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ABSTRACT

People interact with the real-world largely dependent on visual signal, which are
ubiquitous and illustrate detailed demonstrations. In this paper, we explore utiliz-
ing visual signals as a new interface for models to interact with the environment.
Specifically, we choose videos as a representative visual signal. And by training
autoregressive Transformers on video datasets in a self-supervised objective, we
find that the model emerges a zero-shot capability to infer the semantics from a
demonstration video, and imitate the semantics to an unseen scenario. This allows
the models to perform unseen tasks by watching the demonstration video in an
in-context manner, without further fine-tuning. To validate the imitation capac-
ity, we design various evaluation metrics including both objective and subjective
measures. The results show that our models can generate high-quality video clips
that accurately align with the semantic guidance provided by the demonstration
videos, and we also show that the imitation capacity follows the scaling law.1

Query GenerationDemonstration: Turning the camera from right to left

Turning the camera from left to right

Place Object into Receptacle

Place Object from Receptacle

Figure 1: Illustrations of VidIT. Given a query video clip, the model generates different results
based on the provided demonstration video clips. The generated results are coherent with the query
in content and semantically consistent with the demonstrations. Text descriptions are annotated for
clarity and not used as model input.

1Anonymous Page: https://anonymous.4open.science/w/VidImit-page-656D/
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1 INTRODUCTION

Humans acquire skills through imitation, a fundamental aspect of learning demonstrated even in
early childhood. For instance, when children observe how to hold a spoon, they not only learn this
specific action but can also generalize it to grasp different spoons in varied contexts. These demon-
strations are primarily conveyed through visual signals, which are abundant in our environment and
provide intricate guidance. Similarly, for the development of general AI agents, the ability to learn
from visual demonstrations and generalize to new situations is crucial and desirable. This capability
to understand and imitate visual signals is not only appealing but also essential for advancing AI
towards more human-like learning and interaction.

Previous works (Bar et al., 2022; Wang et al., 2023a;b; Bai et al., 2023) have studied image in-context
learning in image-based visual tasks. By formulating image perception tasks such as segmentation
and detection to supervised image pair demonstrations in delicately designed structures, e.g., a joint
grid image (Bar et al., 2022) for MAE models (He et al., 2022) or a sequence (Bai et al., 2023) for
Transformer models (Vaswani et al., 2017), they encourage the model to mimic the task and generate
the prediction of a given image query. However, these works require explicitly formulating the
training samples in source-target pairs, which restricts in-context inference to a supervised capacity.
Furthermore, image-level generation struggles to produce coherent and contextually appropriate
sequences.

In this paper, we introduce the Video ImiTator (VidIT) model, an autoregressive Trans-
former (Vaswani et al., 2017; Touvron et al., 2023) trained with the next token prediction objective
on video datasets. VidIT uses videos as the primary unit for both inputs and outputs, with each train-
ing sample consisting of a sequence of frames from a single video, encoded as discrete tokens using a
vector-quantized encoder (Van Den Oord et al., 2017; Patil et al., 2024). The model learns to predict
future frames based on preceding ones through self-supervised learning. Though demonstration-
generation pairs are not provided during training, the autoregressive paradigm enables the model to
discern the underlying structures and patterns within the videos, leading to the emergence of a zero-
shot imitation capability. Consequently, when the model encounters demonstration videos during
inference, it can generalize and apply these learned patterns to generate coherent and contextually
appropriate video sequences. This zero-shot capability echoes findings observed in large language
models (Brown et al., 2020).

Specifically, demonstration videos are highly versatile and capable of conveying a wide range of
information, such as examples for tasks including object manipulation, or movements of the camera
in an ego-centric video. Guided by these demonstrations, the model receives a query video clip set
in a new scene and generates a subsequent video sequence that mimics the semantic actions from
the demonstrations (see Figure 1 for examples). This allows VidIT to address multiple downstream
tasks, such as embodied planning and simulating, by letting a query robot imitate the actions demon-
strated by humans or other agents. Given that videos excel in describing low-level details (where
language may fall short) and temporal dynamics (where images are insufficient), VidIT acts as a
crucial interface for models to interact with the real world.

To comprehensively and accurately evaluate the model performance in VidIT, we develop both ob-
jective and subjective metrics to assess the generated videos in terms of visual quality, semantic
accuracy, and consistency with the prompted demonstrations. Our extensive experiments demon-
strate that the model not only produces high-quality video clips but also successfully adheres to the
semantic guidance provided by the demonstration examples. In addition, we show that the zero-shot
imitation capacity also follows the scaling law (Kaplan et al., 2020) of large models, illustrating the
potential of future works. The main contributions of this work are summarized as follows:

• We propose and study the task of video imitation, which enables the model to interact with
real-world demonstrations through video generation.

• We train a large Transformer model VidIT that exhibits powerful video imitation learning
capacity, which also follows the scaling law of large models.

• We propose various evaluation metrics to evaluate the visual quality and semantic accuracy
of generated videos, providing a solid benchmark for the evaluation of video imitation
learning.
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2 RELATED WORK

Imitation Learning and In-context Learning Imitation Learning is a crucial paradigm in rein-
forcement learning, wherein the expected behavior is acquired by mimicking demonstration’s ac-
tions (Zare et al., 2024). By learning on state-action pairs from an expert, the model is expected
to map the current state to the corresponding actions. Such learning paradigm is close to human
behavior and is appealing in interactive circumstances.

