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Figure 1. Current text-to-image models struggle to depict common objects in varied physical states, inaccurately include unintended
objects or fail to depict the requested empty or absence state (e.g., prompting for “A kitchen counter without any food” still results in a
kitchen count full of food). Our method addresses these issues and yields accurate object state representation.

Abstract

Current text-to-image generative models struggle to accu-001
rately represent object states (e.g., “a table without a bot-002
tle,” “an empty tumbler”). In this work, we first design a003
fully-automatic pipeline to generate high-quality synthetic004
data that accurately captures objects in varied states. Next,005
we fine-tune several open-source text-to-image models on006
this synthetic data. We evaluate the performance of the fine-007
tuned models by quantifying the alignment of the generated008

images to their prompts using GPT, and achieve an average 009
absolute improvement of 8+% across four models on the 010
public GenAI-Bench dataset. We also curate a collection 011
of 100 prompts with a specific focus on common objects in 012
various physical states. We demonstrate a significant im- 013
provement of an average of 27+% over the baseline on this 014
dataset. We will release all evaluation prompts and code 015
soon. 016
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1. Introduction017

Recent advances in text-to-image generation [2, 4, 6, 7, 10,018
18, 19, 22, 25, 26, 28] have significantly improved the vi-019
sual quality and correctness of the generated images and020
unlocked incredible potential for human creative expres-021
sion. Despite these significant improvements, as illustrated022
in Fig. 2, existing generative and visual language models023
still face challenges in accurately capturing spatial rela-024
tionships [23] and simple real-world physical states such025
as presence, absence, empty, full [17], and so on. De-026
spite being trained on billions of images, recent studies [30]027
and examples in Fig. 2 suggest that the generative systems028
are latching onto the intended and unintended co-occurring029
contexts represented in the training data and lack a funda-030
mental understanding of object states.031

Let us consider the example of a kitchen shelf. A sim-032
ple web search indicates that a significant portion of images033
of a kitchen shelf are typically shelves filled with a vari-034
ety of objects. We posit that this may inadvertently induce035
contextual bias into both generative and vision language036
models trained on such data, leading to text-to-image sys-037
tems mostly generating a kitchen shelf in a “full” or “occu-038
pied” state. This scenario is further exacerbated given that039
captions generated on training data usually capture objects040
present in the image and not the ones absent in it. Recent041
studies [1, 24] have shown evidence that CLIP [21], the de-042
facto text encoder in most generative image models, strug-043
gles to understand negation. How then should we impart044
the concept of absence of an object (e.g., a table without a045
vase) or negation of a physical state (e.g., an empty bottle)046
to the text to image generative system?047

We tackle this issue in our work. Our key idea is to sup-048
ply a text to image model with more evidence of a variety049
of objects in diverse physical states during training so that050
the model implicitly learns what absence or negation of an051
object should visually look like. We do this by first de-052
signing an automated pipeline to generate high-quality syn-053
thetic data that explicitly captures daily objects in varied,054
naturally feasible object states. The data generation pipeline055
(Fig. 3) comprises a step involving generating template-like056
prompts describing common objects in different physical057
states. Next, we use an off-the-shelf text to image model to058
generate synthetic images and subsequently filter out those059
not representative of objects in absent or empty states using060
a vision language model. We then finetune publicly avail-061
able text to image models on this diverse generated data.062

Our experiments indicate that finetuning on this curated063
synthetic dataset enriches a model’s understanding of ob-064
jects and their various physical states. Furthermore, we065
probe if finetuning leads to a more holistic understanding066
of objects in diverse physical states or mere memorization.067
To this end, we test the model on prompts comprising ob-068
jects not part of the finetuning data. Across the four models069

we evaluate, we observe an average improvement of at least 070
5.6% on novel, unseen objects, indicating that finetuning 071
led to a better, more generalizable latent space. Qualitative 072
comparisons (Fig. 1) further illustrate these improvements. 073
Beyond enhancing the overall capability of generating ob- 074
jects in diverse states, we also examine the impact of fine- 075
tuning on visual quality. Our analysis shows that both the 076
CLIP score and the FID remain at similar levels after fine- 077
tuning, with the FID showing no significant change, con- 078
firming that our synthetic data does not introduce undesir- 079
able visual artifacts. We also show that finetuning on high 080
quality synthetic data does not degenerate performance on 081
other prompts not related to object states. We summarize 082
our key contributions below: 083
• We propose a fully-automatic synthetic data genera- 084

tion pipeline to systematically create high-quality train- 085
ing data that explicitly targets objects in empty, negation, 086
and absent states (Sec.3). 087

• We fine-tune four open-source text-to-image generative 088
models on this synthetic data and evaluate the generations 089
on the publicly available GenAI-Bench dataset [11]. We 090
show that the finetuned models yield an improvement of 091
averaging 8+% across the four models we experimented 092
with, as measured by quantifying the alignment of the 093
generated images to their prompts (Sec.4). 094

• We introduce a novel prompt collection, Object State 095
Bench, specifically designed to evaluate models in com- 096
plex physical states. All finetuned models yield an over- 097
all improvement of an average of 27+% over their un- 098
tuned baselines on this benchmark. This strong result un- 099
derscores the substantial potential of our synthetic data 100
pipeline in addressing the critical limitation of capturing 101
object states in text-to-image generation. We will make 102
Object State Bench publicly available very soon. 103

