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Abstract

Many real-world classification tasks involve datasets with large and imbalanced label spaces,
making class-specific uncertainty quantification particularly challenging. Conformal Pre-
diction (CP) provides a model-agnostic framework, which formally guarantees coverage,
meaning that its prediction sets contain the true label with a user-defined probability (con-
fidence level). However, standard class-conditional methods often fail when data is scarce
for some classes. We propose a method that uses domain knowledge or label hierarchies
to dynamically group semantically related classes to meet the desired coverage for a given
confidence threshold. Our method maintains class-conditioned calibration when possible
and provides group-conditioned guarantees where necessary. We evaluate our method on
outcome diagnoses prediction, an important clinical task that does not only benefit from
robust uncertainty estimation, but also presents a very imbalanced label distribution. We
conduct experiments using three clinical datasets employing two medical taxonomies (ICD-
10 and CCSR) and label spaces of varying sizes with up to more than 1,000 classes. Our
results show that the proposed approach is able to successfully exploit the label hierarchy
and consistently improves class-conditional coverage for infrequent diagnoses. By improving
coverage for underrepresented classes, our method enhances the reliability and trustworthi-
ness of predictive models. This improvement is especially valuable in clinical applications,
where failure to detect rare but serious conditions can lead to harmful consequences.

1 Introduction

In this work, we address class calibration in challenging settings with a large number of classes and limited
available samples. We focus on tasks involving hierarchically organized label spaces, where classes are struc-
tured according to the relationships between the classes, e.g., a taxonomy. Such hierarchies capture semantic
relationships between labels and are common in many real-world domains, including product categorization,
biological classification of bacteria, or diagnoses in healthcare. More broadly, our approach applies to any
setting where domain knowledge enables meaningful grouping of classes, whether through formal hierarchies
or alternative semantic relationships. In settings where structured domain knowledge is limited, our method
is complementary to data-driven approaches that automatically discover groupings from data.

We focus on the medical domain, specifically on the task of outcome diagnosis prediction as a canonical
example of this setting. A key challenge of outcome diagnosis prediction is the large and imbalanced label
space that exhibits a pronounced long-tail. Clinical decision support systems (CDSS) must not only show
strong performance, but also be well-calibrated, as miscalibration can lead to harmful misdiagnoses (Alkan
et al., 2025). At the same time, clinical models are usually designed to yield point predictions (Miotto et al.,
2018; 2016), which offer no measure of uncertainty. This is especially problematic in diagnosis tasks, where
overlapping symptoms (Wagan et al., 2024) are common and models may struggle to distinguish between
similar conditions, especially for underrepresented classes. Thus, there is an important requirement for
models to provide reliable predictions, as well as uncertainty estimates.

The medical domain is particularly suitable for demonstrating the impact of improvements in class conditional
coverage, as it offers well-established taxonomies such as ICD-codes and presents high-stakes scenarios where
calibration failures can directly affect patient safety. For a successful clinical deployment of AI technology,
medical staff and patients need to trust its predictions. A central assumption underlying a substantial body

1



Under review as submission to TMLR

Diseases of the Circu-
latory System (I00-I99)

32 patients

Acute rheumatic
fever (I00-I02)

20 patients

Rheumatic chorea (I02)

3 patients

Rheumatic fever with
heart involvement (I01)

17 patients

Chronic rheumatic
heart diseases (I05-I09)

12 patients

Rheumatic mitral
valve diseases (I05)

12 patients

Figure 1: ICD-10 hierarchy of selected diseases of the circulatory system. ICD-10 codes are shown in
parentheses and the number of patients in the calibration data per class is indicated at the bottom of each
box. When the number of samples for a class is smaller than a certain threshold m (here, m = 10), our
method, Dynamically Grouped Conformal Prediction (DGCP), groups this class with semantically related
ones, using domain knowledge such as the ICD-10 hierarchy. In this example, the leaf node Rheumatic
chorea (I02) with only 3 patients (highlighted in light red) is grouped with I01 and I05 because they share
a common higher-level ICD category (indicated by gray shading), which is used to define the grouping.
However, I01 and I05 exceed the threshold (highlighted in light green), which is why they are calibrated on
the class level.

of literature in eXplainable AI (XAI) is that trust can be fostered by rendering model predictions more
transparent (Ribeiro et al., 2016; Lundberg & Lee, 2017; Samek et al., 2019; Schmidt & Biessmann, 2019)
especially in the medical domain (Hamm et al., 2023; van Aken et al., 2022).

While transparency addresses an important dimension of trustworthiness (Wang & Yin, 2021), another key
aspect lies in understanding the uncertainty of AI system predictions (Dhuliawala et al., 2023). In light of the
growing capacity of models, which has been associated with poor calibration of uncertainty estimates (Snoek
et al., 2019; Guo et al., 2017), improving uncertainty calibration is a fundamental prerequisite for trust in
AI systems. This is especially true in safety-critical AI applications that fall under the high-risk category
of the EU AI act (Council of European Union, 2024) such as AI healthcare products, where understanding
uncertainty (Grote & Berens, 2023; Seoni et al., 2023) and communicating it (Banerji et al., 2023) are
essential to improve trust.

Uncertainty Calibration with Conformal Prediction. A popular model-agnostic calibration method
is Conformal Prediction (CP)(Vovk et al., 2005), which provides prediction sets instead of point predictions.
These sets offer formal coverage guarantees, indicating how often the true label is expected to be included
on average. This is especially important in clinical settings, where overconfident point predictions can be
misleading. However, ensuring reliable coverage is challenging in imbalanced, long-tailed label distributions
(Kasa & Taylor, 2023). This is because rare classes are often absent or severely underrepresented when
calibration sets are very limited in size, making it difficult to estimate uncertainty reliably or guarantee valid
coverage for those classes.

Contribution: Dynamically Grouped Conformal Prediction. We address these challenges by
proposing a post-hoc and model-agnostic method called dynamically grouped CP (DGCP). DGCP intro-
duces a hyperparameter m, which defines the minimum number of calibration samples required for class-level
calibration. This is motivated by preliminary experiments, which show that classes with no or only a few
calibration samples cannot be reliably calibrated. Therefore, the idea is to relax the strict guarantees of class-
conditional conformal prediction and dynamically group a class with fewer than m samples together with
semantically related classes using domain knowledge. As our experimental evaluation shows, this allows us to
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balance strong class-conditional guarantees, while increasing coverage for underrepresented classes. Figure 1
illustrates an example that uses ICD-10 codes as labels and m = 10. In this case, the number of calibration
samples for the diagnosis of rheumatic chorea (I02) does not exceed the threshold m. Thus, DGCP combines
all patients diagnosed with I02 together with other diagnoses, using domain knowledge. For hierarchical
label spaces, a natural grouping is given by a higher level in the hierarchy. However, it is also possible to use
any other attribute or grouping function. Our experiments demonstrate that the proposed method is robust
to the choice of hyperparameter m.