This ability to imitate has also been identified as a key feature in large language models (Radford
et al., 2019; Brown et al., 2020; Touvron et al., 2023; Chowdhery et al., 2023), which is referred
to as in-context learning in LLM area. By conditioning on a sequence of text templates, an LLM
generates coherent content based on these templates. This paradigm obviates the need for parameter
updates and thereby benefiting the downstream usage of LLMs (Brown et al., 2020; Touvron et al.,
2023). Different prompting designs (Wei et al., 2022; Guo et al., 2023; Li et al., 2023) empower
LLMs to deal with a wide range of natural language understanding and generation tasks.

As for the in-context paradigm in vision area, current research mainly focus on teaching the model
to mimic the vision task provided by demonstrations. Pioneering works construct vision imitation
as an image inpainting (Bar et al., 2022; Wang et al., 2023a;b) task. Given multiple query-answer
image pairs arranged in a grid image, models are optimized to reconstruct the masked answers
under the MAE projective (He et al., 2022). Recently, LVM (Bai et al., 2023) flatten image pairs
into a sequence and train an auto-regressive Transformer with next token prediction. These models
show powerful capacity to imitating vision tasks such as semantics segmentation and detection from
the demonstrations, but rely on training on supervised datasets. In addition, when extending the
basic elements (i.e., demonstrations, queries and predictions) from images to videos, unfortunately,
existing models struggle to handle the increased complexity as they are not designed to capture
the spatial-temporal relationships of inputs. Specifically, though LVM (Bai et al., 2023) is able to
generate consecutive frames of a query video clip, the video imitation capacity (e.g., generating
different consequences with different demonstrations) is not demonstrated.

Video Generation The studied video imitation learning can be considered as a conditional video
generation problem, which has recently become a prominent focus in research. Text is the most
commonly utilized condition, and various text-to-video models have shown promising results in
generating high-fidelity videos (Ho et al., 2022b;a; Brooks et al., 2024; Hong et al., 2023; Villegas
et al., 2023; Kondratyuk et al., 2023; Yu et al., 2023b). Recently, video generation models are
spread to other related domains such as embodied AI (Yang et al., 2024), where they are utilized in
visual planning (Du et al., 2023) and simulation (Yang et al., 2023) with actions and observations as
conditions, illustrating the potential of this area. As for model architectures, Diffusion models (Ho
et al., 2020; Nichol & Dhariwal, 2021) and Transformers (Vaswani et al., 2017) are both widely
adopted in different scenarios, and we choose the autoregressive Transformer as the backbone model
in this paper, as its abilities to model long-range dependencies and contextual relationships are
crucial for video imitators.

3 VIDEO IMITATOR

We introduce the proposed Video Imitator in this section. We begin with the problem definition
of both image and video imitation in Section 3.1, highlighting the differences between them. We
then elaborate on the training and inference pipeline of VidIT in Section 3.2. Dataset selection is
discussed in Section 3.3.

3.1 PROBLEM DEFINITION

Typically, the image task imitator models follow the setting akin to question answering: the demon-
stration is composed of k image pairs DI = {sqi , sai }ki=1, where sqi ∈ R(3,nr,nr) denotes the input
image with resolution nr and sai denotes its target (usually an image with task-specific annota-
tions (Bai et al., 2023)). Given a query image xI , the model predicts its target yI conditioned on the
demonstration:

fθ(x
I) = P (yI |xI , DI), (1)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

𝑡1 𝑡2

Transformer

𝑡𝑁

Visual Tokenizer

Transformer

Visual Tokenizer

𝑡𝑁−2 𝑡𝑁−1

𝑡2 𝑡3𝑡1 𝑡𝑁−1 𝑡𝑁

𝑡1
𝐷 𝑡2

𝐷 𝑡𝑞−1
𝑄

𝑡𝑞
𝑄

𝑡𝑞
𝑄

𝑡𝑞+1
𝑄

Training

Training : continuous video clips Prompt: Demonstration + Query

𝑡𝑞−2
𝑄

𝑡2
𝐷 𝑡3

𝐷𝑡1
𝐷

Visual DecoderCross Entropy Loss

Imitation Inference

BOS BOS

EOS

𝑡𝑑
𝐷 𝑡1

𝑄

𝑡1
𝑄

𝑡2
𝑄

𝑡𝑞−1
𝑄

Figure 2: The framework of VidIT. Left: Training the VidIT. The data used for training are contin-
uous video clips and the Transformer is trained by next token prediction objective. Right: Video
Imitation Inference. The model is conditioned on demonstration videos and generates the subse-
quent frames of a given query video.

where fθ(·) represents the utilized vision model such as an MAE-pretrained ViT (Wang et al., 2023a;
Bar et al., 2022) or an auto-regressive Transformer (Bai et al., 2023), which is expected to discern
the inherent task from image pairs (sqi , s

a
i ) and process x accordingly.