2. Related Work 104

Iterative Correction and Guidance Techniques: Recent 105
studies have addressed shortcomings in text-to-image syn- 106
thesis by incorporating iterative correction mechanisms. 107
For example, Wu et al. [27] propose a Self-correcting LLM- 108
controlled Diffusion framework that leverages large lan- 109
guage models to iteratively refine generated images through 110
latent space operations such as addition, deletion, and repo- 111
sitioning. Similarly, Liu et al. [14] introduces a particle fil- 112
tering framework that uses external guidance, such as object 113
detectors and real images, to mitigate errors such as miss- 114
ing objects and image distortions. Although these meth- 115
ods improve image fidelity, they typically require additional 116
inference-time computations and complex feedback loops. 117
Synthetic Data Generation: Complementary to iterative 118
correction methods, synthetic data generation has emerged 119
as a promising strategy to overcome limitations in training 120
datasets. Recent work [15] demonstrates that synthetic data 121
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Figure 2. Several state-of-the-art closed-source text-to-image generation models struggle to generate objects in absent or negation
state. This illustrates the limitations of current advanced generative systems in accurately representing object in simple and common
physical states.

produced via diffusion models can enhance model robust-122
ness and generalization. Our method builds on this idea by123
adding a fully automatic pipeline that creates high-quality124
synthetic image-prompt pairs. These pairs clearly show dif-125
ferent object states that aren’t always shown in real-world126
data. Distinct from methods relying on iterative correc-127
tion or resampling during inference, our pipeline directly128
enhances the training process. We fine-tune open-source129
text-to-image models on our synthetically generated data,130
thereby improving the semantic alignment between gen-131
erated images and their textual descriptions. This data-132
centric framework not only simplifies the overall genera-133
tion pipeline but also offers an extensible solution to address134
critical semantic limitations in text-to-image synthesis.135

3. Approach136

To address the gap in accurately generating objects in com-137
mon physical states using text-to-image models, we pro-138
pose a fully automatic synthetic data generation pipeline.139
As illustrated in Fig. 3, we first identify a diverse set of140
real-world objects and compose prompts referring to those141
objects in different physical states. Next, we generate im-142
ages corresponding to those prompts using an off-the-shelf143
text to image generative model. Following this, we lever-144
age Large Language Models (LLMs) to refine prompts and145
introduce diversity in their syntax. We also use a Large146
Vision-Language Model (LVLMs) for visual verification of147
the object state representation, to reduce noise in the gener-148
ated data. We describe each step in detail next.149

Noun identification, prompt, and image generation:150
First, we use a large language model and curate a wide151

List of prompts: 
• An empty table 
• an empty bottle
• an empty bookshelf
• etc… 

An empty bookshelf. An empty table. 

Synthetic Dataset

A bookshelf 
without any book.

A table without 
any bottle. 

Filtering

Image 
Generation

Recaptioning

Figure 3. Overview of the proposed synthetic data generation
pipeline: We generate prompts describing common objects in dif-
ferent physical states. We next create images from the prompts,
evaluate for the correct representation of the object state using
GPT4o-mini [9]. We rephrase prompts to introduce diversity in
the sentence structures, length, and objects specified.

range of real-world objects such as containers, tables, 152
shelves, rooms, and drawers, that can be depicted in empty, 153
full, and absent states. We next use a vision language model 154
to compose simple prompts around these objects that ex- 155
plicitly describe empty states (e.g., “an empty table”). We 156
note that in our work, we focus only on curating prompts 157
and images that represent only empty object states as they 158
are more commonly underrepresented in most datasets. 159

Image Synthesis and Filtering: Next, we utilize an off- 160
the-shelf text-to-image generation model to produce multi- 161
ple candidate images per prompt using random seeds to en- 162
sure sufficient content diversity. Given that existing models 163
struggle to generate images that represent object states cor- 164
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Prompt for filtering generated images not represent-
ing absence or empty state of an object:

“You are an assistant that evaluates whether an image
correctly represents the ‘empty state’ of an object as de-
scribed in the caption. Specifically, check if the main
object appears empty or unoccupied and confirm that
the described absent object is not present in the image.
Does the image accurately reflect both conditions? Re-
turn ‘Yes’ or ‘No’.”

Figure 4. System prompt used on the generated images for filter-
ing out images not aligning with the provided prompt.

rectly, we pass each generation through a vision language165
model, and use visual-question-answering prompts to fil-166
ter out generations that do not capture the object states cor-167
rectly168

Recaptioning: Finally, we use a large language model169
to introduce more diversity into the template-like initial170
prompt syntax. For example, the initial prompt “an empty171
table” could be refined to “a table without any bottle or172
book,” increasing the complexity and clarity of the gener-173
ated prompts. Our full pipeline is depicted in Fig. 3.174

We finetune several open-sourced models on this syn-175
thetically generated image data, which we describe next.176

4. Experiments177

This section briefs about the datasets and evaluation met-178
rics, baseline models, followed by fine-tuning. We also179
study the effect of different design choices we make in our180
overall approach.181

4.1. Implementation Details182

Synthetic data generation: The synthetic data pipeline183
has multiple modules involved to ensure high quality184
training dataset and uses GPT-4o-mini [9] in every step.185
Specifically, we use GPT-4o–mini to generate about 3000186
different common objects and template-style prompts187
capturing these objects in empty or absent states. Next,188
we employ few-shot prompting technique [3] which has189
evidence to show better performance aligning with the190
prompted task in large language models. For generating191
the synthetic images, we use Stable Diffusion 1.5 [22] for192
30 inference steps with a CFG scale of 5.0. We choose a193
slightly lower CFG value than the default to ensure more194
diversity in the synthetic training data while adhering to195
the actual input prompt. We again use GPT 4o-mini [9] to196
filter out images which incorrectly capture object states as197
mentioned in 3 and to rephrase the template-like prompts198
9. This process resulted in 7600 synthetic image-text pairs.199
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Figure 5. Qualitative comparison of object state improvement
for Stable Diffusion-1.5: (top) row shows the Stable Diffusion-
1.5 baseline model, while the (bottom) row displays fine-tuned
with our synthetic data pipeline, yielding more precise object state
representation.
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Figure 6. Qualitative comparison of object state improvement
for Stable Diffusion-2.1: (top) row shows the Stable Diffusion-
2.1 baseline model, while the (bottom) row displays fine-tuned
with our synthetic data pipeline, yielding more precise object state
representation.

