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ABSTRACT

A neural network regularizer (e.g., weight decay) boosts performance by explicitly
penalizing the complexity of a network. In this paper, we penalize inferior network
activations – feature embeddings – which in turn regularize the network’s weights
implicitly. We propose singular value maximization (SVMax) to learn a uniform
feature embedding. The SVMax regularizer integrates seamlessly with both su-
pervised and unsupervised learning. During training, our formulation mitigates
model collapse and enables larger learning rates. Thus, our formulation converges
in fewer epochs, which reduces the training computational cost. We evaluate the
SVMax regularizer using both retrieval and generative adversarial networks. We
leverage a synthetic mixture of Gaussians dataset to evaluate SVMax in an unsu-
pervised setting. For retrieval networks, SVMax achieves significant improvement
margins across various ranking losses.

1 INTRODUCTION

A neural network’s knowledge is embodied in both its weights and activations. This difference man-
ifests in how network pruning and knowledge distillation tackle the model compression problem.
While pruning literature Li et al. (2016); Luo et al. (2017); Yu et al. (2018) compresses models by
removing less significant weights, knowledge distillation Hinton et al. (2015) reduces computational
complexity by matching a cumbersome network’s last layer activations (logits). This perspective, of
weight-knowledge versus activation-knowledge, emphasizes how neural network literature is domi-
nated by explicit weight regularizers. In contrast, this paper leverages singular value decomposition
(SVD) to regularize a network through its last layer activations – its feature embedding.

Our formulation is inspired by principal component analysis (PCA). Given a set of points and their
covariance, PCA yields the set of orthogonal eigenvectors sorted by their eigenvalues. The principal
component (first eigenvector) is the axis with the highest variation (largest eigenvalue) as shown in
Figure 1c. The eigenvalues from PCA, and similarly the singular values from SVD, provide insights
about the embedding space structure. As such, by regularizing the singular values, we reshape the
feature embedding.

The main contribution of this paper is to leverage the singular value decomposition of a network’s
activations to regularize the embedding space. We achieve this objective through singular value
maximization (SVMax). The SVMax regularizer is oblivious to both the input-class (labels) and the
sampling strategy. Thus it promotes a uniform embedding space in both supervised and unsupervised
learning. Furthermore, we present a mathematical analysis of the mean singular value’s lower and
upper bounds. This analysis makes tuning the SVMax’s balancing-hyperparameter easier, when the
feature embedding is normalized to the unit circle.

The SVMax regularizer promotes a uniform embedding space. During training, SVMax speeds up
convergence by enabling large learning rates. The SVMax regularizer integrates seamlessly with
various ranking losses. We apply the SVMax regularizer to the last feature embedding layer, but the
same formulation can be applied to intermediate layers. The SVMax regularizer mitigates model
collapse in both retrieval networks and generative adversarial networks (GANs) Goodfellow et al.
(2014); Srivastava et al. (2017); Metz et al. (2017). Furthermore, the SVMax regularizer is useful
when training unsupervised feature embedding networks with a contrastive loss (e.g., CPC) Noroozi
et al. (2017); Oord et al. (2018); He et al. (2019); Tian et al. (2019).

In summary, we propose singular value maximization to regularize the feature embedding. In ad-
dition, we present a mathematical analysis of the mean singular value’s lower and upper bounds
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Figure 1: Feature embeddings scattered over the 2D unit circle. In (a), the features are polarized
across a single axis; the singular value of the principal (horizontal) axis is large while singular value
of the secondary (vertical) axis is small, respectively. In (b), the features are spread uniformly across
both dimensions; both singular values are comparably large. (c) depicts the PCA analysis of a toy
2D Gaussian dataset to demonstrate our intuition. The principal component (green) has the highest
eigenvalue, i.e., the axis with the highest variation, while the second component (red) has a smaller
eigenvalue. Maximizing all eigenvalues promotes data dispersion across all dimensions. In this
paper, we maximize the mean singular value to regularize the feature embedding and avoid a model
collapse.

to reduce hyperparameter tuning (Sec. 3). We quantitatively evaluate how the SVMax regularizer
significantly boosts the performance of ranking losses (Sec. 4.1). And we provide a qualitative
evaluation of using SVMax in the unsupervised learning setting via GAN training (Sec. 4.2).

