for Efficient Function Approximation

Suman Sapkota'; Binod Bhattarai?
INAAMII, Nepal 2University of Aberdeen, UK
suman.sapkota@naamii.org.np, binod.bhattarai@abdn.ac.uk

The recent success of multiple neural architectures like CNNs, Transformers, and
MLP-Mixers motivates us to look for similarities and differences between them. We
find that these architectures can be interpreted through the lens of a general concept
of dimension mixing. Research on coupling flows, shufflenet and the butterfly
transform shows that partial and hierarchical signal mixing schemes are sufficient
for efficient and expressive function approximation. In this work, we study group-
wise sparse, non-linear, multi-layered and learnable mixing schemes of inputs and
find that they are complementary to many standard neural architectures. Following
our observations and drawing inspiration from the Fast Fourier Transform, we
generalize Butterfly Structure to use non-linear mixer function allowing for MLP
as mixing function called Butterfly MLP. We are also able to sparsely mix along
sequence dimension for Transformer-based architectures called Butterfly Attention.
Experiments on CIFAR and LRA datasets demonstrate that the proposed Non-Linear
Butterfly Mixers are efficient and scale well when the host architectures are used as
mixing function. We devise datasets with increasing complexity to solve Pathfinder-
X task. Additionally, we propose Patch-Only MLP-Mixer for processing spatial 2D

Dimension Mixer: Group Mixing of Input Dimensions

signals demonstrating a different dimension mixing strategy.

1. Introduction

The recent success of various Neural Network
Architectures such as Convolutional Neural Net-
work (CNN)[[1H4]], Transformers[5} 6], and MLP-
Mixer([[7]] can be credited to the sparse structured
processing of input signals and the function or pa-
rameter sharing used in these architectures. These
architectures are suitable for many downstream
tasks, such as image classification, while working
differently from each other. Although they share
common parts, such as processing in patches, and
sharing processing functions across tokens, they
also mix signals at different locations in a variety
of ways depending on the architecture.

This abundance of processing the same input
in multiple ways towards the same objective al-
lows us to analyse and find common mechanisms
among these architectures as well as differences
as shown in Table[l} Moreover, these architectures
are quadratic with respect to some of the input
dimensions. For example, with sequence length

W)
D e 1

@
5 fo) §—12
) 11\ WO

Select 1 Mixer : Select : Mixer

Figure 1: An example of a general Dimension
Mixer model, split into multiple layers of (i) Se-
lect and (ii) Mix stages. The Select stage selects
input dimensions for each of the Mixer units.
The Mix stage processes inputs and is learned
via optimization. This example shows that the
mixers can use arbitrary dimensions and have
varying capacity. The mixers can themselves be
Dimension Mixer Model.

in Attention, with channel dimension in Convolution or with patch/channel dimension in MLP-Mixer.

*Independent Researcher. Research primarily done while at NAAMIL

Second Conference on Parsimony and Learning (CPAL 2025).

Table 1: Overview of properties of various architectures.

Model Unit Strictured Input Sparsity Mixing Dense Operation
Linear (or LowRank) dot-product X None 1-layer -
Linear-Butterfly linear X block sparse butterfly-factors block-linear
MLP-Butterfly (ours) MLP X block sparse butterfly-factors block-MLP
CNN convolution 4 sliding window radial conv channels
MLP-Mixer MLPs v patch & channels 1-block channel+patch MLP
Patch Only MLP (ours) MLPs v patch radial patch MLP
Transformer Attention & MLP v tokens & sequence 1 block KQV, Attn & MLP
Butterfly Attn. Tranf. (ours) Attention & MLP v tokens & sequence butterfly-factors KQV & MLP
Dimension Mixer Any complete mix Any Group < Mix all dims Any
(Generalization) A — B transform Total Dims in L layers

We search for a general sparse signal processing mechanism that allows to sparsify structured as
well as unstructured dimensions of input tensor.

Processing structured data with neural networks relies on model’s inductive biases, such as translation
eqgivariance with 2D images, leading to highly parallelizable and parameter efficient processing.
However, for unstructured input dimensions, general dense transforms do not scale well with the
dimensionality of the input signal. While sparse parametrizations can partially alleviate this issue [I8]],
general sparse matrix multiplication algorithms are lagging in performance compared to dense
counterparts. Low-rank matrix parameterizations reduce the complexity by applying associativity
of dense low-rank components multiplication[9]] and lead to better performance. Structured sparse
matrices (butterfly matrices) as used in the Fast Fourier Transform (FFT) [[10] and recently in
neural networks [[11H13]] show great promise to parameterize dense matrices for efficient matrix
multiplication.

Multilayered partial signal processing of unstructured input dimensions is also a recurring pattern
of many deep architectures such as Coupling-Flows[[14][15] and ShuffleNet[[16,[17]. Armed with
these observations, we propose a general sparse signal processing model termed the Dimension
Mixer model. It leverages group-wise mixing of input signals, processed in layer-wise fashion such
that they communicate with each other, i.e. for R¥ — R transformation, all N input dimensions
can have non-zero derivative with respect to all M output dimensions. In other words, there must
exist a mixing path from each input dimension to each output dimension. Dimension Mixer consists
of several parallel dimension Select and Mix stages, as demonstrated in Fig. (I} This mechanism is
repeated in a sequence of layers such that input dimensions can be mixed densely.

Inspired by the widely used sparse signal mixing method from the FFT, which uses butterfly matrices
and block-wise processing, we generalize the butterfly structure beyond Linear Transform to Non-
Linear mixing function. Since such mixing borrows efficiency and scalability from FFT, it has
O(N log, N) complexity, where N represents the number of dimensions and r represents mixing
block size (“Radix-r"). Although butterfly structures have been previously explored in both learned
and non-learned settings to replace dense matrix multiplication, our primary contribution is the
extension of this paradigm to non-linear setting while retaining the structured mixing of different
dimensions of the input tensor. We propose an efficient Butterfly Attention Mixer, a block-structured
self-attention mechanism, with sub-quadratic complexity in Sequence Length(S) which attends
global tokens with later layers. We additionally devise a new mixing strategy for 2D images called
Patch-Only MLP Mixer. It lies between the original MLP Mixer and a CNN; this view helps to unify
the working mechanism of both architectures. To process 2D images, we propose use of only patch-
level mixing strategy. We conduct studies of varying scale to evaluate efficiency and approximation
capability of our methods in several datasets.

Experiments on use of sparse MultiLayer Perceptron (MLP) in MLP-Mixer architecture on CIFAR-10
dataset shows that Butterfly MLP produces better results than sparse Butterfly Linear. The experi-
ments on Patch-Only MLP-Mixer shows that our architecture produces smaller hidden representation
and allows for more computational efficient mixing of image signal.

Furthermore, we find that sparse Butterfly Attention is sufficient for CIFAR-10 and CIFAR-100
datasets, produces faster architectures and scales better for large sequence lengths as well. We largely
credit the performance to structured nature of butterfly attention when used in image. Experiments
on the Long Range Arena (LRA) Benchmark also demonstrate that the Butterfly Attention performs
better than the baselines on the Retrieval, Image and Pathfinder tasks with best Average accuracy.

