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Abstract
Some recent services use a sequencer to simplify ordering
operations on sharded data. The sequencer assigns each op-
eration a multi-sequence number which explicitly orders the
operation on each shard it accesses. Existing sequencers have
two shortcomings. First, failures can result in some multi-
sequence numbers never being assigned, exposing a non-
contiguous multi-sequence, which requires complex scaffold-
ing to handle. Second, existing implementations use single-
machine sequencers, limiting service throughput to the order-
ing throughput of one machine.

We make two contributions. First, we posit that sequencers
should expose our new contiguous multi-sequence abstraction.
Contiguity guarantees every sequence number is assigned an
operation, simplifying the abstraction. Second, we design and
implement MASON, the first system to expose the contiguous
multi-sequence abstraction and the first to provide a scalable
multi-sequence. MASON is thus an ideal building block for
consistent, scalable services. Our evaluation shows MASON
unlocks scalable throughput for two strongly-consistent ser-
vices built on it.

1 Introduction
Designers of large-scale distributed services grapple with the
tradeoff between strong consistency and high performance.
A strongly-consistent distributed service is a useful building
block because applications can reason about its behavior as if
it were running on a single machine. However, strong consis-
tency requires coordination among a service’s servers, adding
overhead.

Some recent services achieve consistency using a se-
quencer to explicitly order data accesses a priori, removing
the need to coordinate concurrent accesses [35, 53]. This en-
ables sequencer-based designs to achieve strong consistency
with higher throughput than other approaches.

An existing abstraction enabled by sequencers is the multi-
sequence abstraction. This abstraction uses a collection of se-
quence spaces, i.e., logically independent sequences of strictly
increasing integers, to provide a strictly serializable ordering
of accesses to different subsets (shards) of the service’s data.
An operation that needs cross-shard ordering gets an atomi-
cally assigned multi-sequence number containing a sequence
number from the sequence space of each shard the operation
accesses. An execution protocol, designed by the service de-
veloper, defines the sequence spaces involved in an operation
and how shards use multi-sequence numbers to execute oper-
ations. Driven by the execution protocol, the service’s servers
use the sequence numbers to order operations on the shard(s)

they manage, with the multi-sequence numbers atomically
ordering operations relative to other operations to provide
strong consistency. Operations ordered by multi-sequence
numbers can be executed without coordination across servers,
enabling strongly consistent, scalable, and efficient services.

However, the abstraction used by recent services is a non-
contiguous multi-sequence: failures can cause holes in the
sequence space, i.e., sequence numbers that are never used.
To preserve consistency, a service must identify and reason
about all holes. Identifying holes requires service-wide coor-
dination between the service’s servers to reach consensus on
whether a sequence number has an associated operation that
can be recovered. If not, then it is a hole, and the servers must
coordinate to avoid using any sequence numbers that are part
of the same multi-sequence number as the hole. Implement-
ing consensus and service-wide coordination to handle holes
significantly complicates execution protocol design (§2.2).

This paper introduces the contiguous multi-sequence ab-
straction for building consistent, scalable services. The con-
tiguous multi-sequence abstraction assigns exactly one op-
eration to every integer in each sequence space such that
no sequence space has a hole. Contiguity strengthens the
multi-sequence abstraction over its existing noncontiguous
counterpart by hiding consensus and service-wide coordina-
tion, simplifying the development of services. Some existing
services use the noncontiguous multi-sequence abstraction
internally to expose higher-level abstractions like distributed
databases [35, 53]. Compared to higher-level abstractions, the
contiguous multi-sequence supports developing more diverse
functionality, e.g., ephemeral objects (§6).

In addition to being noncontiguous, existing implementa-
tions of the multi-sequence abstraction [35, 53] suffer from
a second limitation: they have an ordering throughput ceil-
ing that limits the throughput of any services built on top of
them. These implementations use a monolithic sequencer, a
single machine whose only task is to hand out multi-sequence
numbers, enabling low-latency ordering that is easy to rea-
son about. A monolithic sequencer can order operations with
higher throughput than coordination-based mechanisms, but
this design can only achieve ordering throughput up to the
throughput limit of a single machine. Thus, a service built on
a monolithic sequencer cannot scale.

Our system, MASON, addresses the ordering throughput
limitation. MASON is a building block for distributed ser-
vices that provides the contiguous multi-sequence abstraction
with no ceiling on ordering throughput, unlocking scalabil-
ity for services that were previously unscalable. MASON’s
contiguous multi-sequence implementation enables services
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to (1) use simple execution protocols that need not incorpo-
rate consensus or service-wide coordination and (2) scale to
achieve service throughput far higher than what is possible
with monolithic sequencers.