In summary, we propose dynamically grouped conformal prediction that maintains class-conditioned cali-
bration if sufficient data are available and provides group-conditioned guarantees if not. We evaluate our
approach on three clinical datasets and show that it consistently improves class-conditional coverage for the
underrepresented classes.

2 Related Work

Outcome Diagnoses Prediction from Text. Transformer models have demonstrated remarkable per-
formance across various domains, including the medical field. van Aken et al. (2021) pre-train transformers
using a modified next-sentence prediction objective between admission and discharge sentences to improve
outcome diagnoses prediction. Naik et al. (2022) augment clinical notes with medical literature and Ji &
Marttinen (2023) adopts a multitask approach for unseen diagnoses categories. van Aken et al. (2022) ad-
dressed the problem of rare diagnoses codes by combining a prototypical classifier with a Transformer to
improve prediction performance.

Uncertainty Quantification and Conformal Prediction. Uncertainty quantification in deep learning
has gained considerable attention in recent years (Fakour et al., 2024; Tyralis & Papacharalampous, 2022;
Abdar et al., 2021). Conformal prediction (CP) has emerged as a principled framework for producing
prediction sets with rigorous coverage guarantees, even when the underlying models are imperfect. Notably,
Straitouri & Rodriguez (2024); Straitouri et al. (2023) demonstrate that conformal prediction can assist
domain experts reduce their workload, lead to better decisions, and increase trust (Dhuliawala et al., 2023).

Conformal prediction has been successfully applied across a wide range of domains, including natural lan-
guage processing (Mohri & Hashimoto, 2024; Campos et al., 2024), clinical medicine (Hirsch & Goldberger,
2024; Grote & Berens, 2023; Banerji et al., 2023; Lu et al., 2022; Olsson et al., 2022; Vazquez & Facelli, 2022;
Kompa et al., 2021), and drug discovery (Alvarsson et al., 2021), underscoring its broad utility. Further, a
substantial amount of literature has focused on improving set efficiency (Dhillon et al., 2024; Stutz et al.,
2022; Fisch et al., 2021; Romano et al., 2020; Angelopoulos et al., 2021), generalizing beyond coverage to
other monotonic loss functions (Angelopoulos et al., 2024), tackling hierarchical classification (Mortier et al.,
2025), distribution shifts (Gibbs & Candès, 2024; Barber et al., 2023; Bhatnagar et al., 2023) or structured
output prediction (Zhang et al., 2025). In this work, we enhance the standard split conformal prediction
framework (Angelopoulos & Bates, 2023) and propose an approach to improve class-conditional coverage for
infrequent classes by incorporating domain knowledge.

The work most closely related to ours is by Ding et al. (2023), who address multiclass classification with
up to 1,000 labels by clustering classes based on similar non-conformity scores. Like our work, their goal
is to overcome the limitations of class-conditional conformal prediction in low-data regimes. Our approach
is complementary and differs in two key aspects. First, while their method uses data-driven clustering
to discover groupings from calibration data, we leverage domain knowledge such as label taxonomies to
define semantically meaningful groups. This makes our approach particularly effective in domains where
established hierarchical structures exist; However, data-driven methods are necessary when such knowledge
is unavailable. Second, we apply grouping selectively: we maintain class-level calibration for well represented
classes (≥ m samples) and resort to group-level calibration only for underrepresented classes. This allows
us to preserve fine-grained class-level guarantees where data are sufficient while ensuring valid coverage for
rare classes through domain-informed grouping.
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Figure 2: Diagnoses distribution in MIMIC-III (CCSR), MIMIC-IV (CCSR), and MIMIC-IV (ICD). Diag-
noses are sorted by frequency within each dataset. The Head includes the most frequent diagnoses covering
80% of patients (e.g., 163 diagnoses in MIMIC-IV ICD), while the Tail comprises the remaining, less fre-
quent diagnoses (e.g., 891 diagnoses in MIMIC-IV ICD) that account for the remaining 20% of cases. This
highlights the extreme class imbalance present in clinical datasets.

3 Task and Datasets

Outcome Diagnoses Prediction. We evaluate our approach on the task of predicting the primary dis-
charge diagnosis from unstructured clinical admission notes, as introduced by van Aken et al. (2021). Unlike
multi-label settings that consider multiple diagnoses per patient, this task focuses solely on the main diagnosis
determined at discharge. Following van Aken et al. (2021), only information available at the time of admis-
sion is used for prediction, simulating a realistic early-decision support scenario. The task is formulated as
a multiclass classification problem with up to over 1,000 possible labels, most of which are underrepresented
in the training data.

Datasets. Large-scale, publicly available medical datasets for general use are rare. We use the MIMIC
datasets, which are the most comprehensive clinical datasets that are publicly available. These contain
anonymized patient records from the Intensive Care Unit (ICU) of the Beth Israel Deaconess Medical Center
in Boston. MIMIC-III (Johnson et al., 2016) consists of data between 2001 and 2012, and MIMIC-IV (John-
son et al., 2023) between 2001 and 2019, respectively. To create datasets with label spaces of different sizes,
we split MIMIC-IV randomly into halves. Each of the splits contains different patients. For the first dataset,
we use three-digit ICD-10 codes (compare Choi et al. (2017)). We map the labels of the second MIMIC-IV
dataset and MIMIC-III to CCSR codes, which are clinically meaningful groupings of ICD-10 codes (Health-
care Cost and Utilization Project (HCUP), 2024). We remove notes that directly mention the correct main
diagnosis using MedCAT (Kraljevic et al., 2021). Additionally, we extract two attributes from each primary
diagnosis. The first attribute, body system, is derived based on the classification framework provided by
Healthcare Cost and Utilization Project (HCUP) (2024), which categorizes diagnoses into 21 clinically rele-
vant groups, such as neoplasms (NEO), respiratory conditions (RSP), and injuries (INJ). Second, with the
help of medical professionals, we assign a severity score per diagnosis, reflecting its level of life-threatening
risk. Severity level 1 corresponds to the most critical diagnoses such as sepsis. In contrast, severity level 5
represents non-critical diagnoses. This results in the following datasets: MIMIC-III (CCSR) with 356 diag-
noses and ≈ 4.000 records, MIMIC-IV (CCSR) with 423 diagnoses and ≈ 44.000 records, and MIMIC-IV
(ICD) with 1054 diagnoses and ≈ 44.000 records. Note that the MIMIC-IV (CCSR) and MIMIC-IV (ICD)
datasets not only differ in their label spaces, but also include different patients, resulting from a random
split of MIMIC-IV in order to simulate two separate hospitals. In Figure 2 we present the label distribution
of all training datasets.

