 % less than its performance 

Table 4 

Evaluation of the proposed algorithm across 

datasets: training on CRCHistPhenotypes dataset 

( Sirinukunwattana et al. (2016) ) and testing on CoNSeP 

dataset ( Graham et al. (2019) ). The best and second- 

best performing methods are shown in red and blue, 

respectively. 

Methods Precision Recall F 1 score 

SC-CNN 0.346 0.732 0.453 

SP-CNN 0.457 0.548 0.458 

TSP-CNN 0.370 0.705 0.469 

Proposed SCC-DCF 0.618 0.641 0.629 

Table 5 

Comparative performance of the proposed algorithm with SC-CNN meth- 

ods using reduced training and testing splits on CRCHistoPhenotypes 

dataset ( Sirinukunwattana et al. (2016) ). 

Data Splits Methods Precision Recall F 1 score 

Training 30% SC-CNN 0.716 0.703 0.657 

Testing 70% Proposed SCC-DCF 0.876 0.777 0.823 

Training 20% SC-CNN 0.380 0.879 0.521 

Testing 80% Proposed SCC-DCF 0.871 0.743 0.801 

Training 10% SC-CNN 0.341 0.580 0.414 

Testing 90% Proposed SCC-DCF 0.791 0.651 0.714 

on CRCHistoPhenotypes dataset ( Table 1 ). Some reduction in the 

performance can also be attributed to the more challenging nature 

of the CoNSeP dataset. In contrast, the TSP-CNN has shown a 38.3 % 

reduction as compared to its performance on the CRCHistoPhe- 

notypes dataset ( Table 1 ). The SC-CNN has shown a reduction 

of 34.9. % compared to CRCHistphenotypes dataset ( Table 1 ) and 

28.4 % reduction compared to its performance on CoNSeP dataset 

( Table 2 ). Similarly, SP-CNN has also shown a reduction of 36.5 % on 

the CRCHistophenotypes dataset ( Table 1 ). Thus, compared to these 

existing methods, the proposed SCC-DCF algorithm has shown the 

best generalization performance. 

4.10. Evaluation on reduced training dataset 

To further evaluate the strength of the proposed SCC-DCF algo- 

rithm, we reduced the training split on the CRCHistoPhenotypes 

dataset to 30 % , 20 % , and 10 % and increased the testing split to 

70 % , 80 % , and 90 % , respectively. Because of the unavailability of 

the training codes of TSP-CNN and SP-CNN methods, we only com- 

pared our performance with SC-CNN as shown in Table 5 . For 

the 30 % training set, the performance of the SCC-DCF algorithm 

is 82.3 % which is 9.10 % reduced than its performance on 50 % split 

used in Table 1 . Compared to this, the performance of SC-CNN is 

reduced by 14.5 % as observed in Table 1 . For the case of 20 % train- 

ing data, the performance of the proposed SCC-DCF algorithm is 

80.1 % , which is 11.30 % reduced than its performance on 50 % train- 

ing data. Compared to this, the performance of SC-CNN is reduced 

by 36.1 % . At 10 % training data, the proposed SCC-DCF algorithm 

observed the degradation of 20.0 % while SC-CNN observed 38.8 % 

degradation. Thus, the proposed algorithm has observed a graceful 

degradation with a reduced training dataset compared to the SC- 

CNN method. This superiority lies in the fact that our algorithm is 

based on correlation filters which can learn efficiently on relatively 

small training datasets as compared to deep neural network-based 

methods. 

4.11. Computational complexity and execution time 

We evaluate the computational complexity and execution time 

of the proposed algorithm which mainly depends on the opti- 

mization process and graph construction. We used the FLANN li- 
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braries for the graph construction using nearest neighbor strat- 

egy ( Muja and Lowe (2014) ). The spatial graph G l complexity is 

O (nd log (n )) where n is the number of pixels in each nucleus patch 

and d is the number of channels in each deep features hierarchy. 

Since, Eq. (14) is separable in each pixel location, we solve this 

w element-wise and each element is a system of linear equations 

with d variables. Each sub-problem can be solved in O (d) using 

Sherman-Morrison formula ( Petersen et al. (2008) ). Thus, the com- 

plexity of solving ˆ w is O (dn ) . Taking the DFT and inverse DFT into 

account, the complexity of solving w is O (dn log (n )) . The computa- 

tional cost for solving both p and q sub-problems is O (dn ) . Hence, 

the complexity of our SCC-DCF model is O (n 1 dn log (n )) , where n 1 
represents the maximum number of iterations. 