Unlike image task imitators, VidIT takes videos as basic element, focusing on inheriting semantics
from demonstrations rather than discerning specific tasks. Specifically, the demonstration DV =
{(s1i , · · · , s

ni
i )}ki=1 comprises k video clips, and each clip consists of ni frames. Given a query

video clip xV = (s1q, · · · , s
nq
q ), the objective of VidIT can be formulated as:

fθ(x
V ) = P (yV |xV , DV ), (2)

where yV = (s1y, · · · , s
ny
y ) denotes the generated video clip, which should be perceptually coherent

with the query xV while semantically consistent with the demonstration DV at the same time.

3.2 APPROACH

Training a Transformer for vision tasks typically consists of two stages, 1) training a visual tokenizer
such as VQ-VAE (Van Den Oord et al., 2017; Esser et al., 2021) to convert each image to discrete
tokens; 2) each training sample is constructed as a sequence of tokens to train the Transformer
decoder. For the first stage, we utilize a public pretrained checkpoint (Patil et al., 2024) with 16×
spatial compression rate as the VQ tokenizer. Our framework also fits for recent tokenizers with both
spatial and temporal compressions (Yu et al., 2023a;b), and we leave it for future work. Formally,
for a training video clip xV = (s1, · · · , sn) with n frames, the VQ tokenizer converts it to a flat
sequence xt = (t1, · · · , tnt

, tnt+1, · · · , tN ), where nt denotes the number of quantized ids that
represents one frame, and N = n · nt denotes the total length of the sequence. We append special
tokens [bos] and [eos] to the front and end of the sequence, and no special tokens are inserted
between sequences of different frames.

Then, in the second stage, we follow the architecture of LLaMA (Touvron et al., 2023) utilizing
RMSNorm normalizing (Zhang & Sennrich, 2019) and Rotary Embeddings (Su et al., 2024), and
train a Transformer decoder in an autoregressive way:

fθ(x
t) =

N∏
i=1

P (ti|t<i), (3)
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where the model predicts each token conditioned on previous ones. Note that in the training stage,
each sequence is sampled from one original video, and we do not concatenate video clips from
different videos.

Imitation Inference The imitation inference format differs from that in the training. Following
Equation (2), a number of video clips are selected as the demonstration DV , which is appended in
front of the query clip xt

<j = (t1, · · · , tj−1) to let the model generate corresponding responses:

fθ(x
t
>j) =

N∏
i=j

P (ti|xt
<i, D

V ). (4)

The generation results xt
≥j = (tj , · · · , tN ) are vector-quantized IDs, which are then fed to the

pretrained VQ decoder to reconstruct as images. We provide an illustration of training and inference
pipelines in Figure 2.

Zero-shot Capacity The training and inference processes of the model differ in that the demon-
stration DV is not provided during training. Despite this, the model exhibits zero-shot video imi-
tation capabilities. This can be attributed to two key reasons. Firstly, no special separation token
is inserted between frames, allowing the preceding sequences t<i in Equation (3) to be implicitly
viewed in a demonstration-query format, i.e., P (ti|t<i,>j , t≤j) where j < i. This implies that
the model has inherently learned to handle sequences resembling the demonstration-query structure
during training. Secondly, the autoregressive nature of the Transformer enables it to seamlessly ex-
tend its sequence prediction capabilities to scenarios where the demonstration and query come from
different videos, thus facilitating smooth generalization to the imitation paradigm. Our experiments
further show that training the model with explicit imitation examples does not yield significant im-
provements over the zero-shot approach. Refer to Sec 5.1 for more discussions.

Incorporate Other Modalities We mainly focus on videos as the demonstration in this paper, but
our approach can be easily extended to acquiring other modalities such as text. To do so, we just need
to transfer original text descriptions into latent representations denoted as c by a pretrained language
model (Raffel et al., 2020), then take c as an additional condition while training the Transformer
(Equation (3)) as well as imitation inference (Equation (4)). We show in experiments Sec 5.5 that
our model understands and reacts to both text and video demonstrations.

3.3 DATA

While large language models are trained on vast amounts of data (usually trillions of tokens (Hoff-
mann et al., 2022; Touvron et al., 2023)), high-quality video data is constrained. In addition, VidIT
prefers videos that exhibit not only rich content but also clear causal relationships and interactivity.
As a result, among various public video datasets, we focus on these accomplish embodied tasks and
select two primary datasets as our main training data sources: 1) Ego4d (Grauman et al., 2022),
an egocentric video dataset featuring abundant first-person activities; and 2) Kinetics-600 (Carreira
et al., 2018), a comprehensive video dataset comprising diverse human activities. Additionally, we
incorporate WebVid (Bain et al., 2021) that contains a large amount of internet videos, to augment
the variety of video content. Notably, due to the typically ambiguous and inconsistent semantic
information conveyed by internet videos, we only utilize a small fraction of WebVid, and show that
simply increasing the data scale by adding more internet videos does not help improve the imitation
capacity of the model (refer to Sec 5.5).

