
Grounding Language in Multi-Perspective Referential Communication

Anonymous ACL submission

Abstract001

We introduce a task and dataset for referring002
expression generation and comprehension in003
multi-agent embodied environments. In this004
task, two agents in a shared scene must take005
into account one another’s visual perspective,006
which may be different from their own, to both007
produce and understand references to objects008
in a scene and the spatial relations between009
them. We collect a dataset of 2,970 human-010
written referring expressions, each paired with011
human comprehension judgments, and evalu-012
ate the performance of automated models as013
speakers and listeners paired with human part-014
ners, finding that model performance in both015
reference generation and comprehension lags016
behind that of pairs of human agents. Finally,017
we experiment training an open-weight speaker018
model with evidence of communicative suc-019
cess when paired with a listener, resulting in020
an improvement from 59.7 to 69.2% in com-021
municative success and even outperforming the022
strongest proprietary model.023

1 Introduction024

Figure 1: Example scene from our environment and
dataset. On the left, the speaker refers to the target
object, distinguished by its blue color. On the right,
the listener selects the candidate referent they believe is
described by the speaker’s description, without access
to its distinct color.

Language agents embodied in situated interac-025

tions alongside human users must be able to reason026

jointly about the space they occupy, the language027

they encounter, and their human partner’s percep- 028

tion. For example, in Figure 1, one agent describes 029

the location of an object to another agent, whose 030

view differs from their own. To correctly resolve 031

and generate references to the surrounding environ- 032

ment, both the speaker and listener must take into 033

account the physical relationship between objects, 034

its own view of the environment, and an estimate 035

of the user’s perspective in the environment. In 036

contrast to most prior work on referring expression 037

generation and comprehension, we focus on the 038

setting where both agents are physically embodied 039

in a scene with different perspectives of the scene. 040

Prior work in this setting has focused on human 041

dyads that are literally physically situated in an 042

environment (Schober, 1993; Taylor and Tversky, 043

1996), or in synthetically-generated abstract envi- 044

ronments (Udagawa and Aizawa, 2019).We study 045

human-human and human-agent referential com- 046

munication in photorealistic 3D environments, in- 047

troducing a platform that supports generating task 048

instances with varying levels of difficulty. 049

We collect a dataset of 2,970 human-written 050

referring expressions grounded in 1,485 gener- 051

ated scenes. We evaluate several recent vision- 052

and-language models on the tasks of referring ex- 053

pression generation and comprehension, including 054

general instruction-tuned vision-language models, 055

models designed for fine-grained vision-language 056

processing, and a modular vision-and-language 057

reasoning system. When interpreting human- 058

written referring expressions, the fine-grained Fer- 059

ret model (You et al., 2023) performs the best, suc- 060

cessfully identifying 69.2% of intended referents. 061

Using human listeners, we find that the propri- 062

etary GPT-4o produces referring expressions that 063

correctly identify the intended target referent for 064

64.9% of scenes, while the open-weight LLaVA- 065

1.5 (Liu et al., 2024) is only successful for 55.7% 066

of scenes. Compared to the average human-human 067

success rate of 87.6%, all models lag far behind 068
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humans when both generating and comprehending069