The execution time of the proposed algorithm is measured 

on a PC with an Intel Core i7 4.0 GHz, Titan Xp GPU, and 128 

GB RAM. Compared with current state-of-the-art methods includ- 

ing SC-CNN, TSP-CNN, and HoVer-Net, the computational time of 

the proposed SCC-DCF algorithm is significantly reduced. On the 

CRCHistoPhenotypes dataset, the SCC-DCF algorithm takes 15.31 

minutes for training, while testing time is 4.10 minutes on 50 test 

images each of size 500 × 500 pixels using MATLAB implementa- 

tion. The time on each image varies depending upon the number 

of nuclei. Our variants SCC-DCF-1 (graph construction with com- 

pressed features using PCA), DCACF, and CACF takes 13.92, 13.43, 

and 3.30 minutes for training, and 4.10, 4.10, and 2.3 minutes for 

testing. In contrast, the SC-CNN method takes more than 8 hours 

of training time and 15.20 minutes for testing the same 50 im- 

ages using Python implementation. The testing time of TSP-CNN 

and HoVer-Net using Python implementations are comparable with 

the testing time of the proposed algorithm in Matlab. 

On the CoNSeP dataset, our proposed SCC-DCF algorithm took 

16.71 minutes for training and 3.93 minutes for testing 14 images. 

The HoVer-Net method takes 380 minutes to train and 8.61 min- 

utes for testing the same 14 images ( Graham et al. (2019) ). Thus, 

the proposed SCC-DCF algorithm is computationally attractive and 

its python implementation would be even more efficient. 

5. Conclusions 

In this work, novel constraints based on the spatial structure 

of the nucleus and its local contextual information are proposed 

in the discriminative correlation filter framework to handle vary- 

ing nuclei shapes, texture, and clutter. The first constraint incor- 

porates the spatial structure of the nuclei by constructing a dense 

graph across different nucleus components based on hierarchical 

deep features. The spatial graphs are computed at each resolution 

level of the deep features. The second constraint assists the corre- 

lation filter to discriminate between the nucleus and non-nucleus 

region. Both these constraints reduce the boundary effects during 

training and enhance nuclear localization. The proposed objective 

function containing spatial graph-based constraints and contextual 

information in the DCF framework is solved using the ADMM op- 

timization method where the closed-form solution of each sub- 

problem is derived in a more efficient manner. At each level, we 

independently compute the constrained correlation filter response 

and maxima is seeked across all levels. The proposed algorithm 

dubbed as SCC-DCF has shown significant performance improve- 

ment on large-scale nucleus detection challenging datasets com- 

pared to 15 existing state-of-the-art methods. In the future, we will 

explore the strength of correlation filters for nucleus classification 

and tissue phenotyping problems. 

Declaration of Competing Interest 

• All authors have participated in (a) conception and design, or 

analysis and interpretation of the data; (b) drafting the article 

or revising it critically for important intellectual content; and 

(c) approval of the final version. 
• This manuscript has not been submitted to, nor is under review 

at, another journal or other publishing venue. 
• The authors have no affiliation with any organization with a di- 

rect or indirect financial interest in the subject matter discussed 

in the manuscript 
• The following authors have a following academic affiliations 

with organizations 

CRediT authorship contribution statement 

Sajid Javed: Conceptualization, Methodology, Software, Inves- 

tigation, Project administration, Writing - original draft, Writing 

- review & editing. Arif Mahmood: Conceptualization, Methodol- 

ogy, Investigation, Writing - original draft, Writing - review & edit- 

ing. Jorge Dias: Conceptualization, Methodology, Project adminis- 

tration, Writing - review & editing, Supervision. Naoufel Werghi: 

Conceptualization, Methodology, Project administration, Writing - 

review & editing, Supervision. Nasir Rajpoot: Conceptualization, 

Methodology, Project administration, Writing - review & editing, 

Supervision. 

Acknowledgements 

This publication acknowledges the support provided by the 

Khalifa University of Science and Technology under Award No. 