We split each of the three datasets into training, validation, and test sets using stratified sampling. We keep
each patient’s first visit and ensure that all diagnoses appear at least once in the training set.
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Figure 3: Comparison of marginal (left) and conditional (right) conformal prediction. Both examples rep-
resent a test set of 100 data points, where 90% of the true labels exist in the conformal prediction sets,
visualized as light gray points. Black points represent samples for which their true label was not included
in the prediction set. Although both methods achieve 90% overall coverage, marginal prediction distributes
coverage unevenly across groups. Where the groups are typically defined by the target class, but can the-
oretically depend on any attribute. On the other hand, conditional prediction guarantees 90% coverage for
each group individually. This figure is adapted from Angelopoulos & Bates (2023).

4 Background: Conformal Prediction

Conformal prediction (CP), originally presented by Vovk et al. (2005), is a distribution-free and model-
agnostic uncertainty quantification method. It turns any black-box point predictor into a set predictor,
which statistically guarantees to cover the correct label with a user-defined probability/confidence level.
Assume f̂ is a fitted classification model that outputs softmax scores: f̂(x) ∈ RK

[0,1]. For point predictions,
the predicted class ŷ ∈ {1, ..., K} is the index of the highest softmax score.

Non-conformity. To build confidence sets C(Xtest), CP uses non-conformity scores, computed on a cali-
bration set not used for training: Scalib = {si},∀i ∈ {1, ..., Ncalib}. Non-conformity scores si represent how
(Xi, yi) differs from the model prediction (Xi, ŷi). For this, we use a non-conformity score function, e.g., one
minus the softmax output of the true class: si = 1− f̂(Xi)Yi

. Next, compute the k-th empirical quantile of
Scalib as follows:

k = ⌈(n + 1)(1− α)⌉
n

q̂ = quantile(Scalib, k),
(1)

where (1 − α) is the user-defined confidence level and n is the number of calibration points. For a new
unseen test data point Xtest (ytest is unknown), CP includes all classes in C for which si does not exceed
the threshold q̂. Formally, C(Xtest) = {y : f̂(Xtest)y ≤ q̂}, which is guaranteed to satisfy (Equation (2)),
independently of the model and the data distribution (Zeni et al., 2020; Angelopoulos & Bates, 2023).

P(ytest ∈ C(Xtest)) ≥ (1− α) (2)

(Marginal) Coverage. This property, referred to as marginal coverage (Lei & Wasserman, 2014), ensures
that approximately (1− α)% of the test data points are correctly included in the prediction sets. When the
model f̂ effectively fits the data, these sets C tend to be small. Conversely, if f̂ does not fit the data well or
Xtest is ambiguous, C will be greater in size (Lei et al., 2013). As Figure 3 (left) shows, although marginal
coverage gives statistical guarantees on average, it may neglect the existence of groups in the data. Where
the groups are typically defined by the target class, but can theoretically depend on any attribute. In many
cases, it is desirable to obtain the coverage guarantee of Equation (2) for each group, known as conditional
coverage.

Conditional Coverage. As illustrated in Figure 3, the left side (marginal coverage) shows that coverage
is achieved for Group 1, while Group 2 achieves no coverage at all. However, because marginal coverage
guarantees are only on average across all samples, the overall 90% confidence level is satisfied. To achieve
a more balanced coverage, the formulation in Equation (1) is modified to define multiple group-specific

5



Under review as submission to TMLR

thresholds q̂(g), each corresponding to a single group g ∈ G. As a result, associated variables such as n(g),
k(g), and S

(g)
calib are also indexed by group. Finally, the confidence sets are constructed as follows:

C(Xtest) = {y : f̂(X(g)
test)y ≤ q̂(g)},

where g denotes the group to which the test sample belongs. These sets C satisfy the stronger group-
conditional guarantee defined in Equation (3), ensuring that each group individually meets the target cover-
age level. Note that in contrast to marginal, the right side (conditional coverage) of Figure 3 demonstrates
balanced coverage across both groups, each achieving 90% coverage.

P(ytest ∈ C(Xtest)|X(g)
test) ≥ (1− α), ∀g ∈ G (3)

Class-conditional coverage. If the groups are defined by a label attribute as follows:

g = {k}, ∀g ∈ G and k ∈ {1, ..., K}, (4)

Equation (3) is referred to as class-conditional coverage1. In many applications with small and balanced
label spaces, applying class-conditional CP has shown good results. For further details and proofs, we refer
the reader to Angelopoulos & Bates (2023); Vovk et al. (2005).

5 Methods

Dynamical Grouping with Limited Calibration Samples per Class. Reliable class-conditional cov-
erage is challenging on datasets with large and imbalanced label spaces. To address this issue, we propose
dynamically grouping classes with insufficient calibration data into domain-specific groups. To this end, we
introduce a new hyperparameter m, which denotes the minimum number of calibration samples required
for a class to be considered sufficiently represented. If |X(k)

calib| ≥ m, class k is treated as having sufficient
calibration data, and we apply class-conditional conformal prediction with g = {k} (cf. Equation (4)). Con-
versely, if |X(k)

calib| < m, class k is grouped together with other classes, and we perform group-based calibration
according to Equation (3). The grouping function is user-defined and, given the calibration set size and a
specific class, returns the appropriate group (e.g., based on additional features used to organize the data).
For instance, in hierarchical label spaces, it may return a coarser-level category or another attribute describ-
ing, for example, the body system or severity of a disease. A formal definition of this procedure is provided
in Algorithm 1.