2 RELATED WORK

Network weight regularizers dominate the deep learning regularizer literature, because they support
a large spectrum of tasks and architectures. Singular value decomposition (SVD) has been applied
as a weight regularizer in several recent works Zhang et al. (2018); Sedghi et al. (2018); Guo & Ye
(2019). Zhang et al. (2018) employ SVD to avoid vanishing and exploding gradients in recurrent
neural networks. Similarly, Guo & Ye (2019) bound the singular values of the convolutional layer
around 1 to preserve the layer’s input and output norms. A bounded output norm mitigates the
exploding/vanishing gradient problem. Weight regularizers share the common limitation that they do
not enforce an explicit feature embedding objective and are thus ineffective against model collapse.

Feature embedding regularizers have also been extensively studied, especially for classification net-
works Rippel et al. (2015); Wen et al. (2016); He et al. (2018); Hoffman et al. (2019); Taha et al.
(2020). These regularizers aim to maximize class margins, class compactness, or both simultane-
ously. For instance, Wen et al. (2016) propose center loss to explicitly learn class representatives
and thus promote class compactness. In classification tasks, test samples are assumed to lie within
the same classes of the training set, i.e., closed-set identification. However, retrieval tasks, such as
product re-identification, assume an open-set setting. Because of this, a retrieval network regularizer
should aim to spread features across many dimensions to fully utilize the expressive power of the
embedding space.

Recent literature Sablayrolles et al. (2018); Zhang et al. (2017) has recognized the importance of
a spread-out feature embedding. However, this literature is tailored to triplet loss and therefore
assumes a particular sampling procedure. In this paper, we leverage SVD as a regularizer because
it is simple, differentiable Ionescu et al. (2015), and class oblivious. SVD has been used to promote
low rank models to learn compact intermediate layer representations Kliegl et al. (2017); Sanyal
et al. (2019). This helps compress the network and speed up matrix multiplications on embedded
devices (iPhone and Raspberry Pi). In contrast, we regularize the embedding space through a high
rank objective. By maximizing the mean singular value, we promote a higher rank representation –
a spread-out embedding.
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3 SINGULAR VALUE MAXIMIZATION (SVMAX)

We first introduce our mathematical notation. Let I denote the image space andEI ∈ Rd denote the
feature embeddings space, where d is the dimension of the features. A feature embedding network is
a function Fθ : I → EI , parameterized by the network’s weights θ. We quantify similarity between
an image pair (I1, I2) via the Euclidean distance in feature space, i.e., ‖EI1 − EI2‖2.

During training, a 2D matrix E ∈ Rb×d stores b samples’ embeddings, where b is the mini-batch
size. Assuming b ≥ d, the singular value decomposition (SVD) of E provides the singular values
S = [s1, ., si, ., sd], where s1 and sd are the largest and smallest singular values, respectively. We
maximize the mean singular value, sµ = 1

d

∑d
i=1 si, to regularize the network’s last layer activations

– the feature embedding. By maximizing the mean singular value, the deep network spreads out its
embeddings. This has the added benefit of implicitly regularizing the network’s weights θ. The
proposed SVMax regularizer integrates with both supervised and unsupervised feature embedding
networks as follows

LNN = Lr − λ
1

d

d∑
i=1

si = Lr − λsµ, (1)

where Lr is the original network loss and λ is a balancing hyperparameter.

Lower and Upper Bounds of the Mean Singular Value: One caveat to equation 1 is the hyperpa-
rameter λ. It is difficult to tune because the mean singular value sµ depends on the range of values
inside E and its dimensions (b, d). Thus, changing the batch size or embedding dimension requires
a different λ. To address this, we utilize a common assumption in metric learning – the unit circle
(L2-normalized) embedding assumption. This assumption provides both lower and upper bounds
on ranking losses. This will allow us to impose lower and upper bounds on sµ.

