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ABSTRACT

Despite LLMs’ advanced performance in multilingual tasks, they usually have
performance gap on the same task in dominant languages (e.g., English) and
non-dominant languages (e.g., Turkish). In this paper, we analyze LLMs’ ca-
pacity to transfer the task knowledge learned in the dominant language to the
non-dominant language. We first formulate the cross-lingual transfer problem
into a gradient alignment problem and then connect it to the representation align-
ment problem. We show that pre-trained LLMs with decent representation align-
ment ability can easily transfer knowledge from the dominant language by simple
fine-tuning, while others need carefully designed training strategies. For the
latter, we propose a cross-lingual in-context prompt tuning (CL-ICP) model to
enhance gradient alignment, which utilizes in-context attentions to generalize to
unseen data. In addition, we apply a representation shift to enhance represen-
tation alignment between demonstration and target samples. Experiments show
that CL-ICP improves cross-lingual transfer in both high and low resource sce-
narios. The code is available in https://anonymous.4open.science/
r/Cross—Lingual—-Alignment—94C2.

1 INTRODUCTION

State of the art LLMs are pre-trained to have strong capacities in solving multilingual downstream
tasks (Shi et al.l 2023 [Zhao et al., 2025). However, their performance varies across different
languages even for the same task (Huang et al.l 2023). Specifically, models tend to perform better
in dominant languages like English than in non-dominant languages like Turkish (Asai et al., [2024;
Gurgurov et al. |[2024a). Assuming the major knowledge for solving a task is language agnostic,
models performing well in the dominant language should have the knowledge to solve the task and are
supposed to also perform well in non-dominant languages. In this paper, we study the cross-lingual
transfer problem which utilizing the knowledge learned from a dominant language to enhance the
model’s task performance in a non-dominant language.

Previous works have identified that models’ alignment between languages is the key to cross-lingual
transfer (Stap et al.l [2023; Tanwar et al., 2023a; |Qin et al.| [2024; Zeng et al.| |2025). The multi-
lingual alignment includes: (1) language-level alignment, which utilizes LLMs’ ability to encode the
knowledge from different languages to the dominant language’s space (Wang et al.|[2024;|Zhao et al.|
2024bj [Wendler et al., [2024; Schut et al., 2025)); (2) representation-level alignment, where models
are trained to connect data representations from different languages in supervised and unsupervised
manners (Bornea et al.| 2021} [Li et al., 2024} [Zhang et al.| |2025a). However, what kind of alignment
is necessary for knowledge transfer remains underexplored (Hammerl et al.| [2024). Such lack of
understanding presents a challenge in optimizing cross-lingual transfer strategies. For example, in
post-training, some works claim that simple fine-tuning on the dominant language is already strong
for cross-lingual transfer (Chirkova & Nikoulina, 2024)); while other works emphasize the need for
additional alignment between language representations (Li et al., [2024} [Zhang et al.| [2025a).

To better understand the effect of alignment in cross-lingual transfer, we first formulate cross-lingual
transfer as a gradient alignment problem that aims to maximize the inner product between gradients
on the dominant and non-dominant languages’ data during training (Riemer et al.,[2019). Therefore,
the decrease of loss on the dominant language’s data will also lead to a loss decrease on the non-
dominant language’s data and cause knowledge transfer. Then we show that gradient alignment
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depends on the alignment between representations of dominant and non-dominant languages’ data.
For pre-trained LLMs with decent representation alignment ability, fine-tuning on the dominant
language may directly transfer the knowledge to the non-dominant language.

In the case that needs further tuning with the non-dominant language’s data, we show that simple
fine-tuning and multi-task learning tend to maximize gradient alignment within and across languages
and therefore have strong performance with sufficient training data. However, data in non-dominant
languages are usually low-resourced (Huang et al., [2023). In the low-resource scenario, existing
models which enforce alignment between accessible data may not be generalized enough. To address
this problem, we propose a cross lingual in-context prompt tuning (CL-ICP) model which utilizes the
target sample’s attention on different demonstration samples to infer its relation to the unseen data.
When training witn in-context samples, it enforces gradient alignment based on the contribution of
each dominant language’s data (demonstration) to the prediction of non-dominant language’s data
(target). To improve the relevance between demonstration and target samples for better transfer,
we shift the target sample’s representation to make it closer to the demonstration’s representation.
Experiments show that CL-ICP outperforms existing models in both high and low resource scenarios.

In summary, our work makes the following contributions:

* We formulate the alignment problem in cross-lingual transfer learning; analyze the connec-
tion between gradient and representation alignment and connect them to existing models.

* We propose a CL-ICP model for better alignment in different resource scenarios. We conduct
excessive experiments in different transfer scenarios to verify our claims.

2 RELATED WORK

Cross-lingual Transfer Despite strong multilingual capacity (Shi et al.,|2023; Zhao et al., |[2025),
current LLMs usually have limited proficiency in low-resource languages (Huang et al.| 2023}
Gurgurov et al.| [2024a). This calls for cross-lingual transfer models that leverage knowledge
from high-resource (dominant) languages to improve performance in low-resource (non-donimant)
languages (Ruder et al.,[2019). Existing works improve cross-lingual transfer from the pre-training
to post-training stages. |(Conneau & Lample| (2019); |Ouyang et al| (2021) use translation based
pre-training to enhance LLMs’ multilingual transfer ability. (Gupta et al.|(2023)); Zhao et al.|(2024a);
Fujii et al.|(2024) continually pre-train the LLMs to better understand non-dominant languages. |Pan
et al.| (2020); |Wang et al.| (2022); |Gurgurov et al.| (2024b)); |Cassano et al.| (2024) use adaptation
techniques to transfer pre-trained knowledge to non-dominant languages’ tasks. In this paper, we
improve the cross-lingual transfer by in-context training on downstream tasks.