Algorithm 1 Calibration with Dynamically Grouped Conformal Prediction (DGCP)
Require: fitted classification model f̂ , calibration set Xcalib, confidence level (1−α), sufficient data threshold

m, grouping function group(·), non-conformity score function nonconformity(·)
Ensure: fitted classification model f̂ is calibrated f̃

Scalib ← nonconformity(Xcalib, f̂)
for each class k ∈ {1, . . . , K} do

if |X(k)
calib| ≥ m then

q̂(k) ← Quantile
(

S
(k)
calib, ⌈(n(k)+1)(1−α)⌉

n(k)

)
▷ class-level calibration

else
g ← group(Xcalib, k)
q̂(k) ← Quantile

(
S

(g)
calib, ⌈(n(g)+1)(1−α)⌉

n(g)

)
▷ group-level calibration

end if
end for
return calibrated model f̃

1Class-conditional conformal prediction is also known as mondrian conformal prediction (Vovk et al., 2005).
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Similarity to other Conformal Prediction Methods. In contrast to Ding et al. (2023) who first cluster
the calibration data based on their non-conformity scores, our method directly uses domain knowledge to
assign samples to each group. In the best case, where every class has enough data for a reliable calibration, our
method is equivalent to class-conditional CP (cf. Equation (4)) and fulfills the predefined class-conditional
guarantees. If a class has fewer than m calibration points, we group samples with a common attribute
to estimate a group-specific threshold. This threshold is then applied to the underrepresented class. For
example, diagnoses related to cardiovascular conditions can be grouped to estimate a shared threshold, which
is then used for classes with limited data of that group (e.g., the rare Takotsubo cardiomyopathy diagnosis).
This approach enables the calibration of classes that are absent from the calibration set.

6 Experimental Setup

Through a comprehensive evaluation, we validate empirically whether our methodology improves class-
conditional coverage. Our primary objective is to improve upon existing methods that provide formal
class-conditional coverage guarantees. While we also compare to non-conformal baselines that achieve strong
empirical performance, these methods provide no formal guarantees on class-conditional coverage. Their good
performance in our experiments reflects favorable empirical conditions rather than theoretical assurances
and may not hold under other scenarios. Therefore, our key comparisons focus on methods with formal
guarantees. We train a domain-specific model (Section 6.1) on each dataset, and compare the performance
(Section 6.4) of different calibration methods (Section 6.2 and Section 6.3). For calibration, we use the
following hyperparameters: calibration set sizes n ∈ {1000, 2000} and confidence levels (1 − α) ∈ {0.8, 0.9}
and keep the underlying predictors fixed. In addition, for DGCP, we evaluate the effect of m ∈ {10, 20}. To
ensure the robustness of our results, we repeat each experiment 50 times. In each repetition, we randomly
re-sample the calibration set from the test set and use the remaining data points for testing: 4,094 for
MIMIC-III, 20,900 for MIMIC-IV(CCSR), and 20,722 MIMIC-IV(ICD)). We report the metrics detailed in
Section 6.4.

6.1 Prediction Model

For our experiments, we use ProtoPatient (van Aken et al., 2022), a transformer-based architecture that has
demonstrated strong performance in diagnosis prediction, especially for rare diagnosis codes. The model
combines a biomedical transformer encoder (Gu et al., 2020) with a prototypical layer. This layer consists
of one prototype vector and one attention vector per diagnosis. Each patient admission note is encoded
and projected into a lower-dimensional space, where it is weighed by diagnosis-specific attention vectors to
map the note to the latent metric space. The model then computes the softmax over the negative distances
between the resulting representation vpat and each diagnosis prototype udiag, using the Euclidean distance:
d = ∥vpat − udiag∥2. During training, the model minimizes the binary cross-entropy (BCE) loss over all
patients L =

∑
pat

∑
diag BCE(softmax(−d), ypat,diag), where ypat,diag ∈ {0, 1} is the ground-truth. This

loss encourages the representation of each input to move closer to the prototype of the correct class and
farther from those of the incorrect ones. Finally, for inference, the prediction corresponds to the diagnosis
with the closest prototype.

We choose ProtoPatient for evaluation because of its strong performance on rare diagnosis codes, and because
its distance-based classification provides a natural non-conformity score. In addition, ProtoPatient offers
inherent interpretability and justification for predictions, which complements our goals of transparency and
trustworthiness, critical factors in clinical decision support. For further findings and results, we refer to van
Aken et al. (2022). However, DGCP is model-agnostic and can be applied post hoc to any base predictor.

6.2 Conformal Calibration Methods

For model calibration, we define the non-conformity score as the distance between the patient encoding
and the prototype of the true class: si = di = f̂(Xi)Yi ,∀i ∈ {1, ..., Ncalib} (cf. Section 6.1), where f̂ is the
fitted ProtoPatient model. We apply CP as described in Section 4. Although we acknowledge that set size
efficiency is important for practical deployment, in this study our focus is on improving class-conditional
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coverage. This choice reflects priorities in high-stakes tasks such as medical diagnosis, where including the
true diagnosis (coverage) is critical.

Marginal and Class-conditional CP. To calibrate with marginal or class-conditional CP, we proceed as
described in Section 5. Marginal CP provides coverage guarantees averaged over all labels (cf. Equation (2)).
Class-conditional CP provides coverage guarantees for each class, accounting for imbalances that marginal
coverage neglects (cf. Equation (4)).

Clustered CP. Clustered conformal prediction (Ding et al., 2023) improves class-conditional coverage in
settings with limited data. It clusters classes with similar non-conformity scores and calibrates at cluster-
level.

Dynamically Grouped CP (ours). We apply DGCP as described in Section 5 and use the following
naming scheme: DGCP|Grouping Method. For example, when we use the body system related to a diagnosis
for grouping, we refer to this method: DGCP|Body System.

6.3 Non-conformal Calibration Methods

For completeness, in addition to the above CP methods, we use baselines that construct prediction sets from
model outputs, but do not provide any coverage guarantees.

Adaptive top-k. A simple approach that returns set predictions draws inspiration from the top-k clas-
sification metrics. Where k is not fixed, but classes are included in the prediction set until the cumulative
sum of probabilities exceeds the predefined confidence level (1− α).

Calibrated Adaptive top-k. Empirical evidence suggests that modern neural networks are poorly cali-
brated (Guo et al., 2017). To account for this, we use temperature scaling (TS) to calibrate ProtoPatient’s
probabilities and then follow the same approach as Adaptive top-k to construct prediction sets. Tempera-
ture scaling is a simple method to calibrate point prediction models by introducing a single scalar parameter
T > 0, which scales the logit values z and the calibrated logit z̃ is defined as:

z̃ = max
k

exp(zk/T )∑K
j=1 exp(zj/T )

, ∀k ∈ {1, . . . , K}. (5)

Note that in contrast to CP methods that are applied post-hoc, fitting T requires gradient computation. We
follow Angelopoulos et al. (2021) for the implementation.