For an L2-normalized embeddingE, the largest singular value s1 is maximum when the matrix-rank
of E equals one, i.e., rank(E) = 1, and si = 0 for i ∈ [2, d]. Horn & Johnson (1991) provide an
upper bound on this largest singular value s1 as s∗(E) ≤

√
||E||1||E||∞. This holds in equality for

all L2-normalized E ∈ Rb×d with rank(E) = 1. For an L2-normalized matrix E with ||E||1 = b,
and ||E||∞ = 1, this gives:

s∗(E) =
√
||E||1||E||∞ =

√
b. (2)

Thus, the lower bound L on sµ is L = s∗(E)
d =

√
b
d .

Similarly, an upper bound is defined on the sum of the singular values Turkmen & Civciv (2007);
Kong et al. (2018); Friedland & Lim (2016). This summation is formally known as the nuclear norm
of a matrix ||E||∗. Hu (2015) established an upper bound on this summation using the Frobenius
Norm ||E||F as follows

||E||∗ ≤

√
b× d

max(b, d)
||E||F , (3)

where ||E||F =
(∑rows

i=1

∑cols
j=1 |Eij |

2
) 1

2

=
√
b because of the L2-normalization assumption.

Accordingly, the lower and upper bounds of sµ are [L,U ] = [ s
∗(E)
d , ||E||∗d ]. With these bounds, we

rewrite our final loss function as follows

LNN = Lr + λ exp

(
U − sµ
U − L

)
. (4)

The SVMax regularizer grows exponentially ∈ [1, e]. We employ this loss function in all our re-
trieval experiments. It is important to note that the L2-normalized assumption makes λ tuning
easier, but it is not required. Equation 4 makes the hyperparameter λ only dependent on the range
of Lr which is also bounded for ranking losses.

Lower and Upper Bounds of Ranking Losses: We briefly show that ranking losses are bounded
when assuming an L2-normalized embedding. Equations 5 and 6 show triplet and contrastive losses,
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Table 1: Quantitative evaluation on CUB-200-2011 with batch size b = 144, embedding dimension
d = 128 and multiple learning rates lr = {0.01, 0.001, 0.0001}. 4R@1 column indicates the R@1
improvement margin relative to the vanilla ranking loss. A large learning rate lr increases the chance
of model collapse, while a small lr slows convergence. λ is dependent on the ranking loss.

lr = 0.01 lr = 0.001 lr = 0.0001

Method NMI R@1 R@8 4R@1 NMI R@1 R@8 4R@1 NMI R@1 R@8 4R@1

Contrastive

Vanilla 0.435 25.73 58.88 - 0.443 28.68 64.70 - 0.413 24.49 59.54 -
Spread-out 0.440 24.54 57.16 −1.18 0.479 32.12 66.83 3.44 0.458 31.85 67.45 7.36
SVMax (Ours) 0.527 41.26 75.24 15.53 0.547 43.11 77.26 14.43 0.449 29.56 65.50 5.06

Triplet Loss

Vanilla 0.496 29.34 67.96 - 0.477 28.88 64.60 - 0.449 24.86 61.14 -
Spread-out 0.545 43.60 76.98 14.26 0.557 44.02 78.54 15.14 0.435 28.33 64.33 3.46
SVMax λ = 1 (Ours) 0.556 43.21 77.43 13.88 0.527 39.13 74.17 10.25 0.401 25.07 60.01 0.20
SVMax λ = 0.1 (Ours) 0.547 43.80 77.97 14.47 0.557 43.89 78.44 15.01 0.436 28.22 64.40 3.36

N-pair

Vanilla 0.402 18.96 50.32 - 0.452 27.65 63.10 - 0.455 31.41 66.95 -
Spread-out 0.416 20.64 52.80 1.69 0.483 32.46 66.41 4.81 0.474 33.39 68.80 1.98
SVMax (Ours) 0.483 34.62 68.11 15.67 0.547 43.79 77.31 16.14 0.488 34.13 69.92 2.72

Angular

Vanilla 0.470 28.54 60.03 - 0.508 38.94 72.82 - 0.538 41.80 76.18 -
Spread-out .471 28.29 60.26 −0.25 0.508 38.96 72.86 0.02 0.538 41.81 76.23 0.02
SVMax (Ours) 0.487 32.88 66.27 4.34 0.523 41.29 74.71 2.35 0.531 42.00 76.30 0.20

respectively, and their corresponding bounds [L,U ].

