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Figure 1: From left to right: (a) Standard VSD [45] (CFG = 7.5, CFG: Classifier-free Guidance); (b)
Standard SDS [35]; (CFG = 100); (c) VSD [45] (CFG = 20); (d) SDS [35] (CFG = 20); (e) Ours
(CFG = 20). VSD with CFG = 7.5 and CFG = 20 both yield low-quality results. Standard SDS yields
artifacts (e.g., over-smoothing) with high CFG, and SDS with low CFG yields low-quality results.
Our method generates high-quality and high-fidelity results with a fair CFG value.

Abstract

Recent advancements in optimization-based text-to-3D generation heavily rely
on distilling knowledge from pre-trained text-to-image diffusion models using
techniques like Score Distillation Sampling (SDS), which often introduce artifacts
such as over-saturation and over-smoothing into the generated 3D assets. In this
paper, we address this essential problem by formulating the generation process
as learning an optimal, direct transport trajectory between the distribution of
the current rendering and the desired target distribution, thereby enabling high-
quality generation with smaller Classifier-free Guidance (CFG) values. At first,
we theoretically establish SDS as a simplified instance of the Schrödinger Bridge
framework. We prove that SDS employs the reverse process of an Schrödinger
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Bridge, which, under specific conditions (e.g., a Gaussian noise as one end),
collapses to SDS’s score function of the pre-trained diffusion model. Based upon
this, we introduce Trajectory-Centric Distillation (TraCe), a novel text-to-3D
generation framework, which reformulates the mathematically trackable framework
of Schrödinger Bridge to explicitly construct a diffusion bridge from the current
rendering to its text-conditioned, denoised target, and trains a LoRA-adapted model
on this trajectory’s score dynamics for robust 3D optimization. Comprehensive
experiments demonstrate that TraCe consistently achieves superior quality and
fidelity to state-of-the-art techniques.

1 Introduction

Generating three-dimensional content directly from textual descriptions has recently attracted inten-
sive attentions in the research community. Recent methods leveraging explicit 3D representations
like Gaussian Splatting have significantly accelerated the generation process [25, 3]. Despite the
advancements, it remains a key bottleneck that the quality and fidelity of generated 3D assets often
lag behind their 2D counterparts. This limitation is frequently attributed to the scarcity of large-scale,
high-quality 3D datasets required for direct supervised training [27, 28, 10].

To bridge this gap, many state-of-the-art text-to-3D methods employ optimization strategies guided
by powerful, pre-trained 2D text-to-image (T2I) diffusion models [36]. Score Distillation Sampling
(SDS) [35] has become the cornerstone paradigms. SDS leverages powerful pre-trained 2D text-
to-image diffusion models to guide the optimization of 3D representations. Nevertheless, the
standard SDS approach typically requires high values for Classifier-Free Guidance (CFG) [13]
to achieve strong text alignment [35, 47, 4, 24, 49]. This reliance on high CFG values is often
problematic, leading to visual artifacts such as over-saturation [37] and over-smoothing [23] in
the generated 3D assets. Recognizing these issues, several variants of SDS have been proposed
recently [45, 29, 17, 44, 48, 11, 6]. However, these SDS-based methods, including the recent variants,
face persistent challenges. Firstly, as analyzed in recent studies [45, 1, 24], SDS and its variants
fundamentally operate by matching the gradient direction predicted by the T2I model. While differing
in their specific source and target choices for computing this gradient, they all rely on score estimates
derived from the T2I backbone. These score estimates, however, can be noisy and are not guaranteed
to represent an optimal direction for 3D optimization (shown in Figure 2b), potentially causing
unexpected artifacts. Secondly, variants designed to operate effectively at lower CFG values (e.g.,
CFG=7.5), such as Score Distillation via Inversion (SDI) [29] or Variational Score Distillation (VSD)
[45], have shown limited success when applied to optimizing certain popular 3D representations like
3D Gaussian Splatting (3DGS), often yielding less-desired results (shown in Figure 1).