Our key insight is that MASON can enable simple execu-
tion protocols and scalability via a layer of replicated proxies
between clients and a monolithic sequencer. To overcome
the failure modes that expose holes, the proxy layer provides
fault tolerance for clients and the sequencer, guaranteeing
the contiguous multi-sequence abstraction. To overcome the
monolithic sequencer’s ceiling on ordering throughput, prox-
ies batch requests for multi-sequence numbers. This batching
is perfect, in that the sequencer does no more work to allo-
cate one million contiguous numbers than it does to allocate
a single number. Each replicated proxy operates essentially
independently, allowing the proxy layer to scale out; adding
more proxies increases ordering throughput. These techniques
enable MASON to scale: if the sequencer is the bottleneck,
proxies increase batch size; if the proxy layer is the bottleneck,
more proxies are added.

Our evaluation shows MASON provides scalable or-
dering throughput: with one sequence space, MASON
achieves ~16.7 Mops/sec with 24 proxy machines, scaling to
~31.5 Mops/sec with 48 proxy machines. MASON’s tradeoff
for a stronger abstraction and scalable ordering throughput is
higher latency relative to monolithic-sequencer designs, since
the proxies and a single round of replication are on path for
each request. MASON’s latency is still low, however, with a
median latency of ~243 µs at the reported throughputs.

We demonstrate MASON’s value as a building block by
using it to implement Corfu-MASON, a distributed shared log
modeled after CORFU [3]; and ZK-MASON, a distributed
prototype of the coordination service ZooKeeper [20]. With
MASON’s strong abstraction, it was easy to build these ser-
vices that consistently execute cross-shard operations (§6).
MASON also unlocked scalability for them in contrast to their
fundamentally unscalable original designs. Specifically, our
implementation of CORFU’s original design is limited to
~14.1 Mops/s (nearly line rate for a sequencer with a 10G
NIC, ~14.5 Mops/s). Building it on MASON lets it scale from
~7.3 Mops/s (one server) to ~29.1 Mops/s (four servers). Our
implementation of ZooKeeper’s original design is limited to
~150 Kops/s; its MASON-based implementation scales from
~1.3 Mops/s (one server) to ~7 Mops/s (eight servers).

This paper makes two major contributions. The first is
the contiguous multi-sequence abstraction, which simplifies
building correct services compared to the previous noncon-
tiguous multi-sequence abstraction. While the noncontiguous
multi-sequence abstraction demands significant distributed
systems expertise to use correctly, our abstraction shields
service developers from the complexity of reasoning about
holes (§2). By handling this complexity internally, the con-
tiguous multi-sequence abstraction enables faster develop-
ment of new services, promotes designs with fewer bugs, and

enables developers without distributed systems expertise to
develop scalable distributed services. The second major con-
tribution is the design of MASON, which notably is the first
multi-sequence design that is scalable. MASON’s inherent
scalability is the foundation for removing the throughout ceil-
ing from existing and future services built on a multi-sequence
abstraction (§5). Together, these contributions make it easy
to build consistent services with a newfound ability to scale
service throughput (§6).

2 The Contiguous Multi-Sequence
This section is an orientation to the multi-sequence abstrac-
tion. Section 2.1 explains how to build strongly-consistent
services with the generic multi-sequence abstraction. Sec-
tion 2.2 describes why building services with the existing
noncontiguous multi-sequence abstraction is challenging. Our
contiguous multi-sequence abstraction instead makes it easy
to use multi-sequences to build scalable, consistent services.

2.1 Building Services with Multi-Sequences
Services built on the generic multi-sequence abstraction typi-
cally include clients, a sequencing component, and servers,
each holding one or more shards. Typically, each shard stores
a subset of the service’s data and is replicated for fault toler-
ance. Each shard has its own sequence space, a sequence of
strictly increasing integers that order operations on the shard’s
data. To execute an operation, a client identifies the shards
involved in the operation, gets a multi-sequence number from
the sequencing component with one number from each rele-
vant shard’s sequence space, and sends the operation to the
shards’ servers with the multi-sequence number. Each server
locally uses the multi-sequence number to order this opera-
tion’s data accesses relative to other operations’ accesses.

We next define multi-sequence numbers, explain how they
are assigned to operations consistently, and describe how exe-
cution protocols use them to scale execution.
Multi-sequence numbers A multi-sequence number, n, is a
set of 〈ssid,sn〉 tuples where ssid is a unique number identi-
fying the sequence space, and sn is a sequence number in that
space. The sequence number in space s in multi-sequence
number n is denoted ns. For a set of sequence spaces re-
quested by a client, the sequencing component returns a multi-
sequence number consisting of the next sequence number ns
in each relevant space s.
Strictly serializable multi-sequence number assignment
From clients’ perspectives, strictly serializable services pro-
cess operations one at a time in an order that a single machine
could have received them [46]. Concretely, strict serializabil-
ity requires that there exists a legal total order of operations
consistent with the partial ordering of “real-time” precedence,
i.e., if a completes before b begins, then a must be ordered
before b [19, 46].

