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Abstract

Recent advancements in diffusion models have demonstrated their potential as
powerful learned data priors for solving inverse problems. A popular Bayesian
approach leverages diffusion sampling steps for inducing a data prior, generating
images from noise while incorporating measurement gradient updates at each step
to impose data consistency. However, diffusion models exhibit high sensitivity
to measurement gradient step size and face challenges in preserving the process
on the manifold, leading to performance degradation and artifact introduction
in the sampled posterior. We propose a Projected Low-Rank Gradient (PLoRG)
method, approximating the data manifold structure to enhance the performance
and robustness of diffusion models in solving inverse problems. Our approach
leverages singular value decomposition to approximate the measurement gradient
in a lower-rank subspace defined by the current state, effectively preserving the
manifold structure and filtering out artifact-inducing components. In addition to
superior robustness, we show that PLoRG improves the performance of diffusion
models on a range of linear and nonlinear inverse problems, especially those that
are inherently challenging such as phase retrieval.

1 Introduction

Inverse problems are ubiquitous in science and engineering, playing a crucial role in simulation-based
scientific discovery and real-world applications [1–3]. They arise in fields such as medical imaging [4–
8], remote sensing [9, 10], astrophysics [11], molecular dynamics simulations [12, 13], and solving
partial differential equations (PDEs) [14]. Inverse problems are also relevant in autonomous vehicles,
where visual perception systems must contend with noisy or motion-blurred visual scenes [15–17].

Inverse problems aim to recover an unknown signal x⋆ ∈ Rn from noisy observations y = A(x⋆) +
n ∈ Rm, where A denotes the measurement operator, and n is the noise. These problems are
generally ill-posed, i.e., in the absence of a structure governing the underlying desired signal x, many
solutions can explain the measurements y. In the Bayesian framework, this structure is translated
into a prior distribution p(x), which can be combined with the likelihood term p(y|x) to define
a posterior distribution p(x|y) ∝ p(y|x)p(x). Hence, solving the inverse problem translates into
performing a Maximum a Posteriori (MAP) estimation or drawing high-probability samples from the
posterior [18]. Given the forward model, the critical step is to define the prior p(x).

Prior works consider sparse priors and provide a theoretical analysis of conditions for the unique
recovery of data where A is a linear operator, a problem known as compressed sensing [19, 20].
Sparse priors have shown usefulness in medical fields such as computed tomography (CT) [21] and
magnetic resonance imaging (MRI) [22], and engineering applications such as radar imaging [23].
This approach is categorized into model-based priors where a structure is assumed on the signal, e.g.,
exploiting the low-rank structure of data [24], as opposed to being learned [25].
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Recent literature goes beyond such model-based priors and leverages data structures captured by a pre-
trained deep generative model [26, 27] to solve inverse problems [28–31]. The latest works employ
generative diffusion models [31–34], which implicitly learn the data prior p(x) by learning a process
that transforms noise into structured data. For inverse problems, this reverse generation process
is guided by a data-consistency term p(y|x). This approach has shown promising performance in
generating high-quality samples [35–37], and solving PDEs [38, 39].

Despite their promise, diffusion models are still facing challenges solving inverse problems, limiting
their widespread applications. At a high level, the main challenge concerns the preservation of the
process on the data manifold; the measurement consistency gradient step gradually pushes away the
process from this manifold, leading to the introduction of “artifacts” in the reconstructed data [40].
Prior work [41, 42] aims to address this challenge by decoupling the sampling from the measurement
process. However, challenges remain when a) latent diffusion models (LDMs) [43], as opposed
to pixel-based, are employed due to the nonlinearity of their latent-to-pixel decoder, and b) the
measurement consistency gradient step size is not delicately tuned for desired performance.

We propose a Projected Low-Rank Gradient (PLoRG)2 step that can be utilized by a wide range of
diffusion-based methods to enhance their performance and robustness in solving inverse problems.
PLoRG filters out artifact-inducing components by projecting the measurement gradient (MG) onto a
lower-rank subspace enforced by the sample at the current step of the diffusion. PLoRG helps the
samples to remain on or close to the manifold, hence improving reconstruction quality (Figure 1). We
demonstrate that PLoRG significantly improves the robustness of diffusion-based inverse methods to
the data-consistency gradient step size; this is particularly crucial for enabling the wider real-world
application of diffusion models for solving inverse problems. We apply PLoRG to both linear and
nonlinear inverse problems for image restoration tasks; our results show that PLoRG can significantly
improve state-of-the-art (SOTA) performance, particularly in challenging inverse problem tasks. For
example, PLoRG drastically improves the box inpainting (PSNR 19.91 → 23.59 dB) and phase
retrieval (PSNR 27.61→ 31.19 dB) performance of ReSample [41].