referring expressions. Analyzing the language used070

by both automated and human speakers reveals071

significant differences in referential strategies; for072

example, human speakers use themselves or the073

listener agent as reference points much more fre-074

quently than automated models, which mostly rely075

on other objects in the scene.076

Our scene-generation platform supports control-077

ling two levels of task difficulty. First, it supports078

modifying the relative orientation of the agents.079

Second, we train a referent placement policy to080

minimize communicative success between two au-081

tomated agents. For scenes generated using this082

policy, we see a significant decrease in communica-083

tive success across nearly all agent combinations.084

Finally, we experiment with improving our085

weaker speaker model, LLaVA-1.5, by fine-tuning086

it with data collected in deployment with both087

human and automated listeners. During learn-088

ing, we first sample referring expressions from the089

speaker model, convert empirical observations of090

language interpretation by a listener into training091

examples (Kojima et al., 2021), then apply proxi-092

mal policy optimisation to update model parame-093

ters on this data. With a single round of training,094

we see significant improvements in LLaVA-1.5’s095

ability to generate accurate referring expressions,096

with rates of communicative success with a human097

listener improving from 59.7 to up to 69.2, outper-098

forming even the stronger GPT-4o speaker. Our099

code, models, and dataset will be released under an100

open-source license upon publication.101

2 Task and Environment102

We study the task of embodied referential commu-103

nication, where two agents coordinate their atten-104

tion in a shared scene using referring expressions.105

To this end, we design a platform that for generat-106

ing photorealistic 3D scenes that support this task107

at varying levels of difficulty.108

2.1 Embodied Referential Communication109

We study referential communication via a refer-110

ence game (Clark and Wilkes-Gibbs, 1986), where111

a speaker describes a target referent, and a listener112

attempts to identify the target using the speaker’s113

description. In our task, two agents are physically114

embodied in the same shared 3D scene, but with115

different perspectives, and thus different observa-116

tions of the scene. Each scene includes candidate117

referent objects, one of which is a target object that 118

the speaker needs to communicate to the listener. 119

Communicative success is achieved if the listener 120

is able to identify the speaker’s intended target. 121

Formally, let O be the set of possible agent ob- 122

servations, each represented as a 2D image; R be 123

the set of candidate referents in an scene, and X be 124

the set of possible referring expressions. Formally, 125

a speaker model ps : O×RN ×{1 . . . N} → ∆X 126

maps from an observation of the shared scene, a set 127

of referents, and the index of the target referent rt 128

to a distribution over possible referring expressions. 129

A listener model pl : O × RN × X → ∆{1...N} 130

maps from its observation of the scene, the set of 131

all candidate referents, and the referring expression 132

generated by the speaker to a distribution over pos- 133

sible referent indices. Given a scene with speaker 134

observation os ∈ O, listener observation ol ∈ O, 135

a set of N candidate referents R, and a target ref- 136

erent index t, communicative success is achieved 137

when the listener selects the intended target: 138

x = arg max
x′∈X

ps(x
′ | os,R, t) 139

t̂ = arg max
1≤i≤N

pl(i | ol,R, x) 140

Success(ps, pl, os, ol,R, t) = 1t=t̂ 141

2.2 Scene Generation 142

Formally, we denote a scene S = (e, ρs, ρl,R, t) 143

as an environment e ∈ E populated with two agents 144

ρs and ρl and N referents R, as well as the index 145

of the target referent rt. To generate a scene, we 146

first sample a base environment, then place the two 147

agents, then the candidate referents. Finally, we 148

render each agent’s observation of the scene.1 149

Base environments. We load indoor 3D environ- 150

ments from ScanNet++ (Yeshwanth et al., 2023) 151

as 3D meshes into habitat-sim (Savva et al., 2019), 152

which supports basic object physics and ray casting 153

for identifying fields of view visible to each agent. 154

Agent placement. Both the speaker and listener 155

agents are associated with a camera pose ρ = 156

(⟨x, y, z⟩, ⟨θ, ϕ, ψ⟩), where ⟨x, y, z⟩ denote the po- 157

sition in 3D space and ⟨θ, ϕ, ψ⟩ represent the pitch, 158

roll, and yaw angles respectively. To ensure ob- 159

servations are reasonable, we sample the camera 160

height z from a range of typical adult human height, 161

and fix pitch θ and roll ϕ at 0◦. We enforce a max- 162

imum distance between the agent cameras, and a 163

1Appendix A.1 contains additional details about scene gen-
eration, including object placement and observation rendering.
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non-empty overlap of their respective fields of view.164

We randomly assign speaker and listener roles to165

the two cameras, except in the case that only one166

agent’s camera is in the other’s field of view, but167

not vice versa. In this case, the former camera168

represents the speaker.169

Candidate referent placement. Each scene con-170

tains a set of N = 3 candidate referents R =171

{r1, . . . , rN}, where ri = ⟨xi, yi, zi⟩ denotes the172

location of each referent. A target index 1 ≤ t ≤173

N denotes the referent that the speaker aims to174

communicate to the listener. For each referent, we175

first sample a position from the set of all empty176

coordinates C in the scene. We use a gravitational177

physics simulation to drop the each referent from178

this position until it comes to rest on a solid hori-179

zontal surface. We use rejection sampling to ensure180

all referents are visible to both agents, and referents181

are not too close together.182

Agent observations. Each agent’s observation183

is represented as a 2D image o ∈ R3×H×W ren-184

dered from its camera pose ρ. The speaker’s ob-185

servation os = projs(e,R, t, ρs) is a projection186

of the speaker’s view of the environment, and187

ol = projl(e,R, ρl) is a projection of the listener’s188

view. While projl renders each referent with the189

same color (red), projs renders the target rt in a190

different color (blue) from the distractor objects,191

allowing the speaker to easily distinguish the tar-192

get when writing their referring expression. Both193

projections also render the other agent’s camera as194

a 3D model of a human, which are sampled from195

2K2K (Han et al., 2023).196

2.3 Controlled Difficulty197

We implement two ways to control the difficulty198

of referential communication via scene generation:199

by manipulating the relative orientation of speaker200

and listener, and by adversarially placing referents.201

Figure 2 shows examples of four scenes generated202

from different relative orientations, and with and203

without adversarial referent placement.204

Speaker-listener orientation. The relative ori-205

entation of the speaker ρs and listener ρl is the206

absolute difference ψ′ = min(|ψs − ψl|, 360◦ −207

|ψs − ψl|) of their horizontal rotations (yaw). We208

experiment with the influence of ψ′ on interaction209

dynamics. When ψ′ is close to 0◦, the two agents210

are facing the same direction, and their observa-211

tions are likely to be similar to one another. When212

ψ′ is close to 180◦, the agents are facing each other 213

and thus have completely different views of the 214

same scene. Following Schober (1993), we hypoth- 215

esize that differences in relative angles of speak- 216

ers and listeners may influence language use. Our 217

environment supports uniformly sampling agent 218

placements with fixed relative orientation. 219

Adversarial placement of referents. We design 220

a referent placement policy model R : C∗ ×Os × 221

Ps×Pl → ∆RN×{1...N}, which takes as input a set 222

of empty coordinates C, the speaker’s observation 223

prior to referent placement, and both agent poses. 224

It generates a distribution over referent locations 225

prior to the physics simulation, and over referent 226

indices representing the target. The policy model is 227

implemented as a vision transformer (Dosovitskiy 228

et al., 2020), and is trained to maximize the com- 229

municative failure rate between two fixed agent 230

models, p̂s and p̂l, by optimizing 231

max
R

E(R′,t′)∼R(·)
[
1− Success(p̂s, p̂l, os, ol,R′, t′)