Multi-sequence numbers enable strongly consistent dis-
tributed services when assigned to operations in a strictly
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serializable order. To simplify discussion, we define a default,
∆, where ns = ∆ for all ns not mapped to a specific sequence
number (i.e., all s not in this multi-sequence number). For
the set of all sequence spaces S, we define a partial order-
ing over all multi-sequence numbers where a < b ⇐⇒ ∀s ∈
S,as 6= ∆∧bs 6= ∆ =⇒ as < bs. The multi-sequence abstrac-
tion guarantees that two multi-sequence numbers either share
no common sequence spaces or are strictly ordered (i.e., if
as < bs for one common space s, then as′ < bs′ for all com-
mon spaces s′, implying a < b). The partial ordering of the
multi-sequence numbers defines the ordering of operations.
If strict serializability imposes an ordering between two oper-
ations, then multi-sequence numbers assigned on path with
their execution capture that ordering.

Execution protocols To use the multi-sequence abstraction,
a service developer implements an execution protocol that
executes operations in order of their multi-sequence numbers,
yielding a strictly serializable service. The execution protocol
runs on clients (typically encapsulated in a client library) and
on the service’s servers. For clients, the execution protocol
defines how operations are mapped to the service’s shards
and which sequence spaces are involved in a given operation.
For servers, it determines when shards can safely execute
operations, based on the operations’ multi-sequence numbers.

Scalable execution Multi-sequence numbers enable services
to scale throughput up to the rate the sequencer can assign se-
quence numbers. Execution scales through parallelism: when
some shards are executing an operation, other shards can
execute a different operation. The sequence spaces in multi-
sequence numbers determine which operations can execute in
parallel, as operations with disjoint multi-sequence numbers
access different shards. As long as multi-sequence number
assignment keeps up, the service can increase its throughput
by adding more machines and creating more shards. How-
ever, existing multi-sequenced services use monolithic (single-
machine) sequencers, which can never assign sequence num-
bers to operations at a higher rate than a single machine can
support and hence limit the service’s scalability.

2.2 From Noncontiguous to Contiguous
The generic multi-sequence abstraction is realized as a non-
contiguous abstraction in existing services, which use it to
expose higher-level abstractions [35, 53]. As we explain next,
noncontiguity complicates service development. In contrast,
the contiguous multi-sequence abstraction simplifies devel-
oping services with multi-sequences by encapsulating that
complexity within the abstraction.

Holes in a noncontiguous sequence complicate the ab-
straction Holes occur when a sequence number is not used
for an operation. For example, a hole occurs if a client fails
after receiving a sequence number but before using it. A shard
may see, e.g., sequence numbers 1–3 and then receive an op-
eration with sequence number 5, indicating a potential hole

at 4. To preserve strict serializability, the shard may only exe-
cute operation 5 after 4 is used, since 4 could belong to any
operation. To make progress in the absence of an operation,
the service must decide that the entire multi-sequence number
is a hole and enforce that it is not used on any shard, typically
by assigning a no-op to each of its sequence numbers.

Handling holes complicates service design. The service
must have a mechanism to identify sequence numbers that
are potential holes. Existing designs use timeouts [3, 53] or
infer holes from out-of-order operation arrival [35, 53]. More
challenging is that the service’s servers must reach service-
wide consensus on whether a sequence number is a hole,
then coordinate to ensure that the other numbers in the hole’s
multi-sequence number are treated as holes to avoid partially
executing a cross-shard operation. Existing services achieve
this with a global shared log [53] or a failure coordinator [35].
Requiring consensus in the execution protocol makes a ser-
vice developer’s task significantly more difficult. Consensus is
hard to implement and incorporate [7, 45], and requires devel-
opers to understand the nuances of the sequencing component
and consensus implementation in depth.

Although existing services feature workable solutions for
handling holes, requiring services to select and properly in-
corporate a solution does not reflect operational best prac-
tices. Much of the purpose of providing infrastructure build-
ing blocks (such as an implementation of the multi-sequence
abstraction) is to enable services to use them without need-
ing to understand their complexities, via clean abstractions
that mask the subtleties of their internal operation and failure
modes. Pushing the complexity of handling holes to services
increases the chances of one doing so incorrectly, similar to
how pushing memory management to individual program-
mers increases the chances of memory leaks.
Our contiguous multi-sequence avoids holes and hides
consensus Our abstraction assigns exactly one operation to
each sequence number in each sequence space. Service devel-
opers can focus on designing execution protocols that achieve
their services’ goals, a much simpler task when freed from rea-
soning about holes or implementing consensus. Eris [35] and
vCorfu [53], the two existing designs built on the noncontigu-
ous multi-sequence abstraction, were developed by distributed
systems experts. With the contiguous multi-sequence abstrac-
tion, we aim to empower developers without such expertise
to use multi-sequences to build scalable, consistent services,
and make it easier and faster for experts.