TL(a,p,n)∈T = [(D(bac, bpc)−D(bac, bnc) +m)]+
[L,U ]−−−→ [0, 2 +m], (5)

CL(x,y)∈P = (1− δx,y)D(bxc, byc)) + δx,y [m−D(bxc, byc))]+
[L,U ]−−−→ [0, 2], (6)

where [•]+ = max(0, •), m < 2 is the margin between classes, since 2 is the maximum distance
on the unit circle. b•c and D(, ) are the embedding and Euclidean distance functions, respectively.
In equation 5, a, p, and n are the anchor, positive, and negative images in a single triplet (a, p, n)
from the triplets set T . In equation 6, x and y form a single pair of images from the pairs set P .
δx,y = 1 when x and y belong to different classes; zero otherwise. In the supplementary material,
we (1) show similar analysis for N-pair and angular losses, (2) provide an SVMax evaluation on
small training batches, i.e., b < d, and (3) evaluate the computational complexity of SVMax.

4 EXPERIMENTS

In this section, we evaluate SVMax using both supervised and unsupervised learning. We leverage
retrieval and generative adversarial networks for quantitative and qualitative evaluations.

4.1 RETRIEVAL NETWORKS

Technical Details: We evaluate the SVMax regularizer quantitatively using three datasets: CUB-
200-2011 Wah et al. (2011), Stanford CARS196 Krause et al. (2013), and Stanford Online Prod-
ucts Oh Song et al. (2016). We use GoogLeNet Szegedy et al. (2015) and ResNet50 He et al.
(2016); both pretrained on ImageNet Deng et al. (2009) and fine-tuned for K iterations. These are
standard retrieval datasets and architectures. By default, the embedding ∈ Rd=128 is normalized to
the unit circle. In all experiments, a batch size b = 144 is employed, the learning rate lr is fixed
for K/2 iterations then decayed polynomially to 1e − 7 at iteration K. We use the SGD optimizer
with 0.9 momentum. Each batch contains p different classes and l different samples per class. For
example, triplet loss employs p = 24 different classes and l = 6 instances per class. The mini-batch
of N-pair loss contains 72 classes and a single positive pair per class, i.e.p = 72 and l = 2. This
same mini-batch setting is used for angular loss. For contrastive loss, p = 36 and l = 4 are divided
into 72 positive and 72 negative pairs. For CUB-200 and CARS196, K = 5, 000 iterations; for
Stanford Online Products, K = 20, 000.
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Table 2: Quantitative evaluation on Stanford Online Products.

lr = 0.01 lr = 0.001 lr = 0.0001

Method NMI R@1 R@8 4R@1 NMI R@1 R@8 4R@1 NMI R@1 R@8 4R@1

Contrastive

Vanilla 0.816 18.23 34.07 - 0.820 28.70 43.27 - 0.813 34.30 48.49 -
Spread-out 0.811 18.87 35.74 0.64 0.822 29.97 46.69 1.27 0.824 36.15 51.22 1.85
SVMax (Ours) 0.875 61.82 78.90 43.59 0.854 53.94 70.92 25.25 0.832 41.96 57.44 7.66

Triplet Loss

Vanilla 0.891 71.96 86.24 - 0.873 64.09 80.07 - 0.840 46.29 62.57 -
Spread-out 0.890 71.60 85.73 −0.36 0.872 64.23 80.10 0.14 0.840 46.68 63.04 0.39
SVMax λ = 1 (Ours) 0.868 63.82 80.95 −8.15 0.857 58.04 75.14 −6.04 0.836 44.62 60.76 −1.67
SVMax λ = 0.1 (Ours) 0.889 71.48 85.97 −0.49 0.872 64.23 80.14 0.14 0.840 46.64 62.95 0.35