6.4 Conformal Metrics

In our analysis, we use common metrics to assess the validity of our methods. Macro coverage measures the
mean of the average empirical coverage per class and weights them equally. Formally,

coveragemacro = 1
K

K∑
k=1

1
|X(k)

test|

|X(k)
test|∑

i=1
1
{

k ∈ C(X(k)
test,i)

}
(6)

where K is the number of classes in the entire data X, |X(k)
test| is the number of test samples available for class

k, and C(X(k)
test,i) is the prediction set of the i-th example of class k. Ideally, the empirical macro coverage

reaches the specified confidence level. Additionally, we measure the mean prediction set size:

set_size = 1
|Xtest|

|Xtest|∑
i=1

|C(Xtest,i)| (7)

Smaller prediction sets are preferable due to their increased efficiency.
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7 Results

Although we trained and evaluated two variants of the ProtoPatient model, one with pre-initialization of the
prototypical layer following van Aken et al. (2022) and one with random initialization, we elaborate on their
differences in Appendix A. Since the pre-initialized version consistently yields stronger conformal calibration
metrics across all methods, we use it as the basis for all subsequent experiments. As described in Section 6,
we calibrate the model with different approaches and compare them experimentally. If not stated otherwise,
we show the results for m = 10, confidence level (1−α) = 0.9, and a calibration set size of 1000. We expand
on the results of the different calibration hyperparameter settings in Appendix B.

Table 1: Experiment Results. Calibrated using m = 10, confidence level (1−α) = 0.9, and calibration set size
of 1000. Conformal calibration methods (with guarantees) are above, and non-conformal methods (without
guarantees) are below the horizontal line. Our approach, DGCP with body system fallback, consistently
improves and outperforms other methods in terms of class-conditional coverage on all datasets. ± represents
standard deviation over 50 repetitions.

Macro Coverage (↑) Prediction Set Size (↓)

Method
MIMIC-III

(CCSR)
MIMIC-IV

(CCSR)
MIMIC-IV

(ICD)
MIMIC-III

(CCSR)
MIMIC-IV

(CCSR)
MIMIC-IV

(ICD)
DGCP|Severity Score (ours) 60.2± 2.9 67.0± 1.6 64.0± 2.4 17.0± 2.8 18.4± 2.0 33.9± 6.7
DGCP|Body System (ours) 65.5± 3.2 71.8± 2.4 67.0± 2.5 33.2± 8.6 31.0± 5.7 67.8± 14.4
Clustered CP 55.2± 2.3 66.5± 2.1 61.7± 2.8 12.0± 1.1 16.9± 1.9 27.8± 4.4
Class-conditional CP 34.9± 1.5 38.9± 1.5 23.7± 0.9 16.3± 1.1 20.3± 1.9 21.4± 2.2
Marginal CP 55.1± 2.1 66.6± 1.7 61.7± 2.5 12.0± 1.0 17.0± 1.6 27.9± 3.9
Calibrated Adaptive top-k 64.1± 1.6 70.2± 1.5 64.5± 1.6 17.3± 1.0 21.9± 1.8 34.6± 3.0
Adaptive top-k 62.1± 0.9 67.4± 0.2 60.9± 0.3 15.3± 0.1 18.3± 0.0 27.5± 0.0

Table 1 compares the performance of the calibration methods. We report the macro coverage over all classes
in the dataset, as defined in Equation (6), which assigns equal weight to each class, including those lacking
calibration or test samples, and the average prediction set size, as defined in Equation (7). Because all
datasets exhibit pronounced long-tailed distributions, methods that neglect rare classes achieve lower macro
coverage but smaller prediction set sizes. In this work, we primarily focus on improving class-conditional
coverage. Enhancing the efficiency of prediction sets is left for future work.

Adaptive top-k and Calibrated Adaptive top-k show surprisingly good results and are generally second
and third best in terms of macro coverage, but do not provide formal coverage guarantees. Clustered CP
and Marginal CP perform almost equally in both class-conditional coverage and prediction set size. Class-
conditional CP achieves the lowest macro coverage, as many classes do not appear in the calibration set,
preventing the prediction of these classes.

Dynamically Grouped CP Improves Class-conditional Coverage. DGCP|Body System is consis-
tently the best method in terms of macro coverage, closely followed by DGCP|Severity Score. Both methods
improve their class-conditional coverage over Class-conditional CP by a factor between 1.7 and 2.9. However,
this typically comes at the cost of increased prediction set sizes; in our case, they range between 0.9 and
3.1. This highlights the trade-off between efficiency (small prediction set sizes) and reliability (high macro
coverage). In our experiments, this relationship is roughly linear.

A Closer Look at the Label Distribution in the Calibration Set. Across 50 repetitions, only
166± 6.4 of the 356 classes in MIMIC-III are present in the calibration dataset, with 15.5%± 1.4 containing
ten or more calibration samples. For MIMIC-IV (CCSR), 255± 6.2 out of 423 classes are represented in the
calibration data, with 13.8%± 1.2 having at least ten samples. In MIMIC-IV (ICD), 313± 9.3 out of 1,054
classes appear in the calibration data, of which 5.4%± 0.7 include ten or more samples. In this experiment,
the calibration dataset contains 1,000 samples, which explains why larger label spaces reduce these fractions.
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In Table 2, we show the macro coverage separately computed for classes in the calibration data that have
ten or more calibration points and less than ten calibration points. As expected, for classes with sufficient
calibration data, all conformal calibration methods consistently exceed the expected coverage of 90%. In
contrast, for classes with fewer than ten calibration samples, coverage degrades. However, compared to
Class-conditional CP all methods achieve improvements.

Table 2: Experiment Results separated for classes with at least ten calibration points (|X(k)
calib| ≥ 10) vs.

less than ten (|X(k)
calib| < 10). Calibrated using m = 10, confidence level (1 − α) = 0.9, and calibration set

size of 1000. For classes with sufficient calibration data (|X(k)
calib| ≥ 10), all conformal calibration methods

consistently exceed the expected coverage of 90%. However, with less calibration data, all methods achieve
improvements over Class-conditional CP. DGCP|Body System followed by DGCP|Body System achieve the
best improvements.

