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ABSTRACT

Audio–video (AV) generation has often relied on complex multi-stage architec-
tures or sequential synthesis of sound and visuals. We introduce OVI, a unified
paradigm for audio–video generation that models the two modalities as a single
generative process. By using blockwise cross-modal fusion of twin-DiT modules,
OVI achieves natural synchronization and removes the need for separate pipelines
or post hoc alignment. To facilitate fine-grained multimodal fusion modeling, we
initialize an audio tower with an architecture identical to that of a strong pretrained
video model. Trained from scratch on hundreds of thousands of hours of raw au-
dio, the audio tower learns to generate realistic sound effects, as well as speech that
conveys rich speaker identity and emotion. Fusion is obtained by jointly training
the identical video and audio towers via blockwise exchange of timing (via scaled-
RoPE embeddings) and semantics (through bidirectional cross-attention) on a vast
video corpus. Our model enables cinematic storytelling with natural speech and
accurate, context-matched sound effects, producing movie-grade video clips. We
will open-source our model to foster further research.

1 INTRODUCTION

Recent progress in video generation has come from systems—such as text-to-video (T2V), audio-
to-video (A2V), and video-to-audio (V2A)—that handle one modality at a time, instead of learning
audio and visuals together. In practice, however, cinematic content demands audio and video be
composed jointly: speech must lip-sync and background music should match scene dynamics. Ex-
isting open-source solutions typically fix one modality and synthesize the other, relying on post hoc
alignment or narrow audio-driven cases like talking-head animation. To our knowledge, truly uni-
fied one-pass audio–video generation at scale remains largely unexplored in the open literature; the
only widely cited system (Google’s Veo3) is closed-source and methodologically opaque.

We propose OVI, a unified generator that produces audio and video in a single pass. OVI couples two
architecturally matched latent diffusion transformers (DiTs)—one for video and one for audio—via
blockwise, bidirectional cross-modal attention inserted in every transformer block. A single frozen
T5 encoder conditions both branches using a combined natural-language prompt, while aligned
RoPE scaling reconciles their different temporal resolutions. Training proceeds in two stages: (i)
initialize an audio tower mirroring the architecture of a pretrained video model and train it from
scratch on large-scale, richly captioned audio to master speech and diverse sound effects; (ii) fine-
tune the twin audio and video backbones with newly initialized cross-modal layers (and original
attention modules) on paired audio–video data to learn synchronization without sacrificing unimodal
fidelity.

Contributions. Guided by this framework, we make four contributions: (1) a large-scale AV
data pipeline (millions of videos) with strict synchronization filtering and rich captions, enabling a
combined-prompt conditioning scheme (single T5 pass) that unifies semantic control across modal-
ities; (2) a 11B symmetric twin backbone with blockwise bidirectional fusion and scaled RoPE em-
beddings for precise cross-modal temporal coupling; (3) an end-to-end, one-stage formulation that
achieves strong synchronization without heuristics such as face masks or post hoc alignment; and
(4) a scalable training recipe—audio pretraining, audio post-training, and fusion fine-tuning—that
yields high-quality, synchronized 5-second clips at 720×720 and 24 fps.
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2 RELATED WORK

While joint AV generation is still a relatively new field in the open-source community, various
subproblems have been explored in great depth. Our review focuses on three of these subtasks: T2V
generation, A2V generation, and V2A generation; we furthermore detail the efforts that have been
made in joint AV generation. The unifier between the vast majority of recent models in this space
is their use of the Diffusion Transformer (DiT) architecture (Peebles & Xie, 2023) inside latent
space with a Flow Matching (Lipman et al., 2022) loss, along with other widely-adopted practices
in generative modeling such as RoPE positional embeddings (Su et al., 2024) and Classifier-Free
Diffusion Guidance (Ho & Salimans, 2022).