3 MASON Overview
The central contributions of MASON are to shield services
from the complexity of dealing with holes by providing the
contiguous multi-sequence, and to provide the benefits of the
multi-sequence abstraction while allowing ordering through-
put to scale beyond what a monolithic sequencer can provide.
Section 4 describes how the components work together to
guarantee a contiguous multi-sequence. Section 5 describes
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Figure 1: The components of a service built with MASON
and an operation’s flow through the service. Blue com-
ponents are part of MASON; yellow components are sup-
plied by the service. Numbers correspond to steps in §3.3.

how MASON enables scalability with two mechanisms that
relieve all throughput bottlenecks.

3.1 Model and Assumptions
We assume a set of processes that communicate via point-to-
point communication over an asynchronous network, where
messages can be arbitrarily delayed and reordered. We assume
a crash failure model, where processes execute according to
their specification until they cease sending messages and the
failure is undetectable to other processes. MASON is safe un-
der these assumptions. We assume service shards implement
at-most-once semantics to handle retransmissions.

3.2 MASON Components
Figure 1 shows how MASON is used in a service. It also shows
MASON’s two types of internal components: a sequencer and
replicated proxies. The core of MASON’s design is a mono-
lithic sequencer that provides high-throughput operation or-
dering, surrounded by a replicated proxy layer that handles the
failure modes and bottlenecks impeding existing sequencers.

The sequencer allocates increasing multi-sequence num-
bers. It is implemented by a single machine, and only one
sequencer is active at a time. MASON keeps a backup se-
quencer on standby for failure recovery. The monolithic se-
quencer at MASON’s core provides the benefits of existing
sequencers: contention-free, high-throughput ordering of op-
erations in a distributed system. In our system, MASON itself
is the distributed system, leveraging the sequencer’s benefits
while managing its drawbacks to provide a simpler, scalable
building block to the service.

Proxies are replicated state machines (our implementation
uses Raft [44], though any RSM would work). A proxy is thus
logically a single entity implemented by a leader process and
multiple follower processes on separate machines. The leader
accepts operations from clients and executes them via the
service stub using multi-sequence numbers. The rest of this
paper refers to a proxy replica group simply as a proxy. A MA-
SON deployment may have one or more proxies, depending
on system load.

Identical to many other RSM-based systems, we assume at
most f of 2 f +1 proxy replicas fail [28, 34, 39, 44]. A MA-
SON deployment must be configured so that f is sufficiently

large. In the rare event that more than f machines fail, manual
intervention by an operator is necessary to restore availability.

Service stubs are implemented by the service built on MA-
SON and drive the execution protocol on the proxies. Service
developers interact with MASON on the proxies through ser-
vice stubs which execute within the proxy’s process. When a
proxy receives an operation from a service’s client, it passes
the operation to the stub. The stub either requests that MASON
order the operation, or executes the operation immediately if
it need not be ordered, e.g., an inconsistent read. After order-
ing and replicating the operation, the proxy returns it back to
the stub which begins the execution protocol. Stubs are analo-
gous to client libraries in existing multi-sequenced services.
Section 6 shows how stubs are used to develop services.

The proxy may batch requests for multi-sequence num-
bers for scalability, i.e., request multi-sequence numbers for
multiple client operations in one sequencer request (§5). The
sequencer allocates a multi-sequence number for each opera-
tion in the batch. An allocated multi-sequence number is one
given to a proxy that the sequencer promises not to allocate
again. Proxies are responsible for assigning multi-sequence
numbers to client operations. Assignment uses replication
to permanently associate a multi-sequence number with an
operation and guarantee it will never be assigned to another
operation. Once the proxy has replicated the assignment of
a multi-sequence number to an operation, it returns the op-
eration and multi-sequence number to the service stub for
execution.

3.3 Normal-Case Operation of MASON
The normal case operation of MASON, shown in Figure 1,
includes the following steps:

1. A client sends an operation to a proxy.
2. The proxy passes the operation to the service stub which

determines the relevant sequence spaces.
3. The proxy asks the sequencer to allocate a multi-sequence

number covering the relevant sequence spaces.
4. The proxy replicates the allocated number and operation,

assigning the number to the operation.
5. The proxy returns the operation and multi-sequence num-

ber to the service stub.
6. The service stub and shards run the execution protocol.
7. The proxy sends the response from the stub to the client.

4 Ensuring a Contiguous Multi-Sequence
MASON provides a contiguous multi-sequence by handling
all potential sources of holes: client failures, network drops,
sequencer failures, and combinations thereof. This section
covers how MASON handles each of these failure scenarios
and then sketches a proof of strict serializability.

4.1 Proxies Prevent Holes from Client Failure
In a multi-sequenced service, client failure can cause holes
when the client obtains a sequence number and fails before us-
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ing it in the service. MASON prevents such holes with proxies
that manage multi-sequence numbers on clients’ behalf. Prox-
ies are replicated for fault tolerance, eliminating this source
of holes. A proxy will always return an operation that was
assigned a multi-sequence number to the service stub even if
the client fails and even if a minority of proxy replicas fails.