Macro Coverage (↑) for |X(k)
calib| ≥ 10 Macro Coverage (↑) for |X(k)

calib| < 10

Method
MIMIC III

(CCSR)
MIMIC IV

(CCSR)
MIMIC IV

(ICD)
MIMIC III

(CCSR)
MIMIC IV

(CCSR)
MIMIC IV

(ICD)
DGCP|Severity Score (ours) 92.1± 1.3 92.8± 1.4 92.6± 1.7 77.0± 3.1 77.5± 1.9 80.6± 1.7
DGCP|Body System (ours) 92.1± 1.3 92.8± 1.4 92.6± 1.7 77.7± 2.4 81.6± 1.8 82.6± 1.8
Clustered CP 95.9± 0.9 96.2± 0.7 98.2± 0.5 72.2± 2.4 76.6± 2.3 79.3± 2.2
Class-conditional CP 92.1± 1.3 92.8± 1.4 92.6± 1.7 66.8± 2.9 65.5± 2.2 62.6± 2.1
Marginal CP 95.8± 0.8 96.2± 0.5 98.2± 0.5 72.1± 2.3 76.8± 1.8 79.3± 1.9

Influence of the Long Tail on Class-conditional Coverage. Figure 4 shows the class-conditional
coverage as a function of available training data for all methods that provide class-level guarantees. As
described in Section 3, we stratify the data into training, evaluation, and test sets, ensuring that the label
distribution is preserved. However, we retain at least one sample of each class in the training set. Class-
conditional CP yields the lowest conditional coverage, achieving the target confidence level (1 − α) = 0.9
only for well-represented classes where sufficient data points enable reliable calibration (cf., Table 2). This
gap widens as the class frequency decreases. Unlike Clustered CP, which overshoots the confidence level for
frequent classes, both dynamically grouped CP and Class-conditional CP converge to the desired level as the
data increases. Among the approaches tested, DGCP|Body System achieves the highest coverage, followed
by DGCP|Severity Score and Clustered CP.

8 Discussion

Non-conformal Calibration Methods. Adaptive top-k and Calibrated Adaptive top-k achieve sur-
prisingly strong macro coverage in our experiments, comparable to or exceeding some conformal methods.
However, this empirical performance comes with an important caveat: these methods provide no formal
guarantees. Under different conditions, their coverage may degrade arbitrarily, whereas conformal methods
maintain their guarantees.

Marginal CP and Class-conditional CP. Class-conditional CP yields the lowest class-conditional cov-
erage because it calibrates each class independently and cannot generate predictions for classes that are
absent from the calibration set. Given the highly imbalanced distribution of diagnoses and a limited cal-
ibration set of 1,000 samples, many classes remain unrepresented, leading to significantly degraded macro
coverage. In contrast, Marginal CP aggregates across all samples during calibration, weighting classes ac-
cording to their frequency in the calibration set. Unlike Class-conditional CP, it produces prediction sets
for all classes, improving macro coverage. However, this comes at the cost of class-level guarantees. Since
Marginal CP focuses on the majority classes (i.e., the head of the label distribution), it achieves relatively
small prediction set sizes, but provides poorer coverage for infrequent classes.
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Figure 4: Class-conditional coverage over training data label frequency for conformal methods. The horizon-
tal dashed line indicates the target confidence level. Calibrated using m = 10, confidence level (1−α) = 0.9,
and a calibration set size n = 1, 000. Classes with many data points typically have enough calibration ex-
amples to reach the confidence level (1 − α) = 0.9. In tasks with large label spaces (left to right subplots),
more calibration data are typically required to achieve the desired confidence level at class-level. However,
DGCP|Body System, DGCP|Severity Score, and Clustered CP shift the coverage curves leftward, indicating
more efficient use of limited calibration data, improving coverage for rare classes.

Clustered CP is Almost Equivalent to Class-conditional CP. In terms of macro coverage and
average set size, in our experiments, Clustered CP’s results are almost equivalent to Marginal CP. This
occurs because of the high imbalanced label space and the limited calibration set size. For the Clustered CP
all classes that cannot be confidently assigned to any learned cluster are assigned to a NULL cluster, which
uses marginal CP. Given the pronounced long-tail distribution of diagnoses and limited calibration data,
almost all of the classes are assigned to this NULL cluster. Consequently, the NULL cluster dominates the
overall behavior, causing the method to effectively behave similar to Marginal CP, which simply groups all
classes together. In contrast, our domain knowledge-based grouping forms semantically meaningful groups,
avoiding the need for a generic NULL category and enabling better calibration for underrepresented classes.

Using Domain Knowledge Improves Class-conditional Coverage. As shown in Table 1 and Fig-
ure 4, leveraging domain knowledge to group diagnoses by body system or severity score based on medical
taxonomies improves class-conditional coverage. In Table 2, it is shown that improvements stem from the
underrepresented classes rather than the majority classes. These results suggest that hierarchical label struc-
tures, which capture meaningful semantic relationships, can make calibration more robust, particularly for
underrepresented classes. We argue that although this approach trades fine-grained class-level guarantees
for more stable group-level estimation, the resulting increase in conditional coverage makes it a worthwhile
compromise in imbalanced settings. Although not all domains offer expert-defined hierarchies or may intro-
duce noise that complicates grouping, it could benefit domains with taxonomic label structures, such as the
biological, legal, or financial domains.

9 Conclusion

In this work, we introduce dynamically grouped conformal prediction (DGCP). We empirically demonstrate
that our approach improves class conditional coverage in settings with limited data availability. By leveraging
domain knowledge to group underrepresented classes, DGCP enables more robust threshold estimation for
rare classes while preserving class-level guarantees for well represented ones. We demonstrated its effective-
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ness across three clinical datasets and two different label spaces: MIMIC-III (CCSR), MIMIC-IV (CCSR)
and MIMIC-IV (ICD), showing consistent improvements in conditional coverage.

Limitations and Future Work. Our investigation focuses mainly on improving class conditional cov-
erage for infrequent classes since these are critical for high-stakes domains. However, other aspects of
conformal prediction are also important for safe clinical deployment. These include optimizing prediction
set efficiency (Romano et al., 2020; Angelopoulos et al., 2021; Stutz et al., 2022) or controlling for alter-
native metrics such as F1-score (Angelopoulos et al., 2024) among others. Future work should explore the
integration of these ideas into our approach.
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A Influence of Pre-initialization of Prototypical Layer on Calibration

van Aken et al. (2022) introduced ProtoPatient and explored two initialization strategies: one in which
prototypes and attention vectors are pre-initialized, and another using random initialization. Table 4 reports
calibration results for all methods using model predictions from both initialization strategies, as indicated
in the Init column. The results demonstrate that pre-initializing the prototypical layer yields higher macro
coverage, smaller average prediction set sizes, and lower standard deviations across 50 runs with different
random seeds, indicating more stable and reliable calibration. As shown in Table 3, pre-initialization also
improves macro-AUC, consistent with the findings of van Aken et al. (2022), although it results in slightly
lower accuracy. We argue that models with higher macro-AUC achieve better calibration results than those
with higher accuracy.

Table 3: Performance Metrics of ProtoPatient on all datasets for the main clinical outcome prediction task.
While AUC score consistently increases when pre-initializing is used, accuracy slightly degrades.

