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ABSTRACT

Despite LLMs’ advanced performance in multilingual tasks, they usually have
performance gap on the same task in dominant languages (e.g., English) and
non-dominant languages (e.g., Turkish). In this paper, we analyze LLMs’ ca-
pacity to transfer the task knowledge learned in the dominant language to the
non-dominant language. We first formulate the cross-lingual transfer problem
into a gradient alignment problem and then connect it to the representation align-
ment problem. We show that pre-trained LLMs with decent representation align-
ment ability can easily transfer knowledge from the dominant language by simple
fine-tuning, while others need carefully designed training strategies. For the
latter, we propose a cross-lingual in-context prompt tuning (CL-ICP) model to
enhance gradient alignment, which utilizes in-context attentions to generalize to
unseen data. In addition, we apply a representation shift to enhance represen-
tation alignment between demonstration and target samples. Experiments show
that CL-ICP improves cross-lingual transfer in both high and low resource sce-
narios. The code is available in https://anonymous.4open.science/
r/Cross-Lingual-Alignment-94C2.

1 INTRODUCTION

State of the art LLMs are pre-trained to have strong capacities in solving multilingual downstream
tasks (Shi et al., 2023; Zhao et al., 2025a). However, their performance varies across different
languages even for the same task (Huang et al., 2023). Specifically, models tend to perform better
in dominant languages like English than in non-dominant languages like Turkish (Asai et al., 2024;
Gurgurov et al., 2024a). Assuming the major knowledge for solving a task is language agnostic,
models performing well in the dominant language should have the knowledge to solve the task and are
supposed to also perform well in non-dominant languages. In this paper, we study the cross-lingual
transfer problem which utilizing the knowledge learned from a dominant language to enhance the
model’s task performance in a non-dominant language.

Previous works have identified that models’ alignment between languages is the key to cross-lingual
transfer (Stap et al., 2023; Tanwar et al., 2023a; Qin et al., 2024; Zeng et al., 2025). The multi-
lingual alignment includes: (1) language-level alignment, which utilizes LLMs’ ability to encode the
knowledge from different languages to the dominant language’s space (Wang et al., 2024; Zhao et al.,
2024b; Wendler et al., 2024; Schut et al., 2025); (2) representation-level alignment, where models
are trained to connect data representations from different languages in supervised and unsupervised
manners (Bornea et al., 2021; Li et al., 2024; Zhang et al., 2025a). However, what kind of alignment
is necessary for knowledge transfer remains underexplored (Hämmerl et al., 2024). Such lack of
understanding presents a challenge in optimizing cross-lingual transfer strategies. For example, in
post-training, some works claim that simple fine-tuning on the dominant language is already strong
for cross-lingual transfer (Chirkova & Nikoulina, 2024); while other works emphasize the need for
additional alignment between language representations (Li et al., 2024; Zhang et al., 2025a).

To better understand the effect of alignment in cross-lingual transfer, we first formulate cross-lingual
transfer as a gradient alignment problem that aims to maximize the inner product between gradients
on the dominant and non-dominant languages’ data during training (Riemer et al., 2019). Therefore,
the decrease of loss on the dominant language’s data will also lead to a loss decrease on the non-
dominant language’s data and cause knowledge transfer. Then we show that gradient alignment
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depends on the alignment between representations of dominant and non-dominant languages’ data.
For pre-trained LLMs with decent representation alignment ability, fine-tuning on the dominant
language may directly transfer the knowledge to the non-dominant language.

In the case that needs further tuning with the non-dominant language’s data, we show that simple
fine-tuning and multi-task learning tend to maximize gradient alignment within and across languages
and therefore have strong performance with sufficient training data. However, data in non-dominant
languages are usually low-resourced (Huang et al., 2023). In the low-resource scenario, existing
models which enforce alignment between accessible data may not be generalized enough. To address
this problem, we propose a cross lingual in-context prompt tuning (CL-ICP) model which utilizes the
target sample’s attention on different demonstration samples to infer its relation to the unseen data.
When training with in-context samples, it enforces gradient alignment based on the contribution of
each dominant language’s data (demonstration) to the prediction of non-dominant language’s data
(target). To improve the relevance between demonstration and target samples for better transfer,
we shift the target sample’s representation to make it closer to the demonstration’s representation.
Experiments show that CL-ICP outperforms existing models in both high and low resource scenarios.

In summary, our work makes the following contributions:

• We provide a new and unified perspective for studying the alignment problem in cross-lingual
transfer. Specifically, we formulate the problem with a gradient alignment objective; analyze
the connection between gradient and representation alignment; and show the alignment
effects in existing models.

• We show that adding in-context samples may further improve the gradient alignment during
training; and propose a CL-ICP model with representation shift to improve both gradient
and representation alignment.

• Experiments in different cross-lingual transfer scenarios show the effectiveness of our
CL-ICP model, which further supports our alignment claims.

2 RELATED WORK

Cross-lingual Transfer Despite strong multilingual capacity (Shi et al., 2023; Zhao et al., 2025a),
current LLMs usually have limited proficiency in low-resource languages (Huang et al., 2023;
Gurgurov et al., 2024a). This calls for cross-lingual transfer models that leverage knowledge
from high-resource (dominant) languages to improve performance in low-resource (non-donimant)
languages (Ruder et al., 2019). Existing works improve cross-lingual transfer from the pre-training
to post-training stages. Conneau & Lample (2019); Ouyang et al. (2021) use translation based
pre-training to enhance LLMs’ multilingual transfer ability. Gupta et al. (2023); Zhao et al. (2024a);
Fujii et al. (2024) continually pre-train the LLMs to better understand non-dominant languages. Pan
et al. (2020); Wang et al. (2022); Gurgurov et al. (2024b); Cassano et al. (2024) use adaptation
techniques to transfer pre-trained knowledge to non-dominant languages’ tasks.