2.1 TEXT-TO-VIDEO (T2V) GENERATION

The T2V (or TI2V) task aims to generate silent video from a text prompt, optionally given a refer-
ence image (often fixed to be the first frame). The first major catalyst in this field is OpenAI’s Sora
(Brooks et al., 2024), which incorporates latent-space spacetime patching into a generalist diffusion
transformer that handles both images and videos. The close-sourced model has led to public im-
plementations of T2V and TI2V pipelines. One of the most impactful efforts is Wan et al. (2025),
which introduces a series of open-source models that perform latent-space spatio-temporal attention
and cross-attention with T5-embedded text given a fixed first-frame anchor image. The model pre-
trains a 3D VAE to achieve compression at 16x16x4, which, together with their 5B Wan2.2 model,
can generate realistic 720p videos at 24 fps. The natural extension to these models is to incorporate
audio into the generation process, which is addressed in future A2V models.

2.2 AUDIO-TO-VIDEO (A2V) GENERATION

Perhaps the most common method for video generation has been to supply pre-generated, fixed
audio as a conditioning signal to a learned DiT. Tencent’s HunyuanVideo (Kong et al., 2024) in-
corporates a robust data filtering process and replaces T5 with an MLLM for better alignment with
the visual modality. HunyuanVideo-Avatar (Chen et al., 2025b) adds character-level information by
prepending the latent reference image to the video latent and concatenating its tokens with video
tokens along the sequence dimension, while also injecting emotion through spatial cross-attention
with an emotion reference image. Whisper-encoded audio features are grouped to each compressed
video frame, and a face mask restricts cross-attention so only the audio tokens for that time slice
influence the masked facial tokens of the same frame. Tackling the problem of long-form talking-
head generation, Yi et al. (2025) employs Wav2Vec-encoded audio features in cross-attention with
face-masked video latents, opting for 3D full-attention between video tokens and sequence-wise
concatenated text and reference image tokens. ByteDance’s HuMo (Chen et al., 2025a) fine-tunes
the Wan 2.1 DiT in two stages: in the first stage, all non self-attention parameters are frozen and
reference image latents are appended to the video latent; in the second stage, spatial-cross atten-
tion with Whisper-encoded audio is introduced and trained as well as a face-region mask predictor.
A2V models have since been optimized for real-time generation, such as Low & Wang (2025),
which adapts a strong I2V DiT into a streaming A2V pipeline by distilling a bidirectional teacher
into a sparse, causal autoregressive student. In addition to jointly generating both modalities, OVI
demonstrates that heuristics such as face masks, which limit generality, are not necessary for strong
synchronization.

2.3 VIDEO-TO-AUDIO (V2A) GENERATION

An alternative approach has been to fix the video modality and generate audio by conditioning on
the video and text. Such V2A pipelines predict mel-spectrogram or codec latents from compressed
video features using latent DiTs, often employing frame-level cross-modal attention. An early im-
plementation of this, Diff-Foley (Luo et al., 2023), uses the standard noise-prediction objective,
encoding video and audio into a shared space with a contrastively trained AV encoder, condition-
ing a latent diffusion model on these features, and adding a separate alignment classifier to guide
inference toward temporal synchronization. Subsequent models such as Frieren (Wang et al., 2024)
replace the standard diffusion with flow matching in the audio latent space, enabling faster and more
stable generation. Aiming to address the lack of support for sound effects (SFX) and background
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music (BGM) in prior V2A models, SVA (Chen et al., 2024a) feeds a video keyframe into an MLLM
to generate SFX and BGM descriptions, sending them into an audio generation and music genera-
tion model respectively, and then uses post-processing to blend the two produced waveforms. More
recently, models have attempted to blend speech and generic audio generation. DeepAudio-V1
(Zhang et al., 2025) trains a CLIP-conditioned V2A module with flow matching for ambient au-
dio, a diffusion-transformer TTS branch on transcripts, and a Mixture-of-Fusion network that fuses
text, video, instructions, and V2A-predicted energy contours to fine-tune TTS into a video-to-speech
(V2S) model generating synchronized speech with ambient audio. A simplified process is found in
MMAudio (Cheng et al., 2025), which performs joint attention between text, audio, and video inside
a single DiT but requires an auxiliary synchronization module.