]
, 232

where os and ol are the agents’ observations after 233

referents R are placed. During scene generation, 234

we use the trained policy to sample initial positions 235

of referents, then apply gravitational physics to find 236

the resting position of each referent. 237

3 Experimental Setup 238

We use our scene generation platform to evaluate 239

embodied, multi-perspective referential communi- 240

cation with pairs of agents including humans and 241

automated models. 242

3.1 Data 243

We generate a set of 27,504 scenes for training and 244

evaluating automated agents. We recruit crowd- 245

workers to participate in the task both as listeners 246

and speakers, collecting a dataset of 2,970 human- 247

written referring expressions paired with human 248

listener selections in 1,485 of these scenes. 249

Scene generation. We use ScanNet++ (Yesh- 250

wanth et al., 2023) (non-commercial license), 251

which contains 450 high-quality 3D indoor envi- 252

ronments, as the basis of our task instances. We 253

generate scenes using both forms of controlled dif- 254

ficulty (Section 2.3). First, we train our adver- 255

sarial referent placement policy, implemented as 256

ViT-s/16 (Dosovitskiy et al., 2020), using GPT-4o 257

as both a speaker and listener in 27,600 generated 258
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Figure 2: Example scenes generated with different relative orientations (≈ 180◦ on left, ≈ 30◦ on right) and with
randomly- (top) or adversarially- (bottom) placed referents. Adversarially-generated referent configurations often
space referents more evenly, with the target referent not easily uniquely identifiable.

scenes comprising 60 samples per base environ-259

ment.2 To generate our final dataset of scenes, we260

first sample 300 agent placements for each relative261

angle in {0, . . . , 180} distributed uniformly across262

the 450 base environments. For each of these agent263

placements, we sample two referent placements, re-264

sulting in two complete scenes: one where referent265

locations are randomly sampled, and another where266

referents are placed using the adversarial referent267

placement policy.268

We use GPT-4o to perform rejection sampling269

on low-quality scenes, removing examples with270

visible artifacts and those that make the task im-271

possible, e.g., where all referents are not visible272

to both agents. The final dataset includes 27,504273

scenes, which we split into train (80%), validation274

(10%) and test (10%) splits. Base environments275

may appear in multiple splits.276

Crowdsourcing. We recruit 194 crowdworkers277

on Prolific3. Qualified workers are fluent English278

speakers, reside in the United States, and pass a279

qualification task by writing referring expressions280

for 15 scenes, with successful listener selection281

from two or more of three other workers for at least282

10 of these referring expressions. On average, we283

pay $18 USD per hour.4284

Speaker task. Speakers are presented with a285

prompt that asks them to describe the location of286

the blue ball to another person who may or may287

not be visible to them in the scene, and who cannot288

2Appendix A.2 contains more details on the adversary.
3https://www.prolific.com
4Details on data collection, including task templates, are

available in Appendix A.3.

distinguish the colors of the balls. Speakers first 289

click a button that reveals their view of the scene. 290

They write a referring expression, then submit their 291

work. We record both the referring expression and 292

the time taken between revealing the scene and 293

submitting the task. 294

Listener task. Listeners first click a button that 295

reveals their view of the scene and a referring ex- 296

pression. They click on the referent they believe 297

to be the target in the image, then submit their 298

work. We record both the click position and the 299

time taken between revealing the view and submit- 300

ting the task. A listener’s selection is the sphere 301

which is rendered closest to their click position. 302

Dataset statistics. For a randomly-sampled sub- 303

set of 1,485 scenes from the validation set, we col- 304

lect a referring expression from at least one worker, 305

resulting in a total of 2,970 referring expressions, 306

paired with judgments from three separate listen- 307

ers. Each referring expression is labeled with the 308

majority-class referent selection. The median time 309

spent per speaker and listener task are 33.0s and 310

10.5s respectively. 311

3.2 Evaluated Models 312

We experiment with four instruction-tuned vision- 313

language models.5 Two of these models are de- 314

signed for more general use: GPT-4o6, a propri- 315

etary model developed by OpenAI that supports 316

real-time joint processing of audio, vision, and 317

text; and LLaVA-1.5 (Liu et al., 2024), a large 318

5Additional details, including prompts, are available in
Appendix B.1.