RC1-2018-KUCARS and electrical engineering and computer sci- 

ence departmnt at KU.The last author of this work, Nasir Ra- 

jpoot (NR), is supported by the UK Medical Research Council 

(No. MR/P015476/1). NR is also supported by the PathLAKE digi- 

tal pathology consortium, which is funded from the Data to Early 

Diagnosis and Precision Medicine strand of the government’s In- 

dustrial Strategy Challenge Fund, managed and delivered by UK Re- 

search and Innovation (UKRI). 

References 

Adiga, U. , Malladi, R. , Fernandez-Gonzalez, R. , de Solorzano, C.O. , 2006. High- 

-throughput analysis of multispectral images of breast cancer tissue. IEEE T-IP 
15 (8), 2259–2268 . 

Ahmad, A. , Asif, A. , Rajpoot, N. , Arif, M. , et al. , 2018. Correlation filters for detection 
of cellular nuclei in histopathology images. J of M. S. 42 (1), 7 . 

Al-Kofahi, Y. , Lassoued, W. , Lee, W. , Roysam, B. , 2009. Improved automatic detection 
and segmentation of cell nuclei in histopathology images. IEEE T-BME 57 (4), 

841–852 . 

Andrion, A. , Magnani, C. , Betta, P. , Donna, A. , Mollo, F. , Scelsi, M. , Bernardi, P. , 
Botta, M. , Terracini, B. , 1995. Malignant mesothelioma of the pleura: interob- 

server variability.. J. of Cli. Path. 48 (9), 856–860 . 
Bolme, D.S. , Beveridge, J.R. , Draper, B.A. , Lui, Y.M. , 2010. Visual object tracking using 

adaptive correlation filters. IEEE CVPR . 
Boyd, S. , Parikh, N. , Chu, E. , Peleato, B. , Eckstein, J. , et al. , 2011. Distributed optimiza- 

tion and statistical learning via the alternating direction method of multipliers. 

Found. and Trends in ML 3 (1), 1–122 . 
Bui, M.M. , Asa, S.L. , Pantanowitz, L. , Parwani, A. , van der Laak, J. , Ung, C. , Balis, U. , 

Isaacs, M. , Glassy, E. , Manning, L. , 2019. Digital and computational pathology: 
bring the future into focus. J. of Path. Info. 10 . 

Byun, J. , Verardo, M.R. , Sumengen, B. , Lewis, G.P. , Manjunath, B. , Fisher, S.K. , 2006. 
Automated tool for the detection of cell nuclei in digital microscopic images: 

Application to retinal images . 

Cheng, J. , Rajapakse, J.C. , et al. , 2008. Segmentation of clustered nuclei with shape 
markers and marking function. IEEE T-BME 56 (3), 741–748 . 

Cire ̧s an, D.C. , Giusti, A. , Gambardella, L.M. , Schmidhuber, J. , 2013. Mitosis detec- 
tion in breast cancer histology images with deep neural networks. In: MICCAI, 

pp. 411–418 . 
Cosatto, E. , Miller, M. , Graf, H.P. , Meyer, J.S. , 2008. Grading nuclear pleomorphism 

on histological micrographs. IEEE ICPR . 
Cruz-Roa, A .A . , Ovalle, J.E.A . , Madabhushi, A . , Osorio, F.A .G. , 2013. A deep learn- 

ing architecture for image representation, visual interpretability and automated 

basal-cell carcinoma cancer detection. MICCAI . 
Danelljan, M. , Hager, G. , Khan, F.S. , Felsberg, M. , 2015. Learning spatially regularized 

correlation filters for visual tracking. IEEE ICCV . 
Demir, C., Yener, B.,. Automated cancer diagnosis based on histopathological images: 

a systematic survey. 

14 

http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0001
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0001
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0001
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0001
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0001
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0002
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0002
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0002
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0002
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0002
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0002
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0003
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0003
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0003
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0003
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0003
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0004
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0004
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0004
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0004
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0004
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0004
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0004
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0004
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0004
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0004
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0006
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0006
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0006
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0006
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0006
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0006
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0006
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0007
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0007
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0007
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0007
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0007
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0007
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0007
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0007
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0007
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0007
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0007
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0008
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0008
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0008
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0008
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0008
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0008
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0008
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0009
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0009
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0009
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0009
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0010
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0010
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0010
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0010
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0010
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0011
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0011
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0011
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0011
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0011
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0012
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0012
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0012
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0012
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0012
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0013
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0013
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0013
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0013
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0013


S. Javed, A. Mahmood, J. Dias et al. Medical Image Analysis 72 (2021) 102104 

Dunne, B. , Going, J. , 2001. Scoring nuclear pleomorphism in breast cancer. 
Histopathology 39 (3), 259–265 . 

