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Figure 1. Current text-to-image models struggle to depict common objects in varied physical states, inaccurately include unintended
objects or fail to depict the requested empty or absence state (e.g., prompting for “A kitchen counter without any food” still results in a
kitchen count full of food). Our method addresses these issues and yields accurate object state representation.

Abstract

Current text-to-image generative models struggle to accu-
rately represent object states (e.g., “a table without a bot-
tle,” “an empty tumbler”). In this work, we first design a
fully-automatic pipeline to generate high-quality synthetic
data that accurately captures objects in varied states. Next,
we fine-tune several open-source text-to-image models on
this synthetic data. We evaluate the performance of the fine-
tuned models by quantifying the alignment of the generated
images to their prompts using GPT4o-mini, and achieve an

average absolute improvement of 8+% across four models
on the public GenAI-Bench dataset. We also curate a collec-
tion of 200 prompts with a specific focus on common objects
in various physical states. We demonstrate a significant
improvement of an average of 24+% over the baseline on
this dataset. We release all evaluation prompts and code at
https://github.com/cskyl/Object-State-
Bench.
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1. Introduction
Recent advances in text-to-image generation [2, 4, 6, 8, 11,
19, 20, 24, 27, 29, 31] have significantly improved the vi-
sual quality and correctness of the generated images and
unlocked incredible potential for human creative expres-
sion. Despite these significant improvements, as illustrated
in Fig. 2, existing generative and visual language models
still face challenges in accurately capturing spatial rela-
tionships [25] and simple real-world physical states such
as presence, absence, empty, full [18], and so on. De-
spite being trained on billions of images, recent studies [33]
and examples in Fig. 2 suggest that the generative systems
are latching onto the intended and unintended co-occurring
contexts represented in the training data and lack a funda-
mental understanding of object states.

Let us consider the example of a kitchen shelf. A sim-
ple web search indicates that a significant portion of images
of a kitchen shelf are typically shelves filled with a vari-
ety of objects. We posit that this may inadvertently induce
contextual bias into both generative and vision language
models trained on such data, leading to text-to-image sys-
tems mostly generating a kitchen shelf in a “full” or “occu-
pied” state. This scenario is further exacerbated given that
captions generated on training data usually capture objects
present in the image and not the ones absent in it. Recent
studies [1, 26] have shown evidence that CLIP [22], the de-
facto text encoder in most generative image models, strug-
gles to understand negation. How then should we impart
the concept of absence of an object (e.g., a table without a
vase) or negation of a physical state (e.g., an empty bottle)
to the text to image generative system?

We tackle this issue in our work. Our key idea is to sup-
ply a text to image model with more evidence of a variety
of objects in diverse physical states during training so that
the model implicitly learns what absence or negation of an
object should visually look like. We do this by first de-
signing an automated pipeline to generate high-quality syn-
thetic data that explicitly captures daily objects in varied,
naturally feasible object states. The data generation pipeline
(Fig. 3) comprises a step involving generating template-like
prompts describing common objects in different physical
states. Next, we use an off-the-shelf text to image model to
generate synthetic images and subsequently filter out those
not representative of objects in absent or empty states using
a vision language model. We then finetune publicly avail-
able text to image models on this diverse generated data.

Our experiments indicate that finetuning on this curated
synthetic dataset enriches a model’s understanding of ob-
jects and their various physical states. Furthermore, we
probe if finetuning leads to a more holistic understanding
of objects in diverse physical states or mere memorization.
To this end, we test the model on prompts comprising ob-
jects not part of the finetuning data. Across the four models

we evaluate, we observe an average improvement 24.6%
on novel, unseen objects, indicating that finetuning led to
a better, more generalizable latent space. Qualitative com-
parisons (Fig. 1) further illustrate these improvements. Be-
yond enhancing the overall capability of generating objects
in diverse states, we also examine the impact of fine-tuning
on visual quality. Our analysis shows that both the CLIP
score and the FID remain at similar levels after fine-tuning,
with the FID showing no significant change, confirming
that our synthetic data does not introduce undesirable vi-
sual artifacts. We also conduct a user study that further con-
firms that visual quality remains perceptually indistinguish-
able (see Appendix 4.11). We also show that fine-tuning on
high-quality synthetic data does not degrade performance
on other prompts not related to object states. We summa-
rize our key contributions below:
• We propose a fully-automatic synthetic data genera-

tion pipeline to systematically create high-quality train-
ing data that explicitly targets objects in empty, negation,
and absent states (Sec.3).

• We fine-tune four open-source text-to-image generative
models on this synthetic data and evaluate the generations
on the publicly available GenAI-Bench dataset [12]. We
show that the finetuned models yield an improvement of
averaging 8+% across the four models we experimented
with, as measured by quantifying the alignment of the
generated images to their prompts (Sec.4).

• We introduce a novel prompt collection, Object State
Bench, specifically designed to evaluate models in com-
plex physical states. All finetuned models yield an over-
all improvement of an average of 24+% over their un-
tuned baselines on this benchmark. This strong result un-
derscores the substantial potential of our synthetic data
pipeline in addressing the critical limitation of captur-
ing object states in text-to-image generation. Both re-
sources are publicly available at https://github.
com/cskyl/Object-State-Bench.

2. Related Work
Iterative Correction and Guidance Techniques: Recent
studies have addressed shortcomings in text-to-image syn-
thesis by incorporating iterative correction mechanisms.
For example, Wu et al. [30] propose a Self-correcting LLM-
controlled Diffusion framework that leverages large lan-
guage models to iteratively refine generated images through
latent space operations such as addition, deletion, and repo-
sitioning. Similarly, Liu et al. [15] introduces a particle fil-
tering framework that uses external guidance, such as object
detectors and real images, to mitigate errors such as miss-
ing objects and image distortions. Although these meth-
ods improve image fidelity, they typically require additional
inference-time computations and complex feedback loops.
RL-based Preference Optimization Methods: In paral-
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Figure 2. State-of-the-art closed-source text-to-image and text-to-video models struggle to depict objects in absent or negation
states. For Gen-3 (a text-to-video model), we show a single extracted frame. This highlights the limitations of current advanced generative
systems in accurately representing objects in simple and common physical states.