The aforementioned analysis underscores the limitations of existing approaches and highlights the
urgent need of a more robust optimization framework for text-to-3D generation, one that does not
solely rely on potentially noisy score matching or operate under restrictive guidance conditions. In this
paper, we first provide a theoretical insight by establishing that SDS can be understood as a simplified
instance of the Schrödinger Bridge framework [39]. We demonstrate (Section 4.1) that SDS implicitly
employs the reverse process of an Schrödinger Bridge, which, under specific conditions such as
Gaussian noise distribution at one endpoint, effectively collapses to utilizing the score function of the
pre-trained diffusion model. This perspective not only clarifies the underlying dynamics of SDS but
also illuminates pathways for more principled trajectory design. Based upon this reformulation, we
introduce Trajectory-Centric Distillation (TraCe), a novel text-to-3D generation framework. TraCe
formulates the mathematically tractable framework of Schrödinger Bridges [26, 26] to explicitly
construct and learn a diffusion bridge for text-to-3D generation. This bridge connects the current
rendering (X1) to its text-conditioned, denoised target (Xpred

0 ), thereby defining a more stable and
direct optimization trajectory (visualization in Figure 2a). TraCe then employs Low-Rank Adaptation
(LoRA) [14] to fine-tune the T2I diffusion model specifically for navigating this constructed bridge,
enabling it to precisely learn the score dynamics required for robust 3D optimization along this
optimal trajectory towards the target distribution.

Our proposed TraCe framework, which operationalizes the direct transport path via Schrödinger
Bridges, is rigorously evaluated. Extensive experiments demonstrate that this approach yields high-
fidelity 3D assets with strong adherence to textual descriptions (Figure 4 and Table 1). The results
consistently showcase TraCe’s capacity to achieve superior visual quality and semantic coherence
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in generated content (Figure 4 and Supplementary), highlighting the efficacy of our theoretically
grounded direct trajectory optimization for text-to-3D generation.

In summary, our contributions are:

• We establish a novel theoretical connection, demonstrating that SDS can be precisely under-
stood as a special case of the Schrödinger Bridge framework. This reformulation clarifies the
underlying transport dynamics implicitly leveraged by SDS.

• We introduce Trajectory-Centric Distillation (TraCe), a new text-to-3D generation framework.
TraCe explicitly learns an optimal transport path, guided by a tractable Schrödinger Bridge
formulation, between the current 3D model’s rendering and a dynamically estimated, text-
aligned target view. This is achieved by constructing and sampling along this explicit diffusion
bridge, enabling more direct and stable 3D optimization.

• Experiments demonstrate that our TraCe achieves high-quality 3D generation, surpassing
current state-of-the-art techniques. TraCe exhibits enhanced robustness, particularly excelling in
challenging low CFG values where the performance of existing methods typically degrades.

2 Related Work

Distilling 2D into 3D. Leveraging large-scale, pre-trained text-to-image (T2I) diffusion models
[36] as priors has become a prominent technique for generation tasks in data-scarce domains, such
as text-to-3D generation. SDS [35] is a seminal approach in this direction, enabling optimization
of parametric representations (e.g., Neural Radiance Fields) by distilling knowledge from a 2D
diffusion model. To achieve plausible results, it frequently necessitates high Classifier-Free Guidance
(CFG) weights [35, 47], which can further exacerbate these issues. However, standard SDS is often
susceptible to visual artifacts such as over-saturation [37] and over-smoothing [23]. Moreover, the
SDS objective itself, while empirically effective, does not strictly correspond to the gradient of a well-
defined probability distribution of the 3D parameters [45, 1, 24], potentially leading to suboptimal
optimization paths [17, 44, 29, 48]. To address these limitations, several variants have been proposed.
For instance, methods like Variational Score Distillation (VSD) [45] and Classifier Score Distillation
(CSD) [48] explore alternative gradient formulations to better approximate the optimization process
from source distribution towards target distribution. Other approaches like Score Distillation via
Inversion (SDI) [29] tries to better approximate the noise instead of using pure Gaussian noise. These
variants can be understood through the lens of approximating an optimal transport path between the
current image distribution (source) and the target natural image distribution, and from this perspective,
a key difference between these methods lies in how they approximate the score of the source and
target distributions [30]. For instance, SDS approximates it using the unconditional score, while VSD
attempts a more direct approximation by fine-tuning a LoRA adapter on the current renderings. While
these methods offer valuable contributions towards reducing the source distribution mismatch artifacts,
they fundamentally rely on adapting gradients derived from pre-trained T2I models. This forces
the optimization process to cope with score functions optimized for 2D image generation, which is
inherently not optimal for tasks like 3D generation due to the domain gap and differences. Our work
differs greatly from these approaches. We establish a novel theoretical connection, demonstrating
that SDS can be precisely understood as a specific instantiation of the Schrödinger Bridge framework.
This reformulation clarifies the underlying transport dynamics implicitly leveraged by SDS. Built
upon this insight, we introduce a method that explicitly constructs and learns a more direct and stable
optimization trajectory by framing the process as a tractable Schrödinger Bridge between the current
rendering and an estimated text-aligned target, thereby enhancing both the fidelity and robustness of
text-to-3D generation.