Recently, In-Context Learning (ICL) has emerged as a powerful paradigm for LLM post training
(Brown et al., 2020). Previous works have also explored the benefit of ICL in multilingual task
learning (Li et al., 2024), but only few of them explored the transfer ability of using cross-lingual
samples in ICL (Tanwar et al., 2023b; Zhang et al., 2024). Even for the above works, they aimed to
improve ICL in the multilingual settings without training, and thus not exploring the cross-lingual
knowledge transfer ability of in-context training compared to fine-tuning or multi-task learning. Our
work analyzes the benefits of training with in-context samples in cross-lingual transfer, showing that
it may achieve better alignment to unseen data and thus benefit in the low-resource scenario.

Cross-Lingual Alignment Alignment has been recognized as a crucial factor in effective cross-
lingual transfer (Stap et al., 2023; Tanwar et al., 2023a; Qin et al., 2024; Zeng et al., 2025). Previous
works show that LLMs tend to map different languages’ representations to one language’s repre-
sentation space (Wang et al., 2024; Zhao et al., 2024b; Wendler et al., 2024; Schut et al., 2025),
which indicates their language alignment ability before post-training. In post-training, existing works
add extra representation alignment to better align cross-lingual representations via translation-based
objectives (Bornea et al., 2021), contrastive learning (Li et al., 2024) and representation shift (Zhang
et al., 2025a; Sundar et al., 2025). However, to what extent the extra alignment is necessary in post-
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training remains unexplored (Hämmerl et al., 2024). In this work, we first analyze the alignment in
the gradient perspective and connect it to the representation alignment. Our analysis bridges existing
training strategies and representation alignment methods, indicating the cases when representation
alignment can compensate existing learning strategies for better cross-lingual transfer.

3 PROBLEM STATEMENT

In this paper, we study the cross-lingual transfer problem which utilizes the task knowledge learned
in the dominant language to enhance the same task’s performance in the non-dominant language.

3.1 CROSS-LINGUAL TRANSFER SETTINGS

We consider two main cross-lingual transfer scenarios: (1) Dominant language direct transfer where
the model learns the task in the dominant language and then is directly applied to the non-dominant
language; (2) Mixed language transfer where the model learns the task in both the dominant and
non-dominant languages to improve performance in the non-dominant language.

Based on different data accessibility in the above scenarios, we divide the data in cross-lingual
transfer into the following categories:

• The accessible data Ds in the dominant language s;
• The accessible data Dt in the non-dominant language t;
• The inaccessible data Dunseen, which is a minimal complementary set that enables the LLM

to sufficiently learn the task in language t when added to the accessible data.

In the dominant language direct transfer only Ds is used in training, while in the mixed language
transfer both Ds and Dt are used in training. When sufficiently learned the task in the non-dominant
language t, the learned model should achieve good performance on the language t’s data Dt and the
inaccessible data Dunseen.

3.2 PROBLEM FORMULATION

We study the cross-lingual transfer problem from a gradient perspective. Since the goal of cross-
lingual transfer is to use a dominant language to improve the accuracy of a non-dominant language
in the downstream task (Lin et al., 2019), the training that decreases the loss on the dominant or
mixed languages’ data should also decrease the loss (i.e., improve the accuracy) on the target data Dt

and Dunseen. Training by gradient descent, this can be achieved by maximizing the inner product
between the model’s gradients on the losses (Riemer et al., 2019), which is our gradient alignment
objective. By maximizing the gradient inner product, the gradient on the training data tends to be in
the same direction as that on the target data and thus decreases the losses simultaneously.

Denote the training data as Dtrain and the model’s loss on it as Lw(Dtrain), where w represents
the model parameters. The gradient alignment objective is to maximize the inner product between
gradients on the training and non-dominant language’s data:

maxw ∇Lw(Dtrain) · ∇Lw(Dt)︸ ︷︷ ︸
Gradient alignment to Dt

+∇Lw(Dtrain) · ∇Lw(Dunseen)︸ ︷︷ ︸
Gradient alignment to Dunseen

, (1)

which includes the alignment with gradients on the accessible language t’s data Dt and the inaccessible
data Dunseen. In the scenario of dominant language direct transfer, Dtrain = Ds; in the scenario of
mixed language transfer, Dtrain = [Ds,Dt].

Connection to Representation Alignment Gradient alignment depends on representation align-
ment, which is shown to be important for cross-lingual transfer (Li et al., 2024; Zhang et al., 2025a).
We show the connection by theoretical analysis of a toy example.

In the example, we have a linear regression model with parameter w ∈ Rd. For any single sample
input x ∈ R1×d, the model outputs ŷ = xw. Assume there is an optimal parameter w∗ that fits
samples from the same task in both language s and t, the loss on each sample is ||ŷ − xw∗||22.

3
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Then the inner product of gradients on Dtrain and Dt is:

∇Lw(Dtrain) · ∇Lw(Dt) = γ
∑

i,j
xi
t(x

j
train)

T︸ ︷︷ ︸
RepAlign 1

∑
m
λm

(
xi
tqm

)(
xi
trainqm

)T︸ ︷︷ ︸
RepAlign 2

, (2)

where γ is a positive scalar, xi
t ∈ R1×d is the i-th sample feature in Dt, and xj

train is the j-th sample
feature in Dtrain. qm is an orthonormal basis of the solution space (w −w∗)(w −w∗)T , with the
corresponding eigenvalue λm ≥ 0. The derivation is in Appendix A.

Figure 1: An example of different alignments in
a 2d space. p1, p2 are orthonormal basis of the
solution space with eigenvalues λ1 and λ2.

In Eq. (2), the inner product of gradients
depends on the correlations RepAlign1 and
RepAlign 2 between data representations (fea-
tures). RepAlign1 shows the correlation between
input data representations, while RepAlign2
shows the correlation between data representa-
tions projected to the solution space. An exam-
ple of gradient alignments influenced by repre-
sentation alignments is shown in Fig. 1. In Fig.
1(a), correlations between input representations
xtrain, xt and their projections to the solution
space are in the same direction, which causes positive gradient alignment. In Fig. 1(b), although input
representations are positively correlated, their projections to the solution space p1 are negatively
correlated, which causes negative alignment. In Fig. 1(c), xtrain ⊥ xt and there is no gradient
alignment effect.

We discuss ways to improve gradient alignments in different scenarios in the following sections.