N-pair

Vanilla 0.798 12.86 24.53 - 0.815 23.83 38.97 - 0.818 33.98 48.56 -
Spread-out 0.803 16.58 31.91 3.72 0.824 32.88 50.34 9.05 0.825 37.39 52.55 3.40
SVMax (Ours) 0.871 57.76 76.05 44.90 0.858 54.70 71.57 30.87 0.835 43.04 58.78 9.06

Angular

Vanilla 0.883 62.83 80.13 - 0.885 66.93 82.12 - 0.856 54.29 71.14 -
Spread-out 0.883 62.73 79.96 −0.10 0.885 66.91 82.09 −0.02 0.856 54.30 71.10 0.02
SVMax (Ours) 0.885 65.44 81.73 2.61 0.884 67.28 82.47 0.35 0.855 54.88 71.47 0.59

Baselines: We evaluate the SVMax regularizer using contrastive Hadsell et al. (2006), hard
triplet Hoffer & Ailon (2015); Hermans et al. (2017), N-pair Sohn (2016) and angular Wang et al.
(2017) losses. We use the margin m = 1 for contrastive loss, m = 0.2 for triplet loss, and the angle
bound α = 45◦ for angular loss. Similar to SVMax, multiple regularizers Kumar et al. (2016);
Zhang et al. (2017); Sanyal et al. (2019); Chen & Deng (2019) promote a uniform embedding space.
Unlike SVMax, these regularizers require a supervised setting to push anchor-negative pairs apart.
We employ the spread-out regularizer Zhang et al. (2017) as a baseline for its simplicity, with default
hyperparameter α = 1. To enable the spread-out regularizer on non-triplet ranking losses, we pair
every anchor with a random negative sample from the training mini-batch.

Evaluation Metrics: For quantitative evaluation, we use the Recall@K metric and Normalized
Mutual Info (NMI) on the test split.

The hyperparameter: λ = 1 for both contrastive and N-pair losses, λ = 0.1 for triplet loss, and
λ = 2 for angular loss. We fix λ across datasets, architectures, and other hyperparameters (b, d).

Results: Tables 1 and 2 present quantitative retrieval evaluation on CUB-200 and Stanford Online
Products datasets – both using GoogLeNet. These tables provide in depth analysis and emphasize
our improvement margins on a small and large dataset. Figure 2 provides quantitative evaluation
on Stanford CARS196. We report the qualitative retrieval evaluation and quantitative evaluation
on ResNet50 in the supplementary material. Our training hyperparameters – learning rate lr and
number of iterations K – do not favor a particular ranking loss.

We evaluate SVMax on various learning rates. A large learning rate, e.g., lr = 0.01, speeds up
convergence, but increases the chance of model collapse. In contrast, a small rate, e.g., lr = 0.0001,
is likely to avoid model collapse but is slow to converge. This undesirable effect is tolerable for
small datasets – where increasing the number of training iterations K does not drastically increase
the overall training time – but it is infeasible for large datasets. For contrastive and N-pair losses,
SVMax is significantly superior to both the vanilla and spread-out baselines, especially with a large
learning rate. A small lr slows convergence and all approaches become equivalent. The spread-out
regularizer Zhang et al. (2017) and its hyperparameters are tuned for triplet loss. Thus, for this
particular ranking loss, the SVMax and spread-out regularizers are on par.

In our experiments, we employ a large learning rate because it is the simplest factor to introduce
a model collapse. However, the learning rate is not the only factor. Another factor is the training
dataset size and its intra-class variations. A small dataset with large intra-class variations increases
the chances of a model collapse. For example, a pair of dissimilar birds from the same class jus-
tifies a model collapse when coupled with a large learning rate. The hard triplet loss experiments
emphasize this point because every anchor is paired with the hardest positive and negative samples.
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Figure 2: Quantitative evaluation on Stanford CARS196. X and Y-axis denote the learning rate lr
and recall@1 performance, respectively.

On small fine-grained datasets like CUB-200 or CARS196, the vanilla hard triplet loss suffers sig-
nificantly. Yet, the same implementation is superior on a big dataset like Stanford Online Products.
By carefully tuning the training hyperparameter on CUB-200, it is possible to avoid a degenerate
solution. However, this tedious tuning process is unnecessary when using either the spread-out or
the SVMax regularizer.