Finally, we demonstrate the ability of our method to solve the challenging Pathfinder-X task, with
the sequence length of 16,384 tokens. We devise a continuous learning dataset from small pathfinder
tasks to the Pathfinder-X to solve it efficiently. This task remained untackled by many low-rank
attention methods; this attests to the generality and efficiency of our method.

2. Background and Related Works

Structured Processing in Deep Learning: One of the main ingredients to the success of deep learning
frameworks is using structured processing units to handle structured data. These processing units
enable the parallel processing of structured data, leveraging the power of accelerated computing
technology such as GPUs and TPUs. The CNNs5s [[I] 2] 4]], in general, have sliding window filters
which apply a linear transformation to patches of the image. From the perspective of signal mixing,
the CNN architecture generally works by increasing the receptive field of filters as the number of
layers increases. This allows the later layers to attend to a larger region of the input image, although
indirectly through previous kernels. The CNN was the only dominant architecture for vision till
the advent of Vision Transformers (ViT) [l6]]. ViT generally works with non-overlapping patches,
and the mixing of the patches happens immediately by the attention layer without waiting for later
layers to comprehend the whole input signal. It is followed by processing the signals per patch/token
by the MLP layer. However, Vision Transformers lack a sliding window, thus preventing the shift
equivariance inductive bias of CNNs. Contrary to this, MLP-Mixer [7]] replaces an attention layer
with a channel mixing layer which is equally effective.

ViT [l6] scales poorly against large sequence lengths, thus preventing the division of images into a
large number of patches. Later, Swin Transformer [[18] and RegionViT[[19] tackled such problems
using convolutional priors and hierarchical attention. Majority of the works in transformers for
efficiency [20]] focus on creating sparse attention pattern [2IH33]]. While some of the works also focus
on making the sparse MLP block [[34]].

Recently, the volume of literature in MLP-Mixer is also getting equally bigger[I35H42]]. Most of these
studies investigate the different ways of processing the input signals such as gating-based mixing [43]],
shift in channels [[44]] or using FFT for mixing tokens [45]]. The majority of the works in this category
involve mixing either the patches and/or channels in various ways. These works motivate us to
design a Patch-Only MLP-Mixer, which only mixes patch-wise for signal processing similar to CNN.

Partial Signal Processing: ShuffleNet [[16] uses group convolution over the channel dimensions,
allowing for efficient convolution due to the reduced number of channels. It also mixes the channels
for evenly distributing the output signals to the next convolution layer. It is important to note that
AlexNet[2] uses parallel grouped convolution for accelerating on two GPUs and combines the hidden
states in some layers to process them jointly. Similarly, Megatron-LM[46]] splits the input tokens into
two blocks, process them independently and again combines them at the end of the attention and
MLP blocks. Such a split, process, and combine method allows for processing a large number of tokens
in a parallel and efficient manner.

Coupling Flows [[14,47H49] and Reversible ResNet [[15]], use split and process mechanism that enables
invertibility. Partial mixing of signals can approximate any diffeomorphic function [50]. The key
takeaway with these architectures is that partial signal processing is sufficient for function approxi-
mation and provides efficiency and scalability benefits. These works motivate our generalization to
Dimension Mixer model.

Sparse Linear and Non-Linear Models: The complexity of matrix multiplication for a vector input
is known to be N?, where N is the input-output dimension. This problem has been tackled to

some extent using Fast Matrix Multiplications [51} 52]] and Low-Rank Matrix Decomposition. The
low-rank transformation has been widely used in efficient CNN architectures [53, 54]]. Models like
EffecientNet-v2 [55]] and MobileNets [56] use depth-wise and point-wise convolution as a low-rank
factorization of a standard convolution. One can get a highly sparse matrix using pruning-based
techniques [57]]. However, these methods accelerate neural networks on CPUs and mobile devices
but fail to accelerate significantly on GPUs.

Linear Butterfly Sparsity: The block sparse matrices [58]] have been used widely to accelerate matrix
multiplication. Another alternative is to use butterfly matrices [[11} 59]], which is inspired by the
FFT and scale well with dimensions. Some of the past works [[11H13} 60]] have successfully used
linear butterfly transformation to replace dense transformation and have produced highly efficient
architectures. Furthermore, structure of butterfly sparsity is block sparse, thus highly parallelizable
and have highly efficient hardware [60]] and software implementations. In this paper, we generalize
the Butterfly Sparsity to arbitrary non-linear dense operation.

Block Sparsity in Attention: Due to high parallelization of block-sparse operations, there has been
developments of block-sparse attention patterns. Previous works focus on combining block-sparse
with other global component like random [61]] or low-rank [26]]. Blockwise-Transformer [62]] focuses
on using various rotated block-sparsity patterns in different attention heads. Pixelated-Butterfly [[12]]
mentions use of butterfly sparsity and low-rank to create approximate attention similar to [23]].

Long Range Arena (LRA): LRA [63] is one of the most challenging benchmarks for evaluating
the quality of a model in long-range sequences (more than 1K tokens) involving various types of
problems. ListOps [l64] consists of hierarchical mathematical operations which measure the parsing
and analytical abilities. Byte-level text classification [65] is a binary classification task on characters.
Byte-level document retrieval [[66]] measures the ability to create a compressed representation of
input. Similarly, Image Classification Task [67]] is on a sequence of flattened pixels. Pathfinder task,
including the Pathfinder-X [[68]] is a synthetic dataset of labyrinths formulated as binary classification
task. Succeeding on all of these tasks shows that an efficient Attention mechanism works on diverse
and challenging tasks formatted as long sequence problems. The dataset provides a medium for fair
comparison using similar hyperparameters, rather than a competition using different configurations.

3. Dimension Mixer Models

Dimension Mixer model is a simple and general structure observed among most deep learning
architectures. The key observation is that of structured signal processing and performing mixing
of all input signals efficiently. Computational efficiency is achieved thanks to partial (group-wise)
mixing of input signals. For structured data, the mixing is itself structured similar to the data and
mixing functions like MLPs can be shared. Parameter efficiency is gained due to function sharing as
well as partial mixing.

Geometric Deep Learning [69] [70] tackles the generality of these architectures by considering graphs
as an underlying data structure, however, we generalize from the perspective of signal mixing and
processing. Dimension Mixer model allows us to develop structured processing for unstructured
data as well. Fig.|[l|shows a simple example of a general Dimension Mixer model using two major
operations (i) Select a group of dimensions and (ii) Process or Mix the selection. This operation is
carried out in parallel as well as sequentially for efficient mixing of signals. The signal mixing can be
evaluated with Graph Theory for the effective flow of signals.

The structure of Dimension Mixer model can be arbitrary in terms of input grouping/selection
and mixing/processing function, as long as the input signals are efficiently mixed. The butterfly
structure of the FFT is highly efficient, especially for GPUs. Hence, we focus on using the Butterfly
Structure for its immediate utility to accelerate current Neural Network Architectures. We create
more architectures using Dimension Mixer in Appendix|D} Furthermore, we compare computational
complexity of various architectures in Table

Table 2: Comparison of computational complexity of various architectures. (LEFT) unstructured
architecture with input-output dimension n. The complexity is measured for complete mixing
in a single block containing maximum path-length layers. (RIGHT) structured architecture with
sequence dimension (s) and patch/filter size (k). The complexity is measured for single layer of
mixing and requires max path-length layers to fully communicate between all elements. Here,
Monarch refers to Butterfly with only 2 factors. * represents our proposed models.