4 DOMINANT LANGUAGE DIRECT TRANSFER

In the dominant language direct transfer, we train the model only on data from the dominant language
(i.e. Dtrain = Ds) and then directly apply the model on the non-dominant language’s data. Therefore,
it is infeasible to explicitly maximize the gradient alignment between ∇Lw(Dtrain) and ∇Lw(Dt)
in Eq. (1) during training. However, considering the connection between gradient and representation
alignment, LLMs with aligned pre-trained representations in language s and t and can still activate
the gradient alignment effect. For example, if pre-trained representations of samples in Ds and Dt

have large positive correlations (RepAlign1) when they rely on the same knowledge to solve the task
(RepAlign2), they can still achieve positive gradient alignment even only tuning on Ds for the task.

We hypothesize that an LLM has aligned pre-trained representations if it has highly correlated pre-
trained representations of translated data pairs, which rely on similar knowledge to solve the task. We
quantify LLMs’ pre-trained representation alignment ability by the deviation of cosine similarities
between pre-trained token representations in and across languages (Appendix B). The smaller cosine
deviations indicate better representation alignment ability. Then we evaluate the correlation between
different LLMs’ representation alignment ability and their direct transfer performance in Fig. 2.

In Fig. 2(c), the models’ direct transfer performance tend to decrease when the cosine deviation
gets large. This suggests that better representation alignment may lead to better direct transfer
performance. The visualization of cosine similarities between tokens are shown in Fig. 2(a). Qwen
2.5 7B has evenly distributed cosine similarity within and across English (En) and Chinese (Zh). On
the other hand, Llama 3.1 8B’s cosine similarity deviation between En and Zh is larger and its direct
transfer performance on Zh is also worse than Qwen. We also visualize representations of the En and
Zh sentences by average pooling their token representations. Better direct transfer models (Qwen
2.5) may have close sentence representations in middle layers as well. However, different pooling
strategies may influence the representation distance (Zhang et al., 2025a).

For models with good representation alignment ability, direct transfer from the dominant language
may enable decent performance on non-dominant languages. This suggests improving models
pre-trained representation alignment across different languages and tasks for cross-lingual transfer
(Muennighoff et al., 2023; Chua et al., 2025). However, we can further improve models’ alignment
ability by post-training with task data in non-dominant language, discussed in the following section.

4
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Figure 2: (a) The cosine similarity between token representations in a En-Zh translated sentence on
XQuAD; (b) The scatter of En-Zh sentence representations, which are computed by average pooling
the token representations in sentences; (c) Correlation between LLMs’ direct transfer performance
(XQuAD F1) and their cosine similarity deviations between En-En and En-Zh token representations.

5 MIXED LANGUAGE TRANSFER

When mixed language data Ds and Dt is available in training, we can explicitly train the model to
maximize the gradient alignment between language s and t; and further enhance the representation
alignment. In this section, we show that existing training strategies including target language fine-
tuning and multi-task learning already improve the gradient alignment between Dtrain and the
non-dominant data Dt. However, they may ignore potential gradient alignment to inaccessible data
Dunseen especially in the low-resource scenario. To address this issue, we use in-context prompt
tuning (CL-ICP) model which utilizes the target sample’s attention on mixed languages’ samples
to infer its relation to the unseen data Dunseen. In addition, we shift the representation of the target
sample to better align with the representation of the demonstration samples.

5.1 HOW DO EXISTING METHODS IMPROVE GRADIENT AND REPRESENTATION ALIGNMENT

Gradient Alignment Many works show that simply using fine-tuning (FT) and multi-task learning
(MTL) already perform well in many cross-lingual transfer scenarios (Chirkova & Nikoulina, 2024;
Chua et al., 2025; Gaschi et al., 2023; Wu et al., 2023; M’hamdi et al., 2021; Mousi et al., 2024). By
calculating the second-order Taylor expansion of gradients (Nichol et al., 2018) in FT and MTL, we
show that this is because FT and MTL improve the gradient alignment:

Target Language Fine-tuning (FT): In FT, we have Dtrain = Dt and the gradient gw(Dtrain) is:

gw(Dtrain) = ∇Lw(Dtrain)−
β

2
∇ (∇Lw(Dt) · ∇Lw(Dt))︸ ︷︷ ︸

Gradient alignment to Dt

(3)

where β is the learning rate times the number of gradient descent steps.

Multi-Task Learning (MTL): In MTL, we have Dtrain = [Ds,Dt] and the gradient gw(Dtrain) is:

gw(Dtrain) = ∇Lw(Dtrain)−
β

2
∇
(
∇Lw(Ds) · ∇Lw(Ds)

)
− β

2
∇
(
(2∇Lw(Ds) +∇Lw(Dt)) · ∇Lw(Dt)

)︸ ︷︷ ︸
Gradient alignment to Dt

.

The derivation is in Appendix A. As shown above, gradient descent of FT and MTL tends to maximize
the inner products between gradient on the training data and the data Dt. This is a part of our gradient
alignment objective in Eq. (1).

As discussed in Section 4, when sample representations correlate well after pre-training, simply
using FT or MTL may achieve good gradient alignment and have decent cross-lingual performance.

5
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Otherwise, the gradient alignment may be limited (e.g., due to small absolute value of RepAlign 1).
This may require explicit alignment between representations.

Representation Alignment Previous works explicitly strengthen representation alignment to achieve
better cross-lingual transfer performance (Li et al., 2024; Zhang et al., 2025b; Tang et al., 2024;
Zhang et al., 2025b), which directly improves RepAlign 1 and may make models more capable for
gradient alignment. However, accurate representation alignment (e.g. via contrastive learning) usually
requires rich data of translation pairs, and thus may be infeasible for non-dominant language t which
usually has low-resource data Dt (Zhang et al., 2025a). On the other hand, coarse representation
alignment may cause negative gradient alignment (Fig. 1(b)) and not improve performance.

As analyzed above, existing gradient and representation alignment methods focus on the alignment
between training data and accessible data Dt, which may omit the alignment with the unseen data
Dunseen especially in the low-resource scenarios (Fig. 5).

5.2 CROSS-LINGUAL IN CONTEXT PROMPT TUNING (CL-ICP)

Table 1: Averaged layer attention on the demon-
stration (Attn) and F1 score for un-trained Cross-
lingual ICL. -R stands for random pairs and -T
stands for translation pairs. Relevant demonstra-
tions (translation pairs) obtain more attention.