A byproduct of replication is that proxies maintain a record
of every assigned sequence number, which is used in se-
quencer recovery (§4.3). By masking client failure and main-
taining state needed for sequencer recovery, proxy replication
is a key mechanism for avoiding holes in MASON.

The proxy replication strategy is driven by correctness and
performance. Proxies must replicate enough information to
preserve contiguity and strict serializability. Replicating every
input to the proxy leader would be correct, but this would add
unacceptable latency to client requests and burden proxies
with excessive communication overhead. Fortunately, MA-
SON can skip replication for all but one step in operation
processing, because the other steps can be safely retried, in-
cluding after client, sequencer, and/or proxy replica failure.

The exception is step 5 (Fig. 1), returning a multi-
sequenced client operation to the service stub. Replicating the
mapping of each client operation to a multi-sequence number
before this step is critical for correctness in MASON. Sup-
pose the mapping is not replicated. The sequencer and proxy
leader could fail concurrently after the leader returns a multi-
sequenced client operation to its service stub, but before the
stub sends its operation to every relevant shard. The shards
that received the operation may execute it, but the operation
will not be completed after recovery because the mapping of
multi-sequence number to operation was lost. Exposing the
partial execution violates strict serializability. Therefore, be-
fore returning an operation to the service stub, the proxy must
permanently associate the operation with a multi-sequence
number through replication. Once replication succeeds, the
sequence number is assigned to the operation.

We next describe how the proxy processes operations, in
order to explain why all other steps are safe to retry. We
discuss one operation and a single sequence space for ease of
explanation; the reasoning can be easily extended to batches
of operations and multiple sequence spaces.
Receiving a client operation Clients can send an operation
to any proxy. When a proxy leader receives an operation
from a client, it passes the operation to the service stub. If
the stub requests that the operation be ordered, the leader
allocates a sequencer request ID for that operation (step 3 in
Figure 1). Sequencer request IDs are allocated only by the
leader, so they are trivially contiguous and strictly increas-
ing. Sequencer request IDs are used during proxy failover
to recover sequence numbers that were allocated but not yet
assigned to any operation, i.e., potential holes.
Requesting a sequence number The leader then requests a
sequence number from the sequencer, with the sequencer re-
quest ID (step 3). If the sequencer has not seen this sequencer

request ID from this proxy, the sequencer updates its state
in two relevant ways: it allocates a sequence number for this
request by incrementing the sequence counter in the requested
sequence space, and maps the sequencer request ID to the
allocated number. If the sequencer has seen the sequencer
request ID before, it responds with the previously allocated
sequence number and marks it as a retransmit.
Proxy leader failure When a proxy leader fails, the new
leader must recover the sequence numbers that were allocated
but not yet assigned. The state needed to correctly match allo-
cated but unassigned sequence numbers to operations was lost
with the failed leader, so these are temporary holes. We now
explain how we use sequencer request IDs to recover such
holes. This is the key mechanism for ensuring correctness
when proxies execute only one round of replication.

The new leader collaborates with the sequencer to identify
these temporary holes as follows:

1. The new leader saw a contiguous set of sequencer request
IDs until some ID x, after which it saw noncontiguous IDs
until y. The range from x to y is noncontiguous because
the leader replicates sequence number-operation pairs as
they arrive from the sequencer, which may be out of order.

2. The new leader requests sequence numbers for all IDs from
x+1 until y−1 that were not replicated. The sequencer
will either return already-allocated sequence numbers, or
will allocate new numbers for the IDs.

3. The new leader replicates and assigns all returned sequence
numbers to no-ops and returns them to the service stub.

4. The new leader then resumes normal operation, allocating
sequencer request IDs from y+1.

There may be allocated but unassigned sequence numbers
with sequence request IDs greater than y. In such cases, the
sequencer will mark the returned sequence numbers as re-
transmits. The leader replicates and assigns them to no-ops
and retries the request with a new sequencer request ID. If
the sequencer fails concurrently with leader failure, the se-
quencer recovery protocol recovers and assigns no-ops to any
allocated but unassigned sequence numbers (§4.3).
Returning the operation and sequence number to the ser-
vice stub (step 5) Strict serializability dictates that the ser-
vice’s execution protocol cannot use one sequence number
for multiple operations, and different sequence numbers can-
not be used for one operation. MASON must therefore guar-
antee the sequence number associated with an operation
never changes once the service is made aware of it. MASON
thus replicates the sequence number-to-operation assignment
(step 4) before passing the operation to the service stub.