2.4 JOINT AUDIO–VIDEO GENERATION

The de facto for joint audio-video generation has become Google’s Veo3 (Google DeepMind, 2024),
a closed-source latent diffusion model capable of generating 8s video synchronized with audio. A
few open-source projects have since attempted to replicate Veo3’s quality and synchronization with
limited success. Wang et al. (2025) introduces UniVerse-1, which uses Wan2.1 as the video back-
bone and the music-generation model ACE-Step as the audio backbone (Gong et al., 2025), aligning
their depths by inserting interpolated transformer blocks into the shallower model and enabling
blockwise cross-attention between modalities via lightweight projection layers. The model is con-
strained, however, due to its reliance on a pretrained music-generation model instead of training a
foundational audio model, as well as the misalignment between architectures and the consequent
need for block insertion, projections, and an auxiliary semantic-alignment loss to prevent degrada-
tion when fusing with video. (Liu et al., 2025) addresses the architectural mismatch by employing
the same backbone for both video and audio, but requires a learned prior estimator that injects
global and fine-grained latent spatio-temporal features from the text prompt into latent video via
extra cross-attention in order to achieve synchronization. Ultimately, these open-source solutions
demonstrate limited synchronization ability and fail to deliver consistent, high-quality video.

3 DATA PROCESSING PIPELINE

Training a unified audio–video generator at scale requires careful construction of a large multimodal
corpus. We designed a multi-stage data processing pipeline to ensure quality, diversity, and synchro-
nization across both modalities.

3.1 DATA COLLECTION

To support both high-fidelity video generation and robust text-to-speech (TTS) modeling, we curate
two complementary corpora: a paired audio-video corpus for learning modality alignment, as well
as an audio-only corpus for acoustic pretraining and fine-tuning. The internal audio-video corpus is
composed of human and nonhuman data from diverse contexts. To construct the audio-only corpus,
we collect both an initial pretraining subset composed of longer waveforms and a shorter-duration
fine-tuning subset. This facilitates a two-stage approach, where we first train a foundational audio
model and then fine-tune it on shorter, diverse data to better match deployment conditions. The
pretraining data, composed of waveforms up to 12-seconds long, is predominantly human speech
sourced from internal collections. These longer segments emphasize linguistic diversity, prosody,
and timbral variation useful for foundational acoustic modeling. The fine-tuning data, composed
of waveforms that are 5-seconds long, aims to enhance the audio model to produce audio suitable
for accompanying a diverse set of video scenes. As such, we emphasize modeling sound effects,
drawing public data from VGGSound (Chen et al., 2020), AudioSet (Gemmeke et al., 2017), and
WavCaps Mei et al. (2024). To maintain TTS abilities and better align with the downstream goal,
we additionally incorporate audio tracks extracted from our internal paired audio-video.

3.2 AUDIO-VIDEO DATA PREPROCESSING

The data processing for audio-video data is composed of four steps: (1) splitting and filtering, (2)
sync detection, (3) captioning, and (4) packing.

3
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Splitting and filtering. We begin by employing scene detection to isolate 121-frame clips at 24 fps
that abide by certain criteria. In particular, we ensure that clips are greater than 720x720 pixel
resolution, employ the optical flow model RAFT (Teed & Deng, 2020) to filter out static videos and
obtain motion scores, and utilize an aesthetic predictor (Schuhmann, 2022) to remove low-quality
data. We furthermore use an internal face detection model to ensure an adequate mix of single-
person videos, multi-person videos, and person-free videos so that our model can learn to generate
videos across a wide variety of contexts without overfitting to a particular subtask.

Sync Detection. We adopt the widely-used SyncNet (Chung & Zisserman, 2016) model, which
uses a ConvNet architecture to learn a joint embedding between sound and mouth images, to filter
out speech videos which lack sufficient audio-video synchronization. We adapt the model to handle
video data on the scale of millions and run the model to produce scalar confidence and offset values.
We then only retain clips with |offset| ≤ 3 ∧ confidence > 1.5 that also meet a minimum
mean volume of −60 decibels. We have experimentally determined that even a small quantity of
out-of-sync data can impede lip-sync abilities and chose these strict criteria to minimize the risk of
misaligned data.

Captioning. We use an MLLM to provide a verbose video caption, describing visual events
interleaved with audible speech enclosed in start-of-speech and end-of-speech tags <S> and <E>.
At the end of the caption, we ask the MLLM to provide a rich audio description, which we enclose
in <AUDCAP> and <ENDAUDCAP> tags. The MLLM is provided seven evenly spaced frames
from the video as well as the entire audio track, and we conducted extensive experiments to ensure
the captioning included all relevant visual and audio events while respecting chronology. For clips
containing speech, we ask the audio description to emphasize speaker-related acoustic attributes
such as age, gender, accent, pitch, prosody, emotion, and speaking rate. For non-speech clips, the
audio description instead details the sound effects, background audio, or musical elements present.