XQuAD En(R)-Zh Zh(R)-Zh En(T)-Zh Zh(T)-Zh
Attn F1 Attn F1 Attn F1 Attn F1

Llama3.1 0.73 0.53 0.74 0.59 0.78 0.68 0.82 0.98
Qwen2.5 0.50 0.78 0.52 0.79 0.54 0.87 0.60 0.99

In this section, we show that one can utilize
LLMs’ in-context learning (ICL) ability to im-
prove the model’s gradient alignment with un-
seen data Dunseen.

Traditional ICL uses some data samples as
demonstration to enhance a target sample’s pre-
diction. As shown in Table 1, we find that
pre-trained LLMs allocate higher attention on
demonstration samples that contribute more to
the target sample’s prediction. The target sam-
ple’s various attention on demonstration samples
may infer its relation to unseen samples in Dunseen. For example, assume that Dtrain does not
include translation pairs in language s and t. Then for a target sample in Dt, demonstration samples
in Ds with high in-context attention may be close to its translation in language s. In training, the
target samples are supposed to have more alignment with more related demonstration samples.

In-Context Prompt Tuning (ICP) To incorporate ICL’s alignment ability to Dunseen during training,
we train for the target task by learning soft-prompts p with in-context samples. We learn soft prompts
instead of full fine-tuning to better preserve the model’s pre-trained knowledge in arranging high
attention to related demonstrations.

In ICP, our model input is {p,xd, yd,xt}, where {xd, yd} = {xd1, yd2, ...,xdk, ydk} includes k
demonstration samples; {xt, yt} is the target sample from Dt. We train soft prompts p to predict
the target value yt and the demonstration value ydk to learn the knowledge in both languages. The
objective is maxp p(yt|{p,xd, yd,xt}) + p(ydk|{p,xd1, yd2, ...,xdk}).
Alignment Effect of ICP We analyze the gradient alignment effect of ICP under the attention
mechanism (Vaswani et al., 2017). For simplicity, we assume each sample representation in xd has
the size R1×d. Then the representation x for predicting yt is the weighted sum of in-context sample
representations:

x = attnt(p)p+ attnt(xd)xd + attnt(xt)xt + attnt(yd)yd,

where attnt(·) is the self attention with the query of · for yt prediction. Based on Table 1, attnt(·) is
higher when · contributes more to yt’s prediction.

Based on Eq. (3), by tuning for a target task with data xi and xj , gradient descent tends to maximize
the inner product between gradients ∇Lw(xi) · ∇Lw(xj). Based on the expansion of gradients in
Eq. (2), ∇Lw(xi) · ∇Lw(xj) is related to the inner product between xi and xj :

xi(xj)T = ϕ1x
i
d(x

j
d)

T + ϕ2x
i
d(x

j
t )

T + ϕ3x
i
t(x

j
t )

T︸ ︷︷ ︸
Pre-trained correlation between sample representations

+f({xi,j
d ,xi,j

t , yi,jd }pT ), (4)

where f({xi,j
d ,xi,j

t , yi,jd }pT ) is the correlation between soft prompts p and in-context representa-
tions; ϕ1 = attnt(xi

d)attnt(x
j
d), ϕ2 = 2attnt(xi

d)attnt(x
j
t ), ϕ3 = attnt(xi

t)attnt(x
j
t ) are pre-trained

attention correlations. We omit the non-correlation terms in the equation.
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Figure 3: Llama 3.1 8B’s ICL performance with different demonstration samples.

To maximize the inner product between gradients, the model may learn prompts p to increase the
representation inner product xi(xj)T . With in-context samples, such process is guided by the pre-
trained correlation ϕ between sample representations (Eq. (4)). Without in-context samples, we have
the representation x = xt and the inner product xi(xj)T = xi

t(x
j
t )

T + f(xi,j
t pT ), which do not

include the pre-trained correlation between samples and may require sufficient data to learn.

Mixed Language Demonstrations According to Tanwar et al. (2023b); Zhang et al. (2024), LLMs’
ICL ability highly depends on the selection of demonstration samples. In Fig. 3, we have two
observations about cross-lingual ICL: (1). For a target sample in the non-dominant language t, using
demonstration samples in language t sometimes achieves better ICL performance than using English
(dominant language) demonstrations. (2). Using more demonstration samples (k = 3) achieves better
ICL performance than only using one.

Based on these observations, our CL-ICP model uses 3 demonstration samples in most tasks. Instead
of choosing demonstrations from one language, we randomly select demonstration samples in
{xd, yd}from both Ds and Dt to balance the relatedness between samples and the knowledge from
the dominant language.

Representation Shift In Eq. (4), when pre-trained correlation between sample representations
is low, CL-ICP may not well connect the demonstration and target samples and thus downgrade
to single-sample prompt tuning. Therefore, we shift representations of xt to further enhance its
representation alignment to the demonstrations xd. An overview of the shifting operation is in Fig. 4.

Figure 4: CL-ICP with representation shift.

In each layer of transformer models, the sentence in-
puts xd and xt are sequences of token representations.
We denote their layer-wise token representations as
HL

d = [hL
d,1, ...h

L
d,nd

] and HL
t = [hL

t,1, ...h
L
t,nt

] at
the layer L. Inspired by Xu et al. (2023); Zhang et al.
(2025b), we add representation deviations on each
token representation in the target sample at the Lto
and Lback layers where representations from different
languages are close to each other. The representation
deviations are calculated by

∆hLto = sentpool(HLto
d )− sentpool(HLto

t ); ∆hLback = sentpool(HLback
t )− sentpool(HLback

d )

where sentpool calculates the average token representations as the sentence representation.

The representation shift first projects the target sample representations close to the demonstration’s
representation by ∆hLto and then projects them back by ∆hLback . By making target sample represen-
tations close to demonstration representations, the model may easier find the connection between the
demonstration and target samples, and thus benefit in-context prompt tuning.