To validate the VidIT’s imitation capability, we choose the Something-Something v2 (SSv2) as the
main evaluation dataset (Goyal et al., 2017) where each video depicts a basic action that occurs in the
physical world, such as moving objects in a direction. These videos convey strong semantic informa-
tion, which can be utilized to construct the demonstrations. We utilize the evaluation split of SSv2
as the evaluation set for all experiments. In addition, we include the Robotics Transformer-1 (RT-
1) (Brohan et al., 2022) dataset and MineRL2 to demonstrates VidIT’s effectiveness on embodied
AI and interative tasks.

2https://github.com/minerllabs/minerl
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4 EXPERIMENTAL SETUPS

We design tailored evaluation pipelines to assess the VidIT’s capacity to perform video imitation.
We introduce the proposed evaluation metrics in Section 4.1, and summarize the details of our
implementations in Section 4.2.

4.1 EVALUATION

The evaluation of VidIT should include two aspects, the first is the visual quality as a normal video
generation task, and the second is semantic accuracy which is more critical as it reflects whether
the model understands and follows the semantic guidance provided by demonstrations. To validate
semantic accuracy, we design four kinds of demonstrations.

• No Demonstration. This setting is akin to unconditional video prediction, where the model
is asked to complete the query xV without any demonstration.

• Random Demonstration. In this type of demonstration, video clips are chosen from arbi-
trary videos within the entire SSv2 dataset.

• In-class Demonstration. Given a video clip query, the demonstrations are sampled from
videos with the same action label as the query.

• Contrastive Demonstration. In contrast to the previous one, the sampled demonstrations
have the contrast action label to the query.

We then evaluate the model in two settings, 1) using ground truth query labels to evaluate results,
to test whether the demonstrations enhance or deviate from the generation results; 2) using demon-
stration labels, to assess whether the model accurately acquires the semantic guidance and generates
corresponding results. We define various metrics to deal with these two settings.

Automatic Metrics For visual quality, we adopt several widely utilized metrics including PSNR
and LPIPS (Zhang et al., 2018) to perform a frame-by-frame comparison between the generation
results and the ground truth video clip, i.e., the consequences of the query. Additionally, we include
the FID (Heusel et al., 2017) and FVD (Unterthiner et al., 2018) score to quantify the distribution
difference. These metrics are suitable for the first setting where ground truth is available.

For semantic accuracy, we propose two classification-based metrics:

• Video Accuracy (V-Acc). We utilize an off-the-shelf video classifier (Tong et al., 2022)
trained on the SSv2 dataset to calculate the classification accuracy of the generated video
clips. Specifically, we predict the action label of each generated video clip and com-
pare it with the ground truth label of the query. This metric provides a perceptual as-
sessment of the semantic information in generation results. In particular, we use the
videomae-base-finetuned-kinetics3 checkpoint.

• Probing Accuracy (P-Acc). While V-Acc relies on a pretrained classifier and judges on vi-
sual signals, we propose another metric named P-Acc to operate on the latent representation
of VidIT. To directly validate the semantic information contained in latent representations,
inspired by the widespread use of probing in vision feature extractors (He et al., 2022;
Huang et al., 2023; Bardes et al., 2023), we train a probing classifier which takes hiddens
in the last Transformer layer of the generation results as input and predicts the correspond-
ing action label.

Most automatic metrics are only suitable for the first setting where ground truth video is available.
For the second setting without ground truth, only the probing accuracy can be utilized. As a supple-
mentary, we also introduce human evaluation.

Human Evaluation We manually select a subset from the SSv2 validation set, by picking out
action labels with contrastive semantics, such as Pulling [something] from left to right and Pulling
[something] from right to left. For a query video clip, we sample two demonstrations from the

3https://huggingface.co/MCG-NJU/videomae-base-finetuned-kinetics
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same and contrastive class respectively, constructing a pair of evaluation samples (just as shown
in Figure 1). We involve 10 experienced users to score 20 pairs of samples from several aspects,
i.e., visual quality, semantic alignment and control. Alignment indicates whether each generation
is semantically consistent with the demonstration, while control justifies whether the pair of results
perform contrastive behavior following the demonstrations. Participants were presented with a pair
of videos at a time and asked to rate each video for each score on a scale of 1 to 5. We calculated
the average score as the final result.

4.2 IMPLEMENTATION DETAILS

Preprocessing For each dataset, we assign a stride to sample frames at regular intervals in order to
capture human-recognizable video clips. The stride varies among datasets depending on the average
FPS but remains consistent within each dataset. Subsequently, we resize and center-crop the images
to a fixed size of 256×256 resolution.The pretrained VQ-GAN tokenizer (Patil et al., 2024) takes in
256× 256 sized images and produces 16× 16 = 256 discrete tokens with a compression coefficient
f = 16. Tokens of different frames are concatenated in the order of original frames, and each
training sequence contains 16 images and 4096 discrete tokens.

Transformer Architecture we adopt the LLaMA (Touvron et al., 2023) architecture, a typical
decoder-only transformer model for auto-regressive modeling with designs advantageous to large-
scale modeling. we experiment with different sets of hyper-parameters which result in models with
300M, 700M and 1.1B parameters separately. The details of hyper-parameter settings are shown in
Table 8.