Fiaz, M. , Mahmood, A. , Javed, S. , Jung, S.K. , 2019. Handcrafted and deep trackers: 
recent visual object tracking approaches and trends. ACM CSUR 52 (2), 43 . 

Gamper, J. , Koohbanani, N.A. , Graham, S. , Jahanifar, M. , Khurram, S.A. , Azam, A. , He- 
witt, K. , Rajpoot, N. , 2020. Pannuke dataset extension, insights and baselines. 

arXiv preprint arXiv:2003.10778 . 
Giraldo, J.H. , Javed, S. , Bouwmans, T. , 2020. Graph moving object segmentation. IEEE 

T-PAMI . 1–1 

Graham, S. , Vu, Q.D. , Raza, S.E.A. , Azam, A. , Tsang, Y.W. , Kwak, J.T. , Rajpoot, N. , 2019. 
Hover-net: simultaneous segmentation and classification of nuclei in multi-tis- 

sue histology images. MIA 58, 101563 . 
Grau, V. , Mewes, A. , Alcaniz, M. , Kikinis, R. , Warfield, S.K. , 2004. Improved water- 

shed transform for medical image segmentation using prior information. IEEE 
T-MI 23 (4), 447–458 . 

Gurcan, M.N. , Boucheron, L. , Can, A. , Madabhushi, A. , Rajpoot, N. , Yener, B. , 2009. 

Histopathological image analysis: a review. IEEE Rev. in Bio. Eng. 2, 147 . 
Hamed, G. , Sim, T. , Lucey, S. , 2013. Multi-channel correlation filters. IEEE ICCV . 

He, K. , Gkioxari, G. , Dollár, P. , Girshick, R. , 2017. Mask R-CNN. IEEE CVPR . 
Henriques, J.F. , Caseiro, R. , Martins, P. , Batista, J. , 2014. High-speed tracking with 

kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37 (3), 
583–596 . 

Höfener, H. , Homeyer, A. , Weiss, N. , Molin, J. , Lundström, C.F. , Hahn, H.K. , 2018. Deep 

learning nuclei detection: a simple approach can deliver state-of-the-art results. 
Comp. Med. Imag. and Grap. 70, 43–52 . 

Hou, L. , Nguyen, V. , Kanevsky, A.B. , Samaras, D. , Kurc, T.M. , Zhao, T. , Gupta, R.R. , 
Gao, Y. , Chen, W. , Foran, D. , et al. , 2019. Sparse autoencoder for unsupervised 

nucleus detection and representation in histopathology images. PR 86, 188–200 . 
Hu, L.S. , Baxter, L. , Smith, K. , Feuerstein, B. , Karis, J. , Eschbacher, J. , Coons, S. , 

Nakaji, P. , Yeh, R. , Debbins, J. , et al. , 2009. Relative cerebral blood volume val- 

ues to differentiate high-grade glioma recurrence from posttreatment radiation 
effect: direct correlation between image-guided tissue histopathology and local- 

ized dynamic susceptibility-weighted contrast-enhanced perfusion mr imaging 
measurements. A. J. of Nuer. Rad. 30 (3), 552–558 . 

Irshad, H. , Veillard, A. , Roux, L. , Racoceanu, D. , 2013. Methods for nuclei detection, 
segmentation, and classification in digital histopathology: a reviewcurrent sta- 

tus and future potential. IEEE Rev. in Bio. Eng. 7, 97–114 . 

Javed, S. , Fraz, M.M. , Epstein, D. , Snead, D. , Rajpoot, N.M. , 2018. Cellular Commu- 
nity Detection for Tissue Phenotyping in Histology Images. In: Computational 

Pathology and Ophthalmic Medical Image Analysis, pp. 120–129 . 
Javed, S. , Mahmood, A. , Al-Maadeed, S. , Bouwmans, T. , Jung, S.K. , 2018. Moving ob- 

ject detection in complex scene using spatiotemporal structured-sparse rpca. 
IEEE T-IP 28 (2), 1007–1022 . 