Evaluation benchmarks: There exist very few public 201
datasets that specifically focus on evaluating models on 202
prompts capturing objects in varied physical states. The re- 203
cently introduced GenAI-Bench [11], and the subset of 347 204
prompts belonging to the “negation” category is the clos- 205
est to the scenario we study in this work. A sample prompt 206
from this set is: “the girl with glasses is drawing, and the 207
girl without glasses is singing.” Here the prompt challenges 208
the model to generate both presence and absence of the 209
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Figure 7. Qualitative comparison of object state improvement
for SDXL: (top) row shows the SDXL baseline model, while the
(bottom) row displays fine-tuned with our synthetic data pipeline,
yielding more precise object state representation.F
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Figure 8. Qualitative comparison of object state improvement
for Flux Dev: (top) row shows the Flux Dev baseline model,
while the (bottom) row displays fine-tuned with our synthetic data
pipeline, yielding more precise object state representation.

same object (glasses) but on different people. However, the210
negation category also has prompts that test absence of at-211
tributes (instead of objects), e.g., “a person with short hair212
is crying while a person with long hair is not.” Thus, we213
manually go through these prompts and retain only those214
that are more aligned to our task, resulting in 214 prompts.215
We call this subset as GenAI-Object-State dataset.216

Additionally, we manually curate a set of 100 prompts,217
titled Object-state-Bench. This benchmark consists of two218
parts: one-half of the prompts are generated using the syn-219
thetic prompt generation pipeline and the other half is cu-220
rated by human annotators tasked with describing common221
objects around them in empty or absent states. This design222

Prompt for recaptioning into passive voive prompts:

“The original prompt for the image is:
‘{original prompt}’. Please refine the prompt by
specifying an absent object if it is not already men-
tioned, but avoid redundant descriptions of emptiness.
Ensure the refined prompt naturally integrates the
missing object without repeating words like ‘empty’ or
‘vacant’. For example: ‘An empty table.’ → ‘A table
without any bottles on it.’, ’A deserted park.’ → ‘A park
without any people.’ If the original prompt is already
sufficiently detailed, return it as is.”

Figure 9. System Recaptioning Prompt: This figure shows the
system prompt that transforms template-like prompts into passive
voice. The examples instruct the model to enhance the prompt
by adding a missing object and avoiding redundant emptiness de-
scriptors.

Prompt for evaluating generated images on repre-
senting absence or empty state of an object:

“You are an assistant that evaluates whether an im-
age correctly represents the ‘empty state’ of an ob-
ject as described in the caption. The caption is:
{original prompt}. Specifically, check if the main object
appears empty or unoccupied and confirm that the de-
scribed absent object is not present in the image. Does
the image accurately reflect both conditions? Return
‘yes’ or ‘no’.”

Figure 10. System Prompt for Evaluation: This figure presents
the prompt used to assess whether a generated image accurately
represents the absence or empty state of an object as described in
the caption.

incorporates both machine-generated and human-authored 223
descriptions, ensuring diversity and realistic linguistic vari- 224
ability for a robust evaluation of model performance. 225

Evaluation metrics: We quantify our model performance 226
using the Visual Question Answering score (VQA-score) 227
introduced by Lin et al. [13]. The metric utilizes a fine- 228
tuned version of the Google’s FLAN-T5-XXL model [5] 229
with contrastive language-image pre-training [21]. We use 230
the default prompt given by the authors: “Does this figure 231
show “prompt”? Please answer yes or no.” Additionally, 232
we also use OpenAI’s GPT-4o-mini model [9] for evalu- 233
ation, where we query with an evaluation prompt specified 234
in Fig. 10 and the generated image. The model returns a yes 235
or no based on whether the object state has been correctly 236
depicted. 237
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Method GenAI-Object-State Object State Bench

GPT (↑) VQA (↑) GPT (↑) VQA (↑)

Stable Diffusion 1.5 [22] 16% 45% 49% 56%
Stable Diffusion 2.1 [22] 16% 47% 44% 53%
SDXL [16, 20] 15% 47% 39% 52%
Flux DEV [10] 11% 39% 27% 41%

Stable Diffusion 1.5 + Ours 21% 46% 69% 57%
Stable Diffusion 2.1 + Ours 23% 49% 68% 66%
SDXL + Ours 23% 52% 66% 67%
Flux Dev + Ours 22% 50% 65% 64%

Table 1. Baseline vs finetuned results on different models: GPT (↑)
stands for GPT [9] correct rate and VQA (↑) stands for VQA-Score [13]
(higher is better). The cyan colored rows represent the performance of
fine-tuned models’ with SD 1.5 [22] as synthetic data generator. The high-
lighted numbers indicate the highest performance for the corresponding
dataset and metric.