Init Dataset #Classes Accuracy Macro-AUC

False
MIMIC-III (CCSR) 356 47.81 93.24
MIMIC-IV (CCSR) 423 45.36 95.22
MIMIC-IV (ICD) 1054 48.39 93.82

True
MIMIC-III (CCSR) 356 45.39 94.83
MIMIC-IV (CCSR) 423 42.82 95.75
MIMIC-IV (ICD) 1054 43.43 95.41

Table 4: Calibration results for ProtoPatient models trained with different pre-initialization methods (Init),
using a calibration set size of 1,000 and a confidence level (1 − α) = 0.9 and m = 10. Each row reports
macro coverage (higher is better) and prediction set size (lower is better) for three clinical classification tasks:
MIMIC-III (CCSR), MIMIC-IV (CCSR), and MIMIC-IV (ICD). Conformal methods with formal coverage
guarantees appear above the single horizontal line; non-conformal baselines are shown below. Results are
shown as mean ± standard deviation over 50 repetitions. Pre-initialization consistently improves calibration
performance, yielding higher coverage, smaller prediction sets, and reduced variance.

Macro Coverage (↑) Prediction Set Size (↓)

Init Method
MIMIC-III

(CCSR)
MIMIC-IV

(CCSR)
MIMIC-IV

(ICD)
MIMIC-III

(CCSR)
MIMIC-IV

(CCSR)
MIMIC-IV

(ICD)

Yes

DGCP|Severity Score (ours) 60.2± 2.9 67.0± 1.6 64.0± 2.4 17.0± 2.8 18.4± 2.0 33.9± 6.7
DGCP|Body System (ours) 65.5± 3.2 71.8± 2.4 67.0± 2.5 33.2± 8.6 31.0± 5.7 67.8± 14.4
Clustered CP 55.2± 2.3 66.5± 2.1 61.7± 2.8 12.0± 1.1 16.9± 1.9 27.8± 4.4
Class-conditional CP 34.9± 1.5 38.9± 1.5 23.7± 0.9 16.3± 1.1 20.3± 1.9 21.4± 2.2
Marginal CP 55.1± 2.1 66.6± 1.7 61.7± 2.5 12.0± 1.0 17.0± 1.6 27.9± 3.9
Calibrated Adaptive top-k 64.1± 1.6 70.2± 1.5 64.5± 1.6 17.3± 1.0 21.9± 1.8 34.6± 3.0
Adaptive top-k 62.1± 0.9 67.4± 0.2 60.9± 0.3 15.3± 0.1 18.3± 0.0 27.5± 0.0

No

DGCP|Severity Score (ours) 53.2± 3.0 66.6± 2.9 62.8± 2.5 20.0± 2.6 19.3± 2.7 38.6± 8.8
DGCP|Body System (ours) 60.3± 3.4 71.7± 2.7 65.1± 2.4 38.8± 8.3 34.4± 6.4 85.1± 21.9
Clustered CP 44.4± 3.6 65.3± 4.0 60.5± 2.7 14.1± 1.7 16.4± 2.4 29.9± 4.1
Class-conditional CP 34.7± 1.7 38.9± 1.4 23.8± 0.8 18.7± 1.3 20.6± 2.1 23.9± 2.4
Marginal CP 44.3± 3.2 65.3± 3.3 60.7± 1.9 14.1± 1.4 16.3± 1.9 30.2± 3.1
Adaptive top-k 57.3± 1.4 66.7± 1.6 61.5± 1.4 18.6± 0.9 17.5± 1.3 34.9± 2.9
Calibrated Adaptive top-k 51.0± 0.7 53.9± 0.2 47.8± 0.3 15.0± 0.1 9.9± 0.0 16.8± 0.0
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B Effect of Conformal Prediction Hyperparameters on Calibration

Influence of Calibration Threshold m. The parameter m specifies the minimum number of calibration
samples required for class-level calibration. If a class contains fewer than m samples in the calibration set, we
group it with semantically related classes present in the set for threshold estimation. As shown in Table 5,
increasing m from 10 to 20 has minimal impact on class-conditional coverage and prediction set size across all
datasets. A threshold of 20 leads to more frequent use of dynamic grouping, since in a calibration set of 1,000
samples it becomes more likely that individual classes will not meet the sample requirement. These results
suggest that dynamic grouping introduces almost no effect (within the standard deviation) on coverage and
prediction set efficiency, demonstrating the robustness of our method to modest changes in m.

Influence of Confidence Level (1− α). In Table 6, we present calibration results at a confidence level
(1− α) = 0.8. To investigate the effect of varying the confidence level, we compare these results with those
presented in Table 5, which uses the same calibration set size of 1,000 samples but a higher confidence level
(1 − α) = 0.9. As expected, lowering the confidence level leads to consistently smaller prediction set sizes
across all datasets and methods. However, this reduction comes at the cost of decreased macro coverage,
reflecting the fundamental trade-off between precision and reliability in conformal prediction. Despite the
drop in coverage, the relative ranking of methods remains consistent, suggesting that method robustness is
preserved across confidence levels. These findings emphasize the importance of choosing an appropriate con-
fidence level based on task requirements, whether minimizing prediction ambiguity or maximizing empirical
coverage with guarantees.

Influence of Calibration set Size n. We present calibration results for two calibration set sizes: 1,000
samples in Table 5 and 2,000 samples in Table 7. We analyze the impact of calibration set size and compare
the results at a fixed confidence level (1 − α) = 0.9. The most notable gain in class-conditional coverage
is observed for Class-conditional CP which shows a substantial increase in coverage across all datasets.
However, this improvement comes at the cost of significantly larger prediction sets. In contrast, DGCP
variants (based on severity and body system) maintain comparable coverage while showing a reduction in
prediction set size and a decrease in standard deviation across repetitions. This suggests that our method
benefits from the increase in calibration data by becoming more efficient and stable without sacrificing
reliability. For other baselines, including Marginal CP, Clustered CP, and non-conformal methods, both
coverage and set size remain largely unchanged, indicating limited sensitivity to calibration size. Therefore,
in this study, we focus our in-depth analysis on the scenario with only 1,000 calibration samples to better
understand performance in terms of class-conditional coverage under more limited data conditions.
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Table 5: Calibration results for different values of m. All models use the pre-initialized model, a confidence
level (1 − α) = 0.9 and a calibration set size n = 1, 000. Results show that decreasing m from 20 to 10
maintains stable performance in terms of macro coverage and prediction set size. Conformal methods with
formal coverage guarantees are listed above the single horizontal line, while non-conformal baselines are
shown below. ± indicates standard deviation over 50 repetitions.