Javed, S. , Mahmood, A. , Bouwmans, T. , Jung, S.K. , 2016. Spatiotemporal low-rank 

modeling for complex scene background initialization. IEEE T-CSVT 28 (6), 
1315–1329 . 

Javed, S. , Mahmood, A. , Bouwmans, T. , Jung, S.K. , 2017. Background–foreground 
modeling based on spatiotemporal sparse subspace clustering. IEEE T-IP 26 (12), 

5840–5854 . 
Javed, S. , Mahmood, A. , Dias, J. , Werghi, N. , 2020. Cs-rpca: Clustered sparse rpca for 

moving object detection. In: IEEE ICIP, pp. 3209–3213 . 
Javed, S. , Mahmood, A. , Dias, J. , Werghi, N. , 2020. Robust structural low-rank track- 

ing. IEEE T-IP 29, 4390–4405 . 

Javed, S. , Mahmood, A. , Fraz, M.M. , Koohbanani, N.A. , Benes, K. , Tsang, Y.-W. , He- 
witt, K. , Epstein, D. , Snead, D. , Rajpoot, N. , 2020. Cellular community detection 

for tissue phenotyping in colorectal cancer histology images. MIA 63, 101696 . 
Javed, S. , Mahmood, A. , Werghi, N. , Benes, K. , Rajpoot, N. , 2020. Multiplex cellu- 

lar communities in multi-gigapixel colorectal cancer histology images for tissue 
phenotyping. IEEE T-IP 29, 9204–9219 . 

Javed, S. , Mahmood, A. , Werghi, N. , Rajpoot, N. , 2019. Deep multiresolution cellu- 

lar communities for semantic segmentation of multi-gigapixel histology images. 
ICCV-W . 

Jung, C. , Kim, C. , 2010. Segmenting clustered nuclei using h-minima transfor- 
m-based marker extraction and contour parameterization. IEEE T-BME 57 (10), 

2600–2604 . 
Kather, J.N. , Krisam, J. , Charoentong, P. , Luedde, T. , Herpel, E. , Weis, C.-A. , Gaiser, T. , 

Marx, A. , Valous, N.A. , Ferber, D. , et al. , 2019. Predicting survival from colorectal 

cancer histology slides using deep learning: a retrospective multicenter study. 
PLoS Med. 16 (1) . 

Koohababni, N.A. , Jahanifar, M. , Gooya, A. , Rajpoot, N. , 2018. Nuclei detection us- 
ing mixture density networks. International Workshop on Machine Learning in 

Medical Imaging . 
Kuse, M. , Wang, Y.-F. , Kalasannavar, V. , Khan, M. , Rajpoot, N. , 2011. Local isotropic 

phase symmetry measure for detection of beta cells and lymphocytes. JPI 2 . 

Li, F. , Zhou, X. , Ma, J. , Wong, S.T. , 2009. Multiple nuclei tracking using integer pro- 
gramming for quantitative cancer cell cycle analysis. IEEE T-MI 29 (1), 96–105 . 

Lindeberg, T. , 1998. Feature detection with automatic scale selection. IJCV 30 (2), 
79–116 . 

López, C. , Lejeune, M. , Bosch, R. , Korzynska, A. , García-Rojo, M. , Salvadó, M.-T. , Ál- 
varo, T. , Callau, C. , Roso, A. , Jaén, J. , 2012. Digital image analysis in breast cancer: 

an example of an automated methodology and the effects of image compres- 

sion.. Stud. in H. Tech. and Inf. 179, 155–171 . 
Lucchinetti, C.F. , Popescu, B.F. , Bunyan, R.F. , Moll, N.M. , Roemer, S.F. , Lassmann, H. , 

Brück, W. , Parisi, J.E. , Scheithauer, B.W. , Giannini, C. , et al. , 2011. Inflammatory 
cortical demyelination in early multiple sclerosis. N. E. J. of Med. 365 (23), 

2188–2197 . 

Ma, C. , Huang, J.-B. , Yang, X. , Yang, M.-H. , 2015. Hierarchical convolutional features 
for visual tracking. IEEE ICCV . 

Mao, K.Z. , Zhao, P. , Tan, P.-H. , 2006. Supervised learning-based cell image segmen- 
tation for p53 immunohistochemistry. IEEE T-BME 53 (6), 1153–1163 . 

Matas, J. , Chum, O. , Urban, M. , Pajdla, T. , 2004. Robust wide-baseline stereo from 

maximally stable extremal regions. Im. A. Vis. Comp. 22 (10), 761–767 . 