Architecture Complexity Max Path-Length | Architecture Complexity Max Path-Length
Linear n? 1 Attention 2 1
Monarch Linear ny/n 2 Monarch Attention* sv/s 2
Butterfly Linear nlog(n) log(n) Butterfly Attention* S log(s)

MLP n? 1 Convolution s s/k
Monarch MLP* ny/n 2 MLP-Mixer s 2
Butterfly MLP* nlog(n) log(n) PatchOnly Mixer* s $/kmaz

+ nle

{ Dimension Select + Mixer } x M . .

Figure 2: An example of FFT style Non-Linear Butterfly Mixer. This example shows the mixing of
an 8-dimensional input signal using Radix-2 Butterfly. The first layer selects the dimension as it
is. However, later layers use Permute to bring different dimensions in a block and later perform
un-permute to place the dimension in their original location. For Radix-4 Butterfly a mixer block
takes 4 dimensions as input and permutes accordingly as shown in Algorithm 2}

3.1. Non-Linear Butterfly Mixer

Although butterfly structure has been used widely in Linear Models [[11H13]], our theory of Dimension
Mixer model allows non-linear mixing for effective mixing of input signals. We propose a non-linear
butterfly structure model as shown in Fig.[2| The linear butterfly transformation is a special case
with linear mixing function f(z). Furthermore, we may use any learnable function as a mixing
function and use butterfly structure to sparsify any dimension of input signal. This generalization
allows us to extend butterfly structure beyond linear transforms. We can use MLP itself as non-linear
mixing function to mix unstructured input dimension or Transformer as mixing function to mix long
sequences. To this end, we propose Non-Linear Mixers called Butterfly MLP and Butterfly Attention.

Butterfly MLP: It uses MLP as a mixing function. We implement a column of MLPs in parallel
which helps utilize the acceleration of GPUs. This simply breaks a whole MLP into blocks of MLPs
in a butterfly structure for efficient mixing. Thus produced architecture is parameter efficient as
well as allows having arbitrary MLP design (in terms of depth, width and activation) as a mixing
function. Our method is more flexible than using Butterfly Linear as a replacement of dense layer. If
we take the Radix-V butterfly for N-dimensional input, it becomes a dense mixing. Hence, Butterfly
MLP generalizes to standard MLP. However, Radix-M (M < N) butterfly structure shards MLP
into multiple smaller MLPs which is more parameter efficient, as well as highly parallelizable. The
pseudocode for Butterfly MLP is shown in Appendix[A} The generality of our mixing to multiple of
block size is expanded in Appendix[C|

Butterfly Attention: We also apply the efficient mixing of butterfly structures in the Attention
mechanism of Transformers architecture (this is sparse but exact attention). It is widely known that

@ Block0 [[Block1 [Block2 [Block 3 i - > it 7 72 7
iz
[[[[4
7
8858, : i
[[[[

H:: H [H ::H = 3x3xc Patch-wise Mixing = 3x3xc Patch-wise Mixing

Layer 0 Layer 1 — T 4xdxc Patch-wise Mixing [(wi3)x(H/3) Channel-wise Mixing
(a) Butterfly Attention (b) MLP-Mixer Comparison

Figure 3: (a) An example of Butterfly Attention pattern on sequence length of 16 with butterfly
structure of Radix-4. Using Radix-v/N creates two sparse attention matrix for complete mixing of
signals. (b) (left) Patch Only MLP mixer (ours) compared to (right) Patch-Wise and Channel-Wise
Mixing for 12x12 image size. The Channel-wise Mixing is replaced by Different size Patch-wise
Mixing by our method.

Algorithm 1 Permutation of Butterfly Attention for Transformers

©: Input with shape [BATCH SIZE (B), SEQUENCE LENGTH (S), MODEL DIMENSION (D)]
mask : Attention mask (binary) - EITHER: token-wise mask
- OR: same size as Attention [-1, num_blocks, num_heads, block_size, block_sizel]
block_size (a): Radiz or Block size of Butterfly Attention
1 : Index of layer in butterfly (i.e 0, 1, .. log_a{S}-1 ; S is Sequence Length)
transformer: a transformer layer with Attention and MLP layers [Vaswani et el.]
B, S, D = x.shape
for i, transformer in enumerate(transformers_layers):

stride = block_sizex*i if (block_sizex*(i+1l) <= S) else S//block_size

x = x.view(B, -1, block_size, stride, D).transpose(2, 3).view(-1, block_size, D)
x = transformer(x, mask)
x = x.view(B, -1, stride, block_size, D).transpose(2, 3).view(B, S, D)

return x

the complexity of Attention is S? with sequence length S. Furthermore, there is a large number of
cases where the sequence length can blow up significantly such as on large images when using small
patch size, on long documents and on audio/video signals. To solve this issue, we apply partial
block-wise attention using the butterfly structure, which reduces the complexity of Attention to just
S, however it would require log, (S) layers of Attention for complete mixing of tokens where a is
Radix or block size. For experiments, we use Radix-v/S for mixing which creates complete mixing
within two attention blocks (see Fig.[3a)). Since the MLP layer is invariant to permutation of tokens,
we apply butterfly structure to Transformer Block as a whole as shown by the Algorithm |} Since
the Butterfly Attention converts Blocks of Tokens into batches, we may use any implementation of
transformer architecture, including the optimized ones like Flash Attention [[Z1]].

Despite having sparse attention, experiments show that it performs better than full attention when
used on CIFAR-10, CIFAR-100 datasets and on some LRA benchmark. Furthermore, the experiments
show that the Butterfly Attention mechanism is faster for training as well as memory efficient.

3.2. Patch-Only MLP-Mixer for Vision

In the MLP-Mixer architecture, the mixing between two or more patches is done by token mixing
(or channel-wise mixing) MLP. However, in CNN architecture, only use of patch-wise mixing is
sufficient. This is due to the sliding window used in convolution which helps to mix the signals of

Table 3: Replacing Dense with Sparse layers in MLP-Mixer. The accuracy is calculated over 8 seeds.

