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Abstract

Many real-world classification tasks involve datasets with large and imbalanced label spaces,
making class-specific uncertainty quantification particularly challenging. Conformal Pre-
diction (CP) provides a model-agnostic framework, which formally guarantees coverage,
meaning that its prediction sets contain the true label with a user-defined probability (con-
fidence level). However, standard class-conditional methods often fail when data is scarce
for some classes. We propose a method that uses domain knowledge or label hierarchies to
dynamically group semantically related classes to meet the desired coverage for a given con-
fidence threshold. Our method maintains class-conditioned calibration when possible and
provides group-conditioned guarantees where necessary. We evaluate our method on out-
come diagnoses prediction, an important clinical task that does not only benefit from robust
uncertainty estimation, but also presents a very imbalanced label distribution. We conduct
experiments using three clinical datasets employing two medical taxonomies (ICD-10 and
CCSR) and label spaces of varying sizes with up to more than 1,000 classes. Our results
show that the proposed approach consistently improves class-conditional coverage for infre-
quent diagnoses, outperforming strong baselines in all settings in terms of class-conditional
coverage. By improving coverage for underrepresented classes, our method enhances the
reliability and trustworthiness of predictive models. This improvement is especially valu-
able in clinical applications, where failure to detect rare but serious conditions can lead to
harmful consequences.

1 Introduction

In this work, we address class calibration in challenging settings with a large number of classes and limited
available samples. We focus on tasks involving hierarchically organised label spaces, where classes are struc-
tured according to the relationships between the classes, e.g., a taxonomy. Such hierarchies capture semantic
relationships between labels and are common in many real-world domains, including product categorization,
biological classification of bacteria, or diagnoses in healthcare.

We focus on the medical domain, specifically on the task of outcome diagnosis prediction as a canonical
example of this setting. A key challenge of outcome diagnosis prediction is the large and imbalanced label
space that exhibits a pronounced long-tail. Clinical decision support systems (CDSS) must not only show
strong performance, but also be well-calibrated, as miscalibration can lead to harmful misdiagnoses (Alkan
et al., 2025)). At the same time, clinical models are usually designed to yield point predictions (Miotto et al.)
2018} 12016)), which offer no measure of uncertainty. This is especially problematic in diagnosis tasks, where
overlapping symptoms (Wagan et all [2024) are common and models may struggle to distinguish between
similar conditions, especially for underrepresented classes. Thus, there is an important requirement for
models to provide reliable predictions, as well as uncertainty estimates.

Trust and Uncertainty of CDSS. The medical domain is particularly suitable for demonstrating the
impact of improvements in class conditional coverage, as it offers well-established taxonomies such as ICD-
codes and presents high-stakes scenarios where calibration failures can directly affect patient safety. For a
successful clinical deployment of AI technology, medical staff and patients need to trust its predictions. A
central assumption underlying a substantial body of literature in eXplainable AI (XAI) is that trust can
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Figure 1: ICD-10 hierarchy of selected diseases of the circulatory system. ICD-10 codes are shown in
parentheses and the number of patients in the calibration data per class is indicated at the bottom of each
box. When the number of samples for a class is smaller than a certain threshold m (here, m = 10), our
method, Dynamically Grouped Conformal Prediction (DGCP), groups this class with semantically related
ones, using domain knowledge such as the ICD-10 hierarchy. In this example, the leaf node Rheumatic
chorea (102) with only 3 patients (highlighted in light red) is grouped with 101 and I05 because they share
a common higher-level ICD category (indicated by gray shading), which is used to define the grouping.
However, 101 and 105 exceed the threshold (highlighted in light green), which is why they are calibrated on
the class level.

be fostered by rendering model predictions more transparent (Ribeiro et al., 2016; Lundberg & Lee, |2017;
Samek et al., 2019; Schmidt & Biessmann, 2019) especially in the medical domain (Hamm et al., 2023;
Aken et all 2022).

While transparency addresses an important dimension of trustworthiness (Wang & Yin, [2021)), another key
aspect lies in understanding the uncertainty of AI system predictions (Dhuliawala et al., [2023)). In light of the
growing capacity of models, which has been associated with poor calibration of uncertainty estimates
let al| (2019); |Guo et al|(2017), improving uncertainty calibration is a fundamental prerequisite for trust in
AT systems. This is especially true in safety-critical AI applications that fall under the high-risk category
of the EU AI act [Council of European Union| (2024) such as AI healthcare products, where understanding
uncertainty (Grote & Berens| 2023} [Seoni et al., [2023) and communicating it (Banerji et al., 2023)) are
essential to improve trust.

Challenges in Uncertainty Calibration with Statistical Guarantees. There is a broad spectrum
of methods to calibrate uncertainty estimates, ranging from probabilistic models such as Bayesian Neural
Networks , that allow for probabilistic treatment of all model parameters, to model-agnostic
post-hoc calibration, which can be applied to any ML model.

A popular model-agnostic calibration method is Conformal Prediction (CP)(Vovk et al.l [2005)), which pro-
vides prediction sets instead of single point predictions. These sets offer formal coverage guarantees, indi-
cating how often the true label is expected to be included on average. This is especially important in clinical
settings, where overconfident point predictions can be misleading. However, ensuring reliable coverage is
challenging in imbalanced, long-tailed label distributions (Kasa & Taylor], [2023)). This is because rare classes
are often absent or severely underrepresented when calibration sets are very limited in size, making it difficult
to estimate reliable uncertainty or guarantee valid coverage for those classes.