Muja, M. , Lowe, G.D. , 2014. Scalable nearest neighbor algorithms for high dimen- 
sional data. IEEE T-PAMI 36 (11), 2227–2240 . 

Naylor, P. , Laé, M. , Reyal, F. , Walter, T. , 2018. Segmentation of nuclei in histopathol- 

ogy images by deep regression of the distance map. IEEE T-MI 38 (2), 448–459 . 
Park, C. , Huang, J.Z. , Ji, J.X. , Ding, Y. , 2012. Segmentation, inference and classification 

of partially overlapping nanoparticles. IEEE T-PAMI 35 (3) . 1–1 
Parvin, B. , Yang, Q. , Han, J. , Chang, H. , Rydberg, B. , Barcellos-Hoff, M.H. , 2007. Itera- 

tive voting for inference of structural saliency and characterization of subcellu- 
lar events. IEEE T-IP 16 (3), 615–623 . 

Petersen, K.B. , Pedersen, M.S. , et al. , 2008. The matrix cookbook, vol. 7. TUD 15 . 

Pinckaers, H. , Litjens, G. , 2019. Neural ordinary differential equations for semantic 
segmentation of individual colon glands. arXiv preprint arXiv:1910.10470 . 

Qi, X. , Xing, F. , Foran, D.J. , Yang, L. , 2011. Robust segmentation of overlapping cells in 
histopathology specimens using parallel seed detection and repulsive level set. 

IEEE T-BME 59 (3), 754–765 . 
Raza, S.E.A. , Cheung, L. , Shaban, M. , Graham, S. , Epstein, D. , Pelengaris, S. , Khan, M. , 

Rajpoot, N.M. , 2019. Micro-net: a unified model for segmentation of various ob- 

jects in microscopy images. MIA 52, 160–173 . 
Ruifrok, A.C. , Johnston, D.A. , et al. , 2001. Quantification of histochemical staining by 

color deconvolution. Ana. and Quan. Cyt. and His. 23 (4), 291–299 . 
Sharif Razavian, A. , Azizpour, H. , Sullivan, J. , Carlsson, S. , 2014. Cnn features of- 

f-the-shelf: an astounding baseline for recognition. IEEE CVPRW . 
Shi, X. , Sapkota, M. , Xing, F. , Liu, F. , Cui, L. , Yang, L. , 2018. Pairwise based deep rank- 

ing hashing for histopathology image classification and retrieval. PR 81, 14–22 . 

Sirinukunwattana, K. , e Ahmed Raza, S. , Tsang, Y.-W. , Snead, D.R. , Cree, I.A. , Ra- 
jpoot, N.M. , 2016. Locality sensitive deep learning for detection and classifi- 

cation of nuclei in routine colon cancer histology images.. IEEE T-MI 35 (5), 
1196–1206 . 

Sommer, C. , Fiaschi, L. , Hamprecht, F.A. , Gerlich, D.W. , 2012. Learning-based mitotic 
cell detection in histopathological images. In: ICPR, pp. 2306–2309 . 

Su, H. , Xing, F. , Lee, J. , Peterson, C. , Yang, L. , 2014. Automatic myonuclear detection 

in isolated single muscle fibers using robust ellipse fitting and sparse represen- 
tation. IEEE/ACM T-CBB 11 (4), 714–726 . 

Su, H. , Xing, F. , Yang, L. , 2016. Robust cell detection of histopathological brain tumor 
images using sparse reconstruction and adaptive dictionary selection. IEEE T-MI 

35 (6), 1575–1586 . 
Tofighi, M. , Guo, T. , Vanamala, J.K. , Monga, V. , 2019. Prior information guided regu- 

larized deep learning for cell nucleus detection. IEEE T-MI 38 (9), 2047–2058 . 

Tofighi, M. , Guo, T. , Vanamala, J.K.P. , Monga, V. , 2018. Deep networks with shape 
priors for nucleus detection. IEEE ICIP . 

Veta, M. , Pluim, J.P. , Van Diest, P.J. , Viergever, M.A. , 2014. Breast cancer histopathol- 
ogy image analysis: areview. IEEE Rev. in Bio. Eng. 61 (5), 1400–1411 . 