2 Background

Diffusion models conceptualize the generation of data as the reverse of a noising process, where a
data sample xt at time t within the interval [0, T ] follows a specified stochastic differential equation
(SDE). This forward SDE [34] for the data noising process is described by dx = −βt

2 x dt+
√
βt dw,

where βt ∈ (0, 1) is a positive, monotonically increasing function of time t, and w represents
a standard Wiener process. The process begins with an initial data distribution x0 ∼ pdata and
transitions to an approximately Gaussian distribution xT ∼ N (0, I) by time T . The objective of
regenerating the original data distribution from this Gaussian distribution involves reversing the
noising process through a reverse SDE of the form dx =

[
−βt

2 x− βt∇xt
log pt(xt)

]
dt+

√
βtdw̄,

where dt indicates time moving backward and w̄ is the reversed Wiener process. To approximate
∇xt log pt(xt), a neural network sθ trained through denoising score matching [44] is used.

Diffusion-based approaches to inverse problems seek to reconstruct the original data x0 from
the measurement y = A(x0) + n. In this case, the reverse SDE implements dx =[
−βt

2 x− βt(∇xt
log pt(xt) +∇xt

log pt(y|xt))
]
dt +

√
βtdw̄. Conceptually, the learned score

function∇xt
log pt(xt) guides the reverse diffusion process from noise to the data distribution, and

the likelihood term ∇xt log pt(y|xt) ensures measurement consistency. The main challenge of this
approach is the lack of an explicit analytical expression for∇xt log pt(y|xt), as the exact relationship
between y and intermediate states xt is typically not well-defined, except at the initial state x0. To
address this issue, prior works, notably Diffusion Posterior Sampling (DPS) [35], approximate the
probability p(y|xt) ≈ p(y|x̂0 := E[x0|xt]) using the conditional expectation of the data [40]. In
the case of latent diffusion models, we can naturally extend this DPS assumption to approximate
p(y|zt) ≈ p(y|x̂0 := D(E[z0|zt])) where zt is the latent representation of xt, and D denotes the
latent-to-pixel space decoder. We will refer to this as Latent-DPS. Such assumptions can be a source
of the issue discussed above, and this work aims to alleviate its adverse effects on performance.

2PLoRG is a preliminary version of DiffStateGrad. See https://arxiv.org/abs/2410.03463.
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Figure 1: High-level interpretation of PLoRG. PLoRG helps to stay closer to the data manifold.

3 Projected Low-Rank Gradient (PLoRG)

(a) Image visualizations.

(b) PSLD over time.

(c) PLoRG-PSLD over time.

Figure 2: Effect of large MG step size.

Without loss of generality, we explain the proposed
method in the context of Latent-DPS [35] and note that our
method applies to a wide range of pixel or latent diffusion-
based inverse solvers.

Method Given zt+1, we sample zt from the uncondi-
tional reverse process, and then compute the estimate
ẑ0(zt) := D(E[z0|zt]). Then, the data-consistency term
can be incorporated as follows

zt ← zt − ηtPSt
(Gt), (1)

where Gt = ∇zt+1
log p(y|ẑ0(zt)) is the measurement

gradient (MG), ηt is the step-size, and PSt
is a projection

step onto the low-rank subspace St, defined by zt. We
implement the projection PSt

by computing the singu-
lar value decomposition (SVD) of zt (i.e., U ,S,V ←
SVD(zt)). Then, we compute an adaptive rank r ←
argmin

k
{
∑k

j=1 s2j∑
j s2j

≥ τ} leveraging a fixed variance re-

tention threshold τ . The gradient Gt is projected onto a
subspace defined by the highest r singular values of zt as
follows: Gt ← UrU

T
r GtV

T
r Vr. where Ur and Vr con-

tain the first r left and right singular vectors, respectively.
We refer to this projection step as Projected Low-Rank
Gradient (PLoRG), and argue that it helps to preserve zt
after the MG update on the manifoldMt (Figure 1).