Packing To prepare our data for our model, we need to convert both modalities to bytes. Before
doing so, we apply two final transformations to our data: we first remove any existing margins
in the video and then resize the video frames (maintaining aspect ratio) to a fixed resolution of
518400 = 720× 720 pixels so that our model receives consistent video frames. Finally, we convert
video into an array of bytes, extracting frames at 24 fps, and convert the audio to raw wave bytes.

3.3 PURE AUDIO DATA PREPROCESSING

For data lacking the visual modality, the preprocessing stage is simplified. We extract audio at two
distinct durations—up to 12 seconds for our pretraining data and exactly 5.04 seconds (to match the
duration of 121 frames at 24 fps). We employ the same MLLM as used in our audio-video data
to obtain audio transcriptions (if the record does not contain audible speech, such as a pure sound
effect, this is left blank) and audio descriptions.

4 METHOD

4.1 ARCHITECTURE OVERVIEW

OVI adopts a symmetric twin backbone design with parallel audio and video branches built on an
identical diffusion transformer (DiT) architecture. The video branch is initialized from Wan2.2 5B,
and an identical audio branch is trained from scratch. As such, the two backbones share the same
number of transformer blocks, heads, head dimensions, and FFNs, enabling symmetry at every layer,
as seen in Table 1.

Table 1: Transformer hyperparameters for the OVI twin backbone.

Model Dim FFN Dim Heads Head Dim Blocks

Self-Attn Text Cross-Attn AV Cross-Attn

3072 14336 24 128 30 30 30

4
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Each transformer block contains paired cross-attention layers, where the audio stream attends to
the video stream and the video stream reciprocally attends to the audio stream. This bidirectional
mechanism allows synchronization cues to be exchanged throughout the entire network. The sym-
metry between the audio and video towers ensures that both modalities share the same latent dimen-
sion, eliminating the need for intermediate projection layers and avoiding unnecessary parameters
or computation. Importantly, it also preserves the attention structure established during unimodal
pretraining, improving training stability and efficiency. In practice, the video branch uses signals
from audio to enable synchronization with speech and sound effects while the audio branch grounds
speech, sound effects, and ambience in the visual context. Figure 1 details the overall architecture
and fusion design.

Figure 1: OVI architecture. Symmetric DiT backbones for audio and video with blockwise, bidirec-
tional cross-attention and shared T5 conditioning from a combined prompt.

Although the audio and video backbones share the same architecture, their temporal resolutions dif-
fer: video latents span 31 frames, while audio latents form 157 tokens (16, kHz × 5s/512). To align
them, we apply Rotary Positional Embeddings (RoPE) to both modalities, and, taking inspiration
from Cheng et al. (2025), scale the RoPE frequencies of the audio branch by 31/157 ≈ 0.197 to
match the coarser resolution of video. This scaling ensures that audio and video tokens attend to each
other in a temporally consistent way. As shown in Figure 2, without scaling (left) the RoPE affinity
matrix is diagonally misaligned, hindering synchronization. With scaling (right), the diagonals align
sharply, providing clearer temporal correspondence.

(a) Default (unscaled) RoPE affinity. (b) Aligned RoPE after scaling.

Figure 2: Cross-modal RoPE affinity matrices before and after scaling. Scaling aligns audio and
video temporal positions, improving synchronization.

OVI moreover simplifies the prompt conditioning process by utilizing a single frozen T5 encoder,
applied to a combined prompt. The prompt concatenates the video caption which describes vi-
sual events interleaved with audible speech, and its T5 embedding is used independently in cross-
attention with audio and video. Intuitively, details about the visual context improve the specificity
and diversity of the audio, while details about the acoustic context guide facial movements and ac-
tions in the video. The single semantic context additionally simplifies training and inference and
improves cross-modal alignment.

5
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4.2 TRAINING STRATEGY

We train our OVI in two stages: we first initialize an audio backbone using the architecture of Wan2.2
5B and train it from scratch on speech and sound effect generation, and then we train self-attention
and cross-attention layers in the joint model.