Diffusion Models and Schrödinger Bridges. Diffusion models (DMs) [12], also known as Score-
based Generative Models (SGMs) [40, 42], have emerged as a dominant class of deep generative
techniques, achieving state-of-the-art performance in synthesizing high-fidelity data across various
domains, notably images [40, 12, 42, 9]. These models typically define a forward diffusion process,
often formulated as a stochastic differential equation (SDE), that gradually corrupts data samples
into a simple prior distribution, usually Gaussian noise. A neural network is then trained, often
via score-matching objectives [16, 43, 42], to approximate the score function (gradient of the log
density) of the perturbed data distributions. This learned score function parameterizes a reverse-time
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Figure 2: Left: Schrödinger Bridge Visualization and Samples. Top: Probability flow of the bridge
from current rendering (xrndr) to the predicted target (xpred

0 ) distribution. Bottom: Corresponding
image samples, showing the current rendering, intermediate bridge samples (xit), and the final
predicted target. Right: Gradient and Intermediate Rendering Comparison. The first row shows
TraCe gradients, the second shows SDS gradients, and the third shows rendered images of the 3D
models that have not finished generation. Note the reduced artifacts and potentially more coherent
structure in the TraCe gradients and intermediate renderings.

SDE that transforms samples from the prior back into data samples. While being extremely success-
ful, this standard paradigm typically relies on initiating the generative process from unstructured
noise. The Schrödinger Bridge problem provides a more general theoretical framework, originating
from statistical physics [38, 39] and connected to entropy-regularized optimal transport [21, 5] and
stochastic control [7, 34]. It aims to find the most likely stochastic evolution between two specified
arbitrary distributions, PA and PB , rather than being restricted to a noise prior. This offers the
potential to learn direct transformations between complex data manifolds. Attempts have been
made to apply Schrödinger Bridge concepts to text-to-3D generation. For instance, [30] proposes
a naive approach to direct Schrödinger Bridge formulation between current renderings and target
images guided by text prompts, though this requires an initial stage involving standard SDS. Another
approach, DreamFlow [20], proposes to approximate the backward Schrödinger Bridge dynamics
between current renderings and target images by simply repurposing a fine-tuned text-to-image model,
a heuristic potentially deviating from the true underlying Schrödinger Bridge process. We critically
advance text-to-3D generation by establishing the precise theoretical relationship between SDS and
Schrödinger Bridges. This foundational insight is then exploited to develop a principled methodology
for direct distributional transport, enabling the construction of trajectories towards text-aligned target
distributions.

3 Preliminaries

Score-based Generative Model (SGM) and Schrödinger Bridge. Score-based Generative Models
(SGM) [40, 42] learn to generate data by reversing a predefined forward diffusion process. This
process gradually transforms data X0 ∼ pA into noise X1 ≈ N (0, I) and is often governed
by a forward stochastic differential equation (SDE). Generation then proceeds by simulating the
corresponding reverse-time SDE [2], starting from X1 and integrating backward to t = 0. The
forward and reverse SDEs are given by:

dXt = ft(Xt)dt+ gtdWt (forward)

dXt =
[
ft(Xt)− g2t∇Xt log p(Xt, t)

]
dt+ gtdW̄t (backward)

Here, Wt (and W̄t) is a standard Wiener process, and gt represents the time-dependent diffusion
coefficient. The central part of this reversal is the score function∇Xt log p(Xt, t), which is unknown
and approximated using a time-conditioned neural network sψ(Xt, t) (or an equivalent noise predictor
ϵψ(Xt, t)). This network is trained using score-matching objectives [43, 42] on pairs (X0, Xt)
sampled from the forward process. Sampling is performed by numerically integrating the reverse
SDE using solvers like DDPM [12] or DDIM [41].
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The Schrödinger Bridge problem [39, 21] offers a generalization of SGMs to learn nonlinear diffusion
processes between two arbitrary distributions, X0 ∼ pA and X1 ∼ pB. It seeks the most likely
stochastic evolution connecting these boundary distributions, described by a pair of forward and
backward SDEs:

dXt = [ft(Xt) + βt∇Ψ(Xt, t)] dt+
√
βtdWt (forward)

dXt =
[
ft(Xt)− βt∇Ψ̂(Xt, t)