We address these challenges by proposing a post-hoc and model-agnostic method called dynamically grouped
CP (DGCP). DGCP introduces a hyperparameter m, which defines the minimum number of calibration
samples required for class-level calibration. This is motivated by preliminary experiments, which show that
classes with no or only a few calibration samples cannot be reliably calibrated. Therefore, the idea is to
relax the strict guarantees of class-conditional conformal prediction and dynamically group a class with less
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than m samples together with semantically related classes using domain knowledge. As our experimental
evaluation shows, this allows us to balance strong class-conditional guarantees, while increasing coverage.
Figure [1] illustrates an example that uses ICD-10 codes as labels and m = 10. In this case, the number
of calibration samples for the diagnosis of rheumatic chorea (I02) does not exceed the threshold m. Thus,
DGCP combines all patients diagnosed with 102 together with other diagnoses, using domain knowledge.
For hierarchical label spaces, a natural grouping is given by a higher level in the hierarchy. However, it is
also possible to use any other variable or grouping function. Our experiments demonstrate that the proposed
method is robust to the choice of hyperparameter m.

In summary, we propose dynamically grouped conformal prediction that maintains class-conditioned cali-
bration if sufficient data are available and provides group-conditioned guarantees if not. We evaluate our
approach on three clinical datasets and show that it consistently improves class-conditional coverage, espe-
cially for the underrepresented classes. We also release codeEl to support reproducibility.

2 Related Work

Outcome Diagnoses Prediction from Text. Transformer models have demonstrated remarkable per-
formance across various domains, including the medical field. The authors of (van Aken et al.,2021) pre-train
transformers using a modified next-sentence prediction objective between admission and discharge sentences
to improve outcome diagnoses prediction. Naik et al| (2022), augment clinical notes with medical literature
and [Ji & Marttinen| (2023)) adopts a multitask approach for unseen diagnoses categories. The problem of
rare diagnoses codes has been addressed in[van Aken et al.| (2022)) by combining a prototypical classifier with
a Transformer to improve prediction performance.

Uncertainty Quantification and Conformal Prediction. Uncertainty quantification in deep learning
has gained considerable attention in recent years (Fakour et al., 2024; |Tyralis & Papacharalampous, [2022}
[Abdar et all [2021). Conformal prediction (CP) has emerged as a principled framework for producing
prediction sets with rigorous coverage guarantees, even when the underlying models are imperfect. Notably,
[Straitouri & Rodriguez (2024)); Straitouri et al| (2023) demonstrate that conformal prediction can assist
domain experts reduce their workload, lead to better decisions, and increase trust (Dhuliawala et al., 2023).

Conformal prediction has been successfully applied across a wide range of domains, including natural lan-
guage processing (Mohri & Hashimoto), 2024; Campos et al., 2024)), clinical medicine (Hirsch & Goldberger,
2024} [Grote & Berens|, [2023}, [Banerji et al., 2023} [Lu et al.| 2022} [Olsson et al. 2022} [Vazquez & Facellil, [2022
Kompa et al., 2021), and drug discovery (Alvarsson et al) |2021), underscoring its broad utility. Further, a
substantial amount of literature has focused on improving set efficiency (Dhillon et al., 2024} Stutz et al
[2022; [Fisch et al. 2021} [Angelopoulos et al., [2021)), generalizing beyond coverage to other monotonic loss
functions (Angelopoulos et al.| |2024)), tackling hierarchical classification (Mortier et al.l 2025)), distribution
shifts (Gibbs & Candes| [2024; Barber et all [2023; [Bhatnagar et all, [2023)) or structured output prediction
(Zhang et al., 2025). In this work, we enhance the standard split conformal prediction framework
lgelopoulos & Bates| [2023) and propose an approach to improve class-conditional coverage for infrequent
classes by incorporating domain knowledge.

The work most closely related to ours is by Ding et al.| (2023), who address multiclass classification with up
to 1,000 labels by clustering data points based on non-conformity scores. Like in our work, their goal is to
overcome the limitations of class-conditional conformal prediction in low-data regimes. While their method
relies on unsupervised clustering to group samples, we instead leverage semantic similarity of labels to
dynamically aggregate samples only for underrepresented classes while using class-specific data for frequent
classes. This approach allows us to preserve class-level guarantees when sufficient calibration data are
available and to fall back to domain-based group calibration only when necessary.

lwe will make code available upon acceptance
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Figure 2: Diagnoses distribution in MIMIC-IIT (CCSR), MIMIC-IV (CCSR), and MIMIC-IV (ICD). Diag-
noses are sorted by frequency within each dataset. The Head includes the most frequent diagnoses covering
80% of patients (e.g., 163 diagnoses in MIMIC-IV ICD), while the Tail comprises the remaining, less fre-
quent diagnoses (e.g., 891 diagnoses in MIMIC-TIV ICD) that account for the remaining 20% of cases. This
highlights the extreme class imbalance present in clinical datasets.

3 Task and Datasets

Outcome Diagnoses Prediction. We evaluate our approach on the task of predicting the primary dis-
charge diagnosis from unstructured clinical admission notes, as introduced by [van Aken et al.| (2021)). Unlike
multi-label settings that consider multiple diagnoses per patient, this task focuses solely on the main diag-
nosis determined at discharge. Following van Aken et al| (2021), only information available at the time of
admission is used for prediction, simulating a realistic early-decision support scenario. The task is formulated
as a multiclass classification problem with up to over 1,000 possible labels, most of which are infrequently
represented in the training data.