Method Expansion Parameters MACs Acc Max-Acc Permutations
Dense 35168k 2073M 83.83+0.407 84.64 0
Butterfly-Linear 1 140.96 k 50M 82.45+0.361 83.01 4
Butterfly-MLP 143.55 k 533M 82.68+0.244 83.06 2
Dense 61529k 40.89M 84.07+0.355 84.47 0
Butterfly-Linear 2 193.86 k 934M 83.49+0.322 83.84 4
Butterfly-MLP 197.75 k 9.88M 83.70+0.302 84.26 2

Table 4: An experiment comparing Butterfly Attention with Dense Attention. The B-Attention column
represents if the Butterfly Attention is used. The Sequence Length for patch size 4,2 and 1 are 64, 256
and 1024 respectively. Similarly, the embedding dimension for patch size 4, 2 and 1 are 128, 64 and
64 respectively. The device used for measuring time is GTX 3090 with PyTorch-2 and an off-the-shelf
implementation of Transformers.
Dataset CIFAR-10 CIFAR-100
Layers, Patch 8,4 4,4 4,2 4,1 4,4 4,2
B-Attention = No Yes No Yes No Yes No Yes No Yes No Yes
Accuracy (1) 8190 84.69 81.04 83.68 7835 80.80 6565 73.96 5392 57.02 50.03 53.29

Time (ms) 1741 1732 934 945 1688 953 198.04 2672 956 9.64 3253 1561
Memory (MiB) 434 386 304 270 1300 418 16592 1698 434 380 2468 810

Params. (M) 1.148 0.618 0.299 0.79 1.355 1.773

different regions along with an increase in the receptive field with an increase in depth. We search
for a mechanism that allows for mixing using patch-only but without the sliding window.

We propose Patch-only MLP Mixer (Fig.[b). The architecture consists of Image of size I and
Kernels/Patches of size K1, K2, K3, --- where, I = K; x K3 x K3--- such that K; and K; do not
have common factors for different i and j. If patch-sizes have common factors then the mixing occurs
in different partitions corresponding to the factors without complete mixing. For example, if we have
patches of size 6 and 8, then mixing happens in lcm(6, 8) = 24 instead of 48 block size. We choose
only 2 factors for patch size for the simplicity of experiments. Patch-only MLP-Mixer lies in between
MLP-Mixer and Convolution as it uses MLP for processing patches but only uses patches for overall
input mixing.

4. Experiments

Butterfly MLP: We test the approximation capacity of (i) our Butterfly MLP, (ii) MLP with Butterfly-
Linear Transform [[13,[72]] and (iii) Dense MLP in a MLP-Mixer settings trained on CIFAR-10 dataset.
Both sparse models have large savings on parameters and compute. For the experiments, we use
MLP-Mixer with 7 layers and train for 200 epochs with Adam optimizer(lr=0.001) and cosine decay
Ir. The dimension of patch and channel are 64 and 121 respectively - square numbers to create
block size of 8 and 11 respectively. In Table 3} we compare model with hidden expansion of 1 and
2 on the MLP layer. Butterfly MLP produces slightly higher accuracy and has extra parameters
consisting of biases in each mixing block of MLP unlike Butterfly Linear based MLP. The number of
permutations (including the un-permute) used in MLP block shows that Butterfly-Linear requires
4 such permutations in 2 layers of sparse weights that follows MLP structure. However, Butterfly
MLP accomplishes this with only 2 permutation and on a single butterfly structure. Here, a single
block is itself non-linear and doesn’t require two layers for approximating an MLP. Theoretically, this
reduces data movement between parallel and sequential blocks.

Butterfly Attention: We test the capacity of Butterfly Attention as compared to dense Attention. We
experiment on CIFAR-10 and CIFAR-100 datasets using different patch sizes and different number of
layers without using Positional Encoding. In Table 4 we show the accuracy, parameters and memory

Table 5: Comparison of attention mechanisms on the Long Range Arena benchmark. The Standard
attention [5] is a reference performance baseline. Among the sparse attention methods, Butterfly
scores the best on most LRA tasks. Token length of a task is indicated in parentheses. Legend:
Flash-Attn. [I711], Reformer [29], Linformer [30], Performer [31l], Nystromfrm. [128]]

Model ListOps (2K) Text (4K) Retrieval (4K) Image (1K) Pathfinder (1K) Average (<4K) | Path-X (16K)
Standard 37.10 65.02 79.35 38.20 74.16 58.77 —
Flash-Attn. 37.6 63.9 81.4 43.5 72.7 59.8 61.4
Reformer 19.05 64.88 78.64 43.29 69.36 55.04 —
Linformer 37.25 55.91 79.37 37.84 67.60 55.59 —
Performer 18.80 63.81 78.62 37.07 69.87 53.63 —
Nystromfrm. 37.15 65.52 79.56 41.58 70.94 58.95 —
Butterfly 37.05 65.25 81.32 44.02 71.12 59.75 76.72

usage of the vision transformers. The time taken per step is an average over 50 steps of training. The
experiments are designed to test the resource consumption and accuracy of both sparse and dense
attention models. Experiments show that Butterfly Attention scales better with longer sequence
lengths — produces a faster, less memory consuming and better-performing model as compared to
dense attention. We discuss the possible reasons for accuracy gains in Appendix B} The experiments
are carried out for 300 epochs and 64 and 128 batch size for CIFAR-10 and CIFAR-100 respectively
with cosine decay of learning rate 0.0001. We use a total of 8 Attention heads on all the models.

Table 6: Summary of Pathfinder datasets used to solve pathfinder-X (Top to Bottom). Accuracy is
reported for Butterfly Attention based Transformer. Here, some of the Pathfinder-32 and Pathfinder-64
samples are scaled for reference.

T 5

- -~

55 s €% o 238

& 2 g 2& = T =

T8 5§ £ 27 I8 s

EP g4 & A& ~O Samples Acc
32 14 X - - - 69.17
64 9 X - - - 80.99
128 14 v 5 1 0.9 71.84
128 14 v 5 2 0.9 75.05
128 14 v 14 2,3 0.8 75.46
128 14 v 20 23 073 76.41

76.72

128 14 X - - -

Long Range Arena: We conduct experiments on the Long Range Arena (LRA) [63]] benchmark
to test the capacity of Butterfly Attention with regards to context length. The LRA benchmark is
designed for a fair comparison of efficient attention mechanisms using the same training settings.
The results on LRA along with their average accuracies are shown in Table[5| Experiments show that
our efficient attention performs competitive among tasks with best average score. The data for other

Table 7: Vision MLP Mixers Comparision. We measure the Accuracy Parameters and MACs. MLP-
Dims shows the dimension of two MLPs (m1 and m2) used in single block of mixing. The reported
accuracy is best over 3 runs.

. MLP-Dims CIFAR-10 CIFAR-100
Architecture Layers

ml,m2 Acc Params MACs Acc Params MACs

MLP Mixer (c1) 81, 144 83.81 090M 7465M 57.37 1.95M 75.7M
Patch Only 7 75,147 84.66 0.81M 23.04M 55,55 1.14M 23.37M
MLP Mixer (c2) 64,153 8416 0.88M 60.48M 5838 1.77M 61.36M
MLP Mixer (c1) 81, 144 83.03 1.23M 106.36M 56.34 228M 10741M
Patch Only 10 75,147 8549 1.14M 329M 5629 147M 33.23M
MLP Mixer (c2) 64,153 8420 122M 86.16M 57.81 210M 87.04M

sparse and standard attention is from NystromFormer [28]. We use the same training and evaluation
protocol for our methods as well. The experiments on LRA (except Pathfinder-X) consist of a simple
Xformer architecture with 2 layers and 2 attention heads, learning rate of 0.0001 with warmup, and
linear learning rate decay with 0.1 dropout for embedding, attention, MLPs, and residuals (refer to
(28] for all hyperparameters).