Interpretation Let the initial latent state zt be artifact-free, as the diffusion is trained on clean
data samples. We argue that the artifacts can only be introduced via the data-consistency gradient
step. Hence, by projecting the MG onto a lower-rank subspace defined by the current zt, we filter
out artifact-inducing components and encourage the process to remain within the manifold. This
creates an inductive process: if zt is artifact-free, and we only allow updates that align with its
structure, subsequent zt will remain artifact-free. Figure 2 demonstrates the effectiveness of PLoRG
in removing artifacts when the MG step size is large; artifacts are introduced onto the gradient
and stay within the latent representation in Posterior Sampling with Latent Diffusion (PSLD) [40],
whereas the reverse process via PLoRG-PSLD (our method applied to PSLD) stays artifact-free.

4 Results

We evaluate the performance of PLoRG in conjunction with existing latent diffusion models, specif-
ically PSLD [40] and ReSample [41]. Our evaluation is made based on key quantitative metrics,
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Table 1: Robustness comparison of PSLD and PLoRG-PSLD on linear tasks under different
gradient step sizes. Values represent mean performance over 100 images on FFHQ 256× 256.
Method Inpaint (Box) Inpaint (Random) Gaussian deblur Motion deblur SR (×4)

LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑

Normal MG step size
PSLD 0.158 0.819 24.22 0.246 0.809 29.05 0.357 0.537 22.87 0.322 0.615 24.25 0.313 0.650 24.51
PLoRG-PSLD (ours) 0.095 0.875 23.76 0.265 0.793 28.14 0.366 0.516 22.24 0.335 0.585 23.34 0.392 0.516 22.12

Large MG step size
PSLD 0.252 0.728 11.99 0.463 0.551 20.62 0.549 0.318 17.47 0.514 0.390 18.81 0.697 0.075 7.700
PLoRG-PSLD (ours) 0.092 0.880 24.32 0.165 0.898 31.68 0.355 0.542 22.95 0.319 0.620 24.31 0.320 0.640 24.56

Table 2: Performance comparison of ReSample and PLoRG-ReSample on linear and nonlinear
tasks. Values represent mean performance over 100 images on FFHQ 256× 256.

Method Inpaint (Box) Inpaint (Random) Phase Retrieval

LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑

ReSample 0.198 0.807 19.91 0.115 0.892 31.27 0.237 0.750 27.61
PLoRG-ReSample (ours) 0.156 0.841 23.59 0.106 0.913 31.91 0.154 0.855 31.19

including LPIPS (Learned Perceptual Image Patch Similarity), PSNR (Peak Signal-to-Noise Ratio),
and SSIM (Structural Similarity Index). We use the FFHQ 256× 256 dataset [45] and the pre-trained
latent diffusion model LDM-VQ-4 trained on FFHQ [43].

(a) PLoRG robustness to MG step size.

(b) PSNR histogram of ReSample and
PLoRG-ReSample for phase retrieval.

Figure 3: Robustness and perfor-
mance comparison of PLoRG for
PSLD [40] and ReSample [41].

We consider linear (box inpainting, random inpainting, Gaus-
sian deblurring, motion deblurring, and super-resolution), and
nonlinear (phase retrieval) inverse problems (see Appendix).
We evaluate the performance of PLoRG applied to two SOTA
methods of PSLD [40] (Table 1) and ReSample [41] (Table 2).

Robustness Table 1 and Figure 3a exhibit the sensitivity of
PSLD to the choice of MG step size; the performance of PSLD
significantly deteriorates when a relatively large MG step size
is used, leading to poor results across all tasks. In contrast,
PLoRG-PSLD shows robustness and maintains high perfor-
mance over a wide range of MG step sizes.

Performance Tables 1 and 2 demonstrate the significant out-
performance of PLoRG-PSLD and PLoRG-ReSample against
their respective SOTA counterparts for inpainting tasks across
all three metrics. Moreover, Table 2 shows that PLoRG-
ReSample substantially outperforms the ReSample SOTA for
phase retrieval. We attribute the effectiveness of PLoRG, partic-
ularly in challenging tasks (i.e., inpainting and phase retrieval),
to a reduced rate of failure cases (see Figure 3b) resulting from
keeping reconstructions closer to the latent manifold of natural
images. By constraining solutions to this manifold, PLoRG
minimizes extreme failures and enhances consistency in recon-
struction quality, and improves overall performance metrics.

