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Abstract
Deep learning frameworks such as TensorFlow and PyTorch
come with steep learning curves. We present a tool called
TF-Coder for programming by example in TensorFlow. It
uses a bottom-up weighted enumerative search with learned
models that prioritize relevant operations. TF-Coder solves
63 of 70 real-world tasks within 5 minutes, often achieving
superhuman performance—finding solutions that are simpler
than those written by TensorFlow experts, in less time.

1 Introduction
The widespread success of deep learning is partially attrib-
uted to frameworks such as TensorFlow [Abadi et al. 2016]
and PyTorch [Paszke et al. 2017] that help machine learning
researchers develop models more effectively. However, these
frameworks have a steep learning curve, since they offer a
huge amount of functionality. Most deep learning models
require various tensor manipulations for data cleaning or cus-
tom loss functions and metrics, but because there are about
500 tensor-manipulating operations in TensorFlow, finding
the right ones to use for a given task can be a challenge itself.

We present TF-Coder, a programming by example system
to automatically synthesize tensor manipulation programs
from input/output examples and natural language descrip-
tions. The synthesis algorithm builds upon the bottom-up
enumerative algorithm proposed in Transit [Udupa et al.
2013]. We introduce per-operation weights to the prior algo-
rithm allowing TF-Coder to enumerate over expressions in
order of increasing complexity, and a novel and efficient op-
eration filtering system that enforces arbitrary preconditions
imposed by TensorFlow operations. Finally, we combine pre-
dictions from multiple machine learning models to prioritize
operations during the search, which helps tailor the search
to fit the particular synthesis task at hand.
We evaluate TF-Coder on 70 real-world tensor transfor-

mation tasks from StackOverflow and from an industrial
setting. TF-Coder can successfully synthesize solutions to 63
tasks in 17 seconds on average, while Transit only solves 39

Authors’ addresses: Kensen Shi, Google Brain, United States, kshi@google.
com; David Bieber, Google Brain, United States, dbieber@google.com;
Rishabh Singh, Google Brain, United States, rising@google.com.

2018. 2475-1421/2018/1-ART1 $15.00
https://doi.org/

tasks. Moreover, incorporating the trained models leads to
significantly faster synthesis times (35.4% faster on average).
We also observed that TF-Coder often produces solutions
that are simpler and more elegant than those written by
TensorFlow experts (including the authors of this paper).

2 Synthesis with Enumerative Search
We assume a given task specification 𝜙 = {(I,O), 𝐷,𝐶},
where (I,O) is an input/output example, i.e., a list of input
tensors I and the corresponding output tensor O, 𝐷 is an
optional natural language description of the task, and𝐶 is an
optional set of constants that may be useful for the task. Our
goal is to synthesize a program 𝑃 ∈ D where 𝑃 (I) = O. The
domain of programs D considered by TF-Coder consists of
single-line TensorFlow expressions, whichmay contain input
variables, Python literals, TensorFlow function calls, and
various Python operations such as indexing and slicing. In
total, TF-Coder currently supports 134 different operations.

Weighted Value Search TF-Coder’s enumerative search
is presented in Algorithm 1. The search expressions in order
of increasing weight, which represents the expression’s com-
plexity. Operations and initial values (input tensors and con-
stants) have associated weights, and an expression’s weight
is defined to be the sum of the weights of the operations and
initial values used in that expression. We manually assigned
weights for each of TF-Coder’s supported operations, tak-
ing into consideration how common, useful, or complex it
is. These weights allow TF-Coder to prioritize simple and
useful operations in its search, which is crucial for enabling
TF-Coder to handle so many different operations—niche op-
erations are given higher weight so they can still be used if
necessary, without causing much slowdown if they are not
needed in a particular problem.
Starting with initial values, the algorithm generates ex-

pressions in order of increasing weight. For a given target
weight, it enumerates over all supported operations and all
ways of choosing arguments from previously-seen values
such that the result has the desired weight. Every value pro-
duced in this way stores references to the operation and the
arguments, so that any value can recursively reconstruct
its code representation. As soon as TF-Coder encounters a
value that is equal to the desired output tensor, it outputs
the value’s code representation as a solution.
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Algorithm 1 TF-Coder’s Synthesis Algorithm
Input: I/O example (I,O), NL description 𝐷 , constants 𝐶
Output: A program 𝑃 such that 𝑃 (I) = O
Auxiliary Data: Supported operations Ops (each 𝑜𝑝 has

argument filters {𝑜𝑝.𝑓𝑖 } and combination filter 𝑜𝑝.𝐹 ),
and models 𝑀io and 𝑀nl conditioned on I/O examples
and natural language, respectively