Inference In our main experiments, we set k = 1 to restrict the demonstration to one video. In this
way, the demonstration clip contains 8 frames, while the query and generation results both consist
of 4 frames. We also study different compositions such as k = 2 demonstrations sampled from
different videos and each with 4 frames. Please refer to Section 5.5 for more discussions.

Baselines We compare the proposed VidIT model with recent visual generative models based on
auto-regressive Transformer. LVM (Bai et al., 2023) is a natural baseline that shows strong image
imitation capacity. DeLVM (Guo et al., 2024) is a data efficient version of LVM, which involves
extra knowledge distilling step and have fewer parameters. LWM (Liu et al., 2024) is designed to
understand and generate long-context video contents, which is trained on aligned text-video pairs.
To evaluate the generalizability of our model, we train several variants: Pretrain, which is trained
without SSv2 in the training set; Pretrain w/ In-domain finetune, which is fine-tuned on SSv2 from
the Pretrain model where each sample consists of continuous 16 frames, similar to the pretraining
stage; and Pretrain w/ Imitation finetune, which is fine-tuned using the same data format as imitation
inference, consisting of two 8-frame videos from the same class.

5 RESULTS AND ANALYSIS

5.1 MAIN RESULTS

If not specified, we use our largest 1.1B model to generate results. We first evaluate the VidIT
results using the ground truth query label. In this setting, all automatic metrics can be utilized. The
quantitative results are presented in Table 1, where each row corresponds to a different demonstration
type. We draw the following conclusions from the results.

In-class Demonstrations Contribute to Stronger Semantic Accuracy Our analysis begins by
focusing on the result of the Pretrain model in the first block. We observe a significant enhancement
in the semantic accuracy when using in-class video clips as demonstrations, compared to without
demonstration or using randomly selected ones. Specifically, there is a notable 7.1% / 8.4% improve-
ment in P-Acc and a 1.8% / 2.0% gain in V-Acc over no or prompting with random demonstrations
respectively. These findings validate our proposition that when prompted with semantically related
demonstrations, the model more accurately generates video clips that adhere to the original trace, in
a zero-shot way on both the domain and the imitation ability.

7
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Table 1: The Semantic Accuracy metrics and Visual Quality metric of different demonstration type
and training strateges. The best result in each block is bolded and second best result is underlined.

Demonstration Semantic Accuracy Visual Quality
V-Acc ↑ P-Acc ↑ PSNR ↑ LPIPS ↓ FID ↓ FVD ↓

Pretrain

No Demonstration 22.9 29.6 13.20 0.442 20.94 119.51
Random Demonstration 22.7 28.3 13.01 0.450 22.53 131.34
In-class Demonstration 24.7 36.7 13.07 0.447 21.95 125.77

Pretrain w/ Imitation Finetune

No Demonstration 24.2 26.7 13.02 0.460 22.21 129.68
Random Demonstration 23.1 25.6 13.01 0.454 20.66 115.76
In-class Demonstration 25.7 40.7 13.08 0.450 20.49 113.52

Pretrain w/ In-domain Finetune

No Demonstration 25.0 30.8 13.09 0.446 20.87 108.12
Random Demonstration 24.9 34.1 13.16 0.440 19.17 95.72
In-class Demonstration 25.9 48.8 13.21 0.438 18.92 88.63

Table 2: Results on automatic and human evaluation of VidIT and baseline models.

Baselines Automatic Metrics Human Evaluation
P-Acc PSNR Quality Alignment Control

LVM (Bai et al., 2023) 27.1 12.45 3.50 2.71 1.81
DeLVM (Guo et al., 2024) 32.8 12.69 3.21 2.28 2.11
LWM (Liu et al., 2024) 24.9 11.89 3.39 2.33 2.05
VidIT (ours) 38.5 13.07 4.12 3.73 3.01

Random Demonstrations Mislead the Semantics Beyond the inferior performance compared to
in-class demonstrations, random ones also reveal a gap of 0.2% in V-Acc and 0.7% in P-Acc to the
no demonstration setting. This indicates that prompting with unrelated demonstrations negatively
impacts the semantics of the generated results.

In-domain Finetuning Leads to General Improvement We further analyze the results presented
in the second and third blocks of Table 1, focusing on different fine-tuning strategies. The superiority
of in-domain finetuning over the initial Pretrain is evident, indicating a straightforward performance
boost when in-domain training data is available. In addition, when comparing in-domain finetuning
with imitation finetuning, the in-class P-Acc of the former rises to 48.8%, showcasing an 8.1%
improvement over the latter. These findings underscore the remarkable zero-shot capacity of VidIT,
showcasing the model’s capability at adapting to the imitation formatting through exclusive training
on continuous video clips, while explicit finetuning with the target format fails to yield significant
enhancements.

Table 3: The Probing accuracy
evaluated by demonstration labels.

Demonstration P-Acc

Contrastive 35.5
In-class 33.8
Random 16.7

Evaluation with Demonstration Label We evaluate the
generation results with the demonstration label to assess the
controliability of the model. We use results with both in-class
and contrastive demonstrations as described in Section 4.1 to
train the probing model. As shown in Table 3, both cases have
well above average probing accuracy, indicating that the repre-
sentations of generation results successfully obtain the seman-
tic information from demonstrations.