4.2. Finetuning setup238

Implementation Details: We finetune Stable diffusion 1.5,239
2.1 [22], SDXL [16, 20], and Flux.1 Dev [10] on the pro-240
posed framework. For the Stable Diffusion family of mod-241
els, we use a guidance scale of 7.5, which is their default242
value and for Flux DEV [10], we use a guidance scale of243
3.5. Stable Diffusion 1.5 generates 512 × 512 dimensional244
output image while all other models generate 768×768 res-245
olution. We infer Flux DEV version [10] with 50 inference246
timesteps as recommended in their documentation. For all247
other models, the number of inference time steps is 30.248

We also ensure that the same seed of 1303 (chosen ar-249
bitrarily) is used across all the prompts of the dataset for250
a given run for all the models during baseline testing. We251
finetune all models using Low Rank Adapters (LoRA) [8].252
The hyperparameters of LoRA are detailed in Appendix.253

4.3. Overall performance improvements254

In Table 1, we report the GPT evaluation score and VQA255
scores of models before and after finetuning. As shown in256
Table 1, our approach yields significant gains in semantic257
alignment, as measured by GPT evaluation scores. For in-258
stance, fine-tuning the Stable Diffusion 1.5 model with our259
synthetic dataset boosts its GPT score on the GenAI-object-260
state dataset from 15.6% to 21.0% (an improvement of 5.4261
percentage points), and improves its performance on Ob-262
ject State Bench from 49% to 69%, a gain of 20 percent-263
age points. Similarly, Stable Diffusion 2.1 improves from264
16.0% to 23.0% (+7.0 percentage points) on GenAI-object-265
state and from 44% to 68% (+24 percentage points) on266
Object State Bench, while SDXL advances from 15.0% to267
23.0% (+8.0 percentage points) on GenAI-object-state and268
from 39% to 66% (+27 percentage points) on Object State269
Bench respectively. Also, the Flux.1 DEV model shows270
an improvement of 11 percentage points from 11% to 22%271
on the GenAI-Object-State and a 38 percentage points im-272
provement from 27% to 65% on the Object-State-Bench.273

These consistent improvements across all models demon- 274
strates generalizability of the proposed data synthesis and 275
finetuning strategy. 276

Furthermore, qualitative comparisons ( Fig. 5, 6, 7, and 277
8) visually illustrate the enhanced semantic alignment in the 278
generated images after fine-tuning on samples from both the 279
GenAI-object-state and Object State Bench datasets. 280

While our fine-tuning strategy generally improves the 281
visual representation of object states, qualitative analysis 282
reveals several different failure modes, as illustrated in 283
Fig. 11. In Fig. 11a, the tuned model improves significantly 284
by approaching the correct empty state. However, the repre- 285
sentation remains imperfect, indicating that the model con- 286
verges toward the intended state without fully capturing all 287
semantic details. In contrast, Figure 11b shows instances 288
where the tuning process overemphasizes emptiness, re- 289
sulting in an overrepresentation of the empty state, which, 290
causes the object itself to be imperfectly represented. These 291
observations highlight the delicate balance required in fine- 292
tuning: while reinforcing the concept of emptiness is bene- 293
ficial, overemphasis can degrade the precise representation 294
of the object. 295

4.4. Effect of the synthetic data generator 296

Table 2 reports the performance of three tuned generative 297
models when fine-tuned with synthetic data generated by 298
different models. We evaluate performance on the GenAI- 299
Object-State and Object State Bench using the GPT score. 300
For each tuned generative model, the choice of synthetic 301
data generator affects the results. For instance, when tun- 302
ing Stable Diffusion 1.5 [22], using SDXL [16, 20] as the 303
synthetic generator boosts the GenAI-Object-State score to 304
24% compared to 21% when using either Stable Diffusion 305
1.5 or 2.1, although the best Object State Bench perfor- 306
mance (69%) is achieved when using SD 1.5 or 2.1. Simi- 307
larly, when tuning SDXL, synthetic data generated by Sta- 308
ble Diffusion 1.5 leads to a GenAI score of 23% and an Ob- 309
ject State Bench score of 66%, slightly outperforming data 310
generated by the other models. In the case of Stable Diffu- 311
sion 2.1, using synthetic data from Stable Diffusion 1.5 or 312
SDXL results in comparable performance (23% on GenAI 313
and 68% on Object State Bench), with data from Stable Dif- 314
fusion 2.1 trailing slightly on the Object State Bench (65%). 315

These findings indicate that our synthetic data genera- 316
tion pipeline is robust and effective across different under- 317
lying generative models, as the overall performance dif- 318
ferences remain relatively small. The results also reveal a 319
trade-off between the evaluation benchmark, an improve- 320
ment in the GenAI-Object-State Bench may sometimes co- 321
incide with a slight drop in the performance of the Object 322
State Bench, suggesting that different synthetic data gener- 323
ators may emphasize different aspects of object state repre- 324
sentation. Nevertheless, regardless of the specific synthetic 325
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Tuned Generative
Model

Synthetic Data
Generator

GenAI-Object
State

Object State
Bench

Stable Diffusion 1.5[22]
Stable Diffusion 1.5[22] 21% 69%

SDXL[16, 20] 24% 67%
Stable Diffusion 2.1[22] 21% 69%

SDXL[16, 20]
Stable Diffusion 1.5[22] 23% 66%

SDXL[16, 20] 20% 65%
Stable Diffusion 2.1[22] 22% 67%

Stable Diffusion 2.1[22]
Stable Diffusion 1.5[22] 23% 68%

SDXL[16, 20] 23% 68%
Stable Diffusion 2.1[22] 22% 65%

Table 2. Performance Comparison: This table compares the per-
formance of different synthetic data generators when used to fine-
tune generative models on two benchmarks: GenAI-Object-State
and Object State Bench. Results are reported as GPT evaluation
scores (higher is better), with bold values indicating the best per-
formance in each configuration.