Datasets. Large-scale, publicly available medical datasets for general use are rare. We use the MIMIC
datasets, which are the most comprehensive clinical datasets that are publicly available. These contain
anonymized patient records from the Intensive Care Unit (ICU) of the Beth Israel Deaconess Medical Center
in Boston. MIMIC-III (Johnson et all [2016) consists of data between 2001 and 2012, and MIMIC-IV (John-
son et al.|2023)) between 2001 and 2019, respectively. To create datasets with label spaces of different sizes,
we split MIMIC-IV randomly into halves. Each of the splits contains different patients. For the first dataset,
we use three-digit ICD-10 codes (compare (Choi et al.| (2017))). We map the labels of the second MIMIC-IV
dataset and MIMIC-IIT to CCSR codes, which are clinically meaningful groupings of ICD-10 codes (Health-
care Cost and Utilization Project (HCUP), [2024]). We remove notes that directly mention the correct main
diagnosis using MedCAT (Kraljevic et al.| [2021). Additionally, we extract two attributes from each primary
diagnosis. The first attribute, body system, is derived based on the classification framework provided by
Healthcare Cost and Utilization Project (HCUP)| (2024), which categorizes diagnoses into 21 clinically rele-
vant groups, such as neoplasms (NEO), respiratory conditions (RSP), and injuries (INJ). Second, with the
help of medical professionals, we assign a severity score per diagnosis, reflecting its level of life-threatening
risk. Severity level 1 corresponds to the most critical diagnoses such as sepsis. In contrast, severity level 5
represents non-critical diagnoses. This results in the following datasets: MIMIC-IIT (CCSR) with 356 diag-
noses and =~ 4.000 records, MIMIC-IV (CCSR) with 423 diagnoses and ~ 44.000 records, and MIMIC-IV
(ICD) with 1054 diagnoses and ~ 44.000 records. Note that the MIMIC-IV (CCSR) and MIMIC-IV (ICD)
datasets not only differ in their label spaces, but also include different patients, resulting from a random
split of MIMIC-IV in order to simulate two separate hospitals. In Figure [2] we present the label distribution
of all training datasets.

We split each of the three datasets into training, validation, and test sets using stratified sampling. We keep
each patient’s first visit and ensure that all diagnoses appear at least once in the training set.
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Figure 3: Comparison of marginal (left) and conditional (right) conformal prediction. Both examples rep-
resent a test set of 100 data points, where 90% of the true labels exist in the conformal prediction sets,
visualized as light gray points. Black points represent samples for which their true label was not included
in the prediction set. Although both methods achieve 90% overall coverage, marginal prediction distributes
coverage unevenly across groups. Where the groups are typically defined by the target class, but can the-
oretically depend on any attribute. On the other hand, conditional prediction guarantees 90% coverage for
each group individually. This figure is adapted from |Angelopoulos & Bates| (2023).

4 Background: Conformal Prediction

Conformal prediction (CP), originally presented by [Vovk et al.| (2005)), is a distribution-free and model-
agnostic uncertainty quantification method. It turns any black-box point predictor into a set predictor,
which statistically guarantees to cover the correct label with a user-defined probability /confidence level.
Assume f is a fitted classification model that outputs softmax scores: f (z) € Rﬁl]. For point predictions,
the predicted class § € {1, ..., K} is the index of the highest softmax score.

Nonconformity. To build confidence sets C(Xcst), CP uses non-conformity scores S.qp of a given cali-
bration set, which is distinct from the training and test set. Non-conformity scores S.q;;» represent how the
calibration point (X;,y;) differs from the model prediction (X;, ;). For this, we use a non-conformity score

function, e.g., one minus the softmax output of the true class: s; =1 — f(X;)y,. Next, we compute the k-th
empirical quantile of S, as follows:

[(n+ 1D = a)]
n (1)

4 = quantile(Scaiv, k),

=
|

where (1 — «) is the user-defined confidence level and n is the number of calibration points. For a new
unseen test data point Xiest (Ytest is unknown), CP includes all classes in C' for which s; does not exceed
the threshold §. Formally, C(Xsest) = {y ¢ f(Xtest)y < G}, which is guaranteed to satisfy (Equation ),
independently of the model and the data distribution Zeni et al.| (2020)); |Angelopoulos & Bates| (2023)).

P(ytest S O(Xtest)) Z (1 - Ol) (2)

(Marginal) Coverage. This property, referred to as marginal coverage (Lei & Wasserman)| [2014)), ensures
that approximately (1 — )% of the test data points are correctly included in the prediction sets. When the
model f effectively fits the data, these sets C' tend to be small. Conversely, if f does not fit the data well or
Xiest is ambiguous, C will be greater in size (Lei et all 2013). As Figure |3 (left) shows, although marginal
coverage gives statistical guarantees on average, it may neglect the existence of groups in the data. Where
the groups are typically defined by the target class, but can theoretically depend on any attribute. In many
cases, it is desirable to obtain the coverage guarantee of Equation for each group, known as conditional
coverage.