]
dt+

√
βtdW̄t (backward)

where Ψ(x, t) and Ψ̂(x, t) are non-negative functions known as Schrödinger factors, determined
by coupled partial differential equations with boundary conditions Ψ(x, 0)Ψ̂(x, 0) = pA(x) and
Ψ(x, 1)Ψ̂(x, 1) = pB(x). The forward and backward processes induce the same marginal density
q(x, t) at any time t ∈ [0, 1], satisfying Nelson’s duality Ψ(x, t)Ψ̂(x, t) = q(x, t) [33]. Notably,
SGM is a special case where pB ≈ N (0, I) and Ψ(x, t) ≈ 1, causing the forward drift modification
to vanish and Ψ̂(x, t) ≈ q(x, t), recovering the score function in the reverse SDE.

Score Distillation Sampling (SDS). Score Distillation Sampling (SDS) [35] enables generating
3D assets by leveraging powerful pre-trained 2D text-to-image diffusion models [36], bypassing the
need for large-scale 3D datasets. It optimizes the parameters θ of a differentiable 3D representation,
such as NeRF [31], InstantNGP [32], or 3D Gaussian Splatting (3DGS) [18], using gradients derived
from the diffusion model. In this work, we adopt 3DGS primarily for its rapid generation capabilities
and high-fidelity visual output.

The core mechanism of SDS involves repeatedly rendering the 3D model from different views c
(x = g(θ, c)), adding noise to the rendering x(t), and using the 2D diffusion model’s score estimate
(denoising prediction ϵpred) to guide the optimization of θ. Formally, the gradient is computed as

∇θLSDS(θ) = Et,ϵ,c
[
w(t) (ϵpred − ϵnoise)

∂xrndr

∂θ

]
(1)

where w(t) is a weighting factor and the term (ϵpred − ϵnoise) provides the guidance signal. While
SDS can be intuitively understood as moving renderings towards higher-density regions according to
the 2D prior or formally interpreted via probability density distillation, the exact nature of its gradient
signal is debated [17, 48, 44, 1, 45]. Practically, SDS often requires high classifier-free guidance
(CFG) values, which can sometimes lead to artifacts like oversaturation or blur [17, 29, 46, 19, 37, 22].
Furthermore, the strategies that employ lower CFG values, for instance, methods explored in text-to-
NeRF [45, 29], have demonstrated limitations when directly applied to the generation of 3D assets
with Gaussian Splatting (Figure 4). Recent efforts such as LucidDreamer [23] have investigated
text-to-3DGS under low CFG conditions; however, this direction currently faces trade-offs, including
prolonged optimization durations (over 5000 iterations) and limitations in the attainable visual quality
(Figure 4). Our work builds upon SDS by mitigating these issues through deriving a more direct
and tractable optimization path, formulating Schrödinger Bridges to guide the generation process for
achieving greater fidelity with lower CFG values.

4 Method

The preceding analysis of existing methods like Score Distillation Sampling (SDS) raise a natural
question: can a principled framework be developed to define a direct, optimal transformation
trajectory where both its source and target ends are explicitly and robustly aligned with the desired
true distributions? Addressing this challenge—by establishing explicit control over the distributional
endpoints of the generative trajectory, rather than relying on unstructured priors (e.g., a Gaussian
noise)—is crucial for enhancing the fidelity and control of generative outcomes. To this end, we
exploit the theoretical underpinnings of the Schrödinger Bridge problem, particularly its tractable
formulations [26, 8], which provide a robust mechanism for learning direct, optimal transport paths
between specified distributions. Our methodological contribution unfolds in two stages: first, we
theoretically establish that standard SDS is indeed a special case of the Schrödinger Bridge framework,
thereby providing a new perspective on its operation (Section 4.1). Second, building upon this insight,
we propose a novel optimization algorithm grounded in tractable Schrödinger Bridge principles, to
achieve improved distributional alignment throughout the generative process (Section 4.2).
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Figure 3: Overview of Trajectory-Centric Distillation (TraCe). Our TraCe optimizes 3D parame-
ters θ by computing a distillation gradient with a LoRA-adapted 2D diffusion model, ϵϕ. Given a text
prompt y and camera parameters c, (1) the current 3D model is rendered in a random view to produce
xrndr. (2) An ideal target view xpred

0 is estimated from xrndr using a pre-trained diffusion model ϵpretrain
via one-step denoising. (3) An intermediate latent xt is sampled from the analytic bridge posterior
q(xt | xpred

0 , xrndr) at time t. (4) The LoRA model ϵϕ predicts the noise for xt, and the difference
between this prediction and the target noise is computed. (5) This difference directs the calculation of
the TraCe gradient∇θLTraCe, and drives the update of LoRA parameters ϕ.