Solving Pathfinder-X: Until recently, the Pathfinder-X with sequence length of 1282 (16K) tokens
was not solved. This problem helped ignite interest in model very long sequence length. Since many
transformer papers use LRA and Pathfinder-X as a model performance benchmark instead of arena
for attention variants, direct comparison is not possible. We include results for Flash-Attention [[Z1]]
in Table [5|as it solves Path-X with dense attention. We modify a few hyperameters to solve the task —
use 4 layers of butterfly transformer to allow 2 complete signal mixing using block size of 128 with 4
attention heads. We use learning-rate of 3 x 10~* with cosine decay, weight-decay of 1 x 1073, and
limit dropout to only embedding, attention-matrix and hidden units of MLP.

Since brute force approach to training Pathfinder-X (Pathfinder128 contour-length-14) did not work, we
devised a step by step process to help the transformer grok the intermediate complexities. We follow
upscaling method from [71]], i.e. we use nearest neighbour interpolation of positional embedding
and also increase the size of butterfly-block. Experimentally, we find it easier to grok Pathfinder64
contour-length-9 than Pathfinder64 contour-length-14 initialized from Pathfinder32 contour-length-14.
To scale from Pathfinder64 contour-length-9 to Pathfinder128 contour-length-14 is a huge increase in
complexity and makes it difficult to grok - it has many distractors, have varying paddles/dash gap
and possibly lower contrast. We generate datasets with increasing complexity to the equivalent of
Pathfinder128 contour-length-14. Table[6|summarizes the datasets used and accuracy achieved by our
method.

Vision MLP Mixers: We compare our Patch-Only MLP mixer with the original MLP-Mixer architec-
ture with a similar number of layers and a similar number of parameters in the mixing blocks. We try
to balance the mlp dimension on both Mixer methods. However, due to different ways of scaling the
input, the models do not have same parameters. The experiments show that our method produces
comparative or even better results than the original MLP mixer on CIFAR-10 and CIFAR-100 datasets
(32x32 images). For MLP Mixer config-1 (c1) we scale the input image to 36x36 size, extract patch of
size 4 and expand channels by a factor of 3. Furthermore, for config-2 (c2) we use a patch size of 4
and expand channels by a factor of 3.2. On Patch-Only MLP Mixer, we expand the image to 35 = 5x7
size and mix over the patch of sizes 5 and 7 with no channel expansion. We train all models for 200
epochs with Adam optimizer(lr=0.001) and cosine decay Ir. We use 64 batch size for CIFAR-10 and
128 for CIFAR-100.

We compare two methods with a similar number of parameters in the mixing blocks. The results in
Table [/]show that our method performs competitively or even better than the original method. If we
compare the speed of training these models, our method lags behind in wallclock time due to the
Unfold and Fold operations needed to extract and combine patches. However, these methods do not
count towards MACs. In our configuration, MLP-Mixer produces higher MACs than our method.

This is because MLP-Mixer produces large hidden image size, while our method produces smaller
hidden image size and has a smaller classifier layer. Moreover, sparsity can be varied by selection of
patch size and hidden expansion [[73]].

5. Conclusion

In this paper, we introduce a generic method of efficient input signal processing model called
Dimension Mixer model. We employed our method on multiple host architectures, such as MLP and
Attention Layers of the Transformer Architecture, thereby introducing sparsity; to be exact, butterfly
sparsity. A yet another contribution we made in this paper is the introduction of Patch-Only MLP
Mixer as an intermediate architecture between the original MLP-Mixer and the CNN.

All the proposed models are the application of the Dimension Mixer model which we find is insightful
for analyzing the signal processing on deep learning architectures and also for designing newer
models. Experimental results show that our proposed models are often more efficient and/or more
accurate than the counterpart architectures.

Limitation: Our study mostly uses small scale datasets for comparison. Benchmarking with existing
models on large scale datasets like ImageNet [74] can make our findings more significant.

Acknowledgements

We thank Dr. Anton Obukhov for his help with running Pathfinder-X experiments on the Euler
cluster of ETH Ziirich.

References

[1] Yann LeCun et al. Lenet-5, convolutional neural networks. URL: http://yann. lecun.
com/exdb/lenet, 20(5):14, 2015.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems, 25:1097-1105,
2012.

[3] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770-778, 2016.

[5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[6] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[7] Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas
Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer:
An all-mlp architecture for vision. Advances in Neural Information Processing Systems, 34:24261—
24272,2021.

[8] Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. Sparse gpu kernels for deep learning.
In SC20: International Conference for High Performance Computing, Networking, Storage and Analysis,
pages 1-14. IEEE, 2020.

10

[9] Yerlan Idelbayev and Miguel A Carreira-Perpindn. Low-rank compression of neural nets:
Learning the rank of each layer. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8049-8059, 2020.

[10] James W Cooley and John W Tukey. An algorithm for the machine calculation of complex
fourier series. Mathematics of computation, 19(90):297-301, 1965.

[11] Anish Prabhu, Ali Farhadi, Mohammad Rastegari, et al. Butterfly transform: An efficient fft
based neural architecture design. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12024-12033, 2020.

[12] Beidi Chen, Tri Dao, Kaizhao Liang, Jiaming Yang, Zhao Song, Atri Rudra, and Christopher
Re. Pixelated butterfly: Simple and efficient sparse training for neural network models. arXiv
preprint arXiv:2112.00029, 2021.

[13] Tri Dao, Beidi Chen, Nimit S Sohoni, Arjun Desai, Michael Poli, Jessica Grogan, Alexander Liu,
Aniruddh Rao, Atri Rudra, and Christopher Ré. Monarch: Expressive structured matrices for

efficient and accurate training. In International Conference on Machine Learning, pages 4690-4721.
PMLR, 2022.

[14] Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components
estimation. arXiv preprint arXiv:1410.8516, 2014.

[15] Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B Grosse. The reversible residual
network: Backpropagation without storing activations. Advances in neural information processing
systems, 30, 2017.

[16] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 6848-6856, 2018.

[17] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines
for efficient cnn architecture design. In Proceedings of the European conference on computer vision
(ECCV), pages 116-131, 2018.

[18] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings
of the IEEE /CVF International Conference on Computer Vision, pages 10012-10022, 2021.

[19] Chun-Fu Chen, Rameswar Panda, and Quanfu Fan. Regionvit: Regional-to-local attention for
vision transformers. arXiv preprint arXiv:2106.02689, 2021.

[20] YiTay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey.
ACM Computing Surveys (CSUR), 2020.

[21] Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang, Peyman Milanfar, Alan Bovik, and
Yinxiao Li. Maxvit: Multi-axis vision transformer. arXiv preprint arXiv:2204.01697, 2022.

[22] Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi. Neighborhood attention
transformer. arXiv preprint arXiv:2204.07143, 2022.

[23] Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatterbrain:
Unifying sparse and low-rank attention. Advances in Neural Information Processing Systems, 34:
17413-17426, 2021.