The vanilla N-pair loss underperforms because it does not support feature embedding on the unit
circle. Both spread-out and SVMax mitigate this limitation. For angular loss, a bigger λ = 2 is
employed to cope with the angular loss range. SVMax is a class oblivious regularizer. Thus, λ
should be significant enough to contribute to the loss function without dominating the ranking loss.

Wu et al. (2017) show that the distance between any anchor-negative pair, which is randomly sam-
pled from an n-dimensional unit sphere, follows the normal distribution N(

√
2, 1

2n ). This mean
distance

√
2 is large relative to the triplet loss margin m = 0.2, but comparable to the contrastive

loss margin m = 1. Accordingly, triplet loss converges to zero after a few iterations, because most
triplets satisfy the margin m = 0.2 constraint. When triplet loss equals zero, the SVMax regularizer
with λ = 1 becomes the dominant term. However, the SVMax regularizer should not dominate
because it is oblivious to data annotations; it equally pushes anchor-positive and anchor-negative
pairs apart. Reducing λ to 0.1 solves this problem.

A less aggressive triplet loss Schroff et al. (2015); Xuan et al. (2020) is another way to avoid model
collapse. For instance, Schroff et al. (2015) have proposed a triplet loss variant that employs semi-
hard negatives. The semi-hard triplet loss is more stable than the aggressive hard triplet and lifted
structured losses Oh Song et al. (2016). Unfortunately, the semi-hard triplet loss assumes a very large
mini-batch (b = 1, 800 in Schroff et al. (2015)), which is impractical. Furthermore, when model
collapse is avoided, aggressive triplet loss variants achieve superior performance Hermans et al.
(2017). In contrast, the SVMax regularizer only requires a larger mini-batch than the embedding
dimension, i.e., b ≥ d, a natural constraint for retrieval networks which favor compact embedding
dimensions. Additionally, SVMax does not make any assumption about the sampling procedure.
Thus, unlike Sablayrolles et al. (2018); Zhang et al. (2017), SVMax supports various supervised
ranking losses.

4.2 GENERATIVE ADVERSARIAL NETWORKS

Model collapse is one of the main challenges of training generative adversarial networks
(GANs) Metz et al. (2017); Srivastava et al. (2017); Mao et al. (2019); Salimans et al. (2016). To
tackle this challenge, Metz et al. (2017) propose an unrolled-GAN to prevent the generator from
overfitting to the discriminator. In an unrolled-GAN, the generator observes the discriminator for l
steps before updating the generator’s parameters using the gradient from the final step. Alternatively,
we leverage the simpler SVMax regularizer to avoid model collapse. We evaluate our regularizer
using a simple GAN on a 2D mixture of 8 Gaussians arranged in a circle. This 2D baseline Metz
et al. (2017); Srivastava et al. (2017); Bang & Shim (2018) provides a simple qualitative evaluation
and demonstrates SVMax’s potential in unsupervised learning. We leverage this simple baseline
because we assume b ≥ d, which does not hold for images.
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Method Step 1 Step 5k Step 10k Step 15k Step 20k Step 25k Target

Vanilla GAN

Vanilla GAN +
SVMax

Unrolled GAN
(5 steps)

Unrolled GAN
(5 steps) +

SVMax

Figure 3: The SVMax regularizer mitigates model collapse in a GAN trained on a toy 2D mixture
of Gaussians dataset. Columns show heatmaps of the generator distributions at different training
steps (iterations). The final column shows the groundtruth distribution. The first row shows the
distributions generated by training a vanilla GAN suffering a model collapse. The second row
shows the generated distribution when penalizing the generator’s fake embedding with the SVMax
regularizer. The third and fourth rows show two distributions generated using an unrolled-GAN
with and without the SVMax regularizer, respectively. This high resolution figure is best viewed on
a screen with zoom capabilities.