1: 𝑚io ← 𝑀io (I,O) ⊲ Model predictions
2: 𝑚nl ← 𝑀nl (𝐷)
3: for all 𝑜𝑝 ∈ Ops do ⊲ Prioritize ops using models
4: 𝑜𝑝.weight ← ReweightOp(𝑜𝑝,𝑚io,𝑚nl)
5: 𝐸 ← I ∪𝐶 ⊲ Set of explored values
6: 𝐸 ← 𝐸 ∪ HeuristicConstants(I,O)
7: for all 𝑣 ∈ 𝐸 do
8: 𝑣 .weight ← AssignWeightByOrigin(𝑣)
9: for𝑊 = 1, 2, . . . do ⊲ Weight of expressions
10: for all 𝑜𝑝 ∈ Ops do
11: 𝑛 ← 𝑜𝑝.arity
12: 𝑤 ← 𝑜𝑝.weight
13: for all [𝑤1, . . . ,𝑤𝑛] ⊲ Argument weights
14: s.t.

∑
𝑖 𝑤𝑖 =𝑊 −𝑤, 𝑤𝑖 ∈ Z+ do

15: for 𝑖 = 1, . . . , 𝑛 do ⊲ Collect argument choices
16: 𝐴𝑖 ← {𝑒 ∈ 𝐸 | 𝑒.weight = 𝑤𝑖 ∧ 𝑜𝑝.𝑓𝑖 (𝑒)}
17: for all [𝑎1, . . . , 𝑎𝑛] ∈ Π𝑖𝐴𝑖 do
18: if ¬𝑜𝑝.𝐹 ( [𝑎1, . . . , 𝑎𝑛]) then
19: continue
20: 𝑉 ← Execute(𝑜𝑝, [𝑎1, . . . , 𝑎𝑛])
21: if 𝑉 ∉ 𝐸 then ⊲ New value discovered
22: 𝑉 .weight ←𝑊

23: 𝑉 .history ← (𝑜𝑝, [𝑎1, . . . , 𝑎𝑛])
24: 𝐸 ← 𝐸 ∪ {𝑉 }
25: if 𝑉 = O then ⊲ Solution found
26: return CodeExpression(𝑉 )

Operation Filtering When the search enumerates argu-
ment lists for a particular operation, a full Cartesian product
of argument choices may be very large, even though very
few argument lists actually meet preconditions required by
the operation. We introduce a flexible two-stage operation
filtering approach to avoid enormous Cartesian products and
reduce the number of errors thrown by operations.

The first stage occurs independently for each argument of
the operation. An “argument filter” (𝑜𝑝.𝑓𝑖 in Algorithm 1) is
a function that determines whether a value is an acceptable
choice for a particular argument of an operation. For example,
the tf.argmax(input, axis) operation requires that input is
numeric tensor, so an argument filter for input would reject
boolean tensors. Argument filters greatly reduce the size of
the Cartesian product of argument choices.

The second stage of operation filtering checks constraints
that involve multiple arguments. A “combination filter” (𝑜𝑝.𝐹
in Algorithm 1) for an operation is a function that determines

whether an argument list is suitable for the operation. For ex-
ample, the combination filter for the tf.argmax(input, axis)

operation would remove argument lists where axis is out-
of-bounds for input. In this way, TF-Coder avoids executing
expensive operations that would fail anyway.
For the difficult task in Figure 2c, the two-stage filtering

strategy eliminates on average 98.6% of all potential candi-
date programs for a single operation, and a correct program
must satisfy the constraints for all of its operations.