Cross-Lingual Alignment Models Alignment has been recognized as a crucial factor in effective
cross-lingual transfer (Stap et al.| 2023; Tanwar et al., [2023a} |Qin et al.,[2024; Zeng et al.| [2025).
Previous works show that LLMs tend to map different languages’ representations to one language’s
representation space (Wang et al., [2024; Zhao et al., [2024b; |Wendler et al., 2024; Schut et al.| [2025)),
which indicates their language alignment ability before post-training. In post-training, existing works
add extra representation alignment to better align cross-lingual representations via translation-based
objectives (Bornea et al.| 2021)), contrastive learning (L1 et al., 2024) and representation shift (Zhang
et al.| 2025a; Sundar et al., 2025). However, to what extent the extra alignment is necessary in post-
training remains unexplored (Hammerl et al.| [2024). In this work, we first analyze the alignment in
the gradient perspective and connect it to the representation alignment. Our analysis bridges existing
training strategies and representation alignment methods, indicating the cases when representation
alignment can compensate existing learning strategies for better cross-lingual transfer.

Cross-Lingual ICL  In-Context Learning (ICL) has emerged as a powerful paradigm for LLM post
training (Brown et al., 2020). Previous works have explored the benefit of ICL in multilingual task
learning (Li et al., 2024), but only few of them explored the transfer ability of using cross-lingual
samples in ICL (Tanwar et al., 2023b; Zhang et al.| 2024)). Even for the above works, they aimed to
improve ICL in the multilingual settings without training, and thus not exploring the cross-lingual
knowledge transfer ability of in-context training compared to fine-tuning or multi-task learning. Our
work incorporates in-context learning and prompt tuning for cross-lingual transfer, which mitigates
the generalization issue in low-resource fine-tuning.
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3 PROBLEM STATEMENT

In this paper, we study the cross-lingual transfer problem which utilizes the task knowledge learned
in the dominant language to enhance the same task’s performance in the non-dominant language.

3.1 CROSS-LINGUAL TRANSFER SETTINGS

We consider two main cross-lingual transfer scenarios: (1) Dominant language direct transfer where
the model learns the task in the dominant language and then is directly applied to the non-dominant
language; (2) Mixed language transfer where the model learns the task in both the dominant and
non-dominant languages to improve performance in the non-dominant language.

Based on different data utilization in the above scenarios, we divide the data in cross-lingual transfer
into the following categories:

* The accessible data D; in the dominant language s;
* The accessible data D; in the non-dominant language ¢;

* The inaccessible data D, scen, Which is a minimal complementary set that enables the LLM
to sufficiently learn the task in language ¢ when added to the accessible data.

In the dominant language direct transfer only D; is used in training, while in the mixed language
transfer both D, and D, are used in training. When sufficiently learned the task in the non-dominant
language ¢, the learned model should achieve good performance on the language t’s data D, and the
inaccessible data D, scen -

3.2 PROBLEM FORMULATION

We formalize our cross-lingual transfer problem as a gradient alignment problem. For successful
cross-lingual transfer, decreasing the loss on training data should also decrease the loss on target data
in language t. According to Riemer et al.|(2019), this can be achieved by aligning the gradients on
different losses. Specifically, the gradient on the training data should be in the same direction as that
on the target data, which can be characterized by the inner product between gradients.

Denote the training data as Dy;.qin, and the model’s loss on it is Ly (Dsrain ), Where w represents the
model parameters. Besides minimizing the loss on training data, for cross-lingual transfer, the model
is desired to also maximize the inner product between gradients below:

maXy, V‘cw (Dt’rai’n) ° v‘cw (Dt) + v‘cw (Dtrain) : vLw (Dunseen); (1)

Gradient alignment to Dy Gradient alignment to Dy nseen

which includes the alignment with gradients on the accessible language ¢’s data D, and the inaccessible
data Dy pseen- In the scenario of dominant language direct transfer, Dy, = Ds; in the scenario of
mixed language transfer, Dyyqin = [Ds, Dyl

Connection to Representation Alignment Gradient alignment depends on representation align-
ment, which is shown to be important for cross-lingual transfer (L1 et al.,|2024;|Zhang et al.,[2025a)).
We show the connection by theoretical analysis of a toy example.

In the example, we have a linear regression model with parameter w € R?. For any single sample
input x € R'*?, the model outputs § = xw. Assume there is an optimal parameter w* that fits
samples from the same task in both language s and ¢, the loss on each sample is ||§ — xw*||3.

Then the inner product of gradients on D4y, and Dy is:

VEw (Dt’r’ain) . V£W (Dt) =7 Zz j Xi (X{rain)T Zm )\m (X;Qm) (xirﬂi’ﬂqm)T’ (2)
RepAlign 1 RepAlign 2

where 7 is a positive scalar, x; € R'*? is the i-th sample feature in D;, and X{’r'ain is the j-th sample
feature in Dyyqin. Qi is an orthonormal basis of the solution space (w — w*)(w — w*)T, with the
corresponding eigenvalue A, > 0. The derivation is in Appendix A.
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Figure 2: (a) The cosine similarity between token representations in a En-Zh translated sentence on
XQuAD; (b) The scatter of En-Zh sentence representations, which are computed by average pooling
the token representations in sentences; (c) Correlation between LLMs’ direct transfer performance
(XQuAD F1) and their cosine similarity deviations between En-En and En-Zh token representations.