Conditional Coverage. As illustrated in Figure |3} the left side (marginal coverage) shows that coverage
is achieved for Group 1, while Group 2 achieves no coverage at all. However, because marginal coverage
guarantees are only on average across all samples, the overall 90% confidence level is satisfied. To achieve
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a more balanced coverage, the formulation in Equation is modified to define multiple group-specific
thresholds §(9), each corresponding to a single group ¢ € G. As a result, associated variables such as n(9),

k@ and S ggl)ib are also indexed by group. Finally, the confidence sets are constructed as follows:

C(Xtest) = {Z/ : f(Xtest)y < q(g)}’

where g denotes the group to which the test sample belongs. These sets C satisfy the stronger group-
conditional guarantee defined in Equation , ensuring that each group individually meets the target cover-
age level. Note that in contrast to marginal, the right side (conditional coverage) of Figure [3| demonstrates
balanced coverage across both groups, each achieving 90% coverage.

IPJ(yteﬁt S C(Xtest)|ytest € g) Z (1 - Ol), Vg S g (3)
Class-conditional coverage. If the groups are defined by a label attribute as follows:
g={y}, VgeGandye{l . K} (4)

Equation is referred to as class-conditional coverageﬂ In many applications with small and balanced
label spaces, applying class-conditional CP has shown good results. For further details and proofs, we refer
the reader to |Angelopoulos & Bates) (2023)); [Vovk et al.| (2005).

5 Methods

Dynamical Grouping with Limited Calibration Samples per Class. Reliable class-conditional cov-
erage is challenging on datasets with large and imbalanced label spaces. To overcome this challenge, when
classes have too few calibration data points, we propose to group them dynamically into domain-specific
groups. If |X§§l)ib\ > m, where m denotes the minimum number of calibration samples, we consider class

k to have sufficient calibration data. In this case, we apply class-conditional conformal prediction, setting
g = {k} (c.f. Equation ) Alternatively, if |Xésl)ib < m, we group k together with other classes that feature
the same attribute (e.g., belong to the same body system or are equally severe) and pursue a group-based

calibration according to Equation .

Similarity to other Conformal Prediction Methods. In contrast to|Ding et al.|(2023) who first cluster
the calibration data based on their non-conformity scores, our method directly uses domain knowledge to
assign samples to each group. In the best case, where every class has enough data for a reliable calibration, our
method is equivalent to class-conditional CP (c.f. Equation ) and fulfills the predefined class-conditional
guarantees. If a class has fewer than m calibration points, we group samples with a common attribute
to estimate a group-specific threshold. This threshold is then applied to the under-represented class. For
example, diagnoses related to cardiovascular conditions can be grouped to estimate a shared threshold, which
is then used for classes with limited data of that group (e.g., the rare Takotsubo cardiomyopathy diagnosis).
This approach enables the calibration of classes that are absent from the calibration set.

6 Experimental Setup

Through a comprehensive evaluation we validate empirically whether our methodology improves class-
conditional coverage. We train domain-specific model (Section [6.1]) on each dataset, and compare the perfor-
mance (Section[6.4)) of different calibration methods (Section d Section[6.3). For calibration, we use the
following hyperparameters: calibration set sizes n € {1000,2000} and confidence levels (1 — «) € {0.8,0.9}.
Additionally for DGCP, we evaluate the effect of m € {10,20}. To ensure the robustness of our results, we
repeat each experiment 50 times, resample the calibration set, and use the remaining data for testing. We
report the metrics detailed in Section [6.4]

2(lass-conditional conformal prediction is also known as mondrian conformal prediction (Vovk et al., [2005).
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6.1 Prediction Model

For our experiments, we use ProtoPatient (van Aken et al.[2022), a transformer-based architecture that has
demonstrated strong performance in diagnosis prediction, especially for rare diagnosis codes. The model
combines a biomedical transformer encoder (Gu et al., [2020) with a prototypical layer. This layer consists
of one prototype vector and one attention vector per diagnosis. Each patient admission note is encoded
and projected into a lower-dimensional space, where it is weighed by diagnosis-specific attention vectors
to map the note to the latent metric space. The model then computes the softmax over the negative
distances between the resulting representation v,. and each diagnosis prototype u., using the Euclidean
distance: dp. = ||vpc — ucll2. During training, the model minimizes the binary cross-entropy (BCE) loss
over all patients L = > > BCE(softmax(—dp,c), Yp,c), where y, . € {0,1} is the ground-truth. This loss
encourages the representation of each input to move closer to the prototype of the correct class and farther
from those of the incorrect ones. Finally, for inference, the prediction corresponds to the diagnosis with the
closest prototype.

We choose ProtoPatient for evaluation because of its strong performance on rare diagnosis codes, and because
its distance-based classification provides a natural non-conformity score. In addition, ProtoPatient offers
inherent interpretability and justification for predictions, which complements our goals of transparency and
trustworthiness, critical factors in clinical decision support. For further findings and results, we refer to [van
Aken et al.| (2022)). However, DGCP is model-agnostic and can be applied post hoc to any base predictor.

6.2 Conformal Calibration Methods

For model calibration, we compute the distances for each calibration sample to all prototypes and define

Sealiv = {f(Xcalib)k : k = Yealiv}, where f is the fitted ProtoPatient model and apply CP as described
in Section [

Marginal and Class-conditional CP. To calibrate with marginal or class-conditional CP, we proceed as
described in Section [5} Marginal CP provides coverage guarantees averaged over all labels (c.f. Equation )
Class-conditional CP provides coverage guarantees for each class, accounting for imbalances that marginal
coverage neglects (c.f. Equation )

Clustered CP. Clustered conformal prediction (Ding et al.l 2023|) improves class-conditional coverage in
settings with limited data. It clusters classes with similar non-conformity scores and calibrates at cluster-
level.