6 EXPERIMENTS

6.1 SETUP

Datasets Our experiments are performed on three cross-lingual datasets: (1) XQuAD(Artetxe et al.,
2019) for multilingual question answering, with Chinese (Zh), Spanish (Es), Turkish (Tr), Greek (El)
as target non-dominant languages. We report exact-match and F1 score on this dataset; (2) XCOPA
(Ponti et al., 2020) for multilingual causal reasoning, with Chinese (Zh), Swahili (Sw), Turkish (Tr),
Quechua (Qu) as target non-dominant languages. We report accuracy on the dataset. (3). XNLI
(Conneau et al., 2018) for text classification with Chinese (Zh), Swahili (Sw), Turkish (Tr), Greek

7
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Table 2: Evaluation Results. The bold and underline scores are the first and second best scores.

Dataset XQuAD (EM/F1 %) XCOPA (Acc %) XNLI (Acc %)

Language t Zh Es Tr El Avg Zh Tr Sw Qu Avg Zh Tr Sw El Avg

Llama3.1 58.0/63.7 38.2/62.5 33.2/62.4 32.8/59.7 40.5/62.1 63.2 54.6 52.6 52.2 55.7 61.6 58.3 51.8 58.7 57.6
TL 54.3/62.3 40.9/67.2 17.6/49.1 35.7/61.7 37.1/60.1 81.7 62.3 52.5 53.6 62.5 67.8 65.4 53.2 68.3 63.7

MTL 51.3/57.5 42.3/68.6 18.1/51.3 38.2/62.3 37.5/59.9 83.5 65.4 53.1 48.4 62.6 67.0 64.2 54.1 67.5 63.2
Shifcon 57.4/64.1 42.4/68.8 23.4/54.3 42.2/66.3 41.3/63.4 84.2 65.7 54.3 50.9 63.8 68.6 65.8 53.6 67.6 63.9
CL-ICP 53.4/65.5 46.4/72.3 25.6/58.7 39.1/66.1 41.1/65.7 87.6 77.9 58.8 49.1 68.4 70.3 66.1 59.6 72.0 67.0

CL-ICP (S) 61.6/69.1 44.8/71.9 23.1/56.3 41.2/67.0 42.7/66.1 87.7 78.5 57.7 49.0 68.2 70.4 68.3 57.4 73.6 67.4
Qwen2.5 73.9/77.3 51.7/75.5 42.0/64.5 39.4/65.2 51.8/70.6 91.0 75.2 52.6 51.4 67.5 77.0 69.1 44.3 70.9 65.3

TL 78.6/82.2 53.5/75.4 35.3/65.1 42.0/66.6 52.3/72.3 92.1 77.2 53.5 52.0 68.7 81.7 74.1 51.4 76.3 70.9
MTL 76.9/80.8 54.1/75.6 38.1/67.2 43.6/67.6 53.2/72.8 93.8 77.2 54.1 51.8 69.2 81.4 76.7 52.0 78.4 72.1

Shifcon 76.8/80.9 54.3/76.1 37.8/67.0 42.3/67.4 52.8/72.8 93.3 76.7 53.2 50.9 68.5 81.0 77.1 51.4 78.9 72.1
CL-ICP 78.7/81.4 51.5/75.7 43.7/68.2 40.2/66.2 53.5/72.9 93.9 79.6 55.6 54.0 70.8 81.5 77.2 52.6 77.8 72.3

CL-ICP (S) 77.9/80.6 51.5/75.2 44.1/68.0 39.4/66.3 53.2/72.5 94.0 82.2 55.9 52.6 71.2 81.9 76.2 54.1 76.3 72.1

(El) as target non-dominant languages. We randomly sample 1000 training and testing samples for
XNLI (Tu et al., 2022; Zhao et al., 2025b). For all datasets, we set English as the dominant language.
The non-dominant languages are selected based on their dominance and the richness of linguistic
resources (Li et al., 2024). For each dataset, we select at least one language from each dominance
level (high → low).

Models We use Qwen 2.5 7B (Qwen et al., 2025) and Llama 3.1 8B (Dubey et al., 2024) as base
models of testing methods. The methods we compare are: (1) Dominant Language Direct Transfer
(default model performance): only fine-tuning the pre-trained LLM on the dominant language and
evaluating its performance on non-dominant language. (2) Target Language Fine-Tuning (FT):
fine-tuning the pre-trained LLM on the non-dominant language. (3) Transfer Learning (TL): first fine-
tuning the LLM on the dominant language and then fine-tuning on the non-dominant language. (4)
Multi-Task Learning (MTL): Fine-tuning the model on both dominant and non-dominant languages’
data. (5) ShifCon (Zhang et al., 2025a): MTL model with representation projection and contrastive
learning to align sample representations. (6) CL-ICP: our cross-lingual in-context prompt tuning
without representation shift. (7) CL-ICP (S): our CL-ICP model with representation shift. This is a
short term of CL-ICP (Shift).

For ICP models, we use demonstration samples in the training set at test time for a fair comparison
with other methods. Due to the input length constraint, we use 1 demonstration samples for XQuAD
and 3 demonstration samples for other datasets. For every method, we compute the scores averaged
from three random seeds. Detailed training settings are in the appendix.

6.2 EXPERIMENTAL RESULTS

Results of the Gradient Alignment We show results of different methods in Table 2. CL-ICP (with
or without shift) achieves the best average performance across all datasets. The effectiveness of
CL-ICP varies between tasks, base models and languages.

For the question answering task XQuAD which may have sequence-to-sequence distribution similar
to pre-trained data, the direct transfer already achieves decent performance and the improvement
of CL-ICP is marginal. For other tasks XCOPA and XNLI whose outputs are choices instead of
sentences, the direct transfer is not effective enough and CL-ICP achieves much better performance
compared to other baselines.

Comparing performance on different base models, CL-ICP outperforms baselines by larger margins
on Llama 3.1 than Qwen 2.5. This may be because Qwen 2.5 has better pre-trained representation
alignment than Llama 3.1 (as shown in Fig. 2(c)), which makes simple fine-tuning on two languages
(e.g. MTL) strong baselines.