In Eq. (@), the inner product of gradients A =32, =0
depends on the correlations RepAlignl and P
RepAlign 2 between data representations (fea-
tures). RepAlignl shows the correlation between
input data representations, while RepAlign2
shows the correlation between data representa-
tions projected to the solution space. An exam-
ple of gradient alignments influenced by repre-
sentation alignments is shown in Fig. [T} In Fig.
[T(a), correlations between input representations
Xtrains X¢ and their projections to the solution space are in the same direction, which causes positive
gradient alignment. In Fig. [[(b), although input representations are positively correlated, their
projections to the solution space p; are negatively correlated, which causes negative alignment. In
Fig. Ekc), X¢rain L X¢ and there is no gradient alignment.

P2

Xtrai
1Xtrain N Strain
! i
H 1
H
! H

| P1 T P1 RepAlign 2 | P1
(a) Positive Alignment (b) Negative Alignment (c) No Alignment
Figure 1: An example of different alignments in

a 2d space. pi, p2 are orthonormal basis of the
solution space with eigenvalues A1 and As.

We discuss ways to improve gradient alignments in different scenarios in the following sections.

4 DOMINANT LANGUAGE DIRECT TRANSFER

In the dominant language direct transfer, we train the model only on data from the dominant language
(i.e. Dyrain = Ds) and then directly apply the model on the non-dominant language’s data. Therefore,
it is infeasible to explicitly maximize gradient inner product with V Ly, (D;) in Eq. (1)) during training.
However, pre-trained LLMs may already have aligned representations in language s and ¢, which can
activate the gradient alignment effect. For example, if pre-trained representations of samples in Dy
and D; have large positive correlations (RepAlignl) when they rely on the same knowledge to solve
the task (RepAlign2), they can still achieve positive gradient alignment even only training on D.

We hypothesize that an LLM has aligned representations if it has highly correlated representations
of translated data pairs, which rely on similar knowledge to solve the task. We quantify LLMs’
representation alignment ability by the deviation of cosine similarities between token representations
in and across languages (Appendix B). The smaller cosine deviations indicate better representation
alignment ability. Then we evaluate the correlation between different LLMs’ representation alignment
ability and their direct transfer performance in Fig. 2]

In Fig. 2|c), the models’ direct transfer performance tend to decrease when the cosine deviation
gets large. This suggests that better representation alignment may lead to better direct transfer
performance. The visualization of cosine similarities between tokens are shown in Fig. 2fa). Qwen
2.5 7B has evenly distributed cosine similarity within and across English (En) and Chinese (Zh). On
the other hand, Llama 3.1 8B’s cosine similarity deviation between En and Zh is larger and its direct
transfer performance on Zh is also worse than Qwen. We also visualize representations of the En and
Zh sentences by average pooling their token representations. Better direct transfer models (Qwen
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2.5) may have close sentence representations in middle layers as well. However, different pooling
strategies may influence the representation distance (Zhang et al., 2025a)).

For models with good representation alignment ability, direct transfer from the dominant language
may enable decent performance on non-dominant languages. This suggests improving models
pre-trained representation alignment across different languages and tasks for cross-lingual transfer
(Muennighoft et al., 2023} |Chua et al.| 2025). However, we can further improve models’ alignment
ability by post-training with task data in non-dominant language, discussed in the following section.

5 MIXED LANGUAGE TRANSFER

When we have mixed data D, and Dy in training, we can explicitly train the model to maximize the
gradient alignment between language s and ¢; and further enhance the representation alignment. In
this section, we show that existing training strategies including target language fine-tuning and multi-
task learning already improve the gradient alignment between Dy,..;, and the non-dominant data D;.
However, they may ignore potential gradient alignment to inaccessible data D, scen €specially in the
low-resource scenario. To address this issue, we develop a cross-lingual in-context prompt tuning
(CL-ICP) model which utilizes the target sample’s attention on different demonstration samples to
infer its relation to the unseen data D, scern. In addition, we shift the representation of the target
sample to better align with the representation of the demonstration samples.

5.1 How Do EXISTING METHODS IMPROVE GRADIENT AND REPRESENTATION ALIGNMENT

Gradient Alignment Many works show that simply using fine-tuning (FT) and multi-task learning
(MTL) already perform well in many cross-lingual transfer scenarios (Chirkova & Nikoulina, [2024;
Chua et al.l 2025} |Gaschi et al., [2023; 'Wu et al., 2023; M hamdi et al., 2021; Mousi et al.,|2024). By
calculating the second-order Taylor expansion of gradients (Nichol et al.,|2018) in FT and MTL, we
show that this is because FT and MTL improve the gradient alignment:

Target Language Fine-tuning (FT): In FT, we have Dy;.;,, = D; and the gradient gy (Dyrqin ) is:

Jw (Dtrain) = VEw(,Z)train) - gv (v£w (Dt) : v‘Cw (Dt)> (3)

Gradient alignment to Dy

where [ is the learning rate times the number of gradient descent steps.

Multi-Task Learning (MTL): In MTL, we have Dy,.q;, = [Ds, D¢] and the gradient gw (Dygrqin) is:

Jw (Dtrain) - V‘CW(Dt’r'ai’n) - B

§V(v£w(ps) : VEW(DS)) - gv ((2V‘CW(DS) + VEW(Dt)) ’ VLW(Dt)) .

Gradient alignment to Dy

The derivation is in Appendix A. The second order terms in the gradients of FT and MTL are part of
Eq. (I). Therefore, by gradient descent FT and MTL tend to maximize the inner product between the
gradient on Dy,4;y, and the gradient on language ¢’s data D;, which improves gradient alignment.