lel, reinforcement learning (RL) techniques have been ex-
plored to fine-tune generative models for better alignment
with human preferences. Methods such as Direct Prefer-
ence Optimization (DPO) [28] and Proximal Policy Opti-
mization (PPO) [23] have been applied to adjust model out-
puts based on preference feedback. These approaches opti-
mize the generation process by modifying latent represen-
tations or output distributions to prioritize images that not
only exhibit high visual fidelity but also maintain semantic
accuracy. Although initially developed for language mod-
els, recent adaptations of these RL-based methods to sta-
ble diffusion models have shown promising improvements.
However, such techniques often involve complex training
procedures and significant computational overhead. Our
work complements these efforts by adopting a data-centric
approach that focuses on synthetic data generation.
Synthetic Data Generation: Complementary to iterative
correction and RL-based tuning methods, synthetic data
generation has emerged as a promising strategy to overcome
limitations in training datasets. Recent work [16] demon-
strates that synthetic data produced via diffusion models can
enhance model robustness and generalization. Our method
builds on this idea by adding a fully automatic pipeline that
creates high-quality synthetic image-prompt pairs. These
pairs clearly show different object states that aren’t always
shown in real-world data. Distinct from methods relying
on iterative correction or resampling during inference, our
pipeline directly enhances the training process. We fine-
tune open-source text-to-image models on our synthetically
generated data, thereby improving the semantic alignment
between generated images and their textual descriptions.
This data-centric framework not only simplifies the over-

List of prompts: 
• An empty table 
• an empty bottle
• an empty bookshelf
• etc… 

An empty bookshelf. An empty table. 

Synthetic Dataset

A bookshelf 
without any book.

A table without 
any bottle. 

Filtering

Image 
Generation

Recaptioning

Figure 3. Overview of the proposed synthetic data generation
pipeline: We generate prompts describing common objects in dif-
ferent physical states. We next create images from the prompts,
evaluate for the correct representation of the object state using
GPT4o-mini [10]. We rephrase prompts to introduce diversity in
the sentence structures, length, and objects specified.

all generation pipeline but also offers an extensible solution
to address critical semantic limitations in text-to-image syn-
thesis.

3. Approach

To address the gap in accurately generating objects in com-
mon physical states using text-to-image models, we pro-
pose a fully automatic synthetic data generation pipeline.
As illustrated in Fig. 3, we first identify a diverse set of
real-world objects and compose prompts referring to those
objects in different physical states. Next, we generate im-
ages corresponding to those prompts using an off-the-shelf
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Prompt for filtering generated images not represent-
ing absence or empty state of an object:

“You are an assistant that evaluates whether an image
correctly represents the ‘empty state’ of an object as de-
scribed in the caption. Specifically, check if the main
object appears empty or unoccupied and confirm that
the described absent object is not present in the image.
Does the image accurately reflect both conditions? Re-
turn ‘Yes’ or ‘No’.”

Figure 4. System prompt used on the generated images for filter-
ing out images not aligning with the provided prompt.

text to image generative model. Following this, we lever-
age Large Language Models (LLMs) to refine prompts and
introduce diversity in their syntax. We also use a Large
Vision-Language Model (LVLMs) for visual verification of
the object state representation, to reduce noise in the gener-
ated data. We describe each step in detail next.
Noun identification, prompt, and image generation:
First, we use a large language model and curate a wide
range of real-world objects such as containers, tables,
shelves, rooms, and drawers, that can be depicted in empty,
full, and absent states. We next use a large language model
to compose simple prompts around these objects that ex-
plicitly describe empty states (e.g., “an empty table”). We
note that in our work, we focus only on curating prompts
and images that represent only empty object states as they
are more commonly underrepresented in most datasets.
Image Synthesis and Filtering: Next, we utilize an off-
the-shelf text-to-image generation model to produce multi-
ple candidate images per prompt using random seeds to en-
sure sufficient content diversity. Given that existing models
struggle to generate images that represent object states cor-
rectly, we pass each generation through a vision language
model, and use visual-question-answering prompts to fil-
ter out generations that do not capture the object states cor-
rectly
Recaptioning: Finally, we use a large language model
to introduce more diversity into the template-like initial
prompt syntax. For example, the initial prompt “an empty
table” could be refined to “a table without any bottle or
book,” increasing the complexity and clarity of the gener-
ated prompts. Our full pipeline is depicted in Fig. 3.

We finetune several open-sourced models on this syn-
thetically generated image data, which we describe next.

4. Experiments
This section briefs about the datasets and evaluation met-
rics, baseline models, followed by fine-tuning. We also
study the effect of different design choices we make in our
overall approach.
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Figure 5. Qualitative comparison of object state improvement
for Stable Diffusion-1.5: (top) row shows the Stable Diffusion-
1.5 baseline model, while the (bottom) row displays fine-tuned
with our synthetic data pipeline, yielding more precise object state
representation.
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Figure 6. Qualitative comparison of object state improvement
for Stable Diffusion-2.1: (top) row shows the Stable Diffusion-
2.1 baseline model, while the (bottom) row displays fine-tuned
with our synthetic data pipeline, yielding more precise object state
representation.

4.1. Implementation Details
Synthetic data generation: The synthetic data pipeline
has multiple modules involved to ensure high quality
training dataset and uses GPT-4o-mini [10] in every step.
Specifically, we use GPT-4o–mini to generate about 3000
different common objects and template-style prompts
capturing these objects in empty or absent states. Next,
we employ few-shot prompting technique [3] which has
evidence to show better performance aligning with the
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Figure 7. Qualitative comparison of object state improvement
for SDXL: (top) row shows the SDXL baseline model, while the
(bottom) row displays fine-tuned with our synthetic data pipeline,
yielding more precise object state representation.
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Figure 8. Qualitative comparison of object state improvement
for Flux Dev: (top) row shows the Flux Dev baseline model,
while the (bottom) row displays fine-tuned with our synthetic data
pipeline, yielding more precise object state representation.

prompted task in large language models. For generating
the synthetic images, we use Stable Diffusion 1.5 [24] for
30 inference steps with a CFG scale of 5.0. We choose a
slightly lower CFG value than the default to ensure more
diversity in the synthetic training data while adhering to
the actual input prompt. We again use GPT 4o-mini [10] to
filter out images which incorrectly capture object states as
mentioned in 3 and to rephrase the template-like prompts
10. This process resulted in 7600 synthetic image-text pairs.