6https://openai.com/index/hello-gpt-4o/
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open-weight instruction-tuned multimodal model.319

We also experiment with two instruction-tuned320

open-weight models designed specifically to re-321

fer to regions of and ground references in images322

at any granularity: Ferret (You et al., 2023) and323

Groma (Ma et al., 2024). Ferret employs a hy-324

brid region representation that combines discrete325

coordinates and continuous features to represent re-326

gions in an image, while Groma utilizes a localized327

visual tokenization mechanism, where an image is328

decomposed into regions of interest and encoded329

into region tokens. We use these models as listen-330

ers only as preliminary experiments showed poor331

performance on reference generation.332

We also experiment with modular vision-333

language reasoning systems, which decompose the334

problems of language understanding and percep-335

tion by first mapping language to some executable336

code, which is then executed on an image (Subra-337

manian et al., 2023; Gupta and Kembhavi, 2023).338

In this work, we use ViperGPT (Surís et al., 2023),339

using GPT-4 to generate intermediate Python pro-340

grams. We use ViperGPT as a listener agent only.341

For both speaker models, we provide as input the342

speaker’s observation os and a prompt to describe343

the location of the blue sphere. For listeners, we344

provide as input a referring expression x and the345

listener’s observation ol, as well as a list of each346

candidate referent’s bounding box, and prompt the347

model to select the bounding box corresponding to348

the described target. We sample from all models349

using a temperature of 0.350

3.3 Evaluation and Analysis351

We evaluate models both as speakers and listeners,352

partnered both with human and automated agents.353

Our main metric is communicative success: for354

each scene, did the pair of agents successfully co-355

ordinate on the target referent? Pairing automated356

listeners with human speakers evaluates a model’s357

ability to comprehend a human-written referring358

expression, and pairing automated speakers with359

human listeners evaluates a model’s ability to pre-360

cisely refer to a region of the scene. Both sides361

of this communicative task require understanding362

spatial language and taking into account the other363

agent’s perspective of the shared scene. For each364

setting, we analyze the influence of task difficulty365

on communicative success.366

4 Results 367

We experiment with four configurations of agent 368

dyads, combining humans and automated speakers 369

and listeners. Table 1 includes results for the 1,485 370

validation scenes we use for collecting human- 371

human data, split across scenes with random and 372

adversarial referent placement. 373

Human speakers and listeners. Using the re- 374

ferring expressions collected in Section 3.1, we 375

find that human-human pairs achieve an average 376

communicative success rate of 87.6.7 377

Human speakers, automated listeners. We 378

evaluate model performance in comprehending 379

human-written referring expressions. For each 380

human-written referring expression in our collected 381

dataset, we select the most likely referent according 382

to the model. We observe substantially lower accu- 383

racy in referent selection compared to human lis- 384

teners. Ferret, which was designed for fine-grained 385

vision-and-language processing, outperforms the 386

other models at an average selection accuracy of 387

69.2, but still lags far behind human performance. 388

Automated speakers, human listeners. We ac- 389

quire a single referring expression from each 390

instruction-tuned model for each evaluation scene. 391

For each referring expression, we acquire three hu- 392

man listener selections and compare the majority 393

class referent to the intended target. Both GPT-4o 394

and LLaVA-1.5 are significantly less successful in 395

describing target referents when compared to hu- 396

man speakers; GPT-4o’s references lead to correct 397

human listener selection in 64.9% of scenes, while 398

the LLaVA-1.5 speaker is successful for 55.7%. 399

Automated speakers and listeners. We evaluate 400

settings where both agents are automated systems. 401

Using the referring expressions acquired from both 402

speaker agents, we use all five listener models to 403

perform referent selection. In nearly all cases, per- 404

formance with pairs of automated listeners is lower 405

than dyads containing at least one human. How- 406

ever, both Ferret and Groma perform on par with 407

human listeners on referring expressions generated 408

by both GPT-4o and LLaVA-1.5, for both random 409

and adversarial referent configurations. In fact, 410

both models actually outperform human listeners 411

7For fair comparison to settings where only one referring
expression is produced per scene, we report the macro-average
over scenes. The micro-average over all referring expressions
in this experiment is 88.4.
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Listeners

Human GPT-4o LLaVA-1.5 Ferret Groma ViperGPT
Ran. Adv. Ran. Adv. Ran. Adv. Ran. Adv. Ran. Adv. Ran. Adv.

Speakers
Human 90.2 84.9 67.6 66.0 63.3 63.2 70.1 68.2 64.3 65.7 57.8 56.0
GPT-4o 67.8 62.0 61.1 57.2 60.4 57.8 67.8 62.1 66.5 64.8 55.6 53.3

LLaVA-1.5 55.2 56.1 50.9 49.8 44.7 42.2 59.1 52.8 61.9 55.4 48.9 48.7

Table 1: Rates of communicative success for all four combinations of human and automated speakers and listeners,
across 1,485 scenes, split by scenes with random (Ran.) and adversarial (Adv.) referent placement. Results for
human-human pairs are bolded and in blue; results for human speakers and automated listeners are in orange; results
for human listeners and automated speakers are in green; and results for fully-automated pairs are in black.