As discussed in Section ] when sample representations correlate well after pre-training, simply
using FT or MTL may achieve good gradient alignment and have decent cross-lingual performance.
Otherwise, the gradient alignment may be limited (e.g., due to small absolute value of RepAlign 1).
This may require explicit alignment between representations.

Representation Alignment Previous works explicitly strengthen representation alignment to
achieve better cross-lingual transfer performance (Li et al.,|2024; [Zhang et al., 2025b; Tang et al.}
2024} Zhang et al.|2025b)), which directly improves RepAlign I and may make models more capable
for gradient alignment. However, accurate representation alignment (e.g. via contrastive learning)
usually requires rich data of translation pairs, and thus may be infeasible for non-dominant language ¢
which usually has low-resource data D, (Zhang et al.,|2025a)). On the other hand, coarse representation
alignment may cause negative gradient alignment (Fig. [1[b)) and not improve performance.

As analyzed above, existing gradient and representation alignment methods focus on the alignment
between training data and accessible data D;, which may omit the alignment with the unseen data
Dunsecen especially in the low-resource scenarios (Fig. E])
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5.2 CROSS-LINGUAL IN CONTEXT PROMPT TUNING (CL-ICP)

Unlike existing methods, we utilize LLMs” in- Typle 1: Averaged layer attention on the demon-
context learning (ICL) ability to improve the  giration (Attn) and F1 score for un-trained Cross-
model’s alignment with unseen data Dunscen-  lingual ICL. -R stands for random pairs and -T
Traditional ICL uses some data samples as gtands for translation pairs. Relevant demonstra-
demonstration to enhance a target sample’s pre-  tjons (translation pairs) obtain more attention.
diction. As shown in Table [T} we find that Yoi5 | En(R)-zn | Zb(R)-2Zb | En(T)-Zh | Zb(T)-Zh
pre-trained LLMs allocate higher attention on ‘ At Fl ‘ At Fl ‘ At Fl ‘ Attn  Fl
demonstration samples that contribute more to  Llama3.1 ‘ 073 053 ‘ 0.74  0.59 ‘ 0.78  0.68 ‘ 0.82  0.98
the target sample’s prediction. The target sam.- Qven2S [ 050 078 052 079 [054 087 | 060 099
ple’s various attention on demonstration samples

may infer its relation to unseen samples in D,y scern. For example, assume that Dy,.q;, does not
include translation pairs in language s and ¢. Then for a target sample in D,, demonstration samples
in D, with high in-context attention may be close to its translation in language s. In training, the
target samples are supposed to have more alignment with more related demonstration samples.

In-Context Prompt Tuning We improve gradient alignment between in-context data by learning
soft-prompts p to predict target outputs. We learn soft prompts instead of full fine-tuning to better
preserve the model’s pre-trained knowledge in arranging high attention to related demonstrations.

Our model input is {p, X4, Y4, X¢ }, where {xq, ya} = {Xa1, Ya2, ---, Xdk, Yax } includes k demonstra-
tion samples; {x;, y; } is the target sample from D;. We train soft prompts p to predict the target
value y; and the demonstration value y4;, to learn the knowledge in both languages. The objective is

mapr(yth,Xd, yd,Xt}) +p(ydk’Handlayd27 "'7Xdk})'

In transformer models (Vaswani et al.| 2017)), the representation x for predicting y, is the weighted
sum of input representations:

x = attn,(p)p + attng(xq)xq + attng(x¢)x; + attng (y4)ya,

where attn, (+) is the self attention on - with the query for y; prediction. Based on LLM’s pre-trained
knowledge, attn,(-) is high when - contributes to y;’s prediction.

Based on Eq. (3), gradient descent tends to maximize the inner product between gradients on input
samples. In Eq. (2), this is related to the correlation (inner product) between sample representations.
For any two representations x*, x/ € R'*9, the correlation between their representations is:

% iNT __ i (INT i (GINT i (GINT i T i T i T I T GIAT I T
X (XJ) - ¢1Xd(xd) + ¢2xd(xt) + ¢)3Xt(xt) +f(xdp y XeP 5 YagP ) + f(Xdp y Xt P YgP )7
Pre-trained correlation between sample representations Learned correlation between sample representations and soft prompts

“

where f(x4p”, x:p",y4p’) is the correlation between soft prompts p and sample representations;
¢1 = atin, ()FZl)attnt(x]d)Z ¢o = 2attn, (xfi).attnt (Xg),.QSg = attn, (xi)attnt (x]) are pre-trained atten-
tion correlations. We omit the non-correlation terms in the equation.

To maximize the gradient alignment, the model may learn parameters to increase the correlation
between data representations. Unlike FT and MTL which update all parameters and shift data
representations, in-context prompt tuning preserves the pre-trained correlation between sample
representations while learning the soft prompts to improve the alignment.

Cross-Lingual Demonstrations According to|Tanwar et al.| (2023b);|Zhang et al.|(2024)), LLMs’
ICL ability highly depends on the selection of demonstration samples. In Fig. [3] we have two
observations about cross-lingual ICL: (1). For a target sample in the non-dominant language ¢, using
demonstration samples in language ¢ sometimes achieves better ICL performance than using English
(dominant language) demonstrations. (2). Using more demonstration samples (k = 3) achieves better
ICL performance than only using one.

Based on these observations, our CL-ICP model uses 3 demonstration samples in most tasks. Instead
of choosing demonstrations from one language, we randomly select demonstration samples in
{Xd, yq}from both D, and D; to balance the relatedness between samples and the knowledge from
the dominant language.
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Figure 3: Llama 3.1 8B’s ICL performance with different demonstration samples.