5.2 COMPARISON WITH BASELINE MODELS

We compare our VidIT with baseline methods mentioned in Section 4.2 on the video imitation abil-
ities. We report both automatic metrics and human evaluation results in Table 2. As shown in the
results, our VidIT model significantly outperforms the baseline models in both objective and subjec-
tive evaluations. We attribute this difference to the training data formats of VidIT and other models.
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Figure 3: The performance when scaling model parameters.

LVM and DeLVM mainly relies on pairs of images and their annotations, which limits their ability
to extract semantic information across consecutive frames and generate coherent sequences corre-
spondingly. Moreover, the training process of LWM are not designed to capture the demonstration’s
semantics, leading to degration on imitation performance.

5.3 SCALING BEHAVIOR

As describe in Section 4.2, we set up different sizes of model, respectively 300M, 700M and 1.1B.
In this section, we assess the models’ scaling behavior from the following aspects.

Scalability on Visual Quality We present the PSNR and FID scores of models in various sizes in
Figure 3a. The results indicate that larger models tend to produce samples of higher quality.

Scalability on Semantic Accuracy We present both the absolute probing accuracy scores of in-
class demonstrations and the performance gain over random demonstrations in Figure 3b and 3c.
From both results, we observe a clear trend that larger models yield more informative hidden repre-
sentations, and offer more precise control over the generation results when conditioned on different
demonstrations.

5.4 GENERALIZATION ABILITY

In this section, we elaborate on the generalization ability of the VidIT model. Thanks to its self-
supervised training paradigm, VidIT can be smoothly adapted to multiple scenarios and tasks with
minimal modifications.

Firstly, we apply VidIT to Robotics Transformer dataset (Brohan et al., 2022) to imitate actions of
a robotic arm, such as opening and closing drawers and placing objects. The samples on Figure 4
demonstrates that VidIT can successfully mimic various robotic arm actions from demonstrations,
completing the frame sequences with the same movements.

Additionally, we highlight that VidIT can serve as an underlying video generation engine within
an interactive agent. In this setup, VidIT receives previous observations and generates subsequent
frames, which are then converted to action signals via the inverse dynamics mechanism. This pro-
cess ensures that the action signals reflect VidIT’s imitation intent. As depicted in Figure 7 in
Appendix A.1, agents perform specific actions guided by VidIT, showcasing the zero-shot imitation
ability of VidIT and revealing its potential to interact with the environment.

We also validate VidIT’s capability as a video task imitator. Following the approach of image task
imitators like LVM, we create video segmentation exemplars to form QA pairs on the VIPSeg (Miao
et al., 2022) dataset. The results, presented in Figure 8 in Appendix A.2, indicate that VidIT suc-
cessfully learns the task format from the demonstrations.

5.5 ABLATION AND ANALYSIS

Different Number of Demonstrations We investigate the impact of different numbers of demon-
strations on VidIT performance. Within a 16-frame context window, we fix the query length as 4
frames and the generation as 4 frames, and construct four demonstration formats: 1) no demonstra-
tion; 2) one 4-frame demonstration; 3) two 4-frame demonstrations sampled from different videos;

9
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Demonstration Query & Generated

Figure 4: Generation Samples of VidIT on RT-1 Dataset.

4) one 8-frame demonstration. The results in Table 4 demonstrate that providing demonstrations
generally improves both P-Acc and V-acc scores. Additionally, providing more (2× 4 versus 1× 4)
or longer demonstrations (1× 8 versus 1× 4) both result in better performance.

Table 4: Semantic accuracy of different
demonstration formats.

Demonstration P-Acc V-Acc

No 29.6 22.9
1 × 4 frames 35.6 22.9
2 × 4 frames 37.2 24.2
1 × 8 frames 36.7 24.7

Table 5: Results with text as demonstrations.

V-Acc FID

Tune w/ text 28.8 19.46
+ Infer w/o text 24.6 19.72

Tune w/o text 24.7 20.02

Text as Demonstrations To demonstrate the versatility of our model, we explore incorporating
text into the demonstrations. We fine-tune the 300M Pretrain model on the SSv2 dataset by append-
ing corresponding text annotations to the front of each video. The text annotations are encoded into
latent representations using a pretrained T5-large model (Raffel et al., 2020). The results, presented
in Table 5, indicate that our model can seamlessly adopt demonstrations in various modalities. Ad-
ditionally, adding textual descriptions enhances the model’s imitation capacity.

40k 60k 80k 100k
Steps

40

45

50

55

60

65

Va
lid

at
io

n 
Pe

rp
le

xi
ty

webvid-250k
webvid-400k
webvid-1200k

Figure 5: The validation perplexity in vari-
ous amount of web videos.

Effect of Web Videos In previous studies, incor-
porating miscellaneous web videos into the training
dataset has been shown to enhance generation qual-
ity (Yang et al., 2023; Liu et al., 2024). Here we
investigate their effect on VidIT. We sampled vary-
ing quantities of video clips from the Webvid dataset
during pretraining and present the SSv2 validation
perplexity results in Figure 5. We observe that the
perplexity does not linearly decrease with the num-
ber of web videos, suggesting that VidIT prefers
videos conveying clear and consistent semantic in-
formation.