5 Conclusion

We introduce a Projected Low-Rank Gradient (PLoRG) method to enhance the performance and
robustness of diffusion models in solving inverse problems. We show that PLoRG improve SOTA
methods such as PSLD and ReSample. PLoRG addresses the introduction of artifacts and deviations
from the data manifold by constraining gradient updates to a lower-rank subspace. PLoRG is versatile,
applicable across various diffusion models and sampling algorithms, and includes an adaptive rank
selection mechanism that dynamically adjusts to the gradient’s complexity. PLoRG reduces the need
for excessive tuning of gradient step sizes and significantly boosts performance for more challenging
inverse problems. Finally, PLoRG enhances reconstruction quality with minimal computational
overhead, making it a practical addition to diffusion modeling for reliable real-world applications.
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A Additional Background

Solving Inverse Problems with Latent Diffusion Models For complex scenarios where direct
application of pixel-based models is inefficient or ineffective, latent diffusion models (LDMs) offer
a promising alternative [43]. Given original data x ∈ Rn, the LDM framework utilizes an encoder
E : Rn → Rk and a decoder D : Rk → Rn, with k ≪ n, to work in a compressed latent space. xT

is encoded into zT = E(xT ) and serves as the starting point for the reverse diffusion process. Then,
z0 is decoded to x0 = D(z0), the final clean image.

The most direct extension of DPS [35] would be to approximate p(y|zt) ≈ p(y|x̂0 := D(E[z0|zt])).
However, this approach fails due to the nonlinear nature of the decoder [40]. This failure is exacerbated
by the decoder’s one-to-many mapping, where multiple latent vectors zt can potentially decode to
images x̂0 that are consistent with the measurements y. During reverse diffusion, when updating
based on ∇zt

log pt(y|zt) (we refer to this as the measurement gradient), the decoder may push zt
towards various x̂0 values in potentially conflicting directions. This occurs because different x̂0

might equally well explain the measurements y while corresponding to different regions in the latent
space. Consequently, the measurement gradient update could drive zt away from the manifold of
realistic images, leading to several issues such as the introduction of artifacts, reduced sample quality,
and potential convergence problems.

Previous approaches have attempted to address these challenges through various means, including
imposing manifold constraints [46], enforcing fixed-point properties on latent representations [40],
and directly imposing "hard" measurement consistency by solving optimization problems with
gradient descent [41]. However, these solutions often produce inconsistent reconstructions and are
highly sensitive to the MG step size [43]. The complexity of balancing the MG with the score function
guidance remains a significant challenge in measurement-guided generation in latent diffusion models.

B Discussion

B.1 Efficiency

Our method incurs minimal computational overhead as we perform SVD only once per iteration in
the latent space, typically on 64× 64 matrices. Additionally, by adaptively selecting a low rank based
on a variance threshold, the subsequent operations—projection and reconstruction—are performed
on reduced matrices, further reducing complexity. The more significant computational cost occurs
during the nonlinear decoding of the latent that is outside of our algorithm’s scope. Finally, we note
that PLoRG can improve the runtime and computational efficiency of diffusion frameworks that use
Adam optimizers for data consistency [41, 47].

B.2 Limitations

Our PLoRG method assumes that the learned prior is a relatively good prior for the task at hand.
PLoRG encourages the process to stay close to the manifold structure captured by the generative
prior and may introduce the biases of the prior into image restoration tasks. Hence, PLoRG may not
be recommended for delicate inverse problems such as black hole imaging [48].

C Additional Results

Table 3: Performance comparison of PSLD and PLoRG-PSLD on various linear tasks in the
image domain. Values represent mean performance over 100 images on FFHQ 256× 256.

Method Inpaint (Box) Inpaint (Random) Gaussian deblur Motion deblur SR (×4)

LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑

PSLD 0.158 24.22 0.246 29.05 0.357 22.87 0.322 24.25 0.313 24.51
PLoRG-PSLD (ours) 0.092 24.32 0.165 31.68 0.355 22.95 0.319 24.31 0.320 24.56
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Table 4: Performance comparison of different latent diffusion methods on the phase retrieval
task. Values represent mean performance over 100 images on FFHQ 256× 256.