4.2.1 AUDIO MODEL TRAINING

For efficiency and architectural consistency with the video branch, we operate in a compact latent
space using a pretrained 1D VAE from MMAudio Cheng et al. (2025). Specifically, raw audio is
transformed with Short-Time Fourier Transform (STFT), converted into mel-spectrograms, and then
encoded into latents by this VAE. At inference, generated latents are decoded back into spectrograms
and vocoded into waveforms with BigVGAN Lee et al. (2022). We adopt only the 16kHz encoder
variant, which provides an effective trade-off between efficiency and quality. We optimize a flow
matching objective on audio latents: given za1 ∼ padata and za0 ∼ N (0, I), we form the linear inter-
polant zat = (1 − t)za0 + tza1 with t ∼ U [0, 1] and train a velocity predictor va

θ (z
a
t , t, ctext) toward

the target za1 − za0 ,

La
FM = Et,za

1 ,z
a
0

[
∥va

θ (z
a
t , t, ctext)− (za1 − za0)∥

2
2

]
. (1)

Our audio tower OVI-AUD is trained in two substages: an initial pretraining stage of up to 12-
second waveforms, and a fine-tuning stage of up to 5-second waveforms. To avoid re-adaptation
when transitioning to the audio-video finetuning stage and eliminate the need to maintain multiple
scales for audio RoPE, we applied scaled RoPE positional embeddings to all attention layers.

Audio Pretraining. The audio backbone is pretrained from scratch on hundreds of thousands of
hours of primarily speech data up to 12 seconds in duration. During pretraining, we use variable-
length audio to maximize coverage of diverse acoustics, providing the audio backbone with broad
exposure to natural variability in duration and content. The long-form raw audio enables the model
to generate consistent audio that respects speaker traits such as pitch and emotion.

Audio Fine-tuning We next fine-tune the pretrained audio model with padded 5.04-second wave-
forms to produce audio compatible with our generated video. This step ensures that the audio back-
bone aligns with the distribution expected in multimodal fusion training, while retaining the gen-
eralization capacity learned from large-scale diverse pretraining. At this phase, a variety of sound
effects are also introduced into the training mix, enabling the OVI-AUD to serve as a foundational
audio model for AV generation.

4.2.2 AUDIO–VIDEO MODEL TRAINING

Fine-tuning attention layers. We combine pretrained audio and video backbones, initializing cross-
modal attention from scratch while freezing all FFNs to reduce memory, leaving 5.7B of 11B pa-
rameters trainable. By fine-tuning only unimodal self-attention and cross-attention modules (text-
to-modality and modality-to-modality), we align audio and video while preserving their pretrained
representations. Building on Eq. equation 1, we train on paired AV latents (zv1, z

a
1) with independent

noises (zv0, z
a
0) and a shared t∼U [0, 1], defining zmt = (1− t)zm0 + tzm1 for m∈{v, a}. Each back-

bone predicts a velocity conditioned on text and the other modality via bidirectional cross-attention,
and we apply the same FM objective per modality; the total loss is a weighted sum

Ltotal = λv Lv
FM + λa La

FM, λv = 0.85, λa = 0.15.

Paired sampling and a shared timestep encourage the model to learn audio–visual correspondences
(e.g., lip-sync, action–sound alignment) without explicit sync losses. At inference, both branches
share the same t schedule and are jointly integrated with a single ODE solver.

4.3 IMPLEMENTATION DETAILS

The audio pretraining phase described in subsection 4.2.1 was conducted for 50k steps with a batch
size of 2880 and a learning rate of 1 × 10−4. We used the AdamW optimizer with parameters
β1 = 0.9, β2 = 0.999, ϵ = 10−8. Upon convergence of the audio tower, denoted as OVI-AUD, we
proceeded with the audio-video fusion training phase as in subsection 4.2.2. We trained the partially
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frozen fusion model for 40k steps with a batch size of 768 and a learning rate of 5 × 10−5, using
AdamW optimizer with parameters β1 = 0.9, β2 = 0.95, ϵ = 10−8. All models were trained at
bf16 precision leveraging DeepSpeed (Rasley et al., 2020) for efficient sharded distributed Data
Parallel (DP) training. We employ the UniPC (Zhao et al., 2023) solver as we experimentally verify
that it improves stability compared to a standard Euler solver.