The proxy leader’s other steps in handling a client
operation—passing the operation to the service stub and for-
warding the service’s response to the client (step 7)—can
be safely left unreplicated. Retrying these steps is safe. The
service stub, shards, and clients already provide at-most-once
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semantics to handle retransmission due to network drops, so
they will be able to handle retransmission from the proxies.

4.2 Reliable Transport Prevents Holes from
Packet Loss

MASON handles network drops with a reliable transport layer.
Since the state needed to reliably transport multi-sequence
numbers is lost on sequencer failure, MASON uses a recovery
protocol to correctly fill holes with no-ops in case of simul-
taneous packet loss and sequencer failure (§4.3). Reliable
transport and the sequencer recovery protocol ensure that
every allocated multi-sequence number arrives at a proxy.

4.3 Recovering to Prevent Holes from Se-
quencer Failure

In MASON, sequencer failure can cause temporary holes if
failure occurs before the reliable transport protocol can re-
transmit a dropped response. Suppose the sequencer allocates
and sends multi-sequence numbers a and b, where a < b, for
two client operations. If the message containing a is dropped
and the sequencer fails before retransmission, but a proxy
receives b, then a is a temporary hole. One solution replicates
the sequencer to permanently associate client requests and
multi-sequence numbers. However, replication compromises
the main benefit of a sequencer: simplified ordering so the
sequencer can devote all its resources to allocating numbers.

MASON instead runs one active sequencer, backed by an
idle backup sequencer and sequencer recovery protocol. If
the active sequencer fails, the backup sequencer takes over
and executes the recovery protocol to correctly fill any tem-
porary holes caused by the failure, ensuring a contiguous
multi-sequence when the backup resumes normal operation.

MASON’s sequencer recovery protocol is based on two ob-
servations. First, the proxies’ collective state includes which
sequence numbers have been assigned, so they collectively
know where potential holes in each sequence space are. MA-
SON assigns these sequence numbers to no-ops. Second, all
outstanding operations are concurrent. An outstanding opera-
tion is one that a proxy received (step 1 in Fig. 1), but has not
yet assigned a sequence number (step 4), and thus is not or-
dered. When the backup sequencer resumes normal operation,
it can allocate new multi-sequence numbers for outstanding
operations in any relative order, as long as they are ordered af-
ter the highest previously-assigned sequence number in each
sequence space, which the proxies collectively know.

The steps in MASON’s sequencer recovery protocol are:

a) Detect sequencer failure and activate a backup sequencer.
b) Identify potential holes in each sequence space.
c) Replicate the assignment of no-ops to holes.
d) Resume normal operation with new sequence numbers.

Failure detection and backup sequencer activation Prox-
ies unreliably detect sequencer failure with timeouts and pings.
If a proxy does not hear from the sequencer after a timeout

(.5 s in our implementation), it pings the sequencer. After an-
other timeout, the proxy declares the sequencer failed and
initiates recovery by activating the backup sequencer. The
backup sequencer informs the other proxies that recovery
has begun. All proxies then replicate a special recovery op-
eration and seal their sequence spaces, rejecting any packets
from the previous sequencer. The new sequencer waits for
all proxies to complete the sealing process before resuming
recovery. Replicating the recovery operation on all proxies
before allowing the backup sequencer to resume recovery
ensures proxies reject all packets from the previous sequencer.
This in turn, ensures there is only one active sequencer at a
time even when proxy leaders fail, sequencer-failure detection
is incorrect, or messages from the previous sequencer were
delayed or reordered in the network.

Identifying potential holes During normal operation, prox-
ies track their local views of each sequence space. A proxy’s
local view is the subsequence of numbers in each sequence
space that the proxy has assigned to operations. After sealing,
proxies send their local views to the backup sequencer. The
backup sequencer reconstructs each sequence space, expos-
ing any temporary holes. Garbage collection of proxies’ local
views is described at the end of this section.

Assigning temporary holes to no-ops The backup se-
quencer notifies proxies of any temporary holes in each se-
quence space. Proxies assign these sequence numbers to no-
ops, replicate the assignment, and pass them to the service
stubs, as they would with client-issued operations.

Resuming normal operation The backup sequencer iden-
tifies the start of each sequence space based on the highest
number in each sequence space compiled from the proxies.
It then notifies proxies to resume normal operation and allo-
cates new sequence numbers from that point. Proxies must
re-request sequence numbers for all outstanding operations.

Garbage-collecting sequence number tracking state
Proxies run a lightweight garbage collection protocol to dis-
card tracked sequence numbers that are no longer needed for
sequencer recovery. Each sequence space is partitioned into
intervals of size N. When all N sequence numbers in an inter-
val have been assigned to operations, it is safe to discard the
state associated with those sequence numbers. To determine
when all N numbers have been assigned, the proxies form a
communication ring and periodically send an accumulating
count of the sequence numbers assigned in each sequence
space’s latest interval. At the end of a round, if any sequence
space’s count is N, the interval is completely assigned; all
state associated with that interval is discarded.