Relying on pre-trained LLMs’ ICL ability, CL-ICP’s performance also depends on LLMs pre-trained
capacity on different languages. For the rare language that are poorly learned in pre-training (e.g., Qu
in Llama 3.1, El in Qwen 2.5), CL-ICP does not outperform baselines with full fine-tuning. For El in
Qwen 2.5, the model may need full fine-tuning instead of prompt tuning to learn the knowledge in the
non-dominant language. For Qu in Llama 3.1, the model may have difficulty learning the relationship
between En and Qu, which makes the two-stage training (direct transfer and TL) performs best.
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Figure 5: Llama 3.1 8B’s performance with different ratios of non-dominant language data. Under
the language pair s− t, we compare CL-ICP with mixed language demonstrations and MTL; under
the language pair t− t, we compare CL-ICP with non-dominant language demonstrations and FT.

Results of the Representation Alignment In Table 2, we compare the models with additional
representation alignment, ShifCon and CL-ICP (Shift). With contrastive learning on shifted represen-
tations, ShifCon outperforms MTL in most cases on Llama 3.1. With shifted representations, CL-ICP
(Shift) also outperforms CL-ICP in 2/3 datasets on Llama 3.1.

However, the effect of representation alignment is critical in different scenarios. On Qwen 2.5,
Shifcon does not outperform MTL in some datasets and languages; CL-ICP (Shift)’s performance
also differs in different base models and datasets. That may be because representation alignment
needs carefully designed strategies and sufficient data for training (Zhang et al., 2025a). By only
learning on the target tasks’ data, ShifCon and CL-ICP (Shift) may not learn the true relationship
between shifted representations of data in different languages. As shown in Fig 1(b), this may cause
negative gradient alignment and even decrease the performance.

Results in Low Resource Scenarios We show results of training with different ratios of non-
dominant language data in Fig. 5. We use full dominant language (English) data in this experiment.
Results show that with low-resource non-dominant language data, FT suffers from the generalization
issue which makes it underform MTL by a large margin (with less non-dominant language data, MTL
is closer to the direct transfer). However, using the same data, CL-ICP significantly outperform FT,
which shows its generalization ability in aligning with unseen data.

However, when the demonstration samples are in mixed languages, CL-ICP needs sufficient data to
address the relationship between demonstration and target samples. With 10% data in XQuAD and
XCOPA, CL-ICP with mixed language demonstrations performs worse than MTL in some cases and
CL-ICP with non-dominant language demonstrations achieves better performance. With more than
25% non-dominant data, CL-ICP consistently outperform MTL.

6.3 ABLATION STUDY

Table 3: CL-ICP with different demonstra-
tions on XCOPA.

Lang, # Zh Tr Sw Qu Avg

English, 3 86.0 74.4 55.9 50.1 66.6
Target, 3 87.3 77.1 56.7 50.9 68.0
Mixed, 1 83.7 75.7 57.9 49.7 66.8
Mixed, 3 87.6 77.9 58.8 49.1 68.4

Influence of Demonstration The experiments of ab-
lation studies use Llama 3.1 8B as the base model.
We show the influence of the number and mixture of
demonstration samples in Table 3. Using 3 demonstra-
tion samples in mixed languages achieves best perfor-
mance. Using 3 demonstration samples in the target
non-dominant language outperforms that in the dom-
inant language (English). In addition, using mixed
language demonstration with only 1 sample sometimes outperforms using English demonstration
with 3 samples. These indicate the importance of close distribution between demonstration and target
samples in in-context training.

Table 4: Models with in-context samples
at inference time on XCOPA.

Model Zh Tr Sw Qu Avg

TL 81.7 62.3 52.5 53.6 62.5
+ ICL 78.3 67.2 53.3 50.5 62.3

MTL 83.5 65.4 53.1 48.4 62.6
+ ICL 80.5 70.0 55.0 52.0 64.4

CL-ICP 87.6 77.9 58.8 49.1 68.4

Influence of In-Context Inference For a fair compari-
son with our model, one question is: will baseline models
achieve better performance when adding the same in-
context samples as CL-ICP at the inference time? We
show the results in Table 4. Results show that adding
in-context samples will improve baselines’ performance
in some cases, but still underperform our CL-ICP model.
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Figure 6: Comparison between CL-ICP and in-
context fine-tuning (CL-ICT).

Table 5: Multi-task learning (MTL) and cross-
lingual in-context tuning (CL-ICT) by only
training prompts (PT) or LoRA blocks.

Zh Tr Sw Qu Avg

PT MTL 56.4 55.8 52.6 50.6 53.8
CL-ICT 87.6 77.9 58.8 49.1 68.4

LoRA MTL 87.4 75.6 59.7 50.0 68.2
CL-ICT 88.2 81.5 63.3 53.1 71.5

Influence of Prompt Tuning We compare the influence of prompt tuning and full parameter
tuning in our cross-lingual in-context training in Fig. 6. Although in-context fine-tuning achieves
slightly better performance with 100% non-dominant language’s data, it underperforms CL-ICP in the
low-resource scenario. This may be because in the low-resource scenario, full parameter tuning may
be easier to lose alignment with unseen data due to the distortion pre-trained sample representations.

We also compare the in-context training using LoRA and prompt tuning with MTL in Table 5. In
practice, prompt tuning only may be hard to train and the model may have low capacity in solving
the target tasks. Using LoRA can improve the model’s performance compared to full finetuning.
However, such a benefit is also applicable to our in-context training model. Using LoRA, our model
still achieves better performance than MTL. This suggests that our improvements come not only from
the parameter-efficient training, but also from the inclusion of in-context samples during training.

7 CONCLUSION

In this paper, we presented a comprehensive study on the cross-lingual transfer in large language
models, with a particular focus on the interplay between representation and gradient alignment. To
improve cross-lingual transfer in post-training, we propose a cross-lingual in-context prompt tuning
model to improve gradient alignment and add a representation shift to better align representations
between demonstration and target samples. Experiments show that our models have improved
performance in both low and high resource scenarios. The limitation of our model is that it depends
on LLMs’ ICL capacity. When adding the demonstration in the input, the input sequence length will
increase and is inefficient for long samples. We leave these questions for future study.
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A DERIVATION

A.1 CONNECTION BETWEEN GRADIENT ALIGNMENT AND REPRESENTATION ALIGNMENT

This is the detailed derivation of Eq. (2).