5 EXPERIMENTS

5.1 CROSS-MODAL ATTENTION VISUALIZATIONS.

We visualize A2V cross-attention maps by averaging token alignments and projecting them into
pixel heatmaps, highlighting where audio attends in the visual scene. As shown in Figure 3, speech
emphasizes mouths, drumming highlights drums, and animal sounds align with the source body
parts, illustrating that the fusion model effectively synchronizes audio with relevant visual cues.

(a) Music instrument (b) Music instrument (c) Music instrument (d) Bird chirping

(e) Bird chirping (f) Rocket (g) Animal (h) Animal

(i) Speech (j) Speech (k) Speech (l) Speech

(m) Helicopter (n) Speech (o) Speech (p) Sports

Figure 3: A2V cross-attention visualizations. Heatmaps highlight pixels most attended by audio
tokens. Brighter regions correspond to stronger attention.

5.2 COMPARED METHODS

Mirroring our two-stage training phase, we evaluate each stage independently. After the audio pre-
training stage, we assess the audio generation capabilities of the audio tower (OVI-AUD) against
state-of-the-art baselines in both text-to-audio (T2A) and text-to-speech (TTS).For text-to-audio
(T2A), baselines include GenAU (Haji-Ali et al., 2024), TANGO 2 (Majumder et al., 2024), Make-
An-Audio 2 (Huang et al., 2023), AudioLDM2 (Liu et al., 2024), and MMAudio. For text-to-
speech (TTS), we evaluate against Fish Speech (Liao et al., 2024) and F5-TTS (Chen et al., 2024b),
CosyVoice (Du et al., 2024), FireRedTTS (Guo et al., 2024). In the second stage, we evaluate the
joint audio-video generation (JAVG) capabilities of OVI, comparing against JavisDiT and UniVerse-
1. We also compare the video generation quality relative to the pretrained Wan2.2 video model to
ensure that the JAVG ability did not come at the expense of degraded video performance.

5.3 EVALUATION METRICS

To benchmark OVI’s JAVG capabilities, we conducted a blind pairwise preference study with 50
participants. Each participant compared pairs of videos with audio generated from different models.

7
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We report the Pairwise Win Rate (PWR) between OVI against competing baselines, providing a
direct measure of human perceptual preference in multimodal generation in terms of quality and
synchronization.

Following MMAudio’s T2A protocol, we evaluate OVI-AUD with FDPANNs (Kong et al., 2020),
FDVGG (Hershey et al., 2017), Inception Score (IS) (Salimans et al., 2016), and CLAP (Wu et al.,
2023). FDPANNs and FDVGG compare distributional distances with different pretrained extractors,
IS measures perceptual quality, and CLAP evaluates text–audio semantic alignment. For TTS, we
report linguistic correctness using Word Error Rate (WER).

5.4 RESULTS

Figure 4: Pairwise win rate (PWR) results of OVI compared against baselines on Verse-Bench.
Higher values indicate stronger human preference for OVI.

As shown in Figure 4, OVI achieves a clear and consistent preference over both JavisDiT and
UniVerse-1 across all three evaluation dimensions: audio quality, video quality, and audio-video
synchronization, using the Verse-Bench dataset, introduced in Wang et al. (2025). Notably, the
margins are substantial, with participants overwhelmingly favoring OVI. This indicates that our uni-
fied design and training framework does not simply maintain competitive performance, but pushes
the boundaries of open-research joint audio-video generation, bringing the community significantly
closer to the capabilities demonstrated by frontier models such as Veo3 (Google DeepMind, 2024).
We note, however, a slight degradation in video quality relative to the Wan2.2 base model, which
is expected given that our joint training relies on a narrower audio-video dataset compared to the
large-scale pretraining corpus used for Wan2.2. Importantly, this trade-off is marginal and does not
diminish the overall superiority of OVI in joint audio-video generation.