Method Phase Retrieval

LPIPS↓ PSNR↑

LatentDAPS 0.199 29.16
ReSample 0.237 27.61
PLoRG-ReSample (ours) 0.154 31.19

D Visualizations

(a) NMSE (b) PSNR

Figure 4: Robustness of PLoRG to step size guidance.

(a) Box inpainting. (b) Random inpainting.

(c) Gaussian deblur. (d) Super-resolution (×4).

Figure 5: Performance comparison of PLoRG-PSLD (our method) and PSLD for large MG step
size. Images are chosen at random for visualization.
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(a) Box inpainting. (b) Random inpainting.

(c) Gaussian deblur. (d) Super-resolution (×4).

Figure 6: Performance comparison of PLoRG-PSLD (our method) and PSLD for their best-
performing MG step size. Images are chosen at random for visualization.

(a) Box inpainting. (b) Random inpainting.

(c) Gaussian deblur. (d) Super-resolution (×4).

Figure 7: Performance comparison of PLoRG-PSLD (our method) and PSLD for their best-
performing MG step size. Images are chosen at random for visualization.
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(a) Box inpainting (192× 192 box). (b) Gaussian deblur (81× 81 kernel, SD of 7).

Figure 8: Reconstruction diversity of PLoRG. PLoRG-PSLD with a large MG step size can produce
a diverse range of images from multimodal posteriors. Generated images have distinctive facial
features.

E Additional Algorithms

Here, we provide the general algorithm for integrating PLoRG into existing latent diffusion methods.
We note that when we project the gradient, we use the full SVD projection (i.e., combining both left
and right projection). However, in practice, one may decide to do either left or right projection.

Algorithm 1 Projected Low-Rank Gradient (PLoRG) for Latent Diffusion-based Inverse Problems
Require: Normal input + variance retention threshold τ

1: Let T = number of total iterations of sampling algorithm, and assume we calculate latent image representa-
tion zt for each iteration

2: for t = T − 1 to 0 do
3: Compute measurement gradient Gt according to sampling algorithm
4: U ,S,V ← SVD(zt) ▷ Perform SVD on latent representation
5: λj ← s2j (where sj are the singular values of S) ▷ Calculate eigenvalues

6: ck ←
∑k

j=1 λj∑
j λj

▷ Cumulative sum of eigenvalues

7: r ← argmin
k
{ck ≥ τ} ▷ Determine rank r based on threshold τ

8: At ← U [:, : r] ▷ Left singular vectors
9: Bt ← V [:, : r]T ▷ Right singular vectors

10: Rt ← AT
t GtB

T
t ▷ Project gradient

11: G′
t ← AtRtBt ▷ Reconstruct approximated gradient

12: Use updated gradient G′
t in sampling algorithm

13: end for
14: return D(ẑ0)

F Implementation Details

F.1 Experimental Setup

Our experiments consider both linear and nonlinear inverse problems using natural images. We use
the FFHQ 256×256 dataset [45] and the pre-trained latent diffusion model LDM-VQ-4 trained on
FFHQ [43]. For evaluation, we sample a fixed set of 100 images from the FFHQ validation set.
Images are normalized to the range [0, 1], and Gaussian noise is applied to the measurement with a
standard deviation of σy = 0.01.

For linear inverse problems, we consider (1) box inpainting, (2) random inpainting, (3) Gaussian
deblur, (4) motion deblur, and (5) super-resolution. In the box inpainting task, a random 128×128
box is used, while the random inpainting task employs a 70% random mask. Gaussian and motion
deblurring tasks utilize kernels sized 61×61, with standard deviations of 3.0 and 0.5, respectively.
For super-resolution, images are downscaled by a factor of 4 using a bicubic resizer.

For nonlinear inverse problems, we consider phase retrieval. We use an oversampling rate of 2.0, and
due to the instability and non-uniqueness of reconstruction, we adopt the strategy from DPS [35] and
DAPS [42], generating four separate reconstructions and reporting the best result. Like DAPS [42],
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we normalize the data to lie in the range [0, 1] before applying the discrete Fourier transform. We
note that PSLD is not designed to handle nonlinear inverse problems.

F.2 Code Release

We will release the GitHub repository with our code upon acceptance to the workshop.

F.3 Hyperparameters

We set the variance retention threshold τ to 0.99 for all experiments.