Macro Coverage (↑) Prediction Set Size (↓)

m Method
MIMIC-III

(CCSR)
MIMIC-IV

(CCSR)
MIMIC-IV

(ICD)
MIMIC-III

(CCSR)
MIMIC-IV

(CCSR)
MIMIC-IV

(ICD)

10 DGCP|Severity Score (ours) 60.2± 2.9 67.0± 1.6 64.0± 2.4 17.0± 2.8 18.4± 2.0 33.9± 6.7
DGCP|Body System (ours) 65.5± 3.2 71.8± 2.4 67.0± 2.5 33.2± 8.6 31.0± 5.7 67.8± 14.4

20 DGCP|Severity Score (ours) 60.3± 2.9 67.2± 1.6 64.0± 2.4 16.5± 3.0 18.1± 1.9 34.8± 7.0
DGCP|Body System (ours) 65.5± 3.2 71.9± 2.4 67.0± 2.5 33.2± 8.7 31.3± 5.9 68.6± 14.5

Clustered CP 55.2± 2.3 66.5± 2.1 61.7± 2.8 12.0± 1.1 16.9± 1.9 27.8± 4.4
Class-conditional CP 34.9± 1.5 38.9± 1.5 23.7± 0.9 16.3± 1.1 20.3± 1.9 21.4± 2.2
Marginal CP 55.1± 2.1 66.6± 1.7 61.7± 2.5 12.0± 1.0 17.0± 1.6 27.9± 3.9
Adaptive top-k 64.1± 1.6 70.2± 1.5 64.5± 1.6 17.3± 1.0 21.9± 1.8 34.6± 3.0
Calibrated Adaptive top-k 62.1± 0.9 67.4± 0.2 60.9± 0.3 15.3± 0.1 18.3± 0.0 27.5± 0.0

Table 6: Calibration results for calibration set size n = 1, 000 and a confidence level (1−α) = 0.8. Each row
presents the macro coverage (higher is better) and prediction set size (lower is better) across three clinical
classification tasks: MIMIC-III (CCSR), MIMIC-IV (CCSR), and MIMIC-IV (ICD). Conformal methods
with formal coverage guarantees are listed above the single horizontal line, while non-conformal baselines are
shown below. The threshold m indicates the minimum number of samples required for class-level calibration.
Reported values are mean ± standard deviation over 50 repetitions.

Macro Coverage (↑) Prediction Set Size (↓)

m Method
MIMIC-III

(CCSR)
MIMIC-IV

(CCSR)
MIMIC-IV

(ICD)
MIMIC-III

(CCSR)
MIMIC-IV

(CCSR)
MIMIC-IV

(ICD)

10 DGCP|Severity Score (ours) 42.5± 2.0 50.6± 1.8 46.1± 2.2 6.5± 0.8 7.3± 0.8 11.2± 1.8
DGCP|Body System (ours) 49.0± 2.9 56.5± 2.3 49.9± 2.4 14.5± 4.4 12.4± 2.5 26.1± 8.7

20 DGCP|Severity Score (ours) 42.5± 2.1 50.9± 1.8 46.2± 2.2 6.2± 0.7 7.4± 0.8 11.7± 2.0
DGCP|Body System (ours) 48.9± 2.9 56.7± 2.4 50.0± 2.4 14.4± 4.3 12.7± 2.5 26.5± 8.7

Clustered CP 37.7± 1.5 50.1± 2.8 43.9± 2.6 5.1± 0.5 7.3± 1.0 10.3± 1.6
Class-conditional CP 34.0± 1.5 38.1± 1.5 23.5± 0.9 13.6± 1.3 17.0± 1.7 19.7± 2.2
Marginal CP 37.6± 1.4 49.9± 2.0 43.9± 1.7 5.0± 0.4 7.2± 0.7 10.2± 1.0
Adaptive top-k 51.1± 1.3 55.8± 1.4 48.7± 1.5 8.0± 0.4 9.7± 0.7 13.9± 1.0
Calibrated Adaptive top-k 48.9± 0.8 52.9± 0.2 45.6± 0.3 7.3± 0.0 8.4± 0.0 11.6± 0.0
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Table 7: Calibration results for calibration set size n = 2, 000 and a confidence level (1−α) = 0.9. Each row
presents the macro coverage (higher is better) and prediction set size (lower is better) across three clinical
classification tasks: MIMIC-III (CCSR), MIMIC-IV (CCSR), and MIMIC-IV (ICD). Conformal methods
with formal coverage guarantees are listed above the single horizontal line, while non-conformal baselines are
shown below. The threshold m indicates the minimum number of samples required for class-level calibration.
Reported values are mean ± standard deviation over 50 repetitions.

Macro Coverage (↑) Prediction Set Size (↓)

m Method
MIMIC-III

(CCSR)
MIMIC-IV

(CCSR)
MIMIC-IV

(ICD)
MIMIC-III

(CCSR)
MIMIC-IV

(CCSR)
MIMIC-IV

(ICD)

10 DGCP|Severity Score (ours) 62.3± 2.2 67.3± 1.1 63.7± 1.8 15.5± 1.3 18.9± 1.4 30.4± 3.3
DGCP|Body System (ours) 68.1± 2.6 71.8± 1.9 66.3± 2.0 28.1± 4.3 27.0± 3.2 51.7± 9.3

20 DGCP|Severity Score (ours) 62.3± 2.2 67.2± 1.1 63.9± 1.8 14.6± 1.2 16.5± 0.9 30.5± 3.4
DGCP|Body System (ours) 68.0± 2.6 71.8± 1.9 66.4± 2.0 27.1± 4.2 25.1± 2.8 52.6± 9.5

Clustered CP 58.3± 2.5 67.0± 1.6 61.7± 2.4 12.2± 0.9 15.2± 1.7 25.6± 4.0
Class-conditional CP 47.8± 2.0 51.2± 1.5 34.0± 1.2 22.6± 1.5 28.9± 2.2 34.3± 2.8
Marginal CP 57.9± 2.1 67.1± 1.2 62.1± 2.0 11.9± 0.6 17.2± 1.0 28.0± 3.2
Adaptive top-k 64.5± 1.6 69.1± 1.1 63.6± 1.3 15.6± 0.6 20.4± 1.1 32.1± 2.2
Calibrated Adaptive top-k 64.2± 1.5 67.6± 0.3 61.2± 0.4 15.3± 0.2 18.3± 0.0 27.5± 0.1
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