Dynamically Grouped CP (ours). We apply DGCP as described in Section [5| and use the following
naming scheme: DGCP/Grouping Method. For example, when we use the body system related to a diagnosis
for grouping, we refer to this method: DGCP/Body System.

6.3 Non-conformal Calibration Methods

In addition to the above CP methods, we use baselines that construct prediction sets from model outputs,
but do not provide any coverage guarantees.

Adaptive top-k. A simple approach that returns set predictions draws inspiration from the top-k clas-
sification metrics. Where k is not fixed, but classes are included in the prediction set until the cumulative
sum of probabilities exceeds the predefined confidence level (1 — «).

Calibrated Adaptive top-k. Empirical evidence suggests that modern neural networks are poorly cali-
brated (Guo et al., [2017). To account for this, we use temperature scaling (TS) to calibrate ProtoPatient’s
probabilities and then follow the same approach as Adaptive top-k to construct prediction sets. Tempera-
ture scaling is a simple method to calibrate point prediction models by introducing a single scalar parameter
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T > 0, which scales the softmax values z as follows:
p=maxosu(2)®, ke (L., K} (5)

Note that in contrast to CP methods that are applied post-hoc, fitting T requires gradient computation. We
follow |Angelopoulos et al.| (2021]) for the implementation.

6.4 Conformal Metrics

In our analysis, we use common metrics to assess the validity of our methods. Coverage is defined as follows:

n

1 i iy
coverage = — Z W yies € C'(Xfoar) } (6)

i=1

where n is the size of the test set, yi.., is the true label, and C?(X},,,) is the prediction set of the i-th
example. Ideally, the empirical coverage reaches the specified confidence level.

An additional metric of interest is the set size, which is the number of elements in the prediction set:
set_size = |C| (7)

We measure these metrics as macro-averages to highlight changes impacting all classes and not only the
majority class.

7 Results

Although we trained and evaluated two variants of the ProtoPatient model, one with pre-initialization of the
prototypical layer following [van Aken et al.|(2022)) and one with random initialization, we elaborate on their
differences in Appendix[A] Since the pre-initialized version consistently yields stronger conformal calibration
metrics across all methods, we use it as the basis for all subsequent experiments. As described in Section [f]
we calibrate the model with different approaches and compare them experimentally. If not stated otherwise,
we show the results for m = 10, (1 — «) = 0.9, and a calibration set size of 1000. We expand on the results
of the different calibration hyperparameter settings in Appendix [B}

Table 1:  Experiment Results. Calibrated using m = 10, (1 — «) = 0.9, and calibration set size of
1000. Conformal calibration methods (with guarantees) are above, and non-conformal methods (without
guarantees) are below the horizontal line. Our approach, DGCP with body system fallback, consistently
improves and outperforms other methods in terms of class-conditional coverage on all datasets. + represents
standard deviation over 50 repetitions.

Macro Coverage (1) Prediction Set Size ()
MIMIC III MIMIC IV MIMIC IV MIMIC IIT MIMIC IV~ MIMIC IV
Method (CCSR) (CCSR) (ICD) (CCSR) (CCSR) (ICD)

DGCP|Severity Score (ours) 60.2+2.9 670+1.6 640+24 17.0+28 184+2.0 339+ 6.7
DGCP|Body System (ours) 65.5+3.2 71.84+2.4 67.0+2.5 33.2+38.6 31.0+£5.7 67.8+144

Clustered CP 55.2+2.3 66.5 + 2.1 61.7+ 2.8 120+1.1 16.9+1.9 278+ 44
Class-conditional CP 349+1.5 389+15 23.7+£0.9 16.3+1.1 203+1.9 21.4+2.2
Marginal CP 55.1£2.1 66.6 £ 1.7 61.7£25 12.0+1.0 170x16 2794 3.9
Calibrated Adaptive top-k 64.14+16 702+15 645+1.6 17.3+1.0 21.9+1.8 346+ 3.0
Adaptive top-k 62.1+0.9 67.4+0.2 60.9+0.3 15.3+0.1 183+0.0 275+ 0.0

Table[[]compares the results of the calibration methods for macro coverage and prediction set size for the three
datasets. Adaptive top-k and Calibrated Adaptive top-k show surprisingly good results and are typically
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Figure 4: Class-conditional coverage over training data label frequency. Calibrated using m = 10, (1—«) =
0.9, and a calibration set size n = 1,000. Classes with many data points typically have enough calibration
examples to reach the confidence level (1 — «) = 0.9. In tasks with large label spaces (left to right subplot),
more calibration data are typically required to achieve the desired confidence level at class-level. However,
DGCP|Body System, DGCP|Severity Score, and Clustered CP shift the coverage curves leftward, indicating
more efficient use of limited calibration data, improving coverage for rare classes.

second and third best in terms of macro-coverage, but do not provide any formal coverage guarantees.
Clustered CP and Marginal CP perform almost equally in both class-conditional coverage and prediction
set size. Class-conditional CP achieves the lowest macro coverage, as many classes do not appear in the
calibration set, preventing the prediction of these classes. Marginal CP and Clustered CP achieve small
prediction set sizes, especially on datasets with fewer classes.