3 Learning to Guide the Search
Operation weights allow TF-Coder to prioritize simple and
useful operations. Weights can also be modified to fit the
specific synthesis problem, instead of having static weights.
TF-Coder uses two machine learning models to guide

the search: a neural model conditioned on features of the
example tensors, and a bag-of-words model conditioned on
the natural language description. Each model’s predictions
are used to prioritize chosen operations by multiplying their
weights by a constant (0.75 in our experiments), rounding to
the nearest integer. Then, the enumerative search described
in Section 2 is run using the modified operation weights.

Tensor FeaturesModel We train a neuralmodel that learns
a Bernoulli distribution over each operation, conditioned on
features of the example tensors. Human experts can often rec-
ognize useful operations by observing patterns in the exam-
ples, e.g., if one tensor contains small nonnegative integers,
they may represent indices into another tensor, especially
if the output tensor contains entries that are found in the
input tensors. Our goal is to learn such pattern-recognition
capabilities with this model.
Due to the lack of a large supervised dataset containing

real TensorFlow programs together with corresponding I/O
examples, we train our model on a dataset generated syn-
thetically by running our enumerative search algorithm on
randomly-generated inputs, using values encountered dur-
ing the search as outputs. We featurize example tensors and
use feedforward layers to produce a logit for each operation.

We experimentwith various forms of loss functions. One is
standard sigmoid cross entropy loss averaged over the opera-
tions. However, as each example only uses a few operations,
the dataset is overwhelmingly negative, leading to overly
conservative predictions. Thus, we also implement a differ-
entiable 𝐹𝛽 metric [van Rijsbergen 1979] as a loss function
to achieve different balances in precision and recall. Because
some operations appear in the synthetic dataset more often
than others, we also try different weighting schemes,𝑤max

𝑖

or𝑤mean
𝑖 , so that whenever an operation is used, its loss term

is scaled to the maximum or mean frequency of operations in
the dataset. Between sigmoid cross entropy, 𝐹1, and 𝐹2 loss,
combined with 𝑤max

𝑖 or 𝑤mean
𝑖 weighting or no weighting,

we have 9 different loss function variations.
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Figure 1. Ablation study for weighted search and operation
filtering, showing the number of tasks that can be solved
within some amount of time. Without these improvements,
the algorithm reduces to that of the prior work Transit.

Natural Language Model We also train a model that pri-
oritizes operations based on the natural language description
of the task. We formulate this as a supervised multilabel clas-
sification problem: given a description, the model predicts
whether each operation occurs in the solution.

Since we do not have a large dataset of TF-Coder queries
paired with TensorFlow operations, we construct a train-
ing dataset from the TensorFlow documentation and from
TensorFlow code on GitHub. From functions that use Ten-
sorFlow operations, we extract docstrings, comments, string
literals, and variable names to use as a proxy for the task
description, trying to predict which TensorFlow operations
were actually used in the function.

We consider two classes of models: TF-IDF cosine similar-
ity (the TF-IDF model), and naïve Bayes. Though the natural
language in the constructed dataset often differs in structure
from real TF-Coder task descriptions, we hypothesize that
we can still learn from the vocabulary used in the dataset.
So, we focus on these two bag-of-words models, rather than
higher capacity models which would better fit the dataset but
not generalize to the target domain of TF-Coder descriptions.

4 Experiments
We now present an evaluation of TF-Coder on a set of real-
world benchmarks.We collected a benchmark set of 70 tensor
manipulation tasks, including 50 drawn from StackOverflow
questions and 20 real tasks encountered by TensorFlow users
in an industrial setting. We aimed to include a diverse set of
tasks as well as a wide range of task difficulties.

Comparison to Transit TF-Coder extends the search in
Transit [Udupa et al. 2013] in several important ways:

1. TF-Coder incorporates weights for operations and base
values, while Transit does not use weights.

2. TF-Coder uses a flexible operation filtering system
that generalizes Transit’s type checking, which is
insufficient for many TensorFlow operations.