In the example, we have a linear regression model with parameter w ∈ Rd. For the task in language s
and t, we have data Dtrain = {Xtrain ∈ Rntrain×d,ytrain ∈ Rns} and Dt = {Xt ∈ Rnt×d,yt ∈
Rns} respectively, containing data features and the true outputs. In different transfer scenarios,
Dtrain contains different mixes of Ds and Dt. Since samples in different languages are for the
same task, we assume that there is an optimal parameter w∗ that fits both Dtrain and Dt. Then for
any single sample {x ∈ R1×d, y ∈ R}, the model outputs ŷ = xw and the loss on the sample is
||ŷ − xw∗||22.

The inner product of gradients on Ds and Dt is:

∇Lw(Dt) · ∇Lw(Dtrain)

=γ(w −w∗)TXt
TXtXtrain

TXtrain(w −w∗
j )

=γ
∑

i,j
xi
t(x

j
train)

T
[
xi
t(w −w∗)(w −w∗)T (xj

train)
T
]

(5)

where γ = 1
ntntrain

, xi
t ∈ R1×d is the i-th row of the matrix Xt (i.e., the input feature of the i-th

sample in language t), and xj
s is the j-th row of the matrix Xs.

We further decompose (w−w∗)(w−w∗)T = QΣQT where each column m of Q is an orthonormal
vector qm with the corresponding eigenvalue λm ≥ 0 as the m-th diagonal element in Σ. Then Eq.
(5) can be written as

Eq. (5) =γ
∑

i,j
xi
t(x

j
train)

T
[
xi
tQΣQT (xj

train)
T
]

=γ
∑

i,j
xi
t(x

j
train)

T︸ ︷︷ ︸
RepAlign 1

∑
m
λmxi

tqmqT
m(xj

train)
T︸ ︷︷ ︸

RepAlign 2

,

which is Eq. (2) in the main paper.

A.2 FT AND MTL FOR GRADIENT ALIGNMENT

This is the detailed derivation of gradient alignment effect in the FT and MTL.

A.2.1 TARGET LANGUAGE FINE-TUNING

For a model with parameter w, and data Dtrain = Dt from languages t, the objective of Target
Language Fine-Tuning is to minimize the loss Lw(Dt). When updating the model by gradient
descent, the parameter w is updated as

wk = w0 − β
∑
k

L′
wk−1

(Dt),

where β is the learning rate, w0 is the initialized weight of w, k is the updating step.

The gradient of target language fine-tuning at the step k is:

gwk
(Dt) = L′

wk
(Dt) (6)

We now take the second-order Taylor expansion of the gradient:

L′
wk

(Dt) = L′
w0

(Dt) + L′′
w0

(Dt)(wk −w0) +O(||wk −w0||2)
= L′

w0
(Dt) + L′′

w0
(Dt)(wk −w0) +O(β2)

= L′
w0

(Dt)− βL′′
w0

(Dt)
∑
k

L′
wk−1

(Dt).
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We omit the term O(β2) here since the learning rate is usually small for LLMs (e.g., 1e-5 for
fine-tuning). Using the Taylor expansion of L′

wk−1
(Dt), we have

βL′
wk−1

(Dt) = βL′
w0

(Dt) + βO(||wk −w0||)︸ ︷︷ ︸
O(β2)

The latter O(β2) is omitted. Then the gradient in Eq. (6) is:

gwk
(Dt) = L′

w0
(Dt)− βkL′′

w0
(Dt)L

′
w0

(Dt)

Based on the product rule of derivatives, we have

gwk
(Dt) = L′

w0
(Dt)−

βk

2
∇w0

(
L′
w0

(Dt)L
′
w0

(Dt)
)

= L′
w0

(Dtrain)−
βk

2
∇w0

(
L′
w0

(Dt)L
′
w0

(Dt)
)

(Dtrain = Dt)

This suggests that the gradient of multi-task learning encourages to maximize the inner product of
gradient on data within samples of Dt.

A.2.2 MULTI-TASK LEARNING

For a model with parameter w, and data Dtrain = [Ds,Dt] from languages s and t, we have the
training loss Lw(Ds) and Lw(Dt), respectively. The objective of multi-task learning is to minimize
the loss:

Lw(Ds +Dt) = Lw(Ds) + Lw(Dt).

Following the toy example, we assume the parameter w is a d-dimensional vector. When updating
the model by gradient descent, the parameter w is updated as:

wk = w0 − β
∑
k

(
L′
wk−1

(Ds) + L′
wk−1

(Dt)
)

where w0 is the initialized weight of w, k is the updating step, β is the learning rate. The gradient of
multi-task learning at the step k is:

gwk
(Ds +Dt) = L′

wk
(Ds) + L′

wk
(Dt) (7)

We now take the second-order Taylor expansion of each gradient. For the gradient on Ds we have

L′
wk

(Ds) = L′
w0

(Ds) + L′′
w0

(Ds)(wk −w0) +O(||wk −w0||2)
= L′

w0
(Ds) + L′′

w0
(Ds)(wk −w0) +O(β2)

= L′
w0

(Ds)− βL′′
w0

(Ds)
∑
k

(
L′
wk−1

(Ds) + L′
wk−1

(Dt)
)
.

We omit the term O(β2) here since the learning rate is usually small for LLMs (e.g., 1e-5 for
fine-tuning). Then since L′

wk−1
(Ds) = L′

w0
(Ds) +O(β), we further approximate L′

wk
(Ds) as:

L′
wk

(Ds) = L′
w0

(Ds)− βkL′′
w0

(Ds)
(
L′
w0

(Ds) + L′
w0

(Dt)
)
.

Similarly, we have

L′
wk

(Dt) = L′
w0

(Dt)− βkL′′
w0

(Dt)
(
L′
w0

(Ds) + L′
w0

(Dt)
)
.

Then we expand Eq. (7) as:

gwk
(Ds +Dt) = L′

w0
(Ds) + L′

w0
(Dt)

− βkL′′
w0

(Ds)L
′
w0

(Ds)

− βkL′′
w0

(Dt)L
′
w0

(Dt)

− βk
(
L′′
w0

(Ds)L
′
w0

(Dt) + L′′
w0

(Dt)L
′
w0

(Ds)
)
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Based on the product rule of derivatives, we integrate the terms in the above gradients as below.