4.1 Score Distillation Sampling as a Special Case of Schrödinger Bridges

In this section, we reformulate the SDS objective by examining its core guidance principles, and show
it employs a simplified form of the backward dynamics found in the Schrödinger Bridge framework.

As established in Section 3, a Score-based Generative Model (SGM) aligns with a special configura-
tion of the Schrödinger Bridge problem. This occurs when the Schrödinger Bridge’s distribution PB
at t = 1 is Gaussian noise (PB ∼ N (0, I)) and its forward Schrödinger factor Ψ(x, t) ≈ 1. Under
these conditions, the term g2t∇Xt logΨ(Xt, t) in the forward Schrödinger Bridge SDE vanishes,
causing the forward Schrödinger Bridge dynamics to become identical to the SGM’s standard diffu-
sion process. Consequently, the marginal densities q(Xt, t) of this particular Schrödinger Bridge are
equivalent to the SGM’s noisy marginals p(Xt, t).

The crucial step in linking the Schrödinger Bridge and SGM reverse processes from a score perspective
lies in Nelson’s duality, Ψ(Xt, t)Ψ̂(Xt, t) = q(Xt, t). Given Ψ(Xt, t) ≈ 1 and q(Xt, t) = p(Xt, t)
for this specific Schrödinger Bridge, the duality simplifies to:

1 · Ψ̂(Xt, t) ≈ p(Xt, t) =⇒ Ψ̂(Xt, t) ≈ p(Xt, t) (2)

This directly implies that the score term in the general Schrödinger Bridge backward SDE,
−∇Xt log Ψ̂(Xt, t), becomes −∇Xt log p(Xt, t). This is precisely the score approximated by the
learned network sψ(Xt, t) (or its equivalent noise predictor ϵ(Xt, t)) in an SGM.

SDS utilizes this learned score sψ(Xt, t) from a pre-trained SGM to guide the optimization of a
differentiable generator g(θ). The update for g(θ) is fundamentally derived from sϕ(Xt, t), aiming
to make the generated samples x0 = g(θ) consistent with the data manifold learned by the SGM.

Therefore, from a score gradient perspective:

• SDS operates using the score function sψ(Xt, t) learned by an SGM.

• The derivation above shows that sψ(Xt, t) (approximating ∇Xt log p(Xt, t)) is equivalent to
the score −∇Xt

log Ψ̂(Xt, t) of a Schrödinger Bridge under the specific conditions that reduce
the Schrödinger Bridge to an SGM.

Remark. In essence, SDS leverages a score gradient that is equivalent to the score function governing
the reverse dynamics of the canonical Schrödinger Bridge implicit in any SGM. While general
Schrödinger Bridges can offer more complex dynamics, SDS employs the score from this specific,
simplified Schrödinger Bridge structure. Thus, the SDS mechanism represents an application of
principles governing a special case of Schrödinger Bridges, distinguished by its reliance on the
SGM-derived score sψ .
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4.2 Trajectory-Centric Distillation

To optimize the 3D model parameters θ such that current renderings xrndr = g(θ, c) align with a target
text description y, we propose a novel method, namely Trajectory-Centric Distillation (TraCe). This
method leverages a 2D diffusion model, adapted with LoRA parameters ϕ denoted as ϵϕ, to provide
a guiding gradient ∇θLTraCe(θ). The core idea is to conceptualize a diffusion bridge between the
current rendering and an estimated ideal target image.

Constructing the Diffusion Bridge for Trajectory Guidance. At each optimization step for θ, we
construct a specific diffusion bridge instance defined by two endpoints:

1. Initial Bridge Endpoint (X1 ← xrndr): The current rendering xrndr = g(θ, c) serves as the
starting point of the reverse diffusion trajectory we aim to learn. In the context of our bridge,
this is treated as the “noisier” state at bridge time t = 1.

2. Target Bridge Endpoint (X0 ← xpred
0 ): An estimated ideal target view xpred

0 acts as the desired
endpoint at bridge time t = 0. This target is dynamically obtained by performing one-step
denoising on xrndr using a pre-trained text-to-image model ϵpretrain [20], conditioned on the text
prompt y: xpred

0 =
(
xrndr −

√
1− ᾱt′ ϵpretrain(xrndr, t

′, y)
)
/
√
ᾱt′ , where ᾱt′ is from the noise

schedule of ϵpretrain.