Dynamically Grouped CP Improves Class-conditional Coverage. DGCP|Body System is consis-
tently the best method in terms of macro coverage, closely followed by DGCP|Severity Score. Both methods
improve their class-conditional coverage over Marginal CP by a factor between 1.7 and 2.8. However, this
typically comes at the cost of increased prediction set sizes; in our case, they range between 0.9 and 3.1. This
highlights the trade-off between efficiency (small prediction set sizes) and reliability (high macro coverage).

Influence of the Long Tail on Class-conditional Coverage. Figure[d]shows the relationship between
class-conditional coverage and the number of samples per class in the training data for all methods that
provide class-level guarantees. Class-conditional CP yields the lowest conditional coverage, achieving the
target confidence level (1 —«) = 0.9 only for well-represented classes. This gap widens as the class frequency
decreases. Unlike Clustered CP, which overshoots the confidence level for frequent classes, both dynamically
grouped CP and Class-conditional CP converge to the desired level as the data increases. Among the
approaches tested, DGCP|Body System achieves the highest coverage, followed by DGCP|Severity Score
and Clustered CP.

8 Discussion

Non-conformal Calibration Methods. The performance of Adaptive top-k and the Calibrated Adaptive
top-k is comparable to the best-performing conformal prediction method, which shows that Adaptive top-k
and Calibrated Adaptive top-k scaling achieves a substantial degree of calibration, resulting in high coverage
scores. However, these methods do not provide any formal guarantees on class-conditional coverage. This
property is especially crucial in high-stakes domains such as healthcare, where under- or over-confidence in
predictions can have significant consequences for patient outcomes.
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Marginal CP and Class-Conditional CP. Class-conditional CP yields the lowest class-conditional
coverage because it calibrates each class independently and cannot generate predictions for classes that
are absent from the calibration set. Given the highly imbalanced distribution of diagnoses and a limited
calibration set of 1,000 samples, many classes remain unrepresented, leading to significantly degraded macro
coverage. In contrast, Marginal CP aggregates across all samples during calibration, weighting classes
according to their frequency in the calibration set. Unlike Class-conditional CP, it produces prediction sets
for all classes, which improves macro coverage. However, this comes at the cost of class-level guarantees.
Since Marginal CP focuses on the majority classes (i.e., the head of the label distribution), it achieves
relatively small prediction set sizes, but provides poorer coverage for infrequent classes in the tail.

Clustering-Based Grouping. Clustered CP yields class-conditional coverage and set size that are very
similar to those of Marginal CP. This is due to its reliance on a NULL cluster. This cluster aggregates
samples from classes that cannot be confidently assigned to any other cluster. Given the pronounced long-
tail distribution of diagnoses, a large proportion of rare classes are assigned to this NULL cluster, causing
the method to behave effectively similar to Marginal CP.

Using Domain Knowledge Improves Class-conditional Coverage. As shown in Table [I] and Fig-
ure [] leveraging domain knowledge to group diagnoses by body system or severity score based on medical
taxonomies improves class-conditional coverage. These results suggest that hierarchical label structures,
which capture meaningful semantic relationships, can make calibration more robust, particularly for under-
represented classes. We argue that although this approach trades fine-grained class-level guarantees for more
stable group-level estimation, the resulting increase in conditional coverage makes it a worthwhile compro-
mise in imbalanced settings. Although not all domains offer expert-defined hierarchies or may introduce noise
that complicates grouping, it could benefit domains with taxonomic label structures, such as the biological,
legal, or financial domains.

9 Conclusion

In this work, we introduce dynamically grouped conformal prediction (DGCP). We empirically demonstrate
that our approach improves class conditional coverage in settings with limited data availability. By leveraging
domain knowledge to group underrepresented classes, DGCP enables more robust threshold estimation for
rare classes while preserving class-level guarantees for well-represented ones. We demonstrated its effective-
ness across three clinical datasets and two different label spaces: MIMIC-IIT (CCSR), MIMIC-IV (CCSR)
and MIMIC-IV (ICD), showing consistent improvements in conditional coverage.

Limitations and Future Work. Although we evaluate our approach on three clinical datasets, the
model- and data-agnostic guarantees of conformal prediction suggest that our findings generalize to other
datasets, domains, and model architectures. In addition, we focus mainly on improving class conditional
coverage for rare classes, since we consider it very critical for high-stakes domains. However, other aspects
of conformal prediction are also important for safe clinical deployment. These include optimizing prediction
set efficiency (Angelopoulos et al., [2021; |Stutz et al., [2022)) or controlling for alternative metrics such as
F1l-score (Angelopoulos et all 2024)) among others. In the future, further integration of these ideas into our
approach needs to be explored.
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A Influence of Pre-initialization of Prototypical Layer on Calibration

van Aken et al| (2022)) introduced ProtoPatient and explored two initialization strategies: one in which
prototypes and attention vectors are pre-initialized, and another using random initialization. Table [3|reports
calibration results for all methods using model predictions from both initialization strategies, as indicated
in the Init column. The results demonstrate that pre-initializing the prototypical layer yields higher macro
coverage, smaller average prediction set sizes, and lower standard deviations across 50 runs with different
random seeds, indicating more stable and reliable calibration. As shown in Table [2] pre-initialization also
improves macro-AUC, consistent with the findings of jvan Aken et al|(2022)), although it results in slightly
lower accuracy. We argue that models with higher macro-AUC achieve better calibration results than those
with higher accuracy.

Table 2: Performance Metrics of ProtoPatient on all datasets for the main clinical outcome prediction task.
While AUC score consistently increases when pre-initializing is used, accuracy slightly degrades.

