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Abstract
Unsupervised data representation and visualiza-
tion using tools from topology is an active and
growing field of Topological Data Analysis (TDA)
and data science. Its most prominent line of work
is based on the so-called Mapper graph, which
is a combinatorial graph whose topological struc-
tures (connected components, branches, loops)
are in correspondence with those of the data itself.
While highly generic and applicable, its use has
been hampered so far by the manual tuning of
its many parameters—among these, a crucial one
is the so-called filter: it is a continuous function
whose variations on the data set are the main ingre-
dient for both building the Mapper representation
and assessing the presence and sizes of its topo-
logical structures. However, there is currently no
method for tuning the filter itself. In this work, we
build on a recently proposed optimization frame-
work incorporating topology to provide the first
filter optimization scheme for Mapper graphs. In
order to achieve this, we propose a relaxed and
more general version of the Mapper graph, whose
convergence properties are investigated.

1. Introduction
Mapper graphs and TDA. The Mapper graph introduced
in [1] is an essential tool of Topological Data Analysis
(TDA), and has been used many times for visualization pur-
poses on different types of data, including, but not limited
to, single-cell sequencing [2], [3], neural network architec-
tures [4], [5], or 3D meshes [6], [7]. Moreover, its ability
to precisely encode (within the graph) the presence and
sizes of geometric and topological structures in the data
in a mathematically founded way (through the use of al-
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gebraic topology) has also proved beneficial for highlight-
ing subpopulations of interest, which are usually detected
as peculiar topological structures of significant sizes, and
identifying the key features that best explain such subpopu-
lations against the rest of the Mapper graph. This general
pipeline has become a key component in, e.g., biological
inference in single-cell data sets, where differentiating stem
cells can usually be recovered from branching patterns in
the corresponding Mapper graphs [8].

Contributions. Our contribution is three-fold:

• We introduce Soft Mapper: a generalization of the com-
binatorial Mapper graph in the form of a probability
distribution on Mapper graphs,

• We propose a filter optimization framework adapted
to a smooth Soft Mapper distribution with provable
convergence guarantees,

• We implement and showcase the efficiency of Mapper
filter optimization through Soft Mapper on various data
sets, with public, open-source code in TensorFlow.

2. Background on Reeb and Mapper graphs
Reeb graphs. Mapper graphs can be understood as nu-
merical approximations of Reeb graphs, that we now define.
Let X be a topological space and let f : X → R be a
continuous function called filter function. Let ∼f be the
equivalence relation between two elements x and y in X
defined by: x ∼f y if and only if x and y are in the same
connected component of f−1(z) for some z in f(X). The
Reeb graph Rf (X) of X is then simply defined as the quo-
tient space X/ ∼f .

Mapper graphs. The Mapper was introduced in [1]
as a discrete and computable version of the Reeb graph
Rf (X ). Assume that we are given a point cloud Xn =
{X1, . . . , Xn} ⊆ X with known pairwise dissimilarities, as
well as a filter function f computed on each point of Xn.
The Mapper graph can then be computed with the following
generic version of the Mapper algorithm:

1. Cover the range of values Yn = f(Xn) with a set of
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consecutive intervals I1, . . . , Ir that overlap, i.e., one
has Ii ∩ Ii+1 ̸= ∅ for all 1 ≤ i ≤ r − 1.

2. Apply a clustering algorithm to each pre-image
f−1(Ij), j ∈ {1, ..., r}. This defines a pullback cover
C = {C1,1, . . . , C1,k1 , . . . , Cr,1, . . . , Cr,kr} of Xn.

3. The Mapper graph is defined as the nerve of C. Each
node vj,k of the Mapper graph corresponds to an el-
ement Cj,k of C, and two nodes vj,k and vj′,k′ are
connected by an edge if and only if Cj,k ∩ Cj′,k′ ̸= ∅.

3. Soft Mapper construction
In this section, we introduce our new construction Soft Map-
per, which generalizes Mapper graphs and can be used for
non-convex optimization. In order to do so, we first provide
a general formalization of the Mapper construction that does
not require overlapping intervals and filter functions. Then,
we use this formalization to define Soft Mapper, which es-
sentially consists in a distribution on regular Mapper graphs.

3.1. Mapper graphs built on latent cover assignments

Let Xn = {x1, ..., xn} be a point cloud lying in a metric
space (X, d) and let r ∈ N⋆. For instance, Xn can be
obtained from sampling Xn according to some distribution
µ. Then, let Clus be a clustering algorithm on (X, d), that
is assumed to be fixed in the following of this work.

Latent cover assignments. Any binary matrix e ∈
{0, 1}n×r is then called an r-latent cover assignment of Xn,
where ei,j = 1 must be understood as point xi belonging to
the j-th element of a latent cover of the data. For instance,
in the standard version of Mapper presented in Section 2,
the latent cover is obtained from a family of pre-images of
intervals that cover the range of the filter function.