6 CONCLUSION

In this paper, we introduce Video Imitator, a novel model that extends imitation learning to video
data. By converting video frames into sequences of discrete tokens and training the autoregressive
Transformer with next token prediction, our VidIT model exhibits zero-shot imitation capabilities,
which can generate semantically coherent and contextually appropriate video sequences based on
provided demonstrations. Extensive experiments confirm that VidIT effectively captures and con-
veys the semantic information embedded in the demonstrations, demonstrating its potential to en-
hance various downstream tasks such as visual planning. Additionally, the model’s versatility is
verified by its ability to understand and integrate multi-modal demonstrations simultaneously.
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A ADDITIONAL RESULTS

In this section we provide more samples on different video datasets and benchmarks that
VidIT model produces. Synthesis videos on Something-something v2 dataset are presented
in Table 10. One can also navigate to https://anonymous.4open.science/w/
VidImit-page-656D/ for clearer presented samples. Table 11 includes samples on Robotics
Transformer-1 dataset, showcasing the ability of VidIT to fit on various form of video datasets. Fur-
thermore, VidIT as a versatile generalist, can act as a simulator in reinforcement learning tasks, for
which we provide detailed explanations.

A.1 VIDIT AS SIMULATOR

We demonstrate that VidIT can also function as a simulator in reinforcement learning tasks by eval-
uating it on the VP2 (Tian et al., 2023) benchmark. VP2 is a benchmark for video prediction mod-
els used in robotic manipulation via model-predictive control. VidIT generates future frames with
videos that accomplishing the same task as the demonstration, where the generated frames inversely
reflect the corresponding actions that correctly interact with the environment (i.e. inverse dynam-
ics). We compare the trajectories produced by the SVG (Villegas et al., 2019) baseline and VidIT in
Figure 6. Evaluating on the Push-red task, we find that VidIT provides more precise control over
the environment interaction.

Figure 6: The trajectory produced by SVG and VidIT respectively.

Additionally, we evaluate VidIT on the MineRL environment as the underlying video generation
model, where VidIT take in previous game scenes as conditions to imitate and generate subsequent
scenes. Generated game scenes are then fed into inverse dynamics models to generate the next action
signal. We showcase two types of actions: Chop wood and Attack sheep. In Figure 7, the VidIT
correctly generate game scenes and produce corresponding action signal to finish the action.

Figure 7: The VidIT model functions as video generator for chop-wood and attack-sheep in MineRL.
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A.2 VIDIT AS TASK IMITATOR

We expand the role of VidIT model to the task imitator on video, which mirrors the cases in image
imitation learning. In this section, we finetune VidIT in VIPSeg dataset (Miao et al., 2022) for a few
steps and show that VidIT can also smoothly generalize to video perceptual tasks like video seg-
mentation. As depicted in Figure 8, VidIT successfully learns the task format from demonstration,
and generates the segmentation outputs of the query video.

Demonstration + Query Generated

Figure 8: The VidIT can also imitate video perceptual tasks such as video segmentation.

A.3 CASE STUDY: BASELINE METHODS

In this section we compare the generated cases of VidIT with the baseline methods. As in Figure 9,
we see that conditioned on the same frames, VidIT is capable of generating more semantically ac-
curate and high-quality video than baseline models. Moreover, VidIT is lower in parameter budget,
highlighting the priority of VidIT as a video imitator model.

Figure 9: Generated cases of VidIT and baseline methods.
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A.4 FAILURE CASES

When prompted with semantically unrelated videos, VidIT may struggle to generate coherent con-
tent. In this section, we present failure cases where VidIT fails to align the query video with the
semantic context of the demonstration video (see Figure 10).

For instance, in the first row, the demonstration video conveys the semantic information of moving
a ball downward. However, when starting with a query video depicting an unrelated action, such as
folding a blanket, the model struggles to reconcile the two contexts. As a result, it tends to ignore
the demonstrated actions and generates content that lacks coherence with the demonstration.

Similar patterns are observed in other cases. These examples reveals VidIT’s potential difficulty
in maintaining semantic coherence when prompted with unrelated or ambiguous demonstrations.
Addressing this limitation presents a promising direction for future research.

Figure 10: Failure cases of VidIT.

Figure 11: The attention weight visualization during training and inference respectively.

A.5 INTERPRETABILITY OF GENERALIZATION

In this section, we highlight the interpretability of VidIT and its ability to generalize to imitation
tasks in a zero-shot manner. To demonstrate this, we analyze the attention weights from the lan-
guage model backbone to compare the similarity of attention patterns when provided with the same
demonstration during training and inference.
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Specifically, we extract the attention weights from the last layer of the model and average them
across all attention heads. Since the tokens are flattened from the original frames in raster scan
order, we rebind the tokens to their corresponding regions in the frames for better visualization. The
results are shown in Figure 11.

The first row depicts the original frame sequence. The second row represents the training case,
where frames are drawn from a single video clip. The third row illustrates the inference case, where
the sequence begins from a different query frame. When generating a new token, we observe similar
attention patterns across the demonstration frames. Notably, the attention is concentrated around the
moving object within the frames.