Wang, N. , Zhou, W. , Tian, Q. , Hong, R. , Wang, M. , Li, H. , 2018. Multi-cue correlation 
filters for robust visual tracking. IEEE CVPR . 

Xie, C. , Vanderbilt, C.M. , Grabenstetter, A. , Fuchs, T.J. , 2018. Voca: Cell nuclei detec- 
tion in histopathology images by vector oriented confidence accumulation . 

Xie, Y. , Xing, F. , Kong, X. , Su, H. , Yang, L. , 2015. Beyond classification: structured 

regression for robust cell detection using convolutional neural network. MICCAI . 
Xing, F. , Su, H. , Yang, L. , 2013. An integrated framework for automatic ki-67 scoring 

in pancreatic neuroendocrine tumor. MICCAI . 
Xing, F. , Xie, Y. , Shi, X. , Chen, P. , Zhang, Z. , Yang, L. , 2019. Towards pixel-to-pixel 

deep nucleus detection in microscopy images. BMC Bio. 20 (1), 1–16 . 
Xing, F. , Xie, Y. , Yang, L. , 2015. An automatic learning-based framework for robust 

nucleus segmentation. IEEE T-MI 35 (2), 550–566 . 

Xing, F. , Xie, Y. , Yang, L. , 2016. An automatic learning-based framework for robust 
nucleus segmentation. IEEE T-MI 35 (2), 550–566 . 

Xing, F. , Yang, L. , 2016. Robust nucleus/cell detection and segmentation in digital 
pathology and microscopy images: a comprehensive review. IEEE Rev. in Bio. 

Eng. 9, 234–263 . 
Xu, J. , Xiang, L. , Hang, R. , Wu, J. , 2014. Stacked sparse autoencoder (ssae) based 

framework for nuclei patch classification on breast cancer histopathology. IEEE 

ISBI . 
Xu, J. , Xiang, L. , Liu, Q. , Gilmore, H. , Wu, J. , Tang, J. , Madabhushi, A. , 2015. Stacked 

sparse autoencoder (ssae) for nuclei detection on breast cancer histopathology 
images. IEEE T-MI 35 (1), 119–130 . 

Xue, Y. , Ray, N. , 2017. Cell detection with deep convolutional neural network and 
compressed sensing. arXiv preprint arXiv:1708.03307 . 

Yan, P. , Zhou, X. , Shah, M. , Wong, S.T. , 2008. Automatic segmentation of high- 

-throughput rnai fluorescent cellular images. IEEE T-ITB 12 (1), 109–117 . 
Yang, X. , Li, H. , Zhou, X. , 2006. Nuclei segmentation using marker-controlled wa- 

tershed, tracking using mean-shift, and kalman filter in time-lapse microscopy. 
IEEE T-CS-I 53 (11), 2405–2414 . 

Yin, M. , Gao, J. , Lin, Z. , 2015. Laplacian regularized low-rank representation and its 
applications. IEEE T-PAMI 38 (3), 504–517 . 

Yuan, Y. , Failmezger, H. , Rueda, O.M. , Ali, H.R. , Gräf, S. , Chin, S.-F. , Schwarz, R.F. , Cur- 

tis, C. , Dunning, M.J. , Bardwell, H. , et al. , 2012. Quantitative image analysis of 
cellular heterogeneity in breast tumors complements genomic profiling. STM 4 