Figure 3: Distributions of speakers’ referential strategies
and human listeners’ corresponding performance for
both human and automated speakers.

for referring expressions generated by LLaVA-1.5412

for random referent configurations.413

4.1 Adversarial Referent Placement414

Our adversarial referent placement policy was415

trained to minimize communicative success be-416

tween a GPT-4o speaker and listener. Table 1 shows417

that scenes generated with this policy indeed reduce418

rates of communicative success in this setting by419

2.4%. The learned policy also reduces the success420

rate for nearly all other combinations of agents, in-421

cluding for human-human pairs, where we see rates422

of communicative success drops from 91.6 to 85.1423

when adversarially placing candidate referents.424

4.2 Language Analysis425

We manually annotate 200 randomly-sampled re-426

ferring expressions written by crowdworkers and427

GPT-4o with respect to referential strategies used 428

by the speaker. We consider four core referential 429

strategies: reference to other candidate referents 430

(e.g., in front of the other two red balls), reference 431

to fixed objects in the scene (in front of the kitchen 432

entryway), and reference to the listener (on your 433

left) or speaker’s perspective (closest to me). Fig- 434

ure 3 (left) shows the prevalence of each referential 435

strategy for both speakers across this sample. 436

Both automated and human speakers typically 437

use reference points to describe the position of the 438

target referent. However, automated speakers rely 439

much more heavily on reference to fixed objects, 440

using this strategy in 67.5% of descriptions, com- 441

pared to 29.5% by human speakers. In contrast, 442

human speakers are much more likely to use them- 443

selves or the listener as reference points. 444

Figure 3 (right) shows the average accuracy of 445

human listeners for references employing each ref- 446

erential strategy. Regardless of whether the speaker 447

is automated or human, using other candidate ref- 448

erents as reference points (e.g., in front of the other 449

two red balls) is most likely to mislead the listener, 450

likely because these can introduce ambiguity in 451

frame of reference. Conversely, using fixed ob- 452

jects in the scene as reference points generally per- 453

forms better, but sometimes the object chosen by 454

the speaker might not be visible to the listener, and 455

descriptions of relative positions can change with 456

shifts in viewing angle. This suggests estimating 457

the listener’s perspective of the scene is nontrivial, 458

even for human speakers. While using oneself or 459

the listener as a reference point is the most effec- 460

tive referential strategy, speakers sometimes fail 461

to explicitly state whose perspective is referred to, 462

leading to ambiguity. 463

5 Learning from Communicative Success 464

We propose to further train our speaker model from 465

learning signals acquired during referential com- 466
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munication. The basic premise that motivates this467

approach is that empirical observations of language468

interpretation provides evidence of utterance mean-469

ing, regardless of speaker intent (Kojima et al.,470

2021). For instance, if the listener selects a differ-471

ent referent than the intended target, this indicates472

the speaker’s referring expression describes (or at473

the very least, better describes) the chosen referent,474

even if the generated expression fails to describe475

the intended referent. In contrast to prior work476

that proposes methods that learn from communica-477

tive success (or failure) (Kojima et al., 2021; Liu478

et al., 2023), we additionally explore the use of479

preference-based learning signals that explicitly480

pair the intended and chosen targets in case of com-481

municative failure.482

Learning. During training, we collect a dataset483

of M examples D =
{
(S(i), x(i), t̂(i))

}M

i=1
, each484

consisting of a generated scene S (including the485

target referent index t), referring expression x ∼486

ps(os,R, t; θ) sampled from a pre-trained speaker487

and the referent t̂ ∼ pl(ol,R, x;ϕ) selected by a488

listener.489

We use offline proximal policy optimiza-490

tion (PPO; Schulman et al., 2017) to fine-tune491

speaker parameters θ using our collected dataset492

of examples D. We experiment with two meth-493

ods for using the collected data: (a) learning from494

successes only (LSO) and (b) pairwise preference495

learning (PPL). When learning from successes only,496

examples receive a reward of +1 when t = t̂ and497

0 otherwise. In pairwise preference learning, we498

take advantage of the fact that, especially in light499

of communicative failure, we can assume that the500

referring expression better describes the listener’s501

guess than it describes the speaker’s target referent.502

We formalize this by designing a reward function503

that maximizes the difference between the likeli-504

hoods of the speaker’s referring expression x de-505

scribing the listener’s chosen target t̂ versus the506

intended target t:507

ps(x | os,R, t; θ′)− ps(x | os,R, t̂; θ′) .508

In cases where t = t̂, the assigned reward is +1.509

Experimental setup. We use the initial speaker510

model, pre-trained LLaVA-1.5 (Liu et al., 2024),511

to generate referring expressions for 200 scenes512

sampled from the training split. We experiment513

with learning from both human and automated lis-514

tener agents. We hypothesize that human listeners515

will provide higher-quality feedback in the form516

Speaker Listener Avg. Reference Vocab.
Accuracy Length Size

Pre-trained θ 59.7 61.1 410
+ LSO (Da) 61.5 41.7 521
+ LSO (Dh) 65.6 54.6 462
+ PPL (Da) 66.7 19.8 496
+ PPL (Dh) 69.2 15.6 547
Human 91.3 15.8 566
GPT-4o 66.3 78.9 684