Table 2: Results of audio evaluation. All T2A metrics follow the evaluation protocol of MMAudio,
and baseline results are directly copied from that work. WER was computed on Seed-TTS test-en
dataset(Anastassiou et al., 2024), and baseline results are directly copied from Chen et al. (2024b)

Type Model T2A Metrics TTS Metric

FDPANNs ↓ FDVGG ↓ IS ↑ CLAP ↑ WER ↓

T2A

GenAU-Large 16.51 1.21 11.75 0.285 -
TANGO 2 19.77 2.74 8.45 0.264 -
Make-An-Audio 2 15.34 1.27 9.58 0.251 -
AudioLDM 2-L 32.50 5.11 8.54 0.212 -
MMAudio-L 15.04 4.03 12.08 0.348 -

TTS Fish Speech - - - - 0.008
F5-TTS - - - - 0.018
CosyVoice - - - - 0.034
FireRedTTS - - - - 0.038

Unified OVI-AUD (ours) 18.03 5.02 11.20 0.224 0.035

As shown in Table 2, our unified audio model, OVI-AUD, capable of both T2A and TTS, achieves
performance comparable to dedicated state-of-the-art models on their respective metrics. While it is
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expected that a unified model may not surpass specialized models optimized for a single task, attain-
ing competitive results across both domains demonstrates that OVI-AUD is sufficiently strong for its
primary role as a foundation for audio-video fusion. Crucially, unified audio generation is particu-
larly important for joint audio-video modeling, since real-world videos often contain both complex
sound effects and coherent speech capabilities that specialized models are unable to support.

5.5 ABLATION STUDY

The initial design of our audio tower (OVI-AUD) incorporated both a CLAP text encoder and a
T5 text encoder. The motivation was to disentangle T2A and TTS tasks by providing separate text
embeddings, thereby preventing the two objectives from interfering with each other adversely. In
practice, however, we observed that this separate embedding setup constrained the model’s ability
to generate cohesive outputs: while it could handle either sound effects or speech in isolation, it
struggled to integrate them into a unified and coherent audio stream.

To address this, we adopted the combined text prompt approach described in subsection 4.1, where
both speech transcripts and textual audio descriptions are fused into a single cohesive T5 text em-
bedding. This modification preserved the linguistic correctness of the model as seen from the com-
parable WER, while significantly improving the audio fidelity and alignment metrics (FD, IS and
CLAP), as seen in Table 3. More importantly, the unified text embedding also streamlined joint
audio-video generation, as both the audio and video towers could now condition on the same T5 text
representation, simplifying cross-modal modeling and strengthening multimodal coherence.

Table 3: Ablation study of audio tower design, specifically using a separate CLAP encoder for non-
speech audio descriptions

Variant FDPANNs ↓ FDVGG ↓ IS ↑ CLAP ↑ WER ↓
OVI with CLAP 20.78 7.13 8.34 0.190 0.033
OVI 18.03 5.02 11.20 0.224 0.035

6 LIMITATIONS AND CONCLUSION

Limitations. In its current form, OVI is tuned to short (5s) 720p/24 fps clips, which leaves minute-
scale narratives, inter-shot transitions, and global story consistency out of scope. Future work could
explore methods to increase duration; for example, stitching multiple 5s ”chunks” together by train-
ing a chunk-wise causal audio model and pairing it with a causal video backbone that conditions on
the last frame of the previous chunk. The symmetric 5B-per-branch design with dense, blockwise fu-
sion also requires significant time per sampling step, which is exacerbated by the additional forward
pass for each step due to CFG. Distillation via a framework such as DMD2 (Yin et al., 2024) could
reduce the effective number of sample steps needed. On the audio side, the 16 kHz path through
a fixed 1D-VAE constrains bandwidth and spatial realism, so high-fidelity music, spatial cues, and
subtle timbre can be flattened. By replacing the fixed 1D-VAE with a higher-bandwidth latent or
performing bandwidth extension in post-processing, audio quality could be further improved.

Conclusion. We introduced OVI, a framework for unified audio–video generation that treats the
two modalities as a single generative object. Architectural symmetry and blockwise bidirectional
fusion allow timing and semantics to be learned jointly rather than via sequential pipelines, while a
pretrained foundational audio tower—capable of both speech and diverse sound effects—supports
general synchronization without heuristic add-ons (e.g., face masks or auxiliary sync modules).
Empirically, this unified formulation is competitive and produces coherent, synchronized outputs,
establishing a practical template for simple and scalable AV generation. Ultimately, our twin back-
bone architecture proves effective and sets a direction for future AV systems.
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