(157) . 157ra143–157ra143 

15 

http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0015
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0015
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0015
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0016
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0016
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0016
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0016
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0016
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0017
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0017
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0017
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0017
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0017
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0017
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0017
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0017
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0017
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0018
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0018
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0018
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0018
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0018
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0019
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0019
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0019
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0019
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0019
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0019
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0019
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0019
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0020
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0020
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0020
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0020
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0020
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0020
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0021
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0021
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0021
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0021
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0021
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0021
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0021
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0022
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0022
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0022
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0022
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0023
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0023
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0023
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0023
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0023
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0024
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0024
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0024
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0024
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0024
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0025
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0025
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0025
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0025
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0025
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0025
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0025
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0026
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0026
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0026
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0026
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0026
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0026
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0026
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0026
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0026
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0026
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0026
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0026
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0028
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0028
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0028
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0028
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0028
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0029
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0029
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0029
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0029
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0029
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0029
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0030
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0030
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0030
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0030
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0030
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0030
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0031
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0031
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0031
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0031
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0031
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0032
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0032
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0032
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0032
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0032
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0033
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0033
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0033
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0033
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0033
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0034
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0034
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0034
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0034
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0034
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0035
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0035
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0035
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0035
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0035
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0035
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0035
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0035
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0035
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0035
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0035
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0036
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0036
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0036
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0036
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0036
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0036
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0037
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0037
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0037
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0037
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0037
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0038
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0038
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0038
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0039
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0039
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0039
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0039
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0039
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0039
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0039
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0039
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0039
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0039
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0039
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0039
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0040
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0040
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0040
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0040
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0040
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0041
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0041
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0041
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0041
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0041
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0041
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0042
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0042
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0042
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0042
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0042
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0043
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0043
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0044
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0044
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0044
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0044
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0044
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0044
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0044
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0044
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0044
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0044
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0044
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0045
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0045
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0045
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0045
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0045
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0045
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0045
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0045
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0045
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0045
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0045
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0045
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0046
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0046
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0046
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0046
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0046
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0047
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0047
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0047
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0047
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0048
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0048
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0048
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0048
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0048
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0049
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0049
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0049
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0050
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0050
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0050
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0050
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0050
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0051
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0051
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0051
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0051
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0051
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0051
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0052
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0052
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0052
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0052
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0052
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0052
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0052
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0053
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0053
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0053
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0053
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0054
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0054
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0054
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0055
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0055
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0055
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0055
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0055
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0056
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0056
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0056
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0056
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0056
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0056
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0056
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0056
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0056
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0057
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0057
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0057
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0057
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0058
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0058
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0058
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0058
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0058
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0059
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0059
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0059
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0059
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0059
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0059
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0059
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0060
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0060
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0060
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0060
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0060
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0060
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0060
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0061
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0061
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0061
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0061
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0061
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0062
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0062
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0062
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0062
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0062
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0062
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0063
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0063
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0063
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0063
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0064
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0064
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0064
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0064
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0064
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0065
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0065
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0065
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0065
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0065
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0066
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0066
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0066
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0066
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0066
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0067
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0067
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0067
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0067
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0067
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0067
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0067
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0068
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0068
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0068
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0068
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0068
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0069
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0069
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0069
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0069
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0069
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0069
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0070
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0070
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0070
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0070
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0071
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0071
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0071
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0071
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0071
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0071
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0071
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0072
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0072
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0072
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0072
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0073
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0073
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0073
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0073
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0074
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0074
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0074
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0075
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0075
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0075
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0075
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0075
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0076
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0076
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0076
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0076
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0076
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0076
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0076
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0076
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0077
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0077
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0077
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0078
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0078
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0078
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0078
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0078
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0079
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0079
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0079
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0079
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0080
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0080
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0080
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0080
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0081
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0081
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0081
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0081
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0081
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0081
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0081
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0081
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0081
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0081
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0081
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0081
http://refhub.elsevier.com/S1361-8415(21)00150-X/sbref0081

	Spatially Constrained Context-Aware Hierarchical Deep Correlation Filters for Nucleus Detection in Histology Images
	1 Introduction
	2 Literature review
	3 The proposed method
	3.1 Pre-Processing steps
	3.2 Deep feature extraction
	3.3 Proposed SCC-DCF formulation
	3.4 Spatial graph regularization
	3.5 SCC-DCF Optimization
	3.6 Nucleus detection

	4 Experimental evaluations
	4.1 Compared methods
	4.2 Variants of the proposed SCC-DCF algorithm
	4.3 Experimental details
	4.4 Datasets
	4.4.1 CRCHistoPhenotypes dataset (Sirinukunwattana et al. (2016))
	4.4.2 Colorectal nuclear segmentation and phenotypes (consep) dataset (Graham et al. (2019))
	4.4.3 PanNuke Dataset (Gamper et al. (2020))

	4.5 Evaluation metrics
	4.6 Evaluation on CRCHistophenotypes dataset
	4.6.1 Visual assessment
	4.6.2 Quantitative analysis

	4.7 Evaluation on consep dataset
	4.7.1 Visual assessment
	4.7.2 Quantitative analysis

	4.8 Evaluation on pannuke dataset
	4.8.1 Visual assessment
	4.8.2 Quantitative analysis

	4.9 Generalization evaluation
	4.10 Evaluation on reduced training dataset
	4.11 Computational complexity and execution time

	5 Conclusions
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgements
	References