4.4 Proof Sketch of Strict Serializability
This subsection sketches a proof of the strict serializability of
the assignment of multi-sequence numbers to operations. We
include the formal proof in the appendix (§A). We make the
assumptions stated in §3.1. Our proof reasons about pairs of
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operations, showing they are either strictly concurrent, where
they do not share sequence spaces, or strictly ordered, where if
an < bn for some overlapping sequence space n, then an′ < bn′

for all overlapping sequence spaces n′ , where an denotes the
sequence number in sequence space n assigned to operation
a.

To show that there exists a total order over all completed op-
erations consistent with the partial ordering of real-time prece-
dence, we exhaustively analyzed all cases of failure scenarios
from no failures to concurrent failure of proxy leaders, proxy
followers, and sequencer. In all cases an operation is assigned
at most one multi-sequence number which occurs if/when
replication to a majority of replicas in a proxy succeeds. The
assigned multi-sequence numbers for all operations that ac-
cess overlapping sequence spaces are then strictly ordered
by either the same sequencer, or by an initial sequencer and
a backup sequencer that recovers all previous assignments
before allocating any new multi-sequence numbers. Thus,
the partial order of assigned multi-sequence numbers strictly
orders all conflicting operations. Further, this partial order
is consistent with real-time precedence either trivially when
two operations are ordered by the same sequencer or because
a backup sequencer only allocates numbers larger than the
maximum previously assigned in each sequence space. Only
strictly concurrent (i.e., no overlapping sequence spaces) oper-
ations are unordered by that partial order, and any ordering of
them results in a valid total order. Extending the partial order
to a total order consistent with real-time precedence is thus
trivial: unordered operations are first ordered by the partial
order of real-time precedence and then remaining unordered
operations are arbitrarily ordered.

5 Supporting Scalable Throughput

A service’s achievable throughput (service throughput) is
capped by the minimum of the rate at which it can execute
requests (execution throughput) and the rate at which it can
order requests (ordering throughput). Execution throughput
scales when more service shards are added if and only if
the service implements a scalable execution protocol. Order-
ing throughput scales only if the ordering component scales.
Previous multi-sequence abstraction designs do not scale.

MASON supports scalable service throughput by removing
the bottlenecks that limit monolithic-sequencer designs and
achieving scalable ordering. This section describes two com-
plementary mechanisms that alleviate all ordering through-
put bottlenecks: horizontally scaling out the proxy layer, and
batching requests to the sequencer.

Potential ordering throughput bottlenecks MASON has
two components, so there are two potential bottlenecks on
computation: the proxy layer and the sequencer. Each com-
ponent sends and receives network traffic, so there are four
potential bottlenecks on network bandwidth. Our two scaling
mechanisms address all six bottlenecks: scaling out the proxy

layer relieves all bottlenecks at the proxy layer, and batching
relieves all bottlenecks at the sequencer.

The proxy layer scales out When MASON is bottlenecked
by a proxy layer resource, the proxy layer can scale out. Each
proxy operates essentially independently, so holding all else
constant, doubling the number of proxies doubles the amount
of computation and bandwidth available at the proxies for pro-
cessing client operations, doubling the proxy layer’s achiev-
able throughput.

In truth, proxies are not completely independent; there is
overhead to garbage collect multi-sequence number tracking
state (§4.3). However, the overhead is constant for each proxy
with respect to the number of proxies due to the ring com-
munication pattern; thus, it does not affect the proxy layer’s
scalability.

Batches are as efficient as single requests When MASON
is bottlenecked by the sequencer proxies can increase through-
put by batching multi-sequence number requests. This batch-
ing is perfect, holding all else constant, in that a request for
one client operation uses the same resources as a request for
multiple operations.

To request multi-sequence numbers for a batch of client
requests, the proxy constructs a sequencer request which in-
dicates the relevant sequence spaces and how many numbers
are required from each sequence space to order the opera-
tions in the batch and sends a single sequencer request for
the batch. The sequencer allocates the requested count of se-
quence numbers in each sequence space and replies with the
lowest allocated number in each sequence space. Finally, the
proxy iterates through client operations in the order they were
received and gives each operation the next lowest sequence
number in each of its sequence spaces.

MASON alleviates all bottlenecks on the sequencer by in-
creasing the batch size. MASON’s batching is timeout-driven:
all client requests that arrive at a proxy within the timeout
are batched together. By doubling the timeout (hence batch
size) at a given client load, proxies can halve the rate at which
they issue sequencer requests. The sequencer, in turn, would
need half the resources to handle the same client load. The
sequencer can thus handle twice the ordering throughput be-
fore hitting the same bottleneck. Timeout-driven batching is
naturally dynamic: higher client load results in larger batches.