With these two endpoints, xpred
0 and xrndr, established, we then sample an intermediate latent state xt

along the conceptual bridge. For a sampled time t ∈ [0.02, 0.5], following the tractable formulation
of Schrödinger Bridges [26], xt is drawn from the analytically known conditional distribution
xt ∼ q(xt|xpred

0 , xrndr) = N (xt;µt,ΣtI), where the mean µt = γtx
pred
0 + (1 − γt)xrndr is an

interpolation between the target image and current rendering, and Σt = σ2
t σ̄

2
t /(σ

2
t + σ̄2

t ) is the bridge
variance. The coefficient γt = σ̄2

t /(σ
2
t + σ̄2

t ), and σ2
t =

∫ t
0
βτdτ , σ̄2

t =
∫ 1

t
βτdτ are accumulated

variances from a noise schedule βt specific to this bridge construction. This xt represents a state on a
direct trajectory from xpred

0 being progressively “noised” towards xrndr (or equivalently, xrndr being
progressively “denoised” towards xpred

0 along this trajectory).

Optimizing θ via the Bridge Trajectory. We then optimize θ using the LoRA-adapted model
ϵϕ(xt, t, y, c), which is trained to predict the noise that would take xt towards xpred

0 . The objective
for θ utilizes ϵϕ to measure the consistency of xt with respect to xrndr along this bridge:

∇θLTraCe(θ) = Eϵ,t,c

w(t)(ϵϕ(xt, t, y, c)− xt − xrndr

σt

)∂xpred
0 (xrndr, t, y)

∂xt︸ ︷︷ ︸
U-net Jacobian

∂xt
∂xrndr

+ 1

 ∂xrndr

∂θ


(3)

where xrndr = g(θ, c), t ∼ U [0.02, 0.5], and y is the text prompt. The term xt is sampled from

q(xt | xpred
0 , xrndr) as defined above, and σt =

√∫ t
0
βτdτ from the bridge’s noise schedule. Following

the convention of SDS, we omit the U-Net Jacobian term
(
∂xpred

0 (...)
∂xt

∂xt

∂xrndr
+ 1

)
for effective training,

as it can be treated as a learnable or constant factor absorbed by w(t). Thus, we have:

∇θLTraCe(θ) = Eϵ,t,c
[
w(t)

(
ϵϕ(xt, t, y, c)−

xt − xrndr

σt

)
∂xrndr

∂θ

]
(4)

Scheduled t-Sampling for Schrödinger Bridges Interpolation. For sampling the intermediate
state xt in our TraCe objective (Eq. (4)), which dictates the characteristics of xt ∼ q(xt | xpred

0 , xrndr),
we adopt a t-annealing strategy, similar to the approach proposed in [15]. Throughout the optimization
of θ, the time parameter t is progressively decreased from an initial value near 0.5 towards 0.02. This
common annealing technique gradually shifts the focus of the Schrödinger Bridge interpolation from
broader states towards those more proximate to the estimated ideal target xpred

0 , aiding the progressive
refinement of the rendered output g(θ, c).
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5 Experiments

SDI Ours SDI Ours

VSD

Ours

a blue lobster

a golden goblet, low poly

a fox

a hermit crab with a colorful shell

A zoomed out DSLR photo of an amigurumi motorcycle

VSD

Ours

Ours Ours

Ours Ours

a roast turkey on a white platter

A large, multi-layered, symmetrical wedding cake, with smooth fondant, delicate 
piping, and lifelike sugar flowers in full bloom, displayed on a silver stand.

A car made out of sushi

SDS
SDS

CSD CSD

SDS
SDS

ISM ISMOurs Ours

a delicious croissant a violin

Figure 4: Qualitative comparisons. We present visual examples with the same text prompt.

Implementation Details. We choose recent state-of-the-art (SOTA) text-to-3D approaches for
comparison: NeRF-based methods, such as Classifier Score Distillation (CSD) [48], ProlificDreamer
(VSD) [45], and Score Distillation via Inversion (SDI) [29], and 3DGS-based methods like Gaus-
sianDreamer (SDS) [47] and LucidDreamer (ISM) [23]. Please see more details and experiments in
Supplementary.