Figure 3 shows the dynamics of the GAN generator through time. We use a public PyTorch imple-
mentation1 of Metz et al. (2017). We made a single modification to the code to use a relatively large
learning rate, i.e., lr = 0.025 for both the generator and discriminator. This single modification
is a simple and fast way to induce model collapse. The mixture of Gaussians circle has a radius
r = 2, i.e., the generated fake embedding is neither L2-normalized nor strictly bounded by a net-
work layer. We kept the radius parameter unchanged to emphasize that neither L2-normalization nor
strict-bounds are required. To mitigate the impact of lurking variables (e.g., random network initial-
ization and mini-batch sampling), we fix the random generator’s seed for all experiments. We apply
SVMax to a vanilla and an unrolled GAN for five steps. We apply the vanilla SVMax regularizer
(Eq. 1), i.e., LNN = LGAN − λsµ, where λ = 0.01 and sµ is mean singular value of the generator
fake embedding.

GANs are typically used to generate high resolution images. This high-resolution output is the main
limitation of the SVMax regularizer. The current formulation assumes the batch size is bigger than
the embedding dimension, i.e., b ≥ d. This constraint is trivial for the Gaussians mixture 2D dataset
and retrieval networks with a compact embedding dimensionality (e.g., d = {128, 256}). However,
this constraint hinders high resolution image generators because the mini-batch size constraint be-
comes b ≥W×H×C, whereW ,H , and C are the generated image’s width, height, and number of
channels, respectively. Nevertheless, this GAN experiment emphasizes the potential of the SVMax
regularizer in unsupervised learning.

4.3 ABLATION STUDY

In this section, we evaluate two hypotheses: (1) the SVMax regularizer boosts retrieval performance
because it learns a uniform feature embedding, (2) the same SVMax hyperparameter λ supports
different embedding dimensions and batch sizes – the main objective of the mean singular value’s
bounds analysis.

To evaluate the SVMax regularizer’s impact on feature embeddings, we embed the MNIST dataset
onto the 2D unit circle. In this experiment, we used a tiny CNN (one convolutional layer and one
hidden layer). Figure 4 shows the embedding space after training for t epochs. When using the
SVMax regularizer, the feature embeddings spread out more uniformly and rapidly than the vanilla
contrastive loss.

1https://github.com/andrewliao11/unrolled-gans
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Method Epoch 1 Epoch 2 Epoch 4 Epoch 8 Epoch 16 Epoch 32 Epoch 64

Contrastive

Contrastive
+ SVMax

Figure 4: Qualitative feature embedding evaluation using the MNIST dataset projected onto the 2D
unit circle. The first row shows the feature embedding learned using a vanilla contrastive loss and
the second row applies the SVMax-regularized. A random subset of the test split is projected for
visualization purpose. Different colors denote different classes. The regularized feature embed-
ding spreads out uniformly and rapidly. The supplementary material shows the feature embedding
evolves vividly up to 200 epochs. This high resolution figure is best seen on a screen.
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Figure 5: Quantitative evaluation on CUB-200-2011 with various batch sizes b = {288, 72} and
embedding dimensions d = {256, 64} to demonstrate the stability of our hyperparameter. λ = 1 for
contrastive loss and λ = 0.1 for triplet loss.

The mean singular value bound analysis makes tuning the hyperparameter λ easier. This hyperpa-
rameter becomes only dependent on the ranking loss and independent of both the batch size and the
embedding dimension. Figure 5 presents a quantitative evaluation using the CUB-200 dataset. We
explore various batch sizes b = {288, 72} and embedding dimensions d = {256, 64}. We employ a
MobileNetV2 Sandler et al. (2018) to fit the big batch b = 288 on a 24GB GPU. The supplementary
material contains a similar evaluation on the Stanford Online Products and CARS196 datasets.

5 CONCLUSION

We have proposed singular value maximization (SVMax) as a feature embedding regularizer. SV-
Max promotes a uniform embedding, mitigates model collapse, and enables large learning rates.
Unlike other embedding regularizers, the SVMax regularizer supports a large spectrum of rank-
ing losses. Moreover, it is oblivious to data annotation and, as such, supports both supervised and
unsupervised learning. Qualitative evaluation using a generative adversarial network demonstrates
SVMax’s potential in unsupervised learning. Quantitative retrieval evaluation highlight significant
performance improvements due to the SVMax regularizer.
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