[24] Bin Chen, Ran Wang, Di Ming, and Xin Feng. Vit-p: Rethinking data-efficient vision transform-
ers from locality. arXiv preprint arXiv:2203.02358, 2022.

[25] Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

11

[26] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with
sparse transformers. arXiv preprint arXiv:1904.10509, 2019.

[27] Gongalo M Correia, Vlad Niculae, and André FT Martins. Adaptively sparse transformers.
arXiv preprint arXiv:1909.00015, 2019.

[28] Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li,
and Vikas Singh. Nystromformer: A nystrém-based algorithm for approximating self-attention.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 14138-14148,
2021.

[29] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

[30] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

[31] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane,
Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking
attention with performers. arXiv preprint arXiv:2009.14794, 2020.

[32] Yi Tay, Dara Bahri, Donald Metzler, Da-Cheng Juan, Zhe Zhao, and Che Zheng. Synthesizer:
Rethinking self-attention for transformer models. In International conference on machine learning,
pages 10183-10192. PMLR, 2021.

[33] Shuohang Wang, Luowei Zhou, Zhe Gan, Yen-Chun Chen, Yuwei Fang, Sigi Sun, Yu Cheng, and
Jingjing Liu. Cluster-former: Clustering-based sparse transformer for long-range dependency
encoding. arXiv preprint arXiv:2009.06097, 2020.

[34] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity, 2021.

[35] Ruiyang Liu, Yinghui Li, Linmi Tao, Dun Liang, and Hai-Tao Zheng. Are we ready for a new
paradigm shift? a survey on visual deep mlp. Patterns, 3(7):100520, 2022.

[36] Yehui Tang, Kai Han, Jianyuan Guo, Chang Xu, Yanxi Li, Chao Xu, and Yunhe Wang. An image
patch is a wave: Phase-aware vision mlp. In Proceedings of the IEEE /CVF Conference on Computer
Vision and Pattern Recognition, pages 10935-10944, 2022.

[37] Shoufa Chen, Enze Xie, Chongjian Ge, Ding Liang, and Ping Luo. Cyclemlp: A mlp-like
architecture for dense prediction. arXiv preprint arXiv:2107.10224, 2021.

[38] Ziyu Wang, Wenhao Jiang, Yiming M Zhu, Li Yuan, Yibing Song, and Wei Liu. Dynamixer: a
vision mlp architecture with dynamic mixing. In International Conference on Machine Learning,
pages 22691-22701. PMLR, 2022.

[39] Jianyuan Guo, Yehui Tang, Kai Han, Xinghao Chen, Han Wu, Chao Xu, Chang Xu, and Yunhe
Wang. Hire-mlp: Vision mlp via hierarchical rearrangement. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 826-836, 2022.

[40] Huangjie Zheng, Pengcheng He, Weizhu Chen, and Mingyuan Zhou. Mixing and shifting:
Exploiting global and local dependencies in vision mlps. arXiv preprint arXiv:2202.06510, 2022.

[41] Tan Yu, Xu Li, Yunfeng Cai, Mingming Sun, and Ping Li. S2-mlpv2: Improved spatial-shift mlp
architecture for vision. arXiv preprint arXiv:2108.01072, 2021.

[42] Qibin Hou, Zihang Jiang, Li Yuan, Ming-Ming Cheng, Shuicheng Yan, and Jiashi Feng. Vision
permutator: A permutable mlp-like architecture for visual recognition. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2022.

12

[43] Hanxiao Liu, Zihang Dai, David So, and Quoc V Le. Pay attention to mlps. Advances in Neural
Information Processing Systems, 34:9204-9215, 2021.

[44] Dongze Lian, Zehao Yu, Xing Sun, and Shenghua Gao. As-mlp: An axial shifted mlp architecture
for vision. arXiv preprint arXiv:2107.08391, 2021.

[45] James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and Santiago Ontanon. Fnet: Mixing tokens
with fourier transforms. arXiv preprint arXiv:2105.03824, 2021.

[46] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-Im: Training multi-billion parameter language models using model
parallelism. arXiv preprint arXiv:1909.08053, 2019.

[47] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
Advances in neural information processing systems, 31, 2018.

[48] Jorn-Henrik Jacobsen, Arnold Smeulders, and Edouard Oyallon. i-revnet: Deep invertible
networks. arXiv preprint arXiv:1802.07088, 2018.

[49] Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter Abbeel. Flow++: Improving
flow-based generative models with variational dequantization and architecture design. In
International Conference on Machine Learning, pages 2722-2730. PMLR, 2019.

[50] Takeshi Teshima, Isao Ishikawa, Koichi Tojo, Kenta Oono, Masahiro Ikeda, and Masashi
Sugiyama. Coupling-based invertible neural networks are universal diffeomorphism approxi-
mators. Advances in Neural Information Processing Systems, 33:3362-3373, 2020.

[51] Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Mo-
hammadamin Barekatain, Alexander Novikov, Francisco] R Ruiz, Julian Schrittwieser, Grzegorz
Swirszcz, et al. Discovering faster matrix multiplication algorithms with reinforcement learning.
Nature, 610(7930):47-53, 2022.

[52] Volker Strassen et al. Gaussian elimination is not optimal. Numerische mathematik, 13(4):354-356,
1969.

[53] Chao Peng, Xiangyu Zhang, Gang Yu, Guiming Luo, and Jian Sun. Large kernel matters—
improve semantic segmentation by global convolutional network. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 4353-4361, 2017.

[54] Shiwei Liu, Tianlong Chen, Xiaohan Chen, Xuxi Chen, Qiao Xiao, Bogian Wu, Mykola Pech-
enizkiy, Decebal Mocanu, and Zhangyang Wang. More convnets in the 2020s: Scaling up
kernels beyond 51x51 using sparsity. arXiv preprint arXiv:2207.03620, 2022.

[55] Mingxing Tan and Quoc Le. Efficientnetv2: Smaller models and faster training. In International
Conference on Machine Learning, pages 10096-10106. PMLR, 2021.

[56] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

[57] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

[58] Scott Gray, Alec Radford, and Diederik P Kingma. Gpu kernels for block-sparse weights. arXiv
preprint arXiv:1711.09224, 3(2):2, 2017.

[59] TriDao, Albert Gu, Matthew Eichhorn, Atri Rudra, and Christopher Ré. Learning fast algorithms
for linear transforms using butterfly factorizations. In International conference on machine learning,
pages 1517-1527. PMLR, 2019.

13

[60] Hongxiang Fan, Thomas Chau, Stylianos I Venieris, Royson Lee, Alexandros Kouris, Wayne
Luk, Nicholas D Lane, and Mohamed S Abdelfattah. Adaptable butterfly accelerator for
attention-based nns via hardware and algorithm co-design. In 2022 55th IEEE /| ACM International
Symposium on Microarchitecture (MICRO), pages 599-615. IEEE, 2022.

[61] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santi-
ago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers
for longer sequences. Advances in neural information processing systems, 33:17283-17297, 2020.

[62] Jiezhong Qiu, Hao Ma, Omer Levy, Scott Wen-tau Yih, Sinong Wang, and Jie Tang. Blockwise
self-attention for long document understanding. arXiv preprint arXiv:1911.02972, 2019.