Qualitative Comparisons. Figure 4 presents visual results for several challenging text prompts.
Our approach demonstrates the ability to generate higher quality 3D assets compared to other
SOTA methods. Compared to SDI [29], our method yields significantly improved texture fidelity.
Outputs from CSD [48] often exhibit a characteristic yellowish hue and a less realistic, cartoon-like
appearance, which TraCe avoids, producing more natural color rendition and photorealism. When
compared against VSD [45], our model better interprets complex textural and stylistic prompts,
accurately capturing the text’s message and generating a more coherent content. Contrasting with
SDS [47], our results exhibit superior sharpness and finer details in both geometry and texture,
leading to more visually appealing and realistic outputs. While ISM [23] can produce coherent
structures, its outputs often exhibit a stylized, painterly quality; in contrast, our TraCe generates
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results with enhanced photorealism and more natural material appearance. These results demonstrate
our method’s effectiveness in generating detailed and accurate 3D geometry and appearance from the
given text descriptions.

Quantitative Comparison. We quantitatively evaluate our TraCe against other methods using
83 distinct prompts from Dreamfusion online gallery2 with 120 views per prompt. We benchmark
generation quality using CLIP Score (%), GPTEval3D (Overall) (which leverages GPT-4o for
evaluation), and ImageReward. CLIP Scores are evaluated with ViT-L/14, ViT-B/16, and ViT-B/32
backbones. We also assess computational efficiency via processing time (Time) and average peak
VRAM (VRAM). As shown in Table 1, the proposed TraCe achieves state-of-the-art generation
quality, securing top CLIP Scores across all ViT backbones, e.g., 69.2609 ± 7.8366% with ViT-L/14.
Furthermore, TraCe demonstrates superior performance in advanced perception metrics, yielding
the highest GPTEval3D score of 1028.03 and the most favorable (least negative) ImageReward
score of -0.2855 ± 0.8909, indicating enhanced aesthetic quality and semantic alignment. With an
average processing time of 14 minutes and an average peak VRAM usage of 18741 MiB, TraCe
offers high-fidelity generation with a compelling balance of qualitative performance, computational
efficiency, and memory footprint.

Table 1: Quantitative comparisons. Comparison of different methods on CLIP Score, GPTEval3D
Score, ImageReward Score, running time, and VRAM usage. We report mean and standard deviation
across 83 prompts and 120 views.

Method CLIP Score (%) ↑ GPTEval3D
(Overall)↑ ImageReward↑ Time VRAM

ViT-L/14 ViT-B/16 ViT-B/32

SDS [47] 68.6146±7.9134 27.7049±3.7004 27.5561±3.5893 1018.09 -0.4329±0.9125 10min 18147MiB
CSD [48] 68.0282±7.5093 27.0886±3.7342 26.5844±3.8703 983.04 -0.6715±0.7482 11min 19804MiB
VSD [45] 67.2697±8.5573 27.0749±3.9675 26.9722±3.9563 1007.49 -0.5330±0.8927 17min 26473MiB
ISM [23] 69.0093±10.2400 27.5460±3.6817 26.9822±3.5495 1012.37 -0.3904±0.9503 20min 10151MiB
SDI [29] 63.0409±11.7841 25.6487±5.2540 25.5421±5.0903 971.98 -0.8334±1.0391 10min 16011MiB
TraCe 69.2609±7.8366 27.9334±3.7382 27.7049±3.8671 1028.03 -0.2855±0.8909 14min 18741MiB

VSD CSD Naive bridge Ours w/o LoRA &

Scheduled t-Sampling

Ours w/o

Scheduled t-Sampling

Ours

Figure 5: Ablation study on our framework.

Ablation Study. Figure 5 showcases the ablation study of our TraCe on a fox generation. VSD [45]
and CSD [48] exhibit less-desired generation (e.g., missing details). The third column illustrates a
naive Schrödinger Bridge approach [30] which attempts to bridge distributions defined by source and
target prompts and results in a comparatively smoother, less detailed rendering. The fourth column
shows TraCe without LoRA adaptation and without our scheduled t-sampling, where noticeable
artifacts such as blue hues on the fur are apparent. Introducing LoRA but omitting the scheduled
t-sampling (fifth column) mitigates some artifacts, yet color inconsistencies persist. Finally, our full
TraCe method (“Ours”)—supported by LoRA-adapted learning of its specific score dynamics and
an annealed t-sampling schedule—generates significantly higher-fidelity details in the fur and tail,
boosting overall realism compared to other methods (VSD, CSD) and ablated versions. These results
highlight the role of our core Schrödinger Bridge formulation: it achieves superior final quality when
augmented with these tailored learning components.

2https://dreamfusion3d.github.io/gallery.html
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Table 2: ImageReward ablation over LoRA and
scheduled t-sampling.