data generator used, all tuned models show substantial im-326
provements over baseline performance. This result confirms327
that our pipeline is robust and, consistently enhances model328
performance across various model architectures.329

4.5. Performance on unseen object states330

Our overarching goal is to teach the model the concept of331
emptiness or absence of an object. To this end, we study332
whether the model’s understanding of object states learned333
during training generalizes to novel, unseen objects. We334
first identify 100 novel objects that are not part of the 3000335
objects used for training. Furthermore, we manually inspect336
the list of objects and filter out if the new object is similar337
to the training objects (see Appendix A for the complete list338
of objects). Using our data generation pipeline described in339
Sec. 3, we generated images for these objects.340

The results, reported in Table 3 (Column 2), show an im-341
provement in the GPT score from 13.0 to 20.0 (+7 percent-342
age points). Such significant improvements on unseen ob-343
jects indicates that finetuning on synthetic data of objects in344
absent and negation states is leading to a more comprehen-345
sive understanding of physical states even on novel, unseen346
objects.

Model

Objects in
non-empty states

Unseen
objects

GPT (↑) VQA (↑) GPT (↑) VQA (↑)

Stable Diffusion 1.5 [22] 40% 68% 13% 44%
Stable Diffusion 1.5 [22] + Ours 39% 69% 20% 50%

Table 3. Evaluating Generalizability: This table compares the
performance of the baseline Stable Diffusion 1.5 with our fine-
tuned variant on two evaluation sets: objects in non-empty states
and unseen objects. GPT and VQA scores (higher is better) are
reported for each category, with bold values indicating the best
performance.
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(b) Tuned model overrepresents the empty state, shifting the object depiction.

Figure 11. Qualitative Tuning Effects: Figure (a) shows cases
where tuning improves the depiction of the object state (although
with some imperfections), while Figure (b) illustrates instances
where tuning overemphasizes emptiness, leading to a deviation
from an accurate object representation.

4.6. Performance on non-empty object states 348

Given our finetuning data consists of objects in empty or ab- 349
sent states, we study the performance on prompts describ- 350
ing objects in full state (e.g., “a tumbler full of water”). We 351
provide these prompts in the suppl. material. We report the 352
results in Table 3 column 1. Our results indicate that there is 353
minimal difference in the performance of the models even 354
after fine-tuning. This experiment highlights that our ap- 355
proach does not lead to catastrophic forgetting of objects in 356
full states even though this is not explicitly represented in 357
the finetuning data. 358

4.7. Is synthetic data generation necessary? 359

To evaluate whether synthetic data is essential for improv- 360
ing text-to-image generation, we extract 12K training exam- 361
ples from both the COCO [12] dataset and a video dataset 362
(VidOSC [29]) that contain captions related to object states. 363
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Data Source GPT (↑) VQA (↑)

Stable Diffusion 1.5[22] (Baseline) 49% 56%
COCO[12] 46% 56%
VidOSC [29] 37% 46%
Stable Diffusion 1.5 + Synthetic Data (Ours) 69% 57%

Table 4. Data Source Performance Comparison: This table
compares the performance of models fine-tuned on various data
sources. Training on our synthetic dataset significantly boosts the
GPT score (from 49% to 69%) and provides a modest improve-
ment in VQA score over real-world datasets such as COCO [12]
and VidOSC [29].

For the real-world data, we filter the captions to retain only364
those whose associated prompts and images suggest a po-365
tential empty state, even if not explicitly described, as such366
samples are relatively scarce, as we discussed in the above367
sections. We then refine these captions, following the same368
process as our synthetic pipeline. The key difference be-369
tween the synthetic dataset and the real-world dataset is370
that, for each filtered prompt in the real-world datasets, we371
directly use the corresponding image. In contrast, because372
the synthetic pipeline lacks corresponding real images and373
is based on a limited set of original prompts, we generate374
each prompt with multiple random seeds and perform re-375
ception on each generation.376

Table 4 compares the performance of models fine-tuned377
on these different data sources. Despite training all mod-378
els on approximately 12K images for 400 steps, the syn-379
thetic dataset significantly outperforms the baseline. The380
modest gains from the real-world datasets suggest that, de-381
spite similar training set sizes, they contain relatively few382
high-quality samples that clearly represent object empty383
states. For a visual comparison of training samples across384
these datasets, please refer to the figure in the supplemen-385
tary material. In contrast, our synthetic dataset, specifically386
designed to capture varied object states, provides a much387
stronger fine-tuning signal, leading to a significant improve-388
ment in image-prompt alignment.

Generative Model FID (↓) CLIP-Score (↑)

Stable Diffusion 1.5 [22] 24.32 0.31
Stable Diffusion 1.5 [22] + Ours 25.74 0.32

Table 5. Effect of finetuning on synthetic data on visual quality:
Comparison of FID (lower is better) and CLIP-Score (higher is
better) for Stable Diffusion 1.5 on COCO val2014 dataset, 10K
randomly sampled subset.