Evaluation benchmarks: There exist very few public
datasets that specifically focus on evaluating models on
prompts capturing objects in varied physical states. The re-
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Figure 9. Qualitative comparison of object state improvement
for OmniGen: (top) row shows the OmniGen baseline model,
while the (bottom) row displays fine-tuned with our synthetic data
pipeline, yielding more precise object state representation.

Prompt for recaptioning into passive voive prompts:

“The original prompt for the image is:
‘{original prompt}’. Please refine the prompt by
specifying an absent object if it is not already men-
tioned, but avoid redundant descriptions of emptiness.
Ensure the refined prompt naturally integrates the
missing object without repeating words like ‘empty’ or
‘vacant’. For example: ‘An empty table.’ → ‘A table
without any bottles on it.’, ’A deserted park.’ → ‘A park
without any people.’ If the original prompt is already
sufficiently detailed, return it as is.”

Figure 10. System Recaptioning Prompt: This figure shows the
system prompt that transforms template-like prompts into passive
voice. The examples instruct the model to enhance the prompt
by adding a missing object and avoiding redundant emptiness de-
scriptors.

cently introduced GenAI-Bench [12], and the subset of 347
prompts belonging to the “negation” category is the clos-
est to the scenario we study in this work. A sample prompt
from this set is: “the girl with glasses is drawing, and the
girl without glasses is singing.” Here the prompt challenges
the model to generate both presence and absence of the
same object (glasses) but on different people. However, the
negation category also has prompts that test absence of at-
tributes (instead of objects), e.g., “a person with short hair
is crying while a person with long hair is not.” Thus, we
manually go through these prompts and retain only those
that are more aligned to our task, resulting in 214 prompts.
We call this subset as GenAI-Object-State dataset.

Additionally, we manually curate a set of 200 prompts,
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Prompt for evaluating generated images on repre-
senting absence or empty state of an object:

“You are an assistant that evaluates whether an im-
age correctly represents the ‘empty state’ of an ob-
ject as described in the caption. The caption is:
{original prompt}. Specifically, check if the main object
appears empty or unoccupied and confirm that the de-
scribed absent object is not present in the image. Does
the image accurately reflect both conditions? Return
‘yes’ or ‘no’.”

Figure 11. System Prompt for Evaluation: This figure presents
the prompt used to assess whether a generated image accurately
represents the absence or empty state of an object as described in
the caption.

titled Object-state-Bench. This benchmark consists of two
parts: one-half of the prompts are generated using the syn-
thetic prompt generation pipeline and the other half is cu-
rated by human annotators tasked with describing common
objects around them in empty or absent states. This design
incorporates both machine-generated and human-authored
descriptions, ensuring diversity and realistic linguistic vari-
ability for a robust evaluation of model performance.
Evaluation metrics: We quantify our model performance
using the Visual Question Answering score (VQA-score)
introduced by Lin et al. [14]. The metric utilizes a fine-
tuned version of the Google’s FLAN-T5-XXL model [5]
with contrastive language-image pre-training [22]. We use
the default prompt given by the authors: “Does this figure
show “prompt”? Please answer yes or no.” Additionally,
we also use OpenAI’s GPT-4o-mini model [10] for evalua-
tion, where we query with an evaluation prompt specified in
Fig. 11 and the generated image. The model returns a yes
or no based on whether the object state has been correctly
depicted.

4.2. Finetuning setup
Implementation Details: We finetune Stable diffusion 1.5,
2.1 [24], SDXL [17, 21], Flux.1 Dev [11] and Omni-
Gen [31] on the proposed framework. For the Stable Diffu-
sion family of models, we use a guidance scale of 7.5, which
is their default value, for Flux DEV [11], we use a guidance
scale of 3.5 and for OmniGen, we use a guidance scale of
3. Stable Diffusion 1.5 generates 512 × 512 dimensional
output image while all other models generate 768×768 res-
olution. We infer Flux DEV version [11] with 50 inference
timesteps as recommended in their documentation. For all
other models, the number of inference time steps is 30. We
also ensure that the same seed of 1303 (chosen arbitrarily)
is used across all the prompts of the dataset for a given run
for all the models during baseline testing. We finetune all

Method GenAI-Object-State Object State Bench

GPT (↑) VQA (↑) GPT (↑) VQA (↑)

Stable Diffusion 1.5 [24] 16% 45% 38% 42%
Stable Diffusion 2.1 [24] 16% 47% 31% 40%
SDXL [17, 21] 15% 47% 33% 42%
Flux DEV [11] 11% 39% 19% 29%
OminiGen [31] 13% 40% 20% 31%

Stable Diffusion 1.5 + Ours 21% 46% 54% 53%
Stable Diffusion 2.1 + Ours 23% 49% 54% 55%
SDXL + Ours 23% 52% 56% 58%
Flux Dev + Ours 22% 50% 56% 55%
OmniGen + Ours 23% 47% 44% 49%

Table 1. Baseline vs finetuned results on different models: GPT (↑)
stands for GPT [10] correct rate and VQA (↑) stands for VQA-Score [14]
(higher is better). The cyan colored rows represent the performance of
fine-tuned models’ with SD 1.5 [24] as synthetic data generator. The high-
lighted numbers indicate the highest performance for the corresponding
dataset and metric.

models using Low Rank Adapters (LoRA) [9]. The hyper-
parameters of LoRA are detailed in Appendix.

4.3. Overall performance improvements

Table 1 presents GPT and VQA results for five open-source
text-to-image models before and after fine tuning with our
synthetic dataset. Fine tuning raises GPT scores in aver-
age by 8.2 percentage points on GenAI Object State and
by 24.6 points on Object State Bench, while VQA accuracy
increases by 5.2 and 17.2 points, respectively. The most
substantial gains occur for the SDXL model, which reaches
23% GPT score and 58% VQA score on the Object State
Bench. These consistent improvements demonstrate that
our synthetic data pipeline and fine-tuning approach effec-
tively enhance semantic alignment and visual question an-
swering performance across diverse models. Furthermore,
qualitative comparisons ( Fig. 5, 6, 7, 8 and 9) visually il-
lustrate the enhanced semantic alignment in the generated
images after fine-tuning on samples from both the GenAI-
object-state and Object State Bench datasets.