Representation Shift In Eq. (@), when pre-trained correlation between sample representations
is low, CL-ICP may not well connect the demonstration and target samples and thus downgrade
to single-sample prompt tuning. Therefore, we shift representations of x; to further enhance its
representation alignment to the demonstrations x4. An overview of the shifting operation is in Fig. [

In each layer of transformer models, the sentence in- Attention Layers Yak yTS
puts x4 and x; are sequences of token representations. [pL,mck] [ HLvack J
We denote their layer-wise token representations as a Push el

ray + Ah .
L __ L L I IL h L I Attention L away back
H = [hd,17 "'hd, d] a]ld r = [ t,15 “'Iltvnt] at ention Layers T

the layer L. Inspired by Xu et al.|(2023)); [Zhang et al. [ poDJ [ HL® ]—};
(2025b), we add representation deviations on each lse |+ g,

- . Attention Layers T close
token representation in the target sample at the L, P Xa Yai - Xae Yar X
and Ly, layers where representations from different N . )
languages are close to each other. The representation Softprompt Demonstration {Xq, ya}  Target
deviations are calculated by Figure 4: CL-ICP with representation shift.

Ahfe = sentpool(HdL“’) — sentpool(HtL“’); AhLeex — sentpool(HtLh““k) — sentpool(HdL‘”“")
where sentpool calculates the average token representations as the sentence representation.

The representation shift first projects the target sample representations close to the demonstration’s
representation by Ah’« and then projects them back by Ah’*, By making target sample represen-
tations close to demonstration representations, the model may easier find the connection between the
demonstration and target samples, and thus benefit in-context prompt tuning.

6 EXPERIMENTS
6.1 SETUP

Datasets Our experiments are performed on three cross-lingual datasets: (1) XQuAD(Artetxe et al.,
2019) for multilingual question answering, with Chinese (Zh), Spanish (Es), Turkish (Tr), Greek (El)
as target non-dominant languages. We report exact-match and F1 score on this dataset; (2) XCOPA
(Ponti et al., |2020) for multilingual causal reasoning, with Chinese (Zh), Swahili (Sw), Turkish (Tr),
Quechua (Qu) as target non-dominant languages. We report accuracy on the dataset. (3). XNLI
(Conneau et al., [2018)) for text classification with Chinese (Zh), Swahili (Sw), Turkish (Tr), Greek
(El) as target non-dominant languages. We randomly sample 1000 training and testing samples for
XNLI. For all datasets, we set English as the dominant language.

Models We use Qwen 2.5 7B (Qwen et al., 2025)) and Llama 3.1 8B (Dubey et al., [2024)) as base
models of testing methods. The methods we compare are: (1) Dominant Language Direct Transfer
(default model performance): only fine-tuning the pre-trained LLM on the dominant language and
evaluating its performance on non-dominant language. (2) Target Language Fine-Tuning (FT):
fine-tuning the pre-trained LLM on the non-dominant language. (3) Transfer Learning (TL): first fine-
tuning the LLM on the dominant language and then fine-tuning on the non-dominant language. (4)
Multi-Task Learning (MTL): Fine-tuning the model on both dominant and non-dominant languages’
data. (5) ShifCon (Zhang et al., 2025a): MTL model with representation projection and contrastive
learning to align sample representations. (6) CL-ICP: our cross-lingual in-context prompt tuning
without representation shift. (7) CL-ICP (Shift): our CL-ICP model with representation shift.

For ICP models, we use demonstration samples in the training set at test time for a fair comparison
with other methods. Due to the input length constraint, we use 1 demonstration samples for XQuAD
and 3 demonstration samples for other datasets. For every method, we compute the scores averaged
from three random seeds. Detailed training settings are in the appendix.
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Table 2: Evaluation Results. The bold and underline scores are the first and second best scores.

Dataset XQuAD (EM/F1 %) XCOPA (Acc %) XNLI (Acc %)
Language s — ¢ En-Zh En-Es En-Tr En-El Avg En-Zh En-Tr En-Sw En-Qu Avg En-Zh En-Tr En-Sw En-El Avg
Llama3.18B  58.0/63.7 38.2/62.5 33.2/62.4 32.8/59.7 40.5/62.1 632 54.6 52.6 522 557 616 583 51.8 587 576
TL 54.3/62.3 40.9/672 17.6/49.1 35.7/61.7 37.1/60.1  81.7 62.3 52.5 53.6 625 67.8 65.4 532 683 637
MTL 51.3/57.5 42.3/68.6 18.1/51.3 38.2/62.3 37.5/59.9 835 65.4 53.1 484 626 67.0 64.2 54.1 675 632
Shifcon 57.4/64.1 42.4/68.8 23.4/543 42.2/66.3 41.3/63.4 842 65.7 54.3 50.9 63.8 68.6 65.8 53.6 67.6 639

CL-ICP 534/65.5 46.4/723 256/58.7 39.1/66.1 41.1/657 876 7179 588 491 684 703 661 596 720 670
CL-ICP (Shift) 61.6/69.1 44.8/71.9 23.1/56.3 412/67.0 42.7/66.1 877 785 517 490 682 704 683 574 736 674

Qwen2.57B  73.9/773 51.7/75.5 42.0/64.5 39.4/652 51.8/70.6 91.0 752 52.6 514 675 770 69.1 44.3 709 653
TL 78.6/82.2 53.5/75.4 353/65.1 42.0/66.6 52.3/72.3  92.1 772 535 520 687 817 74.1 51.4 76.3 709
MTL 76.9/80.8 54.1/75.6 38.1/67.2 43.6/67.6 53.2/72.8  93.8 77.2 54.1 51.8 692 814 76.7 52.0 784 721

Shifcon 76.8/80.9 54.3/76.1 37.8/67.0 42.3/67.4 52.8/728 93.3 76.7 532 509 685 810 77.1 514 789 721

CL-ICP 78.7/81.4 51.5/757 43.7/68.2 40.2/66.2 53.5/72.9 93.9 79.6 55.6 540 708 815 77.2 52,6 778 723
CL-ICP (Shift)  77.9/80.6 51.5/75.2 44.1/68.0 39.4/66.3 53.2/725 94.0 82.2 55.9 526 712 819 76.2 54.1 763 721
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Figure 5: Llama 3.1 8B’s performance with different ratios of non-dominant language data. Under
the language pair s — ¢, we compare CL-ICP with mixed language demonstrations and MTL; under
the language pair ¢ — ¢, we compare CL-ICP with non-dominant language demonstrations and FT.