3. TF-Coder uses twomodels tomodify operationweights.
To evaluate the first two improvements, we run 4 variations
of TF-Coder where we independently turn on or off weight-
ing and operation filtering, without models.
The results of these 4 variations on our benchmarks are

plotted in Figure 1. Both techniques in isolation lead to sig-
nificant improvement over the Transit algorithm, and their
combination produces another large improvement. Overall,
TF-Coder without any models can solve 61 of the 70 bench-
mark tasks within 5 minutes, while Transit only solves 39
tasks. From the plot, it is clear that both techniques play a
key role in TF-Coder’s success.

Perturbing Hardcoded Weights To see how TF-Coder is
affected by our hardcoded operation weights, we ran TF-
Coder where each operation’s weight is multiplied by scaling
factor between 0.8 and 1.25, drawn such that each operation
is equally likely to have increased versus decreased weight.
Compared to TF-Coder with the original weights, the run
with perturbed weights solved 1 fewer task and was 6.2%
slower on average. The perturbed run is only slightly worse,
which implies that our weights are chosen reasonably well,
but their exact values are not critical to TF-Coder’s success.

Effect of the Learned Models TF-Coder without learned
models solves 61 tasks. We first experimented with adding
a tensor features model and a natural language model in
isolation, and then we ran TF-Coder with the combination of
models. We use the metrics “total speedup” which compares
the sum of the solve times for the 61 tasks solved without
models, and “average speedup” which is the average over
tasks of the per-task speedup. Total speedup is biased toward
the performance on long-running tasks, while the average
speedup is representative of all tasks (even easy tasks where
the absolute time saved might not even be noticeable).
The best tensor features model uses the 𝐹1 loss function

with the𝑤max
𝑖 weighting scheme, solving 63 tasks with 31.3%

total speedup and 24.9% average speedup. The best NL model
uses TF-IDF, solving 61 tasks with 7.4% total speedup and
16.1% average speedup. The combination of models solves 63
tasks with 37.3% total speedup and 35.4% average speedup.

Even though TF-Coder withoutmodels is highly optimized
and powerful, we observe significant speedups and extra
solved tasks when using learned models to adjust the search
to fit the current task. It is also promising that the model
combinations perform significantly better than the individ-
ual models alone, showing that complementary models can
jointly influence the search with compounding benefits.

Comparison to StackOverflow We compare TF-Coder’s
performance with that of the StackOverflow community. We
found that, among the 50 StackOverflow questions, 47 had
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answers but only 32 were correct answers, with a median
answer-posting time of 31 minutes. In comparison, TF-Coder
is able to solve 44 of the StackOverflow tasks within 5 min-
utes, with a median solve time of 1.6 seconds.

Comparison to Human Programmers We evaluated TF-
Coder on 6 new benchmark tasks from StackOverflow, since
our choices for the two models was influenced by their ag-
gregate performance on the original set of 70 benchmarks.

We had volunteers with TensorFlow experience solve the
problems manually (each problem attempted by 7 people),
using whatever tools and resources they would normally use
in such a scenario (except TF-Coder). We imposed a time
limit of 5 minutes, not including the time spent reading the
problem statement. We then asked 3 different people with
some familiarity with TF-Coder to create an I/O example
for each problem, without using TF-Coder. We declare an
example to be “good” if it causes TF-Coder to produce a
correct solution within 5 minutes.
Overall, the problems were difficult for the human vol-

unteers to solve, with only 50% of solve attempts resulting
in a correct solution, with a median solve time of 248 sec-
onds. In comparison, 61% of examples given to TF-Coder
were “good” with a median solve time of 23.3 seconds, and
after a single revision, 94% of examples were “good.” Even if
the median example-creation time of 87 seconds were added
to TF-Coder’s solve times, TF-Coder would still be faster
than the human times for 5 of the 6 problems. Thus, we con-
clude that TF-Coder achieves superhuman synthesis times
on these new StackOverflow tasks.

Comparison to AutoPandas AutoPandas [Bavishi et al.
2019] is a program synthesis tool for the Pandas library. This
is an informal comparison due to differences in hardware,
benchmark tasks, and TensorFlow versus Pandas.
Considering the 52 TF-Coder benchmarks that we could

convert to Pandas format, the public AutoPandas tool only
solves 2 tasks within its 30 second timeout, but TF-Coder
solves 36 tasks within 30 seconds. Next, considering the 16
AutoPandas benchmarks that we could solve manually in
TensorFlow, TF-Coder solves 14/16 in 20 minutes with a
mean time of 18.3 seconds, while AutoPandas solves 11/16
with a mean time of 36.6 seconds (according to their paper).