While our fine-tuning strategy generally improves the
visual representation of object states, qualitative analysis
reveals several different failure modes, as illustrated in
Fig. 12. In Fig. 12a, the tuned model improves significantly
by approaching the correct empty state. However, the repre-
sentation remains imperfect, indicating that the model con-
verges toward the intended state without fully capturing all
semantic details. In contrast, Figure 12b shows instances
where the tuning process overemphasizes emptiness, re-
sulting in an overrepresentation of the empty state, which,
causes the object itself to be imperfectly represented. These
observations highlight the delicate balance required in fine-
tuning: while reinforcing the concept of emptiness is bene-
ficial, overemphasis can degrade the precise representation
of the object.
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Tuned Generative
Model

Synthetic Data
Generator

GenAI-Object
State

Object State
Bench

Stable Diffusion 1.5[24]
Stable Diffusion 1.5[24] 21% 53%

SDXL[17, 21] 24% 54%
Stable Diffusion 2.1[24] 21% 56%

SDXL[17, 21]
Stable Diffusion 1.5[24] 23% 53%

SDXL[17, 21] 20% 58%
Stable Diffusion 2.1[24] 22% 58%

Stable Diffusion 2.1[24]
Stable Diffusion 1.5[24] 23% 56%

SDXL[17, 21] 23% 55%
Stable Diffusion 2.1[24] 22% 55%

Table 2. Performance Comparison: This table compares the per-
formance of different synthetic data generators when used to fine-
tune generative models on two benchmarks: GenAI-Object-State
and Object State Bench. Results are reported as GPT evaluation
scores (higher is better), with bold values indicating the best per-
formance in each configuration.

4.4. Effect of the synthetic data generator
Table 2 presents GPT evaluation scores for three generative
models fine tuning on synthetic data produced by different
generators. Overall, the choice of generator has only a mod-
est effect. For Stable Diffusion 1.5, using SDXL data yields
the highest GenAI-Object-State score at 24%, while Sta-
ble Diffusion 2.1 data delivers the top Object State Bench
result of 56%. In the case of SDXL, both SDXL and Sta-
ble Diffusion 2.1 generators achieve the best bench score
(58%), with Stable Diffusion 1.5 data slightly outperform-
ing them on GenAI-Object-State (23%). Similarly, tuning
Stable Diffusion 2.1 with Stable Diffusion 1.5 or SDXL
data produces identical GenAI-Object-State scores of 23%
and bench scores between 55% and 56%, while its own
data trails by one point on both benchmarks. These small
variations demonstrate that our synthetic data pipeline is ro-
bust: regardless of the underlying generator, all tuned mod-
els show consistent improvements in semantic alignment on
both evaluation sets.

4.5. Generalization to unseen object
Our overarching goal is to teach the model the concept of
emptiness or the absence of an object. To this end, we study
whether the model’s understanding of object states learned
during training generalizes to novel, unseen objects. We
first identify 100 novel objects that are not part of the 3000
objects used for training. Furthermore, we manually inspect
the list of objects and filter out if the new object is similar
to the training objects (see Appendix A for the complete list
of objects). Using our data generation pipeline described in
Sec. 3, we generated images for these objects.

The results, reported in Table 3 (Column 2), show an im-
provement in the GPT score from 13.0 to 20.0 (+7 percent-
age points). Such significant improvements on unseen ob-
jects indicates that finetuning on synthetic data of objects in
absent and negation states is leading to a more comprehen-
sive understanding of physical states even on novel, unseen
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(a) Tuned model shows improved object state, though not fully correct.

A room with no 
paintings on the walls

A coffee table with no 
cups or magazines

An cabinet without 
any items inside

SD
X

L
SD

X
L

 +
 O

u
rs

(b) Tuned model overrepresents the empty state, shifting the object depiction.

Figure 12. Qualitative Tuning Effects: Figure (a) shows cases
where tuning improves the depiction of the object state (although
with some imperfections), while Figure (b) illustrates instances
where tuning overemphasizes emptiness, leading to a deviation
from an accurate object representation.

objects.

Model

Objects in
non-empty states

Unseen
objects

GPT (↑) VQA (↑) GPT (↑) VQA (↑)

Stable Diffusion 1.5 [24] 40% 68% 13% 44%
Stable Diffusion 1.5 [24] + Ours 39% 69% 20% 50%

Table 3. Evaluating Generalizability: This table compares the
performance of the baseline Stable Diffusion 1.5 with our fine-
tuned variant on two evaluation sets: objects in non-empty states
and unseen objects. GPT and VQA scores (higher is better) are
reported for each category, with bold values indicating the best
performance.

4.6. Performance on non-empty object states
Given our finetuning data consists of objects in empty or ab-
sent states, we study the performance on prompts describ-
ing objects in full state (e.g., “a tumbler full of water”). We
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Data Source GPT (↑) VQA (↑)

Stable Diffusion 1.5[24] (Baseline) 38% 42%
COCO[13] 35% 42%
VidOSC [32] 36% 41%
Stable Diffusion 1.5 + Synthetic Data (Ours) 54% 53%

Table 4. Data Source Performance Comparison: This table
compares the performance of models fine-tuned on various data
sources. Training on our synthetic dataset significantly boosts the
GPT score (from 38% to 54%) and provides a modest improve-
ment in VQA score over real-world datasets such as COCO [13]
and VidOSC [32].

provide these prompts in the suppl. material. We report the
results in Table 3 column 1. Our results indicate that there is
minimal difference in the performance of the models even
after fine-tuning. This experiment highlights that our ap-
proach does not lead to catastrophic forgetting of objects in
full states even though this is not explicitly represented in
the finetuning data.