389

4.8. Performance impact on prompts not related to390
object states391

To verify whether the proposed framework impacts perfor-392
mance on prompts unrelated to object states, we leverage393
GenAI-Bench [11] and sample 50 random prompts which394

are specifically outside the “negation” set. We test the per- 395
formance of both the base and finetuned Stable Diffusion 396
2.1 [22] models when the synthetic data is generated using 397
Stable Diffusion-1.5. Upon evaluating the generated images 398
on such randomly sampled prompts, we observe that the 399
base model has a GPT score of 10% while our fine-tuned 400
model has a performance of 16%(+6 percentage points). 401
This demonstrates that our approach improves a generative 402
model’s understanding of object states without deteriorating 403
performance on other non-object state related prompts. 404

4.9. Impact of recaptioning in the pipeline 405

One of the modules in the synthetic data pipeline is the 406
recaptioning segment, where we convert the template like 407
prompts to passive voice prompts. For example, a prompt 408
such as “An empty table.” can be recaptioned as “A table 409
without any bottles on it” (see Fig. 9), shifting from a di- 410
rect, template-like description to a more informal passive 411
construction. We evaluate the importance of this step by 412
finetuning Stable Diffusion 1.5 [22] and SDXL [16, 20] 413
with and without recaptioning the training data. We re- 414
port the results in Table. 6 and observe 3 and 2 percentage 415
point improvement in GPT and VQA scores respectively on 416
GenAI-Object-State. We also observe +9% GPT score and 417
+3% VQA score points in Object-State-Bench. These re- 418
sults show that recaptioning to make prompts less-template 419
like and more colloquial aligns them.

Model Recaptioning GenAI-Object-State Object State Bench

GPT (↑) VQA (↑) GPT (↑) VQA (↑)

Stable Diffusion 1.5 [22] No 17% 44% 60% 54%
Yes 21% 46% 69% 57%

Stable Diffusion 2.1 [16, 20] No 20% 48% 64% 64%
Yes 23% 49% 68% 66%

SDXL [16, 20] No 20% 52% 63% 66%
Yes 23% 52% 66% 67%

Table 6. Effect of Recaptioning on Model Performance: This table
presents a comparison of models fine-tuned with and without recaptioning.
The results show that incorporating recaptioning improves both GPT and
VQA scores on the GenAI-Object-State and Object State Bench, demon-
strating its effectiveness in enhancing semantic alignment.

420
5. Conclusion and Future Work 421

To improve the physical object state representation in 422
existing text to image generative systems, we propose a 423
fully automatic pipeline to generate high-quality synthetic 424
data and use it to finetune any text-to-image models. 425
We demonstrate that our approach improves the holistic 426
understanding of objects in diverse physical states via 427
two evaluation metrics GPT score and VQA score [13]. 428
Future work entails exploring if such a data generation 429
pipeline can be extended to other common failure models 430
of image and video generative systems (compositional 431
prompts, prompts involving generating text, generating 432
objects of accurate counts, etc.) and exploring solu- 433
tions with direct architectural tweaks to the model itself. 434
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Appendices562

A. List of Unseen Objects563

In this appendix, we provide the complete list of 100 novel564
objects used for evaluation. These objects were carefully565
selected and manually filtered to ensure they are distinct566
from the 3000 training objects. [The detailed list is pro-567
vided here.]568

• birdhouse
• meat locker
• medicine bottle
• print cartridge
• shipping con-

tainer
• fuel can
• bird’s nest
•
• fuel drum
• shopping cart
• squeeze bottle
• photobook
• paper towel

holder
• lipstick tube
• sunglasses rack
• jewelry roll
• wristwatch

case
• gadget case
• marionette the-

atre
• drill holder
• silicone mold
• speech bubble
• caviar tin
• crisper drawer
• resealable bag
• hawser reel
• luggage trunk
• coffee tin
• mason jar
• picnic hamper
• jewelry stand
• picture frame
• tackle pouch
• flower vase
• pool hall
• exam room

• motel room
• kitchen closet
• terracotta

planter
• patio chair
• operating the-

ater
• animal cage
• phone booth
• quilt bag
• dessert cup
• sitting room
• ring box
• sleeping bag
• flower vase

with no wa-
ter

• traveling case
• banana holder
• rooftop garden

bed
• pressure

cooker
• guitar rack
• sous vide con-

tainer
• cane basket
• treehouse
• planter
• charcoal holder
• dog treat tin
• glaze bucket
• hair tie holder
• bead organizer
• scale pan
• hammock

frame
• bulletin board
• incense tray
• book safe

• picture rail
• mantle clock

case
• snow globe
• football blad-

der
• card holder
• protein con-

tainer
• chess board
• animal trap
• trailer
• mannequin
• candy mold
• pet water foun-

tain
• vendor cart
• film reel
• stamp album
• first-adi kit
• toboggan
• ice cream

maker
• hand towel rail
• flower sac
• toothbrush

holder
• control pannel
• scout cabin
• preserving jar
• guitar case
• sunhat box
• noodle bowl
• wristlet
• salt grinder
• cake pop stand
• wine testing

glass
• gas lamp
• billiard table

Figure 12. List of 100 unseen objects used for evaluation. These
objects, which are distinct from the 3000 training objects, are de-
tailed here for reproducibility.