Table 2: Performance of the LLaVA-1.5 speaker before
and after training on data collected in 195 scenes with
human listeners. We also report the average number
of tokens per reference and vocabulary size for each
speaker. For reference, we include statistics with human
and GPT-4o speakers on the same set of scenes.

of referent selections than the automated listener 517

model, given a human listener’s superior language- 518

understanding capability. However, using an auto- 519

mated listener is less costly, as it requires collect- 520

ing no additional human data. For our automated 521

listener, we also use pre-trained LLaVA-1.5. We 522

collect a single guess per referring expression from 523

our automated listener, and three human listener 524

guesses. This results in two datasets: Da contain- 525

ing 200 examples of automated listener selections, 526

and Dh containing 600 examples of human selec- 527

tions. Training results in four models: optimizing 528

with learning from successes only and pairwise 529

preference learning, and learning from Da and Dh. 530

We acquire three human listener selections gener- 531

ated referring expressions in a randomly-sampled 532

but representative subset 195 scenes from the vali- 533

dation set. 534

Results. Table 2 shows that learning from com- 535

municative success significantly improves the qual- 536

ity of an initially-weak speaker agent. Overall, 537

learning from human listeners (Dh) is more ef- 538

fective than learning from an automated listener, 539

though this is still beneficial. We also find that pref- 540

erence learning significantly improves over train- 541

ing only on examples exhibiting correct target se- 542

lection. After fine-tuning on only 200 sampled 543

referring expressions with human judgments and 544

preference-based reward, LLaVA-1.5 actually out- 545

performs GPT-4o as a speaker, with a communica- 546

tive success rate of 69.2 when paired with human 547

listeners. 548

Manual analysis reveals that after training, the 549

model generates fewer genuinely ambiguous de- 550

scriptions (43.6 to 36.0% of analyzed descriptions), 551

and shifts from a referential strategy that refers to 552

other candidates to one that refers to fixed objects in 553
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the scene. We also analyze how training influences554