F.4 PSLD

Our PLoRG-PSLD algorithm integrates the low-rank gradient approximation directly into the PSLD
update process. At each iteration of the main loop, after computing the standard PSLD update
z′
t−1, we introduce our PLoRG method. First, we calculate the full gradient Gt according to PSLD,

combining both the measurement consistency term and the fixed-point constraint. We then perform
SVD on the current latent representation zt. Using the variance retention threshold τ , we determine
the appropriate rank for our approximation. We construct projection matrices from the truncated
singular vectors and use these to approximate the gradient. This approximated gradient G′

t is then
used for the final update step, replacing the separate gradient updates in standard PSLD. This process
is repeated at every iteration, allowing for adaptive, low-rank updates throughout the entire diffusion
process.

Algorithm 2 PSLD

Require: T,y, {ηt}Tt=1, {γt}Tt=1, {σ̃t}Tt=1

Require: E ,D,Ax∗
0,A, sθ

1: zT ∼ N (0, I)
2: for t = T − 1 to 0 do
3: ŝ← sθ(zt, t)
4: ẑ0 ← 1√

ᾱt
(zt + (1− ᾱt)ŝ)

5: ϵ ∼ N (0, I)

6: z′
t−1 ←

√
αt(1−ᾱt−1)

1−ᾱt
zt +

√
ᾱt−1βt

1−ᾱt
ẑ0 + σ̃tϵ

7: z′′
t−1 ← z′

t−1 − ηt∇zt∥y −A(D(ẑ0))∥22
8: zt−1 ← z′′

t−1 − γt∇zt∥ẑ0 − E(ATAx∗
0 + (I−ATA)D(ẑ0))∥22

9: end for
10: return D(ẑ0)
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Algorithm 3 PLoRG-PSLD

Require: T,y, {ηt}Tt=1, {γt}Tt=1, {σ̃t}Tt=1

Require: E ,D,Ax∗
0,A, sθ,Variance retention threshold τ

1: zT ∼ N (0, I)
2: for t = T − 1 to 0 do
3: ŝ← sθ(zt, t)
4: ẑ0 ← 1√

ᾱt
(zt + (1− ᾱt)ŝ)

5: ϵ ∼ N (0, I)

6: z′
t−1 ←

√
αt(1−ᾱt−1)

1−ᾱt
zt +

√
ᾱt−1βt

1−ᾱt
ẑ0 + σ̃tϵ

7: Gt ← ηt∇zt∥y −A(D(ẑ0))∥22 + γt∇zt∥ẑ0 − E(ATAx∗
0 + (I −ATA)D(ẑ0))∥22

8: U ,S,V ← SVD(zt)
9: λj ← s2j (sj are the singular values of S)

10: ck ←
∑k

j=1 λj∑
j λj

11: r ← argmin
k
{ck ≥ τ}

12: At ← U [:, : r]
13: Bt ← V [: r, :]
14: Rt ← AT

t GtB
T
t

15: G′
t ← AtRtBt

16: zt−1 ← z′
t−1 −G′

t

17: end for
18: return D(ẑ0)

F.5 ReSample

Our PLoRG-ReSample algorithm integrates the low-rank gradient approximation into the optimization
process of ReSample [41]. We introduce two new hyperparameters: the variance retention threshold
τ and a frequency F for applying the low-rank approximation. During each ReSample step, we
first perform SVD on the current latent representation z′

t. Note that we do not perform SVD within
the gradient descent loop itself, meaning that we still only perform SVD once per iteration of the
sampling algorithm. Then, within the gradient descent loop for solving ẑ0(y), we apply our PLoRG
method every F steps. This involves determining the appropriate rank based on τ , constructing
projection matrices, and using these to approximate the gradient. On steps where PLoRG is not
applied, we use the standard gradient. This adaptive, periodic application of PLoRG allows for a
balance between the benefits of low-rank approximation and the potential need for full gradient
information. The rest of the ReSample algorithm, including the stochastic resampling step, remains
unchanged. This integration allows PLoRG to influence the critical optimization step in ReSample,
improving its robustness to measurement errors while maintaining its core functionality.