6.2 EXPERIMENTAL RESULTS

Results of the Gradient Alignment We show results of different methods in Table[2] CL-ICP
(with or without shift) achieves the best average performance across all datasets. The effectiveness of
CL-ICP varies between tasks, base models and languages.

For the question answering task XQuAD which may have sequence-to-sequence distribution similar
to pre-trained data, the direct transfer already achieves decent performance and the improvement
of CL-ICP is marginal. For other tasks XCOPA and XNLI whose outputs are choices instead of
sentences, the direct transfer is not effective enough and CL-ICP achieves much better performance
compared to other baselines.

Comparing performance on different base models, CL-ICP outperforms baselines by larger margins
on Llama 3.1 than Qwen 2.5. This may be because Qwen 2.5 has better pre-trained representation
alignment than Llama 3.1 (as shown in Fig. JJ¢)), which makes simple fine-tuning on two languages
(e.g. MTL) strong baselines.

Relying on pre-trained LLMs’ ICL ability, CL-ICP’s performance also depends on LLMs pre-trained
capacity on different languages. For the rare language that are poorly learned in pre-training (e.g., Qu
in Llama 3.1, El in Qwen 2.5), CL-ICP does not outperform baselines with full fine-tuning. For El in
Qwen 2.5, the model may need full fine-tuning instead of prompt tuning to learn the knowledge in the
non-dominant language. For Qu in Llama 3.1, the model may have difficulty learning the relationship
between En and Qu, which makes the two-stage training (direct transfer and TL) performs best.

Results of the Representation Alignment In Table 2] we compare the models with additional
representation alignment, ShifCon and CL-ICP (Shift). With contrastive learning on shifted represen-
tations, ShifCon outperforms MTL in most cases on Llama 3.1. With shifted representations, CL-ICP
(Shift) also outperforms CL-ICP in 2/3 datasets on Llama 3.1.

However, the effect of representation alignment is critical in different scenarios. On Qwen 2.5,
Shifcon does not outperform MTL in some datasets and languages; CL-ICP (Shift)’s performance
also differs in different base models and datasets. That may be because representation alignment
needs carefully designed strategies and sufficient data for training (Zhang et al., 2025a). By only
learning on the target tasks’ data, ShifCon and CL-ICP (Shift) may not learn the true relationship
between shifted representations of data in different languages. As shown in Fig[T[b), this may cause
negative gradient alignment and even decrease the performance.
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Results in Low Resource Scenarios We show results of training with different ratios of non-
dominant language data in Fig. [5] We use full dominant language (English) data in this experiment.
Results show that with low-resource non-dominant language data, FT suffers from the generalization
issue which makes it underform MTL by a large margin (with less non-dominant language data, MTL
is closer to the direct transfer). However, using the same data, CL-ICP significantly outperform FT,
which shows its generalization ability in aligning with unseen data.

However, when the demonstration samples are in mixed languages, CL-ICP needs sufficient data to
address the relationship between demonstration and target samples. With 10% data in XQuAD and
XCOPA, CL-ICP with mixed language demonstrations performs worse than MTL in some cases and
CL-ICP with non-dominant language demonstrations achieves better performance. With more than
25% non-dominant data, CL-ICP consistently outperform MTL.

6.3 ABLATION STUDY

Influence of Demonstration The experiments of abla- Table 3: CL-ICP with different demon-
tion studies use Llama 3.1 8B as the base model. We show strations on XCOPA.

the influence of the number and mixture of demonstra- _Lang.# EnZh EnTr En-Sw En-Qu Avg
tion samples in Table[3] Using 3 demonstration samples ~ English.3 860 744 559 501 66.6
in mixed languages achieves best performance. Using ﬁff:é? 2;3 Z; 2% igﬁ 22;2
3 demonstration samples in the target non-dominant lan- Mixed,3 876 779 588  49.1 684
guage outperforms that in the dominant language (English).

In addition, using mixed language demonstration with only 1 sample sometimes outperforms using
English demonstration with 3 samples. These indicate the importance of close distribution between
demonstration and target samples in in-context training.

We show the influence of training to predict demonstration output in Appendix C.

Influence of In-Context Inference For a fair compar- Table 4: Models with in-context samples
ison with our model, one question is: will baseline mod- at inference time on XCOPA.

els achieve better performance when adding the same in- _ Model  EnZh En‘Tr En-Sw EnQu Avg
context samples as CL-ICP at the inference time? We Tt | 81083 7 Bs o2
show the results in Table ] Results show that adding in-  MTL = 835 654 531 484 626

ali ines’ in MTLACL) 805 700 550 520 644
context samples VYIH improve baselines’ performance in CLacr)  s7e  wre s o1 o84
some cases, but still underperform our CL-ICP model.