sentence length and vocabulary size on references555

generated for 195 scenes (Table 2): prior to train-556

ing, LLaVA-1.5 produces lengthy descriptions at an557

average length of 61.1 tokens. After training with558

LSO, reference lengths decrease slightly. However,559

after training with PPL, reference lengths decrease560

significantly, matching lengths of human-written561

descriptions. We also find that in our setting, learn-562

ing from communicative success actually increases563

the model’s vocabulary size, in contrast to earlier564

work (Kojima et al., 2021).565

6 Related Work566

The meanings of relative spatial terms are highly567

dependent on the situated environment: the items568

participating in the relation and their intrinsic parts569

and affordances (Clark, 1973; Landau, 2018); the570

relative perspectives of participants in an embodied571

scene (Taylor and Tversky, 1996; Goschler et al.,572

2008); and within-interaction conventions formed573

during multi-turn embodied dialogue (Schober,574

1993), among other factors. In this work, we focus575

on the influence of relative perspective between576

multiple on the use of spatial language.577

Production and comprehension of referring ex-578

pressions has been studied in human-human di-579

alogue (Clark and Wilkes-Gibbs, 1986; Taylor580

and Tversky, 1996; van der Sluis and Luz, 2011;581

Udagawa et al., 2020, inter alia), and in inter-582

actions between human and automated language583

users (Janarthanam and Lemon, 2010; Fang et al.,584

2014, 2015; Huang et al., 2020, inter alia). How-585

ever, most of this work has focused on disem-586

bodied referential communication, where agents587

tasked with communicating about sets of stim-588

uli (Hawkins et al., 2017; Haber et al., 2019), or589

where agents are not physically situated within an590

environment (Kazemzadeh et al., 2014; Achlioptas591

et al., 2020). The problem of situated language592

grounding in multi-agent settings reflects an in-593

creasingly popular real-world scenario of embodied594

agents. In studies where interaction participants are595

both embodied with different visual perspectives on596

the same scene, they must either be literally physi-597

cally embodied in a single scene (Schober, 1993),598

or are placed in synthetic environments (Udagawa599

and Aizawa, 2019).600

A small number of existing works have trained601

language-generation models using evidence of602

communicative success in interaction with another603

agent. For example, Kojima et al. (2021) train an 604

instruction-generating agent by observing humans 605

follow generated instructions, and Liu et al. (2023) 606

use signals from reference games with automated 607

listeners to improve a speaker model. Our work 608

takes inspiration from the latter to improve our 609

speaker model using referent selections from an au- 610

tomated listener; however, we explore a preference- 611

based objective that explicitly pairs the intended 612

and empirically chosen referents. 613

7 Conclusion 614

We study multi-agent referential communication 615

in situated interactions. In this setting, a speaker 616

and a listener are both embodied in a shared scene, 617

but are placed in different locations, with different 618

views of the scene. We design a platform that sup- 619

ports generation of photorealistic 3D scenes, with 620

control for difficulty of the referential task. We eval- 621

uate both humans and automated agents as speak- 622

ers and listeners in this task. While human-human 623

dyads are successful at coordinating on a referent 624

around 88.4% of the time, automated models fall 625

far behind when used both as speakers and as lis- 626

teners. However, we can substantially improve the 627

performance of an open-weight speaker model by 628

training it with evidence of communicative success 629

in referential communication with both automated 630

and human listeners. Our findings suggest that 631

despite the increasing relevance of multi-agent sit- 632

uated interactions between humans and automated 633

agents, there is significant headroom for applying 634

models that jointly process language and visual per- 635

ception in this setting. However, they also show 636

the promise of training such agents in interaction 637

with people. 638

Limitations 639

Our task currently focuses on single-shot refer- 640

ence, where a speaker creates a single referring 641

expression, and the listener cannot ask for clar- 642

ification or engage in interactive reference reso- 643

lution (Clark and Wilkes-Gibbs, 1986; Udagawa 644

and Aizawa, 2019). Evaluating how models par- 645

ticipate in an interactive version of our task is a 646

compelling direction for future work. Addition- 647

ally, while our experiments are currently conducted 648

exclusively in English, the language of space and 649

motion has enormous variation across language 650

communities (Levinson and Wilkins, 2006). Core 651

spatial concepts studied in English, like on or in, do 652

8



not have universally uniform meanings, with dif-653

ferent languages dividing the conceptual space of654

spatial language in vastly different ways (Landau,655

2017). Future work should explore how spatial656

Finally, our experiments on learning from com-657

municative success perform only a single round658

of speaker deployment and training. Future work659

could perform further rounds of speaker deploy-660

ment and listener judgments (i.e., as in Kojima661

et al., 2021; Suhr and Artzi, 2023), and analyze dy-662

namics of language change in a continual learning663

setting.664
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A Data798

A.1 Scene Generation799

We include more details on scene generation in800

addition to in Sec.2.2.801

Agent placement. We impose three constraints802

on agent placement to help a more efficient scene803

generation pipeline:804

• Maximum distance between the agents: Let805

dmax be the maximum allowed distance be-806

tween the speaker and the listener. Denot-807

ing the positions of the speaker and listener808

as ρs and ρl, respectively, we require that809

|ρs − ρl| ≤ dmax. We use dmax = 10.810

• Field of view overlap: Let Fovs and Fovl811

be the fields of view of the speaker and lis-812

tener, respectively. We require that the inter-813

section of their fields of view is non-empty,814

i.e., Fovs ∩ Fovl ̸= ∅.815

• Relative viewing angle: Let ψs and ψl be816

the horizontal viewing angles of the speaker817

and listener, respectively, relative to a com-818

mon reference direction. The relative view-819

ing angle between the agents is given by820

ψ′ = min(|ψs−ψl|, 360◦−|ψs−ψl|). We can821

place the agents with a pre-set relative view-822

ing angle by satisfying C0 ≤ |ψ′
s − ψ′

l| ≤ C1,823

where C0, C1 is the viewing angle difference824

bounds we set.825

Referent placement. We impose three con-826

straints on referents placement so they don’t stack,827

become obstructed, or float in the air to meet real828

world physics standards:829

• Visibility constraint: Let Viss and Visl be the830

sets of points visible from the speaker’s and831

listener’s cameras, respectively. For each ref-832

erent ri, we require that ri ∈ Viss ∩ Visl.833

• Physically-based placement: Let X ,Y,Z be834

the sets of valid x, y, and z coordinates835

within the environment bounds. For each836

referent ri, we randomly sample coordinates837

(xi, yi, zi) ∈ X ×Y×Z and drop the referent838

using gravitational physical simulation until it839

comes to rest on a solid horizontal surface.840

• Minimum distance: Let dmin be the minimum841

required distance between any two referents.842

For all pairs of referents ri and rj , where i ̸=843

j, we enforce |ri−rj | ≥ dmin. We use dmin = 844

0.3 . 845

Scene rendering. Our environment supports ren- 846

dering observations at different resolutions; e.g., 847

we use H = 720 and W = 1280 for HD resolution. 848

Scene rejection sampling. We use GPT-4 which 849

is a Vision Language Model (VLM) to skip 850

low quality images rendering during the dataset 851

generation. We use the below prompt: 852

853
Please analyze the following image and provide a score 854

from 0 to 10 based on these criteria: 855

• The image must contain exactly 3 red spheres. If there 856
are more or fewer than 3 red spheres, the score should 857
be 0. 858

• The image should have high perceptual quality. Con- 859
sider factors such as: 860

– Resolution: The image should be clear and not 861
pixelated or blurry. 862

– Lighting: The image should have adequate light- 863
ing, without extreme darkness or overexposure. 864

– Focus: The subject of the image (the red spheres) 865
should be in focus. 866

– Contrast: The image should have good contrast, 867
allowing the red spheres to be easily distinguish- 868
able from the background. 869

• The image should not have any visible artifacts, such 870
as: 871

– Compression artifacts: There should be no visi- 872
ble compression artifacts, such as blocky patterns 873
or color banding. 874

– Noise: The image should not have excessive noise 875
or graininess. 876

– Distortions: The image should not have any dis- 877
tortions, such as warping or stretching. 878