4.7. Is synthetic data generation necessary?

To evaluate whether synthetic data is essential for improv-
ing text-to-image generation, we extract 12K training exam-
ples from both the COCO [13] dataset and a video dataset
(VidOSC [32]) that contain captions related to object states.
For the real-world data, we filter the captions to retain only
those whose associated prompts and images suggest a po-
tential empty state, even if not explicitly described, as such
samples are relatively scarce, as we discussed in the above
sections. We then refine these captions, following the same
process as our synthetic pipeline. The key difference be-
tween the synthetic dataset and the real-world dataset is
that, for each filtered prompt in the real-world datasets, we
directly use the corresponding image. In contrast, because
the synthetic pipeline lacks corresponding real images and
is based on a limited set of original prompts, we generate
each prompt with multiple random seeds and perform re-
ception on each generation.

Table 4 compares the performance of models fine-tuned
on these different data sources. Despite training all mod-
els on approximately 12K images for 400 steps, the syn-
thetic dataset significantly outperforms the baseline. The
modest gains from the real-world datasets suggest that, de-
spite similar training set sizes, they contain relatively few
high-quality samples that clearly represent object empty
states. For a visual comparison of training samples across
these datasets, please refer to the figure in the supplemen-
tary material. In contrast, our synthetic dataset, specifically
designed to capture varied object states, provides a much
stronger fine-tuning signal, leading to a significant improve-
ment in image-prompt alignment.

Generative Model FID (↓) CLIP-Score (↑)

Stable Diffusion 1.5 [24] 24.32 0.31
Stable Diffusion 1.5 [24] + Ours 25.74 0.32

Table 5. Effect of finetuning on synthetic data on visual quality:
Comparison of FID (lower is better) and CLIP-Score (higher is
better) for Stable Diffusion 1.5 on COCO val2014 dataset, 10K
randomly sampled subset.

4.8. Performance impact on prompts not related to
object states

To verify whether the proposed framework impacts perfor-
mance on prompts unrelated to object states, we leverage
GenAI-Bench [12] and sample 50 random prompts which
are specifically outside the “negation” set. We test the per-
formance of both the base and finetuned Stable Diffusion
2.1 [24] models when the synthetic data is generated using
Stable Diffusion-1.5. Upon evaluating the generated images
on such randomly sampled prompts, we observe that the
base model has a GPT score of 10% while our fine-tuned
model has a performance of 16%(+6 percentage points).
This demonstrates that our approach improves a generative
model’s understanding of object states without deteriorating
performance on other non-object state related prompts.

4.9. Impact of recaptioning in the pipeline
One of the modules in the synthetic data pipeline is the
recaptioning segment, where we convert the template like
prompts to passive voice prompts. For example, a prompt
such as “An empty table.” can be recaptioned as “A table
without any bottles on it” (see Fig. 10), shifting from a di-
rect, template-like description to a more informal passive
construction. We evaluate the importance of this step by
finetuning Stable Diffusion 1.5 [24] and SDXL [17, 21]
with and without recaptioning the training data. We report
the results in Table. 6 and observe an improvement of 3
and 1 percentage points in GPT and VQA scores, respec-
tively, in GenAI-Object-State. We also observe +8% GPT
score and +4% VQA score points in Object-State-Bench.
These results show that recaptioning to make prompts less-
template like and more colloquial aligns them.

4.10. Evaluation on CommonsenseT2I dataset
To verify if this pipeline instills commonsense in generat-
ing image from text, we have compared the change in per-
formance on the CommonsenseT2I dataset [7]. We test the
performance of base and finetune models of Stable Diffu-
sion Family [17, 21, 24], Flux [11] and OmniGen [31] mod-
els on this dataset and we report the results in Table 7. Each
prompt of the 150 pairs present in the dataset is consid-
ered as an independent prompt and so we get a total of 300
prompt description pairs. We use the prompt to generate
image and we use the corresponding description to evaluate
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Model Recaptioning GenAI-Object-State Object State Bench

GPT (↑) VQA (↑) GPT (↑) VQA (↑)

Stable Diffusion 1.5 [24]
N/A (baseline) 16% 45% 38% 42%

No 17% 44% 42% 46%
Yes 21% 46% 54% 53%

Stable Diffusion 2.1 [17, 21]
N/A (baseline) 16% 47% 31% 40%

No 20% 48% 52% 52%
Yes 23% 49% 54% 55%

SDXL [17, 21]
N/A (baseline) 15% 47% 33% 42%

No 20% 52% 45% 51%
Yes 23% 52% 56% 58%

Table 6. Effect of Recaptioning on Model Performance: This table
presents a comparison of models fine-tuned with and without recaptioning.
The results show that incorporating recaptioning improves both GPT and
VQA scores on the GenAI-Object-State and Object State Bench, demon-
strating its effectiveness in enhancing semantic alignment. Baseline scores
are also included for reference.

the generated images. Since these prompts do not exactly
represent object states, we use a simpler prompt for GPT
evaluation: “You are an assistant that evaluates whether an
image accurately represents a given prompt. The provided
caption is: “prompt”. Based on the caption, determine if
the image correctly depicts the described content. Respond
only with ‘yes’ or ‘no’ ”. We see very little degradation
in performance with an average of 3.5% decrease in GPT
score and 2.8% decrease in VQA score. These results in-
dicate that while this pipeline does not contribute towards
model learning general commonsense, it does support the
fact that this pipeline improves the model’s understanding
of object states in text while not destroying its knowledge
in other domains.

Model GPT (↑) VQA (↑)

Stable Diffusion 1.5 [24] 40% 59%
Stable Diffusion 2.1 [24] 41% 62%
SDXL [17, 21] 44% 63%
Flux DEV [11] 45% 62%
OmniGen [31] 39% 63%

Stable Diffusion 1.5 + Ours 39% 58%
Stable Diffusion 2.1 + Ours 36% 58%
SDXL + Ours 46% 62%
Flux DEV + Ours 40% 58%
OmniGen + Ours 35% 59%

Table 7. Evaluation on CommonsenseT2I dataset: This table
compares the performance of the baseline models with our fine-
tuned variants on CommonsenseT2I dataset [7]. GPT and VQA
scores (higher is better) are reported. Note that there is a slight de-
crease in performance after finetuning with the proposed pipeline.