Init Dataset #Classes Accuracy Macro-AUC
MIMIC-III (CCSR) 356 47.81 93.24

False MIMIC-IV (CCSR) 423 45.36 95.22
MIMIC-IV (ICD) 1054 48.39 93.82
MIMIC-III (CCSR) 356 45.39 94.83

True MIMIC-IV (CCSR) 423 42.82 95.75
MIMIC-IV (ICD) 1054 43.43 95.41

Table 3: Calibration results for ProtoPatient models trained with different pre-initialization methods (Init),
using a calibration set size of 1,000 and a confidence level of (1 —a) = 0.9 and m = 10. Each row reports
macro coverage (higher is better) and prediction set size (lower is better) for three clinical classification
tasks: MIMIC III (CCSR), MIMIC IV (CCSR), and MIMIC IV (ICD). Conformal methods with formal
coverage guarantees appear above the single midrule; non-conformal baselines are shown below. Results are
shown as mean + standard deviation over 50 repetitions. Pre-initialization consistently improves calibration
performance, yielding higher coverage, smaller prediction sets, and reduced variance.

Macro Coverage (1) Prediction Set Size (])
MIMIC III MIMIC IV MIMIC IV MIMIC III MIMIC IV~ MIMIC IV
Init Method (CCSR) (CCSR) (ICD) (CCSR) (CCSR) (ICD)

DGCP|Severity Score (ours) 60.2+29 67.0+1.6 640+24 17.0+28 184+20 339+ 6.7
DGCP|Body System (ours) 65.5+32 718+£24 67.0%£25 332+£86 31.0£57 67.8+144

Clustered CP 55.2+23 66.5+21 61.7£28 120+1.1 169+19 278+ 44
Yes  Class-conditional CP 349+15 389=£15 23.7+£09 163+£11 203+19 214+£22
Marginal CP 55.1+2.1 666+£1.7 61.7+25 120+£10 17.0+£1.6 279+ 3.9
Calibrated Adaptive top-k 641+16 702+£15 645+16 173£1.0 21.94+18 346=£ 3.0
Adaptive top-k 621+09 674£02 609+£03 153+£0.1 183+£0.0 275+ 0.0

DGCP|Severity Score (ours) 53.2+3.0 66.6+29 628+25 200+26 193+27 38.6=+8.38
DGCP|Body System (ours) 60.3+34 71.7£27 651+£24 388+£83 344+64 851+219

Clustered CP 444+36 653£40 60527 141£1.7 164+24 299+41
No Class-conditional CP 347+17 389£14 23.84+£08 187+£13 206+21 239+£24
Marginal CP 443+32 653£33 60719 141+£14 163+19 302£31
Adaptive top-k 57.3+14 66,716 61514 186+£09 175+£13 349+29

Calibrated Adaptive top-k 51.0+£0.7 539+£02 478=£0.3 15.0+0.1 9.9+£0.0 16.8 0.0
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B Effect of Conformal Prediction Hyperparameters on Calibration

Influence of Calibration Threshold m. The parameter m specifies the minimum number of calibration
samples required for class-level calibration. If a class contains fewer than m samples in the calibration set, we
group it with semantically related classes present in the set for threshold estimation. As shown in Table [4]
increasing m from 10 to 20 has minimal impact on class-conditional coverage and prediction set size across all
datasets. A threshold of 20 leads to more frequent use of dynamic grouping, since in a calibration set of 1,000
samples it becomes more likely that individual classes will not meet the sample requirement. These results
suggest that dynamic grouping introduces almost no effect (within the standard deviation) on coverage and
prediction set efficiency, demonstrating the robustness of our method to modest changes in m.

Influence of Confidence Level (1—«). In Table[5| we present calibration results at a confidence level of
(1 — a) = 0.8. To investigate the effect of varying the confidence level, we compare these results with those
presented in Table [d] which uses the same calibration set size of 1,000 samples but a higher confidence level
of (1 —«a)=0.9. As expected, lowering the confidence level leads to consistently smaller prediction set sizes
across all datasets and methods. However, this reduction comes at the cost of decreased macro coverage,
reflecting the fundamental trade-off between precision and reliability in conformal prediction. Despite the
drop in coverage, the relative ranking of methods remains consistent, suggesting that method robustness is
preserved across confidence levels. These findings emphasize the importance of choosing an appropriate con-
fidence level based on task requirements, whether minimizing prediction ambiguity or maximizing empirical
coverage with guarantees.

Influence of Calibration set Size n. We present calibration results for two calibration set sizes: 1,000
samples in Table ] and 2,000 samples in Table[f] We analyze the impact of calibration set size and compare
the results at a fixed confidence level of (1 — a) = 0.9. The most notable gain in class-conditional coverage
is observed for Class-conditional CP which shows a substantial increase in coverage across all datasets.
However, this improvement comes at the cost of significantly larger prediction sets. In contrast, DGCP
variants (based on severity and body system) maintain comparable coverage while showing a reduction in
prediction set size and a decrease in standard deviation across repetitions. This suggests that our method
benefits from the increase in calibration data by becoming more efficient and stable without sacrificing
reliability. For other baselines, including Marginal CP, Clustered CP, and non-conformal methods, both
coverage and set size remain largely unchanged, indicating limited sensitivity to calibration size. Therefore,
in this study, we focus our in-depth analysis on the scenario with only 1,000 calibration samples to better
understand performance in terms of class-conditional coverage under more limited data conditions.
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Table 4: Calibration results for different values of m. All models use the pre-initialized model, a confidence
level of (1 — a) = 0.9 and a calibration set size n = 1,000. Results show that decreasing m from 20 to
10 maintains stable performance in terms of macro coverage and prediction set size. Conformal methods
with formal coverage guarantees are listed above the single midrule, while non-conformal baselines are shown
below. + indicates standard deviation over 50 repetitions.