The procedure to compute a Mapper graph given an r-latent
cover assignment e ∈ {0, 1}n×r is straightforward: simply
replace f−1(Ij) by {xi : ei,j = 1} in the generic Mapper
algorithm in Section 2, then derive the pullback cover us-
ing the clustering algorithm Clus, and finally compute the
Mapper graph as the nerve of the pullback cover.

Mapper function. Let K be the set of simplicial com-
plexes of dimension less or equal to 1 (i.e., graphs) and such
that their sets of vertices (i.e., their 0−skeletons) are subsets
of the power set P(Xn). We define the Mapper complex
generating function as:

MapComp : {0, 1}n×r −→ K,

where MapComp takes a latent cover assignment as input
and creates the corresponding Mapper graph.

3.2. Cover assignment scheme and Soft Mapper

Now, we define stochastic schemes for generating latent
cover assignments, that we call cover assignment schemes.
Definition 3.1. A cover assignment scheme is a double
indexed sequence of random variables

A = (Ai,j)1≤i≤n
1≤j≤r

such that each Ai,j is a Bernoulli random variable condition-
ally to Xn. Let pi,j(Xn) be the parameter of the Bernoulli
distribution of (Ai,j |Xn), which is thus a function of the
point cloud Xn.
Definition 3.2. Let A be a cover assignment scheme. The
Soft Mapper of A is defined as the associated distribution of
Mapper complexes, which corresponds to the push forward
measure of the distribution of A by the map MapComp.

4. Smooth relaxation of the standard cover
assignment scheme

Given some δ > 0, we can now define a cover assignment
scheme Aδ that approximates the degenerate cover assign-
ment scheme A∗ arising from the standard Mapper graph.
Specifically, using the same notations as before, and denot-
ing each element of the cover with Ij = [aj , bj ], consider,
for each j ∈ {1, ..., r}, the function qj : X −→ [0, 1] de-
fined with:

x 7→


1, if f(x) ∈ [aj , bj ]

exp(1− 1/(1− (
aj−f(x)

δ )2)), if f(x) ∈ (aj − δ, aj ]

exp(1− 1/(1− (
f(x)−bj

δ )2)), if f(x) ∈ [bj , bj + δ)

0, otherwise

Now, define Aδ = (Aδ,i,j)1≤i≤n
1≤j≤r

to be the random vari-

able in {0, 1}n×r such that for every (i, j) ∈ {1, ..., n} ×
{1, ..., r}:

Aδ,i,j | Xn ∼ B(qj(xi)),

with the Aδ,i,j’s being jointly independent conditionally
to Xn. As for the standard cover, the Bernoulli parameter
pi,j = qj(xi) depends on its associated point xi and also on
the chosen filter f .

Moreover, notice that for every xi ∈ Xn and j ∈ {1, ..., r}:

qj(xi) −−−→
δ→0

{
1, if f(xi) ∈ Ij

0, otherwise,

and this shows that Aδ
L−−−→

δ→0
A∗.

5. Topological risk of Soft Mappers
We now switch to the problem of designing filter functions
automatically for Mapper graphs using Soft Mapper. To
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answer this ill-posed problem, we propose to look for filter
functions that are optimal with respect to some topological
criteria associated to their (Soft)Mapper graphs. In partic-
ular, we focus on topological losses based on persistent
homology.

5.1. Topological signature for Mapper graphs

We now define a filtration function on Mapper graphs
in order to compute extended persistence diagrams. Let
F(Xn,R) be the space of real valued functions defined on
the point cloud Xn. For a function F ∈ F(Xn,R), we first
associate a filtration ϕ to some K ∈ im(MapComp) with:

∀σ ∈ K : ϕ(σ) = max
c∈σ

∑
x∈c F (x)

card(c)
,

that is, node filtration values are defined as the average
filter values of the data points associated to the node, and
edge filtration values are computed as the maximum of their
node values. Then, we compute the extended persistence
diagram (which we consider as a subset of R2 ) of the
filtered simplicial complex (K,ϕ). We denote by MapPers
the function that takes a Mapper graph and a scalar function
on Xn, and then outputs the persistence diagram:

MapPers : K×F(Xn,R) −→ P(R2).

Persistence specific loss. Now, we introduce a generic
notation for a loss function—or, more simply, a statistic—
that associates a real value to any extended persistence
diagram. Denoting PD as the set of subsets of R2 con-
sisting of a finite number of points outside the diagonal
∆ = {(x, x) : x ∈ R}, such a function can be written as
ℓ : PD −→ R.

5.2. Statistical risk of the topological signature
associated to Soft Mapper

We finally compute the loss associated to a Mapper graph
with the function

L : {0, 1}n×r ×F(Xn,R) −→ R
(e, F ) 7−→ ℓ (MapPers (MapComp(e), F )) .

Then, we define the risk of a Soft Mapper MapComp(A) by
integrating the loss according to the distribution of the Soft
Mapper, or equivalently according to the distribution of the
cover assignment scheme:

E (L(A,F )|Xn) =
∑

e∈{0,1}n×r

L(e, F ) · P(A = e|Xn).