4.11. User Study of Visual Quality
To verify that fine-tuning with our synthetic data does not
degrade overall visual fidelity, we recruited 30 participants.
Each participant was shown 50 paired samples which were
generated using identical prompts and inference parameters
from the original and the fine-tuned models. We asked the

participants to choose which image looked better or ‘even”
if indistinguishable. Table 8 summarizes the win rates:
As shown, 52% of the time users preferred the fine-tuned

Condition Win Rate (%)

With tuning (ours) 52
Without tuning 46
Even 2

Table 8. Win rates comparison from the image-quality user
study.

model, 46% preferred the baseline, and only 2% were ties.
This demonstrates that our synthetic-data fine-tuning does
not introduce any undesirable artifacts or degrade visual
quality, while substantially improving generation correct-
ness

A group of people 
standing around a 
table serving food

A close-up of a 
person holding hot 
dog to the camera

A train is coming out of 
an overhead enclosure

A boy and a girl posing 
next to a statue

F
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x
F

lu
x

 +
 O

u
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Figure 13. Qualitative comparison on COCO general prompts:
(top) Flux Dev v1.0 baseline; (bottom) Flux Dev v1.0 fine-tuned
with our synthetic-data pipeline. Prompts are randomly sampled
from COCO (not hand-selected) to assess how fine-tuning affects
performance on generic, non-state-specific prompts. Results indi-
cate that fine-tuning does not degrade overall generation quality
on general prompts.

Model Empty / Half-Full / Full Open / Broken / Stacked

Empty (%) Half-Full (%) Full (%) Open (%) Broken (%) Stacked (%)

Stable Diffusion 1.5 38% 51% 40% 48% 37% 72%
Stable Diffusion 1.5 + Ours 54% 53% 39% 52% 48% 76%

Stable Diffusion 2.1 31% 44% 44% 70% 60% 74%
Stable Diffusion 2.1 + Ours 54% 42% 40% 66% 63% 72%

SDXL 33% 54% 63% 70% 56% 73%
SDXL + Ours 56% 52% 58% 69% 59% 77%

Flux DEV1.0 19% 65% 65% 73% 30% 90%
Flux DEV1.0 + Ours 56% 62% 62% 68% 32% 89%

Table 9. GPT accuracy (%) across six object states for vari-
ous models fine-tuned on empty-state data only. Cells shaded
green indicate an increase over the baseline, while red indicates
a decrease. Fine-tuning on empty-state synthetic data yields sub-
stantial gains on empty-state prompts and preserves performance
on other states.
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A dragon perched 
majestically on a 

craggy, 
smoke-wreathed 

mountain.

A calm turtle sitting on a 
log.

A baker pulling 
freshly baked bread 
out of an oven in a 

bakery.

A book with glowing 
runes floating beside a 

mystic crystal.

A group of people 
standing around a 
table serving food

A train is coming out of 
an overhead enclosure

A boy and a girl posing 
next to a statue
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Figure 14. Qualitative comparison on GenAI-Bench general
prompts: (top) Flux Dev v1.0 baseline; (bottom) Flux Dev v1.0
fine-tuned with our synthetic-data pipeline. Prompts are ran-
domly sampled from GenAI-Bench (not hand-selected) to assess
how fine-tuning affects performance on generic, non-state-specific
prompts. Results indicate that fine-tuning does not degrade overall
generation quality on general prompts.

Model Empty (%) Half-Full (%) Full (%)

SDXL 33% 52% 63%
SDXL + Ours 56% 52% 58%
SDXL + Ours (Train w/ all states) 49% 55% 73%

Model Open (%) Broken (%) Stacked (%)

SDXL 68% 52% 68%
SDXL + Ours 67% 58% 72%
SDXL + Ours (Train w/ all states) 73% 68% 82%

Table 10. GPT accuracy (%) across six object states for SDXL
variants. Comparison between the empty-state tuned variant (“+
Ours”) and the multi-state tuned variant (“+ Ours (Train w/ all
states)”). Cells shaded green indicate improvements over the
SDXL baseline, while red indicate declines. Multi-state training
delivers balanced gains across all object states.

4.12. Qualitative Analysis on General Prompts
To ensure that our synthetic-data fine-tuning does not over-
fit to empty-state cues or degrade performance on standard
text-to-image tasks, we randomly sampled prompts with-
out any state-specific terms from two diverse sources and
compared baseline vs. fine-tuned generations. Figure 13
presents examples from the COCO dataset, while Figure 14
shows samples from GenAI-Bench. In both cases, the fine-
tuned model maintains comparable visual fidelity and se-
mantic relevance to the baseline. These qualitative results
confirm that our tuning approach preserves general T2I ca-
pabilities even when focused on object-state enhancement.

4.13. Generalization Across Object States
All test sets were manually created and verified, each con-
taining 50 prompts that describe the same set of objects in
one of six states: empty, half-full, full, open, broken, and
stacked. Prompts in each set are disjoint and ensure consis-

tent object identities across states.

Experiment 1: Empty-State Fine-Tuning. We fine-
tune each backbone model (Stable Diffusion 1.5, 2.1,
SDXL, Flux DEV 1.0) on synthetic empty-state data, gen-
erating seven paraphrased variants per original caption to
match the procedure in 1. As shown in Table 9, this yields
up to a 36 pp gain on the empty test set, while accuracy
on the other five states changes by at most 4%. Impor-
tantly, several non-empty states even improve, for example,
SDXL gains +2% on half-full prompts and +1% on open
prompts, demonstrating that focusing on “empty state” does
not catastrophically overwrite pre-trained capabilities or de-
grade physical reasoning for other states.

Experiment 2: Multi-State Fine-Tuning. To achieve
more balanced coverage, we fine-tune SDXL on combined
synthetic data covering all six states. For each state, we
generate three paraphrased variants per prompt, resulting in
equal data volume per state. Table 10 shows that this multi-
state model matches the empty-state gains of the empty-
only variant and delivers additional improvements of +12%
pp on broken prompts and +14% on stacked prompts, with-
out sacrificing empty-state accuracy.

These results confirm that (1) single-state tuning yields
large, targeted gains with negligible side effects on other
states, and (2) extending our synthetic pipeline to multiple
object states produces a uniformly robust model, ideal for
downstream tasks requiring accurate reasoning across di-
verse physical conditions.