We note that the ReSample algorithm employs a two-stage approach for its hard data consistency
step. Initially, it performs pixel-space optimization. This step is computationally efficient and
produces smoother, albeit potentially blurrier, results with high-level semantic information. As the
diffusion process approaches t = 0, ReSample transitions to latent-space optimization to refine the
image with finer details. Our PLoRG method is specifically integrated into this latter, latent-space
optimization stage. By applying PLoRG to the latent optimization, we aim to mitigate the potential
introduction of artifacts and off-manifold deviations that can occur due to the direct manipulation of
latent variables. This strategic application of PLoRG allows us to benefit from the computational
efficiency of initial pixel-space optimization while enhancing the robustness and quality of the final
latent-space refinement. Importantly, PLoRG is not applied during the pixel-space optimization phase,
as this stage already tends to produce smoother results and is less prone to artifact introduction.
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Algorithm 4 ReSample

Require: Measurements y, A(·), Encoder E(·), Decoder D(·), Score function sθ(·, t), Pretrained LDM
Parameters βt, ᾱt, η, δ, Hyperparameter γ to control σ2

t , Time steps to perform resample C
1: zT ∼ N (0, I) ▷ Initial noise vector
2: for t = T − 1, . . . , 0 do
3: ϵ1 ∼ N (0, I)
4: ϵ̂t+1 = sθ(zt+1, t+ 1) ▷ Compute the score
5: ẑ0(zt+1) =

1√
ᾱt+1

(zt+1 −
√
1− ᾱt+1ϵ̂t+1) ▷ Predict ẑ0 using Tweedie’s formula

6: z′
t =
√
ᾱtẑ0(zt+1) +

√
1− ᾱt − ηδ2ϵ̂t+1 + ηδϵ1 ▷ Unconditional DDIM step

7: if t ∈ C then ▷ ReSample time step
8: ẑ0(y) ∈ argmin

z

1
2
∥y −A(D(z))∥22 ▷ Solve with initial point ẑ0(zt+1)

9: zt = StochasticResample(ẑ0(y),z
′
t, γ) ▷ Map back to t

10: else
11: zt = z′

t ▷ Unconditional sampling if not resampling
12: end if
13: end for
14: x0 = D(z0) ▷ Output reconstructed image
15: return x0

Algorithm 5 PLoRG-ReSample

Require: Measurements y, A(·), Encoder E(·), Decoder D(·), Score function sθ(·, t), Pretrained LDM
Parameters βt, ᾱt, η, δ, Hyperparameter γ to control σ2

t , Time steps to perform resample C, Variance
retention threshold τ , Frequency F

1: zT ∼ N (0, I) ▷ Initial noise vector
2: for t = T − 1, . . . , 0 do
3: ϵ1 ∼ N (0, I)
4: ϵ̂t+1 = sθ(zt+1, t+ 1) ▷ Compute the score
5: ẑ0(zt+1) =

1√
ᾱt+1

(zt+1 −
√
1− ᾱt+1ϵ̂t+1) ▷ Predict ẑ0 using Tweedie’s formula

6: z′
t =
√
ᾱtẑ0(zt+1) +

√
1− ᾱt − ηδ2ϵ̂t+1 + ηδϵ1 ▷ Unconditional DDIM step

7: if t ∈ C then ▷ ReSample time step
8: Initialize ẑ0(y) with ẑ0(zt+1)
9: U ,S,V ← SVD(z′

t) ▷ Perform SVD on latent representation
10: for each step in gradient descent do
11: if step number mod F = 0 then
12: λj ← s2j (where sj are the singular values of S) ▷ Calculate eigenvalues

13: ck ←
∑k

j=1 λj∑
j λj

▷ Cumulative sum of eigenvalues

14: r ← argmin
k
{ck ≥ τ} ▷ Determine rank r based on threshold τ

15: A← U [:, : r] ▷ Left singular vectors
16: B ← V [:, : r]T ▷ Right singular vectors
17: G← ∇ẑ0(y)

1
2
∥y −A(D(ẑ0(y)))∥22 ▷ Compute gradient

18: R← ATGBT ▷ Project gradient
19: G′ ← ARB ▷ Reconstruct approximated gradient
20: else
21: G′ ← ∇ẑ0(y)

1
2
∥y −A(D(ẑ0(y)))∥22 ▷ Compute gradient without modification

22: end if
23: Update ẑ0(y) using gradient G′

24: end for
25: zt = StochasticResample(ẑ0(y),z

′
t, γ) ▷ Map back to t

26: else
27: zt = z′

t ▷ Unconditional sampling if not resampling
28: end if
29: end for
30: x0 = D(z0) ▷ Output reconstructed image
31: return x0
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