6. Conditional risk optimization with respect
to parameters

Now that we have properly defined risks associated to Soft
Mapper distributions, we study in this section the conver-
gence properties of filter optimization schemes minimizing
such risks.

6.1. Problem setting

Let us introduce a parameterized family of functions {fθ :
Xn → R, θ ∈ Rs}. In order to simplify notations, we
assume in the following of the article that the function F
used to compute persistence diagrams and the filter function
fθ used to design cover assignments are the same, F = fθ.
Let A be a cover assignment scheme whose joint distribution
Pθ depends on the filter function fθ.

Our goal is to find the optimal set of parameters θ̄ that
minimizes the topological risk associated to MapComp(A),
when fθ is used to define the filtration values on the Mapper
graphs. In other words, if we denote:

L : Rs −→ R
θ 7−→ Eθ(L(A, fθ)|Xn), (1)

our aim is to find a minimizer of L. Note that in the defini-
tion of L, the expectation depends on θ because the distribu-
tion of A also depends on it.

In order to prove guarantees about minimizing L, we fol-
low [9], which uses the theoretical background introduced
in [10], in which the authors prove that stochastic gradi-
ent descent algorithms converge under certain conditions.
To use this framework, it suffices to prove two points (see
Corollary 5.9. in [10]):

• L is definable in an o-minimal structure (see [11]),

• L is locally Lipschitz.

6.2. Theoretical guarantees on the convergence of a
gradient descent scheme

Under regularity assumptions on the parameterized family
of filter functions F = {fθ : Xn −→ R, θ ∈ Rs}, we now
show that the risk L in Equation (1) is definable and smooth.
For a detailed proof, see [12].

Theorem 6.1. Suppose that there exists an o-minimal struc-
ture S such that:

• for every x ∈ Xn, the function θ 7→ fθ(x) is definable
in S and is locally Lipschitz,

• for every m ∈ N, the restriction of ℓ to the set of
(extended) persistence diagrams of size m is definable
in S and is locally Lipschitz,
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• for every e ∈ {0, 1}n×r, the function θ 7→ Pθ(A =
e|Xn) is definable in S and is locally Lipschitz.

Then L is definable in S and is locally Lipschitz.

7. Numerical Experiments
An application where we can use the Soft Mapper optimiza-
tion setting is finding linear filters in order to skeletonize
3-dimensional shapes with Mapper graphs. Here, our dataset
Xn consists each time of a point cloud embedded in R3. The
different point clouds we study are displayed (as meshes) in
Figure 1. The parametric family of functions is linear, i.e.,
equal to {fθ : x 7→ ⟨x, θ⟩, θ ∈ R3}, and the cover assign-
ment scheme Aδ is the smooth relaxation of the standard
case, with δ = 10−2 · (maxx∈Xn fθ(x)−minx∈Xn fθ(x)).
The cover of the image space is given by intervals of the
same length, such that consecutive intervals have a fixed per-
centage of their length in common. The clustering algorithm
for the three shapes is KMeans.

Objective. Intuitively, the optimal directions to filter the
3-dimensional shapes (in a topological sense) are: the ver-
tical direction for the human, the parallel direction to the
tentacles for the octopus and the perpendicular direction to
the upper surface for the table. This can be justified by the
fact that these directions induce Mapper graphs with more
topological structures. To find θ̄, we use the opposite of
the L1 total (regular) persistence as a persistence specific
loss ℓ, each time taking the diagonal as the initial direction,
i.e. θ0 = ( 1√

3
, 1√

3
, 1√

3
)T . The learning curves for each

3-dimensional shape are displayed in Figure 2.

Qualitative assessment. One can see, in Figures 3 and 4,
that the regular Mapper graphs built with the initial and final
(optimized) filter functions show clear improvement in the
ability of the graphs to act as skeletons of the original point
clouds. The third shape, representing a table, is particularly
interesting. Indeed, the optimal direction that we captured is
different from the first and the second principal components
computed by PCA, since the principal plane of the point
cloud is given by the surface of the table.

Figure 2. Learning curves for the 3-dimensional shapes corre-
sponding, from left to right, to: the human, the octopus and the
table.

Figure 1. Meshes of 3-dimensional point clouds representing from
left to right: a human, an octopus and a table.

Figure 4. Regular Mapper graphs computed with the optimized
filter function, corresponding, from left to right, to: the human, the
octopus and the table. Vertices are colored using the mean value
of the filter function in the corresponding clusters.

Figure 3. Regular Mapper graphs computed with the initial filter
function, corresponding, from left to right, to: the human, the
octopus and the table. Vertices are colored using the mean value
of the filter function in the corresponding clusters.

8. Discussion
In this work, we have introduced Soft Mapper, a distribu-
tional and smoother version of the standard Mapper graph,
with provable convergence guarantees using persistence-
based losses and risks. Our case study in this article was
finding an optimal filter function, among a parameterized
family of functions, in order to construct regular Mapper
graphs incorporating an optimized and maximal amount
of topological information. We then produced examples
of such optimization processes on real 3D shape data, for
which we were able to obtain structured Mapper representa-
tions in an unsupervised way.
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