L′′
w0

(Ds)L
′
w0

(Ds) =
1

2
L′′
w0

(Ds)L
′
w0

(Ds) +
1

2
L′′
w0

(Ds)L
′
w0

(Ds)

=
1

2
∇w0

(
L′
w0

(Ds)L
′
w0

(Ds)
)

L′′
w0

(Dt)L
′
w0

(Dt) =
1

2
∇w0

(
L′
w0

(Dt)L
′
w0

(Dt)
)

L′′
w0

(Ds)L
′
w0

(Dt) + L′′
w0

(Dt)L
′
w0

(Ds) = ∇w0

(
L′
w0

(Ds)L
′
w0

(Dt)
)

Then the gradient of multi-task learning is finally expanded as:

gwk
(Ds +Dt) = L′

w0
(Dtrain) (L′

w0
(Dtrain) = L′

w0
(Ds) + L′

w0
(Dt))

− βk

2
∇w0

(
L′
w0

(Ds)L
′
w0

(Ds)

− βk

2
∇w0

(
L′
w0

(Dt)L
′
w0

(Dt)

− βk∇w0

(
L′
w0

(Ds)L
′
w0

(Dt)
)

This suggests that the gradient of multi-task learning encourages to maximize the inner product of
gradient on data within and across languages.

B EXPERIMENTAL SETTINGS

B.1 METRIC FOR COSINE DEVIATION

We hypothesize that an LLM has aligned representations if it has highly correlated representations of
translated data pairs, which rely on similar knowledge to solve the task. Therefore, we compare the
cosine similarity of representations between translated data pairs and shuffled data in the dominant
language. Since translated pairs rely on similar knowledge to solve the task, they are expected to
have higher cosine similarity than shuffled data in the dominant language.

We use the cosine deviation below to quantify LLMs’ pre-trained representation alignment ability.
For the L-th transformer layer, we have pre-trained data representations of each sentence pair in
language s and t as HL

s = [hL
s,1, ...h

L
s,ns

] and HL
t = [hL

t,1, ...h
L
t,nt

] where ns and nt are numbers
of tokens in each sentence; hL

t,nt
and hL

s,ns
are token representations in the corresponding sentence.

The cosine deviation of all sentence pairs is computed as:

cos dev(HL
s ,H

L
t ) =

1

ns

∑
i

cos(hL
s,i,H

L
r ; top-10)− cos(hL

s,i,H
L
t ; top-10)

cos dev(Hs,Ht) = E[
1

L

∑
L

cos dev(HL
s ,H

L
t )]

where HL
r is the random sentence selected from language s. cos(hL

s,i,H
L
t ; top-10) is the average of

the top-10 highest cosine similarities between the token representation hL
s,i and all token representa-

tions in HL
t . Since the translated sentences in different languages may have varied token numbers

due to different tokenization, we pick top-10 highest cosine similarities and select language pairs
with comparable token numbers in our experiment.

B.2 TRAINING DETAILS IN SECTION 6

We train our models on 4 Nvidia L40S machines. The detailed training settings for each model is:

For each baseline model, we select training epochs from the set {1, 2, 3, 4, 5, 8} and pick the epoch
with stable top performance.

For parameter efficient test in Table 5, we use LoRA with learning rate 2e-4, training batch 8 with 3
epochs training on 1 Nvidia A100 machine. For MTL prompt tuning, we select best results from the

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Model LR Batch Size XQuAD XCOPA XNLI

TL 2e-6 4 per-device Epoch 1 on each single language Epoch 3 on each single language Epoch 3 on each single language
MTL 2e-6 4 per-device Epoch 2 Epoch 3 Epoch 3
ShifCon 2e-6 4 per-device Epoch 2 Epoch 4 Epoch 4
CL-ICP 1e-3 4 per-device Epoch 5, prompt 1, demosample 1 Epoch 20, prompt 10, demosample 3 Epoch 20, prompt 10, demosample 3

following settings: the same prompt setting as our CL-ICP; increasing the prompt number (20, 30,
50) and training epochs (10, 20, 30); adjusting the learning rate from (2e-4, 1e-3, 5e-3, 1e-2). The
prompt embeddings are initialized the same as CL-ICP.

C INFLUENCE OF DEMONSTRATION TRAINING

Table 6: CL-ICL models without training to predict demonstration samples.

Dataset XQuAD (EM/F1 %) XCOPA (Acc %) XNLI (Acc %)

Language t Zh Es Tr El Avg Zh Tr Sw Qu Avg Zh Tr Sw El Avg

CL-ICP 53.4/65.5 46.4/72.3 25.6/58.7 39.1/66.1 41.1/65.7 87.6 77.9 58.8 49.1 68.4 70.3 66.1 59.6 72.0 67.0
- Demotrain 64.4/68.9 47.3/72.6 28.4/58.5 40.8/66.5 45.2/66.6 88.3 77.9 55.2 50.7 68.0 69.7 65.8 55.7 71.0 65.5
CL-ICP (S) 61.6/69.1 44.8/71.9 23.1/56.3 41.2/67.0 42.7/66.1 87.7 78.5 57.7 49.0 68.2 70.4 68.3 57.4 73.6 67.4
- Demotrain 65.4/69.3 45.5/71.2 31.4/60.1 42.0/67.0 46.1/66.9 88.3 80.1 54.2 50.1 68.2 70.0 64.9 53.4 71.0 64.8

We show the influence of training with the demonstration prediction loss in CL-ICP in Table 6. For the
question answering task XQuAD which has sequence to sequence distribution close to pre-training
data, adding the demonstration loss does not increase the performance. However, for task XCOPA
and XNLI whose outputs are choices instead of sequences, adding the demonstration loss achieves
better performance. We hypothesize that this is because the model can easily acquire knowledge from
demonstration samples in XQuAD, while it needs further training to acquire knowledge of the task in
XCOPA and XNLI. So for tasks which have dissimilar distribution to pre-trained data, training with
the demonstration loss is beneficial.
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