Macro Coverage (1) Prediction Set Size (])
MIMIC III MIMIC IV~ MIMIC IV~ MIMIC III MIMIC IV~ MIMIC IV
m  Method (CCSR) (CCSR) (ICD) (CCSR) (CCSR) (ICD)

DGCP|Severity Score (ours) 60.2+29 670+16 640+24 17.0+28 184+2.0 339+6.7

10 DGCP|Body System (ours) 65.5+3.2 71.8+24 67.0+25 332+86 31.0+57 678+144

20 DGCP|Severity Score (ours) 60.3+2.9 672+16 640+24 165+3.0 181+19 348+7.0
DGCP|Body System (ours) 65.5+3.2 71.94+24 67.0+25 332+87 31.3+59 68.6+14.5

Clustered CP 55.2+23 66521 61.7+28 120+£1.1 169+19 278=*44
Class-conditional CP 349+£15 389+15 23.7+£09 16311 203£19 21.4+22
Marginal CP 55.1£2.1 66.6+1.7 61.7£25 120+1.0 17016 27.9+39
Adaptive top-k 641+16 702+15 645+16 17.3+1.0 21.9+18 34.6=+3.0

Calibrated Adaptive top-k 621+09 674+02 609+03 153+0.1 183+£0.0 27.5+£0.0

Table 5:  Calibration results for calibration set size n = 1,000 and a confidence level of (1 — ) = 0.8. Each
row presents the macro coverage (higher is better) and prediction set size (lower is better) across three clinical
classification tasks: MIMIC III (CCSR), MIMIC IV (CCSR), and MIMIC IV (ICD). Conformal methods
with formal coverage guarantees are listed above the single midrule, while non-conformal baselines are shown
below. The threshold m indicates the minimum number of samples required for class-level calibration.
Reported values are mean + standard deviation over 50 repetitions.

Macro Coverage (1) Prediction Set Size ({)
MIMIC III MIMIC IV MIMIC IV MIMIC III MIMIC IV MIMIC IV
m  Method (CCSR) (CCSR) (ICD) (CCSR) (CCSR) (ICD)

DGCP|Severity Score (ours) 42.5+20 50.6+1.8 46.1+22  6.5+0.8 73+08 11.2+1.8

10 DGCP|Body System (ours) 49.0+£29 56.5+23 499+24 145+44 124+£25 26187

20 DGCP|Severity Score (ours) 42.5+21 50.9+1.8 46.2+22 6.2+0.7 74408 11.7£2.0
DGCP|Body System (ours) 489+29 56.7+24 50.0+24 144+4.3 127+£25 26587

Clustered CP 37.7+£15  501+£28 43.9+26 5.1+£0.5 73+£1.0 10.3£1.6
Class-conditional CP 340+15 381+15 235+09 136+13 17017 19.7+22
Marginal CP 376 14  499+20 439+1.7 50+£04 72+£0.7 10.2+1.0
Adaptive top-k 51.1+13 55.8+14 487+1.5 8.0+£04 9.7£0.7 13.9+1.0

Calibrated Adaptive top-k 489+08 5294+0.2 456+0.3 7.3+0.0 8.4£0.0 11.6 £ 0.0
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Table 6: Calibration results for calibration set size n = 2,000 and a confidence level of (1 — ) = 0.9. Each
row presents the macro coverage (higher is better) and prediction set size (lower is better) across three clinical
classification tasks: MIMIC III (CCSR), MIMIC IV (CCSR), and MIMIC IV (ICD). Conformal methods
with formal coverage guarantees are listed above the single midrule, while non-conformal baselines are shown
below. The threshold m indicates the minimum number of samples required for class-level calibration.
Reported values are mean + standard deviation over 50 repetitions.

Macro Coverage (1)

Prediction Set Size ({)

MIMIC III  MIMIC IV MIMIC IV~ MIMIC III MIMIC IV~ MIMIC IV

m  Method (CCSR) (CCSR) (ICD) (CCSR) (CCSR) (ICD)
10 DGCP|Severity Score (ours) 62.3+2.2 67.3+1.1 63.7+18 155+13 189+14 304+33
DGCP|Body System (ours) 68.1+26 71.8+19 663+20 281+43 27.0+32 51.7+93

20 DGCP|Severity Score (ours) 62.3+22 672+1.1 63.9+18 14.6+1.2 16.5+09 30.5+34
DGCP|Body System (ours) 68.0+26 71.8+19 664+20 271+42 251+28 526+9.5
Clustered CP 58.3+£25 670+16 61.7£24 122+09 1562+1.7 25.6+4.0
Class-conditional CP 478+2.0 51.2+15 340£12 226+15 289422 343+£28
Marginal CP 57.9+21 671+12 621£20 11.9+0.6 172+£1.0 28.0+3.2
Adaptive top-k 645+16 691+11 63.6+13 156+06 204+1.1 321+£22
Calibrated Adaptive top-k 642+15 676+03 61.2+04 153+0.2 183+0.0 27.5+0.1
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