5. Conclusion and Future Work

To improve the physical object state representation in ex-
isting text to image generative systems, we propose a fully
automatic pipeline to generate high-quality synthetic data
and use it to finetune any text-to-image models. We demon-
strate that our approach improves the holistic understanding
of objects in diverse physical states via two evaluation met-
rics GPT score and VQA score [14]. Future work entails ex-
ploring if such a data generation pipeline can be extended
to other common failure models of image and video gen-
erative systems (compositional prompts, prompts involving
generating text, generating objects of accurate counts, etc.)
and exploring solutions with direct architectural tweaks to
the model itself.
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Appendices

A. List of Unseen Objects

In this section, we provide the complete list of 100 novel
objects used for evaluation. These objects were carefully
selected and manually filtered to ensure they are distinct
from the 3000 training objects. (The detailed list is pro-
vided here.)

• birdhouse
• meat locker
• medicine bottle
• print cartridge
• shipping con-

tainer
• fuel can
• bird’s nest
• fuel drum
• shopping cart
• squeeze bottle
• photobook
• paper towel

holder
• lipstick tube
• sunglasses rack
• jewelry roll
• wristwatch

case
• gadget case
• marionette the-

atre
• drill holder
• silicone mold
• speech bubble
• caviar tin
• crisper drawer
• resealable bag
• hawser reel
• luggage trunk
• coffee tin
• mason jar
• picnic hamper
• jewelry stand
• picture frame
• tackle pouch
• flower vase
• pool hall
• exam room
• motel room

• kitchen closet
• terracotta

planter
• patio chair
• operating the-

ater
• animal cage
• phone booth
• quilt bag
• dessert cup
• sitting room
• ring box
• sleeping bag
• flower vase

with no wa-
ter

• traveling case
• banana holder
• rooftop garden

bed
• pressure

cooker
• guitar rack
• sous vide con-

tainer
• cane basket
• treehouse
• planter
• charcoal holder
• dog treat tin
• glaze bucket
• hair tie holder
• bead organizer
• scale pan
• hammock

frame
• bulletin board
• incense tray
• book safe
• picture rail

• mantle clock
case

• snow globe
• football blad-

der
• card holder
• protein con-

tainer
• chess board
• animal trap
• trailer
• mannequin
• candy mold
• pet water foun-

tain
• vendor cart
• film reel
• stamp album
• first-adi kit
• toboggan
• ice cream

maker
• hand towel rail
• flower sac
• toothbrush

holder
• control pannel
• scout cabin
• preserving jar
• guitar case
• sunhat box
• noodle bowl
• wristlet
• salt grinder
• cake pop stand
• wine testing

glass
• gas lamp
• billiard table

Figure 15. List of 100 unseen objects used for evaluation. These
objects, which are distinct from the 3000 training objects, are de-
tailed here for reproducibility.

(Sec.4).

B. List of Full state prompts
In this section, we provide the full state prompts in Table
16 used for ablation study on performance on non-empty
object states. These prompts were inspected manually to
ensure there was no empty state reference.

C. Comparison of Training Samples
In this section, we provide a visual and qualitative com-
parison of training samples extracted from three different
data sources: our synthetic dataset, COCO [13], and Vi-
dOSC [32]. Our synthetic dataset is specifically gener-
ated to capture object empty states with clear and consis-
tent imagery. In contrast, the COCO dataset often fails to
clearly represent object absence: frequently, the described
object is not the focal point, while the VidOSC dataset, de-
rived from video frames, suffers from motion blur and in-
consistent viewpoints. These limitations in real-world data
help explain why models fine-tuned on our synthetic dataset
perform significantly better in generating accurate object
states.

D. Hyperparameters for LoRA in finetuning
We outline the hyperparameters used for LoRA during fine-
tuning of the family of Stable Diffusion models [24], Flux.1
DEV [11] and OmniGen [31] in table 11.

Table 11. Hyperparameters used for fine-tuning with LoRA.

Hyperparameter SD family [24] Flux.1 DEV [11] OmniGen [31]

LoRA Rank 4 16 16
Resolution 512 512 512
Center Crop True True False
Random Flip True False False
Mixed Precision fp16 bf16 bf16
Allow TF32 True False -
Training Batch Size 32 8 8
Gradient Accumulation Steps 1 1 1
Gradient Checkpointing True True -
Learning Rate 1e-04 1e-04 1e-04
Max Gradient Norm 1 1 -

E. Additional Qualitative Examples of Object
State Failures

In this appendix, we provide further qualitative results
that illustrate additional failure cases of closed-source text-
to-image generation models when handling object state
prompts. These examples reinforce our observations and
emphasize the need for improved model training and data
recaptioning.

F. Impact of Tuning Steps on Accuracy
In this section, we analyze how varying the number of fine
tuning steps affects accuracy on the GenAI-Object-State
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1. A full bottle of water is placed on the
table.

2. The cup is filled to the brim with hot
coffee.

3. The plate is loaded with a delicious
meal.

4. The bowl is full of fresh fruit.
5. The glass is filled with orange juice.
6. The jar is packed with homemade jam.
7. The container is filled with rice.
8. The box is stuffed with chocolates.
9. The bag is filled with groceries.

10. The wallet is thick with cash.
11. The suitcase is packed with clothes for

the trip.
12. The backpack is filled with school sup-

plies.
13. The envelope is stuffed with important

documents.
14. The fuel tank is completely full, ready

for a long drive.
15. The trash can is overflowing with

garbage.
16. The sink is full of dirty dishes.
17. The bathtub is filled with warm, soapy

water.
18. The fridge is stocked with fresh food.
19. The freezer is packed with frozen

meals.
20. The oven is full of baking cookies.
21. The pan is filled with sizzling vegeta-

bles.
22. The pot is bubbling with hot soup.
23. The dish rack is full of clean plates.
24. The storage box is packed with winter

clothes.
25. The wardrobe is filled with dresses and

suits.
26. The bookshelf is packed with novels

and textbooks.
27. The laundry basket is full of dirty

clothes.
28. The washing machine is loaded with

clothes.
29. The dryer is tumbling a full load of

laundry.
30. The pencil case is filled with pens and

markers.
31. The toolbox is stocked with hammers

and screwdrivers.
32. The drawer is stuffed with office sup-

plies.
33. The file cabinet is filled with paper-

work.
34. The purse is heavy with personal

items.