B. List of Full state prompts 569

In this section, we provide the full state prompts 13 used for 570
ablation study on performance on non-empty object states. 571
These prompts were inspected manually to ensure there was 572
no empty state reference. 573

C. Comparison of Training Samples 574

In this section, we provide a visual and qualitative com- 575
parison of training samples extracted from three different 576
data sources: our synthetic dataset, COCO [12], and Vi- 577
dOSC [29]. Our synthetic dataset is specifically gener- 578
ated to capture object empty states with clear and consis- 579
tent imagery. In contrast, the COCO dataset often fails to 580
clearly represent object absence: frequently, the described 581
object is not the focal point, while the VidOSC dataset, de- 582
rived from video frames, suffers from motion blur and in- 583
consistent viewpoints. These limitations in real-world data 584
help explain why models fine-tuned on our synthetic dataset 585
perform significantly better in generating accurate object 586
states. 587

D. Hyperparameters for LoRA in finetuning 588

We otuline the hyperparameters used for LoRA during fine- 589
tuning of the family of Stable Diffusion models [22] and 590
Flux.1 DEV [10] in table 7. 591

Table 7. Hyperparameters used for fine-tuning with LoRA.

Hyperparameter SD family [22] Flux.1 DEV [10]

LoRA Rank 4 16
Resolution 512 512
Center Crop True True
Random Flip True False
Mixed Precision fp16 bf16
Allow TF32 True False
Training Batch Size 32 8
Gradient Accumulation Steps 1 1
Gradient Checkpointing True True
Learning Rate 1e-04 1e-04
Max Gradient Norm 1 1

E. Additional Qualitative Examples of Object 592

State Failures 593

In this appendix, we provide further qualitative results 594
that illustrate additional failure cases of closed-source text- 595
to-image generation models when handling object state 596
prompts. These examples reinforce our observations and 597
emphasize the need for improved model training and data 598
recaptioning. 599

F. Impact of Tuning Steps on Accuracy 600

In this section, we analyze how varying the number of fine- 601
tuning steps affects generation accuracy, as measured by 602
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1. A full bottle of water is placed on the
table.

2. The cup is filled to the brim with hot
coffee.

3. The plate is loaded with a delicious
meal.

4. The bowl is full of fresh fruit.
5. The glass is filled with orange juice.
6. The jar is packed with homemade jam.
7. The container is filled with rice.
8. The box is stuffed with chocolates.
9. The bag is filled with groceries.

10. The wallet is thick with cash.
11. The suitcase is packed with clothes for

the trip.
12. The backpack is filled with school sup-

plies.
13. The envelope is stuffed with important

documents.
14. The fuel tank is completely full, ready

for a long drive.
15. The trash can is overflowing with

garbage.
16. The sink is full of dirty dishes.
17. The bathtub is filled with warm, soapy

water.
18. The fridge is stocked with fresh food.
19. The freezer is packed with frozen

meals.
20. The oven is full of baking cookies.
21. The pan is filled with sizzling vegeta-

bles.
22. The pot is bubbling with hot soup.
23. The dish rack is full of clean plates.
24. The storage box is packed with winter

clothes.
25. The wardrobe is filled with dresses and

suits.
26. The bookshelf is packed with novels

and textbooks.
27. The laundry basket is full of dirty

clothes.
28. The washing machine is loaded with

clothes.
29. The dryer is tumbling a full load of

laundry.
30. The pencil case is filled with pens and

markers.
31. The toolbox is stocked with hammers

and screwdrivers.
32. The drawer is stuffed with office sup-

plies.
33. The file cabinet is filled with paper-

work.
34. The purse is heavy with personal

items.

35. The shopping cart is loaded with gro-
ceries.

36. The refrigerator drawer is filled with
fresh vegetables.

37. The spice rack is stocked with herbs
and spices.

38. The medicine cabinet is filled with bot-
tles of pills.

39. The candy jar is brimming with
sweets.

40. The flower vase is full of fresh roses.
41. The aquarium is teeming with colorful

fish.
42. The tea kettle is filled with boiling wa-

ter.
43. The thermos is full of hot coffee.
44. The lunchbox is packed with sand-

wiches and snacks.
45. The picnic basket is overflowing with

food and drinks.
46. The trash bag is full and needs to be

taken out.
47. The egg carton is completely full.
48. The gas cylinder is filled with propane.
49. The rain barrel is full after the storm.
50. The bathtub is overflowing with bub-

bles.
51. The hard drive is full of stored files.
52. The email inbox is filled with unread

messages.
53. The car trunk is packed with luggage.
54. The bread basket is full of warm rolls.
55. The coffee pot is filled with fresh-

brewed coffee.
56. The pet food bowl is full for dinner

time.
57. The ice cube tray is full and ready to

freeze.
58. The cup holder is filled with soda cans.
59. The suitcase pocket is stuffed with

travel essentials.
60. The fishing net is full of fresh catch.
61. The raincoat pockets are filled with

small items.
62. The coin purse is full of loose change.
63. The fruit basket is overflowing with

apples and bananas.
64. The measuring cup is filled with flour.
65. The battery pack is fully charged.
66. The balloon is filled with helium.
67. The notepad is full of handwritten

notes.
68. The chalkboard is covered with writ-

ing.
69. The gift bag is stuffed with presents.
70. The music playlist is full of favorite

songs.
71. The wine cellar is stocked with vintage

bottles.
72. The parking lot is completely full.
73. The stadium is packed with cheering

fans.
74. The toy chest is overflowing with

stuffed animals.
75. The makeup bag is full of beauty prod-

ucts.
76. The tool shed is stocked with garden-

ing equipment.
77. The bakery display case is filled with

fresh pastries.
78. The cookie jar is full of chocolate chip

cookies.
79. The seed packet is full of flower seeds.
80. The pet carrier is filled with cozy blan-