A.2 Adversarial Referent Placement 879

We present more details on training the adversar- 880

ial placements Sec.2.3. For each training iteration, 881

the vision transformer (ViT-s/16) will take in the 882

speaker view and available object placement loca- 883

tions and speaker and listener locations processed 884

as (x, y, z) coordinates flattened into a noramlized 885

array. The model will be learned to output the hard 886

location from the input object placement locations 887

as a single-choice pipeline. 888

A.3 Crowdsourcing 889

For speakers and listeners we prompt the user 890

to follow a description and a tutorial. When 891

annotating, they still have access to the tutorial. 892

We include description as below: 893

894
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We engage participants in a virtual environment where895
they assume the roles of a Speaker and a Listener. The task896
involves communication and spatial reasoning, requiring the897
"Speaker" to describe the location of specific objects within the898
environment, which are visible to them but not to the Listener.899
The Listener then interprets these descriptions to identify the900
objects accurately. Data collected from these interactions901
helps us understand the effectiveness of communication strate-902
gies and spatial language in varied settings. This study aims903
to improve collaborative tasks between humans and AI agents,904
enhancing how they interact within digital and real-world905
environments.906

We choose participants from USA, fluent in English. We907
tell the users the data will be used for research purpose. The908
study is determined exempt from ethics review.909

We manually check human data for non-conforming text.910

This step includes excluding private user information or offen-911

sive content.912

B Experiments913

B.1 Experimental Setup914

For environment generation, we use Quadro RTX915

6000 for graphics rendering for a single process.916

We parallize data generation with Habitat-Sim with917

4 Quadro RTX 6000.918

We prompt the instruction-tuned vision and919

language models to output speaker and listener920

text. Except for the model-specific architecture921

input formatting. We use the following prompts:922

923

Speaker Prompt:924

925

Describe the location of the blue sphere relative to the926

environment features in contrast with other red spheres.927

928

Listener Prompt:929

930
Imagine an image filled with several identical red spheres931

and a blue sphere. Your task is to identify the specific red932
sphere of interest from among several possible candidates. To933
assist you, you will receive a detailed description highlighting934
unique characteristics or positions of the sphere.935

Your objective is to determine the precise location of this936
sphere in the image and mark it with a bounding box. Consider937
factors such as lighting, reflections, shadows, relative position938
to other objects, and any unique attributes mentioned in the939
description. You should analyze how these details help to940
pinpoint the exact sphere among the identical ones.941

Once you have identified the sphere, outline its position us-942
ing a bounding box and provide its coordinates in the format:943

x0 (left), y0 (top), x1 (right), y1 (bottom)944
Additionally, explain your reasoning in detail for why you945

chose this specific location for the bounding box. For example:946
"Based on the description, the sphere is near the window947

on the left side, and the distinct light reflection on its surface948
sets it apart from the others. This suggests its location as... ,949
Bounding box coordinates: [0.23, 0.44, 0.30, 0.46]."950

Be aware that the description might offer a different view-951
point of the scene, so be prepared to adjust your analysis952
accordingly.953

Format for Response:954

Figure 4: Impact of task difficulty on communication
errors between speaker and listener.

Reasoning for location choice: [Your detailed explanation 955
here] 956

Bounding box coordinates: [x0, y0, x1, y1] 957
Feel free to incorporate any nuanced observations or con- 958

trasting elements that helped you make the distinction. 959

B.2 Error Analysis 960

We analyze the frequency of several common com- 961

munication errors in collaborative tasks involving 962

both human and automated speakers interacting 963

with human listeners, with varying degrees of task 964

difficulty. For automated speakers, we utilize the 965

LLaVA-1.5 model. The results are presented in 966

Fig 4. It is evident that the error frequency in col- 967

laborations involving automated speakers is gen- 968

erally higher than that with human speakers, and 969

these errors are predominantly vague descriptions. 970

Conversely, human speakers more frequently en- 971

counter perspective shift issues, as they tend to 972

use themselves or the listeners as reference points, 973

whereas automated speakers prefer to reference 974

fixed objects in the scene. 975

The impact of facing angles and distances on 976

communication is also significant. We find that 977

errors are most prevalent when the listener and 978

speaker are facing each other at angles between 979

120-180 degrees. In these situations, directional 980

terms such as "left" and "right" often become in- 981

verted, especially when speakers fail to clarify 982

whose perspective is being used. Moreover, with 983

the visibility of both parties, a speaker might use 984

"human" as a reference point, but the listener typi- 985
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cally assumes "human" refers to the speaker, lead-986

ing to selections in the opposite direction. Addition-987

ally, as the distance between speaker and listener988

increases, the descriptions provided by speakers989

tend to become more vague, opting for broader ref-990

erence points such as ’on the left side of the wall’991

rather than ’next to the table’, further complicating992

accurate communication.993

B.3 Ai Assistants Usage994

When conducting the research, we use Ai to en-995

chance our coding efficiency and quality. We996

use ChatGPT 8 and Claude,ai9 to write codes for997

our dataset generation and human study websites998

server.999

8https://chat.openai.com/
9https://claude.ai
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