35. The shopping cart is loaded with gro-
ceries.

36. The refrigerator drawer is filled with
fresh vegetables.

37. The spice rack is stocked with herbs
and spices.

38. The medicine cabinet is filled with bot-
tles of pills.

39. The candy jar is brimming with
sweets.

40. The flower vase is full of fresh roses.
41. The aquarium is teeming with colorful

fish.
42. The tea kettle is filled with boiling wa-

ter.
43. The thermos is full of hot coffee.
44. The lunchbox is packed with sand-

wiches and snacks.
45. The picnic basket is overflowing with

food and drinks.
46. The trash bag is full and needs to be

taken out.
47. The egg carton is completely full.
48. The gas cylinder is filled with propane.
49. The rain barrel is full after the storm.
50. The bathtub is overflowing with bub-

bles.
51. The hard drive is full of stored files.
52. The email inbox is filled with unread

messages.
53. The car trunk is packed with luggage.
54. The bread basket is full of warm rolls.
55. The coffee pot is filled with fresh-

brewed coffee.
56. The pet food bowl is full for dinner

time.
57. The ice cube tray is full and ready to

freeze.
58. The cup holder is filled with soda cans.
59. The suitcase pocket is stuffed with

travel essentials.
60. The fishing net is full of fresh catch.
61. The raincoat pockets are filled with

small items.
62. The coin purse is full of loose change.
63. The fruit basket is overflowing with

apples and bananas.
64. The measuring cup is filled with flour.
65. The battery pack is fully charged.
66. The balloon is filled with helium.
67. The notepad is full of handwritten

notes.
68. The chalkboard is covered with writ-

ing.
69. The gift bag is stuffed with presents.
70. The music playlist is full of favorite

songs.
71. The wine cellar is stocked with vintage

bottles.
72. The parking lot is completely full.
73. The stadium is packed with cheering

fans.
74. The toy chest is overflowing with

stuffed animals.
75. The makeup bag is full of beauty prod-

ucts.
76. The tool shed is stocked with garden-

ing equipment.
77. The bakery display case is filled with

fresh pastries.
78. The cookie jar is full of chocolate chip

cookies.
79. The seed packet is full of flower seeds.
80. The pet carrier is filled with cozy blan-

kets.
81. The luggage rack is stacked with heavy

suitcases.
82. The fishing bucket is full of water and

fish.
83. The scrapbook is filled with memories.
84. The classroom board is covered with

notes.
85. The violin case is packed with acces-

sories.
86. The music stand is filled with sheet

music.
87. The bike basket is loaded with fresh

groceries.
88. The file folder is stuffed with reports.
89. The bread bin is stocked with fresh

loaves.
90. The lemonade pitcher is full and ready

to serve.
91. The attic is packed with old furniture

and boxes.
92. The beach bag is full of towels and

sunscreen.
93. The hospital bed is occupied with a pa-

tient.
94. The rain boot is filled with water after

the storm.
95. The marshmallow jar is overflowing

with sweets.
96. The milk carton is completely full.
97. The Christmas stocking is filled with

gifts.
98. The dog’s food bowl is filled with kib-

ble.
99. The holiday suitcase is packed with va-

cation clothes.
100. The bus is completely full of passen-

gers.

Figure 16. List of 100 full state prompts used for ablation study.
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A storage box without 
any contents inside.
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A book rack without any 
books on it.

A bench without any 
cushions.

A man enjoys cooking 
food in a pan without any 

visible stove or oven.

An empty street 
without any 
motorcycles.

A woman walks her dog on a 
city sidewalk without any 

traffic cones or orange cones 
in sight.

A rolling pin without 
any pasta dough on it

A bowl without any 
mashed butter on it

A cutting board without 
any bacon on it

Figure 17. Training Sample Comparison from Different Data
Sources: The top row shows samples from our synthetic dataset,
the middle row displays samples from COCO [13], and the bottom
row presents samples from VidOSC [32]. Our synthetic dataset
clearly captures object empty states with focused and consistent
imagery. In contrast, COCO samples often fail to clearly depict
the absence of an object, with the described object not being the
focal point, while VidOSC samples suffer from motion blur and
inconsistent viewpoints. These factors contribute to the superior
performance of our synthetic dataset.

benchmark. Table 12 summarizes GPT scores for each
model at 200, 400, and 800 tuning steps. For Stable Dif-
fusion 1.5, the score rises from 20% at 200 steps to 21%
at 400 steps, then falls to 18% at 800 steps. Stable Diffu-
sion 2.1 improves from 18% to 23% between 200 and 400
steps, before a slight drop to 22% at 800. SDXL shows a
steadier increase, moving from 23% at 200 steps to 24% at
800. These trends suggest that around 400 tuning steps offer
the best balance between semantic alignment and stability.
Based on validation on a 50-sample set, we adopt 400 steps
for all subsequent experiments.

Model 200 Steps 400 Steps 800 Steps

Stable Diffusion 1.5 20% 21% 18%
Stable Diffusion 2.1 18% 23% 22%
SDXL 23% 23% 24%

Table 12. GPT evaluation scores (in percentage) for different tun-
ing steps on the GenAI-Object-State benchmark.
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A bookshelf with no 
book on it

A desert with no cacti

Gen-2
(Runway)

Imagen-3 
(Gemini)

DALL-E-3
(Chatgpt)

Firefly
(Adobe)

Leonardo.AI

A table withoout any 
bottle on it

A bed with no pillows 
or blankets

A fireplace with no 
fire

A pool with no water

A vase with water, but 
no flowers to nourish

A night sky without 
any stars

A library shelf with no 
ancient books 

displayed

A boy looks at an 
aquarium with no 

fish

A fruit bowl with no 
fruit inside

Figure 18. Additional qualitative examples of object state failures in advanced text-to-image generation models. For example, the figure
shows a bed without pillows or blankets, a fireplace with no fire, a pool with no water, a vase filled with water but missing flowers, a night
sky devoid of stars, a library shelf lacking ancient books, an aquarium without fish, and a fruit bowl with no fruit. These deficiencies are
observed in outputs from models such as Runway-Gen-3, Imagen-3 (Gemini), DALL-E-3 (ChatGPT), Firefly (Adobe), and Leonardo.AI.
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