Influence of Prompt Tuning We compare the influence XCOPA 10% XCOPA 100%

©
S

of prompt tuning and full parameter tuning in our cross- = cLiCT

cLicp

®
S

lingual in-context training in Fig. [] Although in-context
fine-tuning achieves slightly better performance with 100%
non-dominant language’s data, it underperform CL-ICP
in the low-resource scenario. This may be because in the

3
=

Accuracy (%)
a
3

o
8

En-Zh En-Tr En-Sw En-Qu En-Zh En-Tr En-Sw En-Qu

low-resource scenario, full parameter tuning may be easier Language Pair Language Pair
to lose alignment with unseen data due to the distortion of Figure 6: Comparison between CL-ICP
pre-trained correlation between sample representations.  and in-context fine-tuning (CL-ICT).

7 CONCLUSION

In this paper, we presented a comprehensive study on the cross-lingual transfer in large language
models, with a particular focus on the interplay between representation and gradient alignment. To
improve cross-lingual transfer in post-training, we propose a cross-lingual in-context prompt tuning
model to improve gradient alignment and add a representation shift to better align representations
between demonstration and target samples. Experiments show that our models have improved
performance in both low and high resource scenarios. The limitation of our model is that it depends
on LLMs’ ICL capacity. When adding the demonstration in the input, the input sequence length will
increase and is inefficient for long samples. We leave these questions for future study.
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A DERIVATION

A.1 CONNECTION BETWEEN GRADIENT ALIGNMENT AND REPRESENTATION ALIGNMENT

This is the detailed derivation of Eq. ().

In the example, we have a linear regression model with parameter w € R?. For the task in language s
and ¢, we have data Di,qin = {Xirain € RMrain*d vy, o € R} and Dy = {X; € R™"*4 y, €
R™=} respectively, containing data features and the true outputs. In different transfer scenarios,
Dirain contains different mixes of Dy and D;. Since samples in different languages are for the
same task, we assume that there is an optimal parameter w* that fits both D;,.,;,, and D;. Then for
any single sample {x € R'*¢ y € R}, the model outputs j = xw and the loss on the sample is
|15 — xw*|[3.
The inner product of gradients on D, and D; is:
vfcw (Df) : VEW (Dtrain)
T T
=1(w — W) X" Xe Xrain” Xerain(W — W})

=7 Zi,j Xi (Xgrain)T [X; (W - W*)(W - W*)T(Xirain>T] (5)

mml —, xi € R%4 ig the i-th row of the matrix X; (i.e., the input feature of the i-th

sample in language t), and x/ is the j-th row of the matrix X.

where 7 =

We further decompose (w—w*)(w—w*)T = QXQT where each column m of Q is an orthonormal
vector q,,, with the corresponding eigenvalue \,,, > 0 as the m-th diagonal element in 3. Then Eq.
(3) can be written as

Bo @) =7, %) [}1QVQT (], 01) ]

— § : Ly T E : ) T (] T
=7 ij Xt (Xtrain) m /\mxtqum (Xt’rain) ’
RepAlign 1 RepAlign 2

which is Eq. (2)) in the main paper.

A.2 FT AND MTL FOR GRADIENT ALIGNMENT

This is the detailed derivation of gradient alignment effect in the FT and MTL.

A.2.1 TARGET LANGUAGE FINE-TUNING

For a model with parameter w, and data D;,.;, = D; from languages ¢, the objective of Target
Language Fine-Tuning is to minimize the loss L (D;). When updating the model by gradient
descent, the parameter w is updated as

Wi = Wo — 5ZL§Vk,1 (D),
k

where (3 is the learning rate, wy is the initialized weight of w, k is the updating step.
The gradient of target language fine-tuning at the step k is:
9wy, (Dt) = Ly, (D) (6)
We now take the second-order Taylor expansion of the gradient:
Ly, (Dt) = Ly, (Dt) + Ly, (D) (Wi — Wo) + O(||wi, — wol|*)
= Ly, (Dy) + Ly, (Do) (wy, — wo) + O(5%)
= Ly, (Dy) — BLy, (Dy) Z Ly, (D).
k
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We omit the term O(/3?) here since the learning rate is usually small for LLMs (e.g., le-5 for
fine-tuning). Using the Taylor expansion of Li,,  (D;), we have

BLYy,  (Di) = BLry, (D) + BO(l|wi — wol|)
—_———
o(B?)
The latter O(3?) is omitted. Then the gradient in Eq. @) is:
gwi(De) = Liy, (D) — BkLy, (Di) Ly, (Dy)

Based on the product rule of derivatives, we have

9o (D) = Ly, (D) = 25y (Ll (D)Ll (D)
= L:avo (Dtrain> - %vwo (L:;VO (Dt)L:;vo (Dt)) (Dtrain = Dt)

This suggests that the gradient of multi-task learning encourages to maximize the inner product of
gradient on data within samples of D;.

A.2.2 MULTI-TASK LEARNING

For a model with parameter w, and data Dy,q;n, = [Ds, D;] from languages s and ¢, we have the
training loss Ly, (D) and Ly, (D;), respectively. The objective of multi-task learning is to minimize
the loss:

Lw(Ds+ D) = Lw(Ds) 4+ Lw(Dy).