This phenomenon indicates that the model effectively learns and leverages the semantic information
from previous frames, enabling it to perform imitation tasks even when starting from a different
scene.
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Figure 12: The aggragated attention score distribution in demonstration and query frames.

Additionally, we analyze the failure cases in detail from the perspective of attention weights. Specif-
ically, we examine how new frames attend to previous frames during generation. Intuitively, when
a new frame is effectively guided by the demonstration, it tends to allocate more attention to the
frames in the demonstration video, rather than only attending to the query frames.

To illustrate this, we visualize the attention distribution of generated frames on previous frames,
as shown in Figure 12. Clearly, successful generation samples exhibit a tendency to allocate more
attention to the demonstration frames, indicating an ability to comprehend and utilize its semantic
information. In contrast, the attention curve for failure cases reveals a higher focus on the query
frames, effectively ignoring the guidance provided by the demonstration part.

A.6 FULL EVALUATION METRICS ON BASELINES

In this section, we complete Table 2’s results with the all the evaluation metrics in Section 4.1. From
the results in Table 6, it is evident that the VidIT model consistently outperforms the baseline models
in video imitation tasks, reinforcing its superior capability in capturing both semantic alignment and
visual quality.

Table 6: Full automatic metrics for baseline models. The best result is bolded .

Demonstration Semantic Accuracy Visual Quality
V-Acc ↑ P-Acc ↑ PSNR ↑ LPIPS ↓ FID ↓ FVD ↓

LVM (Bai et al., 2023) 21.2 27.1 12.45 0.489 27.58 163.13
DeLVM (Guo et al., 2024) 24.1 32.8 12.69 0.462 23.65 132.09
LWM (Liu et al., 2024) 21.8 24.9 11.89 0.474 29.91 191.56
VidIT (ours) 25.9 38.5 13.07 0.450 22.30 126.32
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Table 7: The configuration of different size of models.

Hidden dim MLP dim Num. Heads Num. Layers
300M 1024 2688 8 22
700M 1536 4096 16 24
1.1B 2048 4096 16 26

Table 8: Model hyperparameters.

Hyperparameter Value
Learning rate scheduler inverse sqrt

Learning rate 5e−4

Warm up steps 10000
Weight decay 0.01

Optimizer AdamW
AdamW betas (0.9, 0.95)
Context length 4096

B IMPLEMENTATION DETAILS

B.1 MODEL ARCHITECTURE

We utilize LLaMA as the Transformer architecture in our work. To validate the scaling behavior,
we train three different sizes of the VidIT model within the LLaMA architecture: 300M, 700M,
and 1.1B. We carefully tune the hidden dimension, MLP intermediate dimension, and the number
of Transformer decoder layers to achieve different model sizes. The configuration details of these
models are presented in Table 7.

B.2 HYPERPARAMETERS

The hyperparameters used to train the VidIT model are presented in Table 8. We utilize inverse
square root scheduler and start model training with 10,000 warmup steps.

B.3 DATASET STATISTICS

The summary of dataset used in our paper is presented in Table 9. We provide detailed statistics
including number of videos, total of tokens after tokenization and tokens used to train our VidIT
model.

B.4 TRAINING DETAILS

Our largest variant, VidIT 1.1B, is trained on 2x8H100 nodes, with Pytorch DDP parallel strategy
integrated in the Pytorch-Lightening trainer. The training time is about 3 hours per epoch and thus
the total training GPU hours is 720 (15 epochs).

Table 9: Statistics of training datasets.

Dataset Sample Stride Num. Videos Total tokens(M) Training tokens(M)
Ego4d 6 14,192 6890.8 2048.0

Kinetics-600 5 426,253 4711.35 1024.0
WebVid 6 2,494,801 50825.2 1024.0

Total - - - 4096.0
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C LIMITATIONS

Despite the promising results, several limitations exist in this study. Firstly, while VidIT excels at
generating short video sequences, its performance on longer sequences has not been thoroughly eval-
uated. Secondly, the model’s dependence on the quality and relevance of provided demonstrations
can lead to inconsistencies, particularly when demonstrations are noisy or semantically misaligned.
Future work should address these limitations by utilizing visual tokenizers with temporal compres-
sion, and scaling or developing robust models to handle imperfect demonstrations.

D ETHICS STATEMENT

Positive societal impacts of VidIT include its potential to enhance various downstream applications
such as embodied planning and robotic simulation by enabling models to imitate actions demon-
strated in videos. As for negative societal impacts, the widespread adoption of this technique may
raise concerns about privacy when powerful models gain the ability to analyze and generate video
content at scale. The datasets utilized in this study are publicly available and have been thoroughly
reviewed to ensure they do not include personally identifiable information or offensive content.
Nonetheless, as these datasets are sourced from the Internet, there may still be inherent biases. To
address this, we have implemented a rigorous filtering process on the training data to minimize the
potential for the model to generate inappropriate content.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 10: More samples of VidIT generated samples on Something-something v2 dataset.

Demonstration Query & Generation
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Table 11: More examples of VidIT generated samples on RT-1 dataset.

Demonstration Query & Generation
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