Method Configuration ImageReward (↑)

LoRA off & scheduled t-sampling off -0.4488 ± 0.9964
LoRA off & scheduled t-sampling on -0.3389 ± 0.9721
LoRA on & scheduled t-sampling off -0.4020 ± 1.0019
LoRA on & scheduled t-sampling on (ours) -0.2486 ± 0.8909

We perform an ablation study on our key com-
ponents, LoRA adaptation and scheduled t-
sampling, measuring quality with ImageReward
(Table 2). Our full method (-0.2486) significantly
outperforms the baseline (both off: -0.4488), as
well as enabling only LoRA (-0.4020) or only
scheduled t-sampling (-0.3389). The results con-
firm both components are crucial and demon-
strate their strong synergistic effect.

CFG value. We investigate the impact of the CFG value on our TraCe, as illustrated in Figure 6
with two example objects. While very low CFG values (e.g., 5) yield reduced visual fidelity, TraCe
produces high-quality, well-defined results starting at a CFG of approximately 15-20. The visual
outcomes are stable and robust within the CFG 15-20 range. Beyond this, at higher CFG values
(25-100), results remain largely consistent with minimal further improvement. This demonstrates
TraCe’s capability to effectively generate high-quality 3D assets at relatively low and stable CFG
settings. Furthermore, TraCe’s enhanced visual quality is complemented by its robust CLIP score
performance within a moderate CFG range (e.g., 10-30) relative to other compared methods, as
detailed in Figure ??.

CFG = 25CFG = 20CFG = 15CFG = 10 CFG = 30 CFG = 50 CFG = 75 CFG = 100CFG = 5

Figure 6: Different CFG value and generated 3D assets. Prompts are “an overstuffed pastrami
sandwich” (top row), “a car made out of sushi” (bottom row).

6 Conclusion

We introduce Trajectory-Centric Distillation (TraCe), a novel text-to-3D generation framework. Our
approach is rooted in a new theoretical understanding of SDS as a specific instance of the Schrödinger
Bridge problem. The proposed TraCe explicitly constructs and learns a direct diffusion bridge
between current renderings and text-conditioned targets, employing a LoRA-adapted diffusion model
to accurately model the bridge’s score dynamics. Comprehensive experiments demonstrate TraCe’s
state-of-the-art performance, yielding 3D assets with superior visual quality and fidelity, notably at
lower and more stable Classifier-Free Guidance values than prior methods. These results underscore
the benefits of our principled, direct optimization trajectory. We believe TraCe will offer new insights
for text-to-3D generation, in terms of efficient and robust trajectory learning for generative models.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the relevant

information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: We establish a novel theoretical connection, demonstrating that SDS can be
precisely understood as a specific case of the Schrödinger Bridge framework. Experiments
demonstrate that our TraCe achieves high-quality 3D generation, surpassing current state-of-the-
art techniques. See the abstract and the end of Section 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in
the paper.

• The abstract and/or introduction should clearly state the claims made, including the contri-
butions made in the paper and important assumptions and limitations. A No or NA answer
to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Answer: [Yes]

Justification: See Supplementary.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [Yes]

Justification: See Section 4.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We disclose the experimental settings to reproduce the main experi- mental results
in our paper in Supplementary and the settings of all compared methods in Section 5.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well

by the reviewers: Making the paper reproducible is important, regardless of whether the
code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be
necessary to either make it possible for others to replicate the model with the same dataset,
or provide access to the model. In general. releasing code and data is often one good way
to accomplish this, but reproducibility can also be provided via detailed instructions for
how to replicate the results, access to a hosted model (e.g., in the case of a large language
model), releasing of a model checkpoint, or other means that are appropriate to the research
performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of
the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the case
of closed-source models, it may be that access to the model is limited in some way
(e.g., to registered users), but it should be possible for other researchers to have some
path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: Our code will be released to the community.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).
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• Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparame-
ters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We provide the optimization and train/test details of our proposed method in
Supplementary.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Ours reports the results of multiple rounds of the experiment, reflecting the statistics
of the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to
a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: See Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute than
the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: See Supplementary.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [Yes]
Justification: See Supplementary.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact

or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a generic
algorithm for optimizing neural networks could enable people to train models that generate
Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: The assets used in the paper are properly credited, and we respect the license and
terms of use of these assets throughout our research procedures.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service

of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset
is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer: [Yes]

Justification: See Supplementary.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included in
the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or
an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [Yes]
Justification: See Supplementary.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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