Following the toy example, we assume the parameter w is a d-dimensional vector. When updating
the model by gradient descent, the parameter w is updated as:

Wk—WO*ﬁz wi (D) + Ly, (Dy))

where wy is the initialized weight of w, k is the updating step, 3 is the learning rate. The gradient of
multi-task learning at the step k is:

9w, (Ds + Dy) = Ly, (Dy) + LY, (Dy) (7
We now take the second-order Taylor expansion of each gradient. For the gradient on D we have
Ly, (Ds) = Ly, (Ds) + Ly, (Ds) (wr, — wo) + O(|[wi — wol[?)
= Ly, (Ds) + Ly, (Ds)(wi — wo) + O(6%)

= Ly (Ds) = BLY (Ds) Y (L, (Ds) + Ly, (D).
k

We omit the term 0(52) here since the learning rate is usually small for LLMs (e.g., le-5 for
fine-tuning). Then since L,  (Ds) = Ly, (Ds) + O(j3), we further approximate Ly, (D) as:

Wk—1
Ly, (Ds) = Ly, (Ds) — BELYG, (D) (Liy, (Ds) + Liy, (Dr)).-
Similarly, we have

Ly, (D) = Ly (D) = BkLy,, (D) (Lyy, (Ds) + L, (Dr)).

Then we expand Eq. (7) as:
9wy, (Ds + D) = Ly, (Ds) + Ly, (Dy)
— Bk Ly, (Ds) Ly, (Ds)
— BkLy, (D) Ly, (Dt)
= BE (L3 (D) Ly (Dr) + L (D) Ly (Ds))
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Based on the product rule of derivatives, we integrate the terms in the above gradients as below.

L;Ivo (DS)L:NQ (DS) = LH (DS)L;‘,O (D ) LH (DS)L:N() (DS)

2w 2w

5 Voo (L, (D) Ll (D)
L (D), (P0) = 5V (Ely (D) Ll (D)
Ly (D) Ly (D) + L (D)l (D) = Yoy (Ely (D)Ll (D)

Then the gradient of multi-task learning is finally expanded as:

9w, (Ds + Dy) = L:Ng (Dtrain) (L:Ng (Dtrain) = L:;vo (Ds) + L:NO (D))
Ok

2

Bk

- 7 VWO (L:N(] (Dt)L:IV() (Dt)

- ﬁkvw() (L(NU (DS)L:NU (Dt))

Vo (Liwy (Ds) L, (Ds)

This suggests that the gradient of multi-task learning encourages to maximize the inner product of
gradient on data within and across languages.

B EXPERIMENTAL SETTINGS

B.1 METRIC FOR COSINE DEVIATION

We use the cosine deviation of translation pairs to quantify LLMs’ pre-trained representation align-
ment ability. For the L-th transformer layer, we have data representations of each sentence pair in
language s and t as HY = [hf,, .. h! Jand H} = [}, ..h{, ] where n, and n; are numbers
of tokens in each sentence; hth and hf n. are token representations in the corresponding sentence.
The cosine deviation of all sentence pairs is computed as:

H: top-10)

SZ’

dev(H., Hf) = (hl;, HE;top-10) — cos(hl,
cos_dev( s 2; cos(hy;, op-10) — cos(
cos_dev(H;, H;) = Zcos _dev(HL HE)]

L., HZL:top-10) is the average of the top-10 highest cosine similarities between the token
representation h’; and all token representations in HZ. Since the translated sentences in different
languages may have varied token numbers due to dlfferent tokenization, we pick top-10 highest
cosine similarities and select language pairs with comparable token numbers in our experiment.

where cos(h,

B.2 TRAINING DETAILS IN SECTION 6

We train our models on 4 Nvidia L40S machines. The detailed training settings for each model is:

Model LR  BatchSize XQuAD XCOPA XNLI

TL 2e-6 4 per-device Epoch 1 on each single language Epoch 3 on each single language Epoch 3 on each single language
MTL 2e-6 4 per-device Epoch 2 Epoch 3 Epoch 3

ShifCon 2e-6 4 per-device Epoch 2 Epoch 4 Epoch 4

CL-ICP  le-3 4 per-device Epoch 5, prompt 1, demosample 1 ~ Epoch 20, prompt 10, demosample 3 Epoch 20, prompt 10, demosample 3

For each baseline model, we select training epochs from the set {1, 2, 3, 4, 5, 8} and pick the epoch
with stable top performance.
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Table 5: CL-ICL models without training to predict demonstration samples.
Dataset XQuAD (EM/F1 %) XCOPA (Acc %) XNLI (Acc %)
Language s — ¢ En-Zh En-Es En-Tr En-El Avg En-Zh En-Tr En-Sw En-Qu Avg En-Zh En-Tr En-Sw En-El Avg

CL-ICP 53.4/655 46.4/72.3 25.6/58.7 39.1/66.1 41.1/65.7  87.6 77.9 58.8 49.1 684 703 66.1 59.6 72.0  67.0

- Demotrain ~ 64.4/68.9 47.3/72.6 28.4/58.5 40.8/66.5 45.2/66.6 88.3 77.9 552 50.7 68.0 69.7 65.8 55.7 71.0 655
CL-ICP (Shift)  61.6/69.1 44.8/71.9 23.1/56.3 41.2/67.0 42.7/66.1 81.7 78.5 577 490 682 704 68.3 574 73.6 674
- Demotrain ~ 65.4/69.3 45.5/71.2 31.4/60.1 42.0/67.0  46.1/66.9  88.3 80.1 542 50.1 682 70.0 64.9 534 71.0 648

C INFLUENCE OF DEMONSTRATION TRAINING

We show the influence of training with the demonstration prediction loss in CL-ICP in Table[5} For the
question answering task XQuAD which has sequence to sequence distribution close to pre-training
data, adding the demonstration loss does not increase the performance. However, for task XCOPA
and XNLI whose outputs are choices instead of sequences, adding the demonstration loss achieves
better performance. We hypothesize that this is because the model can easily acquire knowledge from
demonstration samples in XQuAD, while it needs further training to acquire knowledge of the task in
XCOPA and XNLI. So for tasks which have dissimilar distribution to pre-trained data, training with
the demonstration loss is beneficial.
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