[63] YiTay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
transformers. arXiv preprint arXiv:2011.04006, 2020.

[64] Nikita Nangia and Samuel R Bowman. Listops: A diagnostic dataset for latent tree learning.
arXiv preprint arXiv:1804.06028, 2018.

[65] Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting of
the association for computational linguistics: Human language technologies, pages 142-150, 2011.

[66] Dragomir R Radev, Pradeep Muthukrishnan, Vahed Qazvinian, and Amjad Abu-Jbara. The acl
anthology network corpus. Language Resources and Evaluation, 47:919-944, 2013.

[67] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images,
2009.

[68] Drew Linsley, Junkyung Kim, Vijay Veerabadran, Charles Windolf, and Thomas Serre. Learning
long-range spatial dependencies with horizontal gated recurrent units. Advances in neural
information processing systems, 31, 2018.

[69] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst.
Geometric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):
18-42,2017.

[70] Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veli¢kovi¢. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

[71] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness. Advances in Neural Information Processing
Systems, 35:16344-16359, 2022.

[72] Rui Lin, Jie Ran, King Hung Chiu, Graziano Chesi, and Ngai Wong. Deformable butterfly: A
highly structured and sparse linear transform. Advances in Neural Information Processing Systems,
34:16145-16157, 2021.

[73] Tomohiro Hayase and Ryo Karakida. Mlp-mixer as a wide and sparse mlp. arXiv preprint
arXiv:2306.01470, 2023.

[74] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pages 248-255. Ieee, 2009.

[75] Rhea Sanjay Sukthanker, Zhiwu Huang, Suryansh Kumar, Radu Timofte, and Luc Van Gool.
Generative flows with invertible attentions. In Proceedings of the IEEE / CVF Conference on Computer
Vision and Pattern Recognition, pages 11234-11243, 2022.

14

[76] Karttikeya Mangalam, Haoqi Fan, Yanghao Li, Chao-Yuan Wu, Bo Xiong, Christoph Feicht-
enhofer, and Jitendra Malik. Reversible vision transformers. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10830-10840, 2022.

[77] Frangois Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 1251-1258, 2017.

15

A. Butterfly MLP Algorithm

The pseudocode for Butterfly MLP is given by Algorithm 2]

Algorithm 2 Implementation of Block-Sparse and Butterfly MLP

class BlockLinear:
def __init__(self, num_blocks, input_block_dim, output_block_dim):
self .weight = torch.randn(num_blocks, input_block_dim, output_block_dim)
self.bias = torch.randn(num_blocks, 1, output_block_dim)

def forward(self, x):
= -> [num_blocks, batch_size, input_block_dim]
return torch.batch_matmul(x, self.weight) + self.bias

class BlockMLP:
def __init__(self, input_dim, layer_block_dims=[], actf=nn.GELU):
self.block_dim = layer_dims[0]
num_blocks = input_dim//layer_block_dims[0]

Create a block MLP
self.mlp = nn.Sequential([])
for i in range(len(layer_block_dims)-1):
self.mlp +=[BlockLinear(num_blocks, layer_block_dims[i], layer_block_dims[i+1]),
actf() 1]
self.mlp = self.mlp[:-1]

def forward(self, x):
bs, input_dim = x.shape
x = x.view(bs, -1, self.block_dim).transpose(0,1)
x = self.mlp(x)
X = x.transpose(1,0).view(bs, -1)
return x

= : Input with shape [batch_stize, input_dim].

block_dim -> size of block in block_sparse MLP. Usually a factor of input_dim

block_layers : Layers of block mizing function.

fn_block : Block mizing function; is parallel non-linear mizer operating per block.
y : Output with same shape as Input = for simplicity.

block_layers = []
for _ in range(log_base(input_dim, base=block_dim)): ## using hidden expansion of 2

block_layers += [BlockMLP(input_dim, [block_dim, block_dim#*2, block_dim])]

Using Butterfly Permutation
for i, fn_block in enumerate(block_layers):
stride = block_size**i if (block_sizex*(i+1) <= input_dim) else input_dim//block_size
x = x.view(-1, block_dim, stride).transpose(2, 1).view(batch_size, -1)
x = fn_block(x)
x = x.view(-1, stride, block_dim).transpose(2, 1).view(batch_size, -1)
return x

]

B. Effect of Patches, Block Size and Stride in Butterfly ViT

The use of patches as tokens in Butterfly ViT induces local effect on the division of blocks. This
depends on the size of block to attend and the stride value to jump between tokens. This is depicted by
the Figure[d] This structure might also help the sparse linear and non-linear MLP-Mixer architectures
as shown in Table[3l

We randomize input patches to remove the inductive bias of locality in Butterfly Vil and
only test for structured sparse mixing. We find that random tokens still perform well as

16

a) BS = 8, Stride =1 b) BS =8, Stride = 8 c) BS = 16, Stride = 1 d) BS = 16, Stride = 4 e) BS =8, Stride =4 f) BS = 4, Stride = 16

Figure 4: The images with 8x8 = 64 tokens using butterfly attention of different block size (BS) and
various strides. Each different color represents different blocks of attention. The partial mixing of
signals on multiple layers can create complete mixing of every tokens. Here, mixing combinations of
(ab), (cd) (cb), and (cf) create complete mixing however, (ae) and any same mixing like (aa) does
not mix every token.

shown in Table These experiments do not use positional encoding, hence the butterfly
provides even better inductive bias of the locality for processing the images or sequences.

Table 8: An experiment comparing Accuracy of ViT
on CIFAR dataset with Structured Butterfly Atten-
tion, Randomization of Tokens on Butterfly Atten-
tion and Dense Attention. The Sequence Length

To our surprise - using butterfly sparse attention
with random token shuffling is still better than
dense attention in some cases. We guess that

sparse mixing itself can act as inductive bias. for patch size 4, 2 and 1 are 64, 256 and 1024 re-
spectively.

C. Permutation of Dimension Dataset CIFAR-10 CIFAR-100
Layers, Patch 8,4 4,4 4,2 4,1 4,4 4,2

Previous works on Butterfly Structure of Linear Butterfly 84.69 83.68 8080 73.96 57.02 5329

Rand Butt. 82.41 81.86 7741 70.65 5496 49.31

Transform approximate matrices with power of Dense 8190 8104 7835 6565 5392 50.03

2 (PoT) [59] using 2 x 2 blocks or using resized
PoT blocks [[12]]. Deformable Butterfly [72]] gen-
eralizes this structure to more flexible sized matrices by using non-Pol’ butterfly factors while
Monarch Butterfly [13] generalizes to two block-diagonal matrices. Our work generalizes butterfly
structure to work on square matrices of multiple of M rather than power of M using only M x M blocks.
Modern architectures use N — N transforms widely and on multiple devices. Hence it is significant
to generalize butterfly structure that consider the size of the blocks.

Below, we show how our method of butterfly structure is different from Deformable Butterfly when
fixing the block size. We use formulation from their work to show the difference.