Sample of Synthesized Programs Figure 2 shows exam-
ples of interesting problems that TF-Coder is able to solve.
TF-Coder often finds elegant solutions to problems us-

ing unconventional combinations of operations that the
programmer might not have considered. For example, TF-
Coder solves Problem (a) by composing tf.math.bincount

with tf.sequence_mask, which is quite unconventional with
zero instances in public GitHub repositories, StackOverflow
posts, or Google search results.
Problem (b) was a real task encountered by an author of

this paper (on a different project), and their initial solution

# Convert tensor into pairs for SparseTensor indexing.

in1 = [0, 0, 0, 1, 3, 3]

out = [[0, 0], [0, 1], [0, 2], [1, 0], [3, 0], [3, 1]]

# Solution found in 2.6 seconds

tf.cast(tf.where(tf.sequence_mask(

tf.math.bincount(in1))), tf.int32)

(a) This task is solved using an unusual composition of operations.

# Reorder segments.

in1 = [10, 20, 30, 40, 50, 13, 17, 19, 21, 22, 23]

in2 = [1, 1, 1, 1, 1, 0, 0, 0, 2, 2, 2],

out = [13, 17, 19, 10, 20, 30, 40, 50, 21, 22, 23]

# Solution found in 2.5 seconds

tf.gather(in1, tf.argsort(in2, axis=0, stable=True))

(b) TF-Coder can help users learn about uncommon operations
such as tf.argsort, which is crucial for this problem.

# Find the indices of all elements.

in1 = [32, 53, 45, 38, 29, 89, 64, 23]

in2 = [38, 53, 89, 38, 32, 64]

out = [3, 1, 5, 3, 0, 6]

# Solution found in 65.6 seconds

tf.cast(tf.argmax(tf.cast(tf.equal(in1, tf.expand_dims(

in2, 1)), tf.int32), axis=1), tf.int32)

(c) This StackOverflow task requires a particularly long solution.

Figure 2. TF-Coder’s results on selected tasks.

was a 12-line function using 18 TensorFlow operations. In-
credibly, TF-Coder solves this problem in 2.5 seconds using
only 2 operations, demonstrating that TF-Coder can find
simpler solutions than expert humans.
Problem (c) shows one of the largest solutions found by

TF-Coder, involving 5 TensorFlow operations and 11 total
nodes in the expression tree. In TF-Coder’s search space for
this problem, there are 2.3 × 1018 expressions of that size.
Even so, TF-Coder finds this solution in only one minute.

5 Related Work
Prior program synthesis approaches can be broadly classi-
fied based on the underlying search mechanism: enumera-
tive [Udupa et al. 2013], constraint-based [Solar-Lezama et al.
2006], and stochastic [Schkufza et al. 2013; Shi et al. 2018].
Applying constraint-based techniques to the TensorFlow do-
main would require a huge effort of modeling semantics
of TensorFlow operations. TF-Coder builds on top of the
bottom-up enumerative search from Transit [Udupa et al.
2013], adding expression weights, operation filtering, and
learned models to adjust weights based on the problem.
AutoPandas [Bavishi et al. 2019] uses GNNs to synthe-

size Pandas programs by representing DataFrame examples
as graphs with edges connecting equal cells, but this is not as
effective for tensor manipulations, as many common mathe-
matical operations would break the cell-equivalence edges.
AutoML systems search for ML model architectures that

achieve high accuracy on a training dataset [Cambronero
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and Rinard 2019; Zoph and Le 2016]. In contrast, TF-Coder in-
stead uses examples to synthesize implementations of tensor
manipulations that ML practitioners might perform.

6 Conclusion
In this paper, we presented TF-Coder, a synthesis tool for
automatically generating tensor manipulation programs in
TensorFlow from examples and natural language. We found
that TF-Coder solves real-life tensor manipulation problems
within seconds and outperforms human programmers.

For more details, please refer to our full paper [Shi et al.
2020].
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