kets.
81. The luggage rack is stacked with heavy

suitcases.
82. The fishing bucket is full of water and

fish.
83. The scrapbook is filled with memories.
84. The classroom board is covered with

notes.
85. The violin case is packed with acces-

sories.
86. The music stand is filled with sheet

music.
87. The bike basket is loaded with fresh

groceries.
88. The file folder is stuffed with reports.
89. The bread bin is stocked with fresh

loaves.
90. The lemonade pitcher is full and ready

to serve.
91. The attic is packed with old furniture

and boxes.
92. The beach bag is full of towels and

sunscreen.
93. The hospital bed is occupied with a pa-

tient.
94. The rain boot is filled with water after

the storm.
95. The marshmallow jar is overflowing

with sweets.
96. The milk carton is completely full.
97. The Christmas stocking is filled with

gifts.
98. The dog’s food bowl is filled with kib-

ble.
99. The holiday suitcase is packed with va-

cation clothes.
100. The bus is completely full of passen-

gers.

Figure 13. List of 100 full state prompts used for ablation study.
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A storage box without 
any contents inside.
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A book rack without any 
books on it.

A bench without any 
cushions.

A man enjoys cooking 
food in a pan without any 

visible stove or oven.

An empty street 
without any 
motorcycles.

A woman walks her dog on a 
city sidewalk without any 

traffic cones or orange cones 
in sight.

A rolling pin without 
any pasta dough on it

A bowl without any 
mashed butter on it

A cutting board without 
any bacon on it

Figure 14. Training Sample Comparison from Different Data
Sources: The top row shows samples from our synthetic dataset,
the middle row displays samples from COCO [12], and the bottom
row presents samples from VidOSC [29]. Our synthetic dataset
clearly captures object empty states with focused and consistent
imagery. In contrast, COCO samples often fail to clearly depict
the absence of an object, with the described object not being the
focal point, while VidOSC samples suffer from motion blur and
inconsistent viewpoints. These factors contribute to the superior
performance of our synthetic dataset.

the GPT score over GenAI-Object-State and Object-State-603
Bench. Table 8 summarizes the results of each model on the604
Object-State-Bench and GenAI-Object-State benchmarks.605

For the Object-State-Bench, all three models show606
steady improvements as the number of tuning steps in-607
creases. For example, Stable Diffusion 1.5 improves from608
67% at 200 steps to 70% at 800 steps, while SDXL im-609
proves from 65% to 70% within the same range. Stable610
Diffusion 2.1 maintains a consistent performance of 68%,611
regardless of tuning steps. These trends indicate that for612
benchmarks that require precise object state representation,613
additional tuning steps can consistently improve perfor-614
mance, though gains may stop at higher steps.615

In contrast, the results from the GenAI-Object-State616
benchmark show less monotonic behavior. The perfor-617
mance of Stable Diffusion 1.5 improves slightly from 20%618
at 200 steps to 21% at 400 steps, but then decreases to 18%619

at 800 steps. Stable Diffusion 2.1 shows a significant im- 620
provement from 18% to 23% between 200-400 steps, fol- 621
lowed by a small decrease to 22% at 800 steps. Meanwhile, 622
SDXL achieves a more stable progress, gradually increas- 623
ing from 23% at 200 steps to 24% at 800. These findings 624
suggest that, while additional tuning can improve perfor- 625
mance, there appears to be an optimal range of approxi- 626
mately 400 steps. Based on complementary evaluations of 627
another 50-sample validation set generated by our pipeline, 628
we discovered that 400 tuning steps provide the best bal- 629
ance of semantic accuracy and overall image quality. To 630
ensure consistency, all subsequent experiments reported in 631
this paper include 400 tuning steps. 632

Overall, our findings indicate that increasing the number 633
of tuning steps improves object state representation, par- 634
ticularly on the Object-State-Bench, whereas the GenAI- 635
Object-State results show a more nuanced relationship that 636
necessitates model-specific tuning for optimal performance. 637

Model Object-State-Bench GenAI-Object-State

200 Steps 400 Steps 800 Steps 200 Steps 400 Steps 800 Steps

Stable Diffusion 1.5 67% 69% 70% 20% 21% 18%
Stable Diffusion 2.1 68% 68% 68% 18% 23% 22%
SDXL 65% 66% 70% 23% 23% 24%

Table 8. GPT evaluation scores (in percentage) for different tuning
steps on GenAI-Object-State and Object-State-Bench.

13



CVPR
#61

CVPR
#61

CVPR 2025 Submission #61. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

A bed with no pillows 
or blankets

A fireplace with no 
fire

A pool with no water

A vase with water, but 
no flowers to nourish

A night sky without 
any stars

A library shelf with no 
ancient books 

displayed

A boy looks at an 
aquarium with no 

fish

A fruit bowl with no 
fruit inside

Runway-Gen-3
Imagen-3 
(Gemini)

DALL-E-3
(Chatgpt)

Firefly
(Adobe)

Leonardo.AI

Figure 15. Additional qualitative examples of object state failures in advanced text-to-image generation models. For example, the figure
shows a bed without pillows or blankets, a fireplace with no fire, a pool with no water, a vase filled with water but missing flowers, a night
sky devoid of stars, a library shelf lacking ancient books, an aquarium without fish, and a fruit bowl with no fruit. These deficiencies are
observed in outputs from models such as Runway-Gen-3, Imagen-3 (Gemini), DALL-E-3 (ChatGPT), Firefly (Adobe), and Leonardo.AI.
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