Recap on Deformable Butterfly (DeBut): The authors define the notion of a real-valued DeBut factor as
R ’q)t) € RP*? that contains block matrices along its main diagonal, wherein each block matrix is
further partitioned into r x s blocks of ¢ x ¢t diagonal matrices.

In essence, such densification flow can be generalized to deformable blocks arising from the product
of two contiguous DeBut factors, one with diagonal sub-blocks (¢ > 1) and another with dense
sub-blocks (t = 1), say R>%) RP*?) where t2 > 1. It can be further shown that such densifying

(r2,82,t2)" "(r1,51,1)
product mandates g2 = p; and ¢ = ry, leading to:

(p2,q1) “ R(pz,m) (p1,q1)

(r2r1,s251,1) (r2,52,7m1)" "(11,81,1)

Edge case: Let’s try to decompose 8 x 8 matrix into two butterfly matrices.

We may take g1 = p1 = g2 =p2 = 8,71 = 51 =4, 2 = s9 = 2and ¢, = 4(= 1) as per the definition.
Here, the block-diagonal matrix have size of 4x4 and 2x2 respectively.

However, if we want to use both block-diagonal matrix of size 4 x 4, then we are limited by their
statement that densifying mandates to = ry.

17

With our method: Our method does not follow the strict requirement stated previously that t; = 1,
but follows requirements that g2 = p;, t2 > 1 and ¢t < 7 leading to:

(p2,q1) (p2,p1) (p1,91)
(rat2,s2t2,1) A R(T’27527t2) (r1,81,1)

Take g1 = p1 = q2 = p2 = 8,71 = §1 = ro = so = 4 and to = 2(# r1). Here, we want to process 8 x 8
dimensions with block-diagonal mixers of size 4 x 4. This can approximate 8 x 8 matrix with two
layers of 4 x 4 block diagonal matrices. We achieve this by using stride(t2) = ¢2/r1 in the last layer
as shown in Algorithm[T]and

D. More usage of Dimension Group Mixing

We show further use of partial or group mixing to create more parallelizable and efficient architecture.

D.1. Token Parallel Attention

usyoy| 3andurg
uayoy andurg
uayoyL | amdani

N0 L 3 d I

- [t
uayoy anding

(2
L
l

m—i Wi I

oy k2 of ka oF

Figure 5: (left) The standard multi-headed self attention (MHSA). (mid) Token group parallel
attention with token split into multiple parallel but smaller MHSA (right) Most reduced form that
uses 1 head per token-group and token dimension is mixed by the next MLP layer. The attention
heads in all figures are labeled as h;.

Table 9: The number of heads is 8 for all experiments. Token-Parallel-2 has 4 parallel MultiHeaded
Self-Attention with 2 heads per group. Token-Parallel 1 has 1 Self-Attention per group without using
the W,,; matrix. The baseline is reported from Table[d] The reported accuracy is best among 3 runs.
Layers, Patch 8,4 4,4 4,2
Token-Dims 128 128 64
Acc Params Acc Params Acc Params

Baseline 8190 1.14M 81.04 0.618M 7835 0.299M
without Wy, 81.02 1.06M 80.74 0.552M 77.89 0.282M
Token-Parallel 2 8157 0.721M 8142 0405M 7695 0.245M
Token-Parallel 1 82.18 0.689M 8159 0389M 7683 0.241M

We focus on W,,,; term of attention. First, according to our theory, its purpose is to mix multiple
heads. Itis clear that MLP layer just after attention can mix those signals. Can we simply remove that?
The KQV matrices also take into consideration the whole of tokens. So, can we have block-sparse
KQV matrices rather than low-rank for each heads in parallel? There has been some success with
using split channel for reversible neural architectures [[75} [76]].

We experiment on ViT with 2 heads per parallel-attention-block as shown in Figure [f|and find
reduced parameter and compute with not much degradation in performance. The experiment is
performed on CIFAR-10 dataset as shown in Table[9]

On top of that, if we have 1 head per parallel block, we can simply remove the W,,,; matrix algebraically,
as it can be combined with W, matrix. Experiments show that, it works fine and additionally helps
fully parallelize heads in multi-headed self attention.

18

D.2. Convolutional Channel Mixer

—_— —
=} ul o n n
= o = 1) 1)
® o] o o
E} =1 E o o
5 £ 5 = c
® = ® = &
= o - o o
2 @ @ 2 2
—_— —_—
Input GConv1 Channel GConv2 Output Input GConv1 GConv2 Channel GConv1 GConv2 Output
Shuffle Shuffle

Figure 6: (LEFT) Residual block with Group Convolution and Channel Shulffle for mixing all signals
in 1 Res-block. (RIGHT) Multiple grouped residual block with channel shuffle after residual block

to mix channels using multiple residual-blocks.

GConv1 layer consists of convolution, batchnorm

and activation function, whereas GConv?2 consists of convolution and batchnorm.

ShuffelNet [[16] uses grouped convolution, chan-
nel shuffeling and grouped convolution in se-
quence to mix all channels. It focuses on sparse
convnet using DepthWise [[77] and PointWise
convolution. For experimental comparision
on CIFAR-10 dataset, we sparsify the convolu-
tional channels of ResNet [4]] architecture to mix
within a single block as shown in Figure 6] (left).

One extension we make is to create parallel resid-
ual blocks grouped in channels, which do not
mix all channels. We shuffle the groups and mix
using next layer of parallel res-blocks. Extend-
ing this way helps us mix all signals with fewer
shuffels/permutation for a constant number of
layers as shown in Figure[6] (right).

With experiments as shown in Figure [/, we
find that splitting the channels does not help
much with sparsity-accuracy tradeoff. The re-
sults points to having accuracy dependent on
parameters, and not improving due to sparsity.
This could be because there is no structure (or
inductive bias) to benefit the performance. This

95.0 ®
94.5 4
94.0 1

93.5 -

- ® resnet23-p32

93.0 A resnet20-p32
resnet23-p64-blockmix
resnet23-p64-convmix
resnet20-p64-convmix
resnet20-pl6
resnet20-p64-blockmix
91.5 4 + resnetl7-p32-blockmix
resnet20-p32-convmix
resnet20-p32-blockmix

accuracy

92.51

[I B Y

92.0 1 +*

91.0 A

512 514 516 5:8 6:0 6:2
parameters (logio scale)

Figure 7: Result showing test accuracy of vari-
ous ResNet modifications using different num-
ber of input-planes or channels. The legend
shows resnet{depth}-p{input channels}-{mixing
location}. conv-mix and block-mix is shown in
Figl6left and right respectively. The reported ac-
curacy is best over 3 runs.

approach might be helpful in creating parallel architectures, which can leverage fewer communication
between blocks instead of communicating after each convolution operation.

19

	. Introduction
	. Background and Related Works
	. Dimension Mixer Models
	. Non-Linear Butterfly Mixer
	. Patch-Only MLP-Mixer for Vision

	. Experiments
	. Conclusion
	. Butterfly MLP Algorithm
	. Effect of Patches, Block Size and Stride in Butterfly ViT
	. Permutation of Dimension
	. More usage of Dimension Group Mixing
	. Token Parallel Attention
	. Convolutional Channel Mixer