Why not batch at clients? A strawman design for increasing
ordering throughput is to batch requests at clients, which has
two limitations. First, the maximum throughput is limited by
the number of parallel requests a client will individually make.
Second, batching at clients requires waiting until the client
has issued those requests, which can substantially increase
latency. In contrast, MASON’s proxies can batch across any
number of clients, achieving the large batches that allow it to
scale. In general, naïvely adding only a batching layer to prior
designs does not work, as it introduces new failure modes
(e.g., batching machine failure) that require a comprehensive
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service redesign such as that of MASON.

6 Services
This section explains how services can easily use MA-
SON and its contiguous multi-sequence abstraction to scale
service throughput. We describe two services we imple-
mented over MASON: a distributed shared log based on
CORFU [3] and a distributed prototype of the coordination
service ZooKeeper [20].

6.1 Interaction with MASON

A service’s execution protocol consists of (at least) two com-
ponents: shards and service stubs. Shards are implemented
entirely by the service and interact with service stubs and
other service-implemented components. Service stubs are the
mechanism by which services interact with proxies. They de-
termine an operation’s relevant sequence spaces and request
ordering via MASON if necessary, drive the execution protocol
interacting with other service components, and have control
of the operation until informing MASON that the operation
is complete. This is sufficient for the services we implement
here; more complex services may need multi-round sequenc-
ing for some operations, e.g., where the write set depends on
the read set. In that case, MASON could be augmented so that
the stub could request another round of ordering and include
metadata, which MASON replicates and the service can use
to resume execution if the current proxy leader fails.

6.2 Making CORFU Scalable: Corfu-MASON

CORFU is a shared log supporting append and read operations
that consistently execute across shards [3]. Appends write a
value to the current tail of the log. Reads return the value
written to a specified log position. Many applications can
be implemented with shared logs, e.g., producer-consumer
queues and logging [22, 49].

We use MASON to implement Corfu-MASON, a service
based on CORFU. CORFU’s original implementation does
not scale; although CORFU has a scalable execution protocol,
the implementation is limited by the ordering throughput of
its monolithic sequencer [3, 53]. By replacing the sequencer
with MASON, MASON’s scalable ordering combines with the
scalable execution protocol to enable the whole service to
scale.

Corfu-MASON uses CORFU’s scalable execution protocol.
The shared log is represented by a single sequence space.
Appends acquire a sequence number that directly determines
which log position to write. A round-robin mapping of log
position-to-shard ensures append load is uniform on shards,
enabling appends to execute in parallel [3].

Corfu-MASON implements two of CORFU’s three opera-
tions, append(b) and read(l). append(b) appends the entry
b to the log and returns the log position l to which it was writ-
ten. read(l) returns the entry at log position l, or an error
code if the entry does not exist. CORFU implements a third

operation, fill(l), to fill holes in the sequence (and the log)
caused by failed clients. CORFU clients detect holes in the log
with a timeout and execute fill(l) to fill the lth position with
junk. The timeout-and-fill(l) procedure is unnecessary in
Corfu-MASON because of MASON’s contiguous sequence.

Corfu-MASON’s execution protocol uses sequence num-
bers for appends to determine which log positions to write,
which in turn map to specific shards. In addition to eliminating
the need for fill operations, MASON’s contiguous sequence
simplifies reads. If a client attempts to read a log position
that has not been written yet, it can simply keep checking
that log position. The contiguous sequence guarantees that
the entry will eventually be written. reads need not be or-
dered and hence are not ordered or replicated by MASON; the
service stub executes reads immediately. CORFU tolerates
shard failure using client-driven chain replication [52], and
so Corfu-MASON uses service stub-driven chain replication.

Corfu-MASON was implemented in a single day thanks to
both the simplicity of CORFU and the strong abstraction of a
contiguous sequence provided by MASON.

6.3 Making ZooKeeper Scalable: ZK-MASON
ZK-MASON is a ZooKeeper-like coordination service built
on MASON. ZooKeeper [20] is a widely-used coordina-
tion service implemented on ZooKeeper Atomic Broadcast
(ZAB) [23], a version of state machine replication (SMR).
ZAB, like other SMR protocols, cannot scale: it is fundamen-
tally limited by the rate a single machine can execute requests.
Furthermore, ZooKeeper uses a single replicated state ma-
chine to ensure consistency, so an instance cannot be sharded.
We designed ZK-MASON to be scalable, using the cross-shard
consistency and scalable ordering provided by MASON.
ZK-MASON operations Similar to ZooKeeper, ZK-MASON
maintains a set of znodes. Each znode has a pathname begin-
ning with “/” (similar to a filesystem) and data associated with
it. We implemented seven operations in ZK-MASON:

• create(path,data,flags): creates a znode with pathname
path and data data. flags allows the client to specify a
persistent or ephemeral znode.

• setData(path,data,version): sets the data at path if ver-
sion matches the current version, or if version is −1.

• getData(path,watch): gets the data at path.
• exists(path,watch): checks if the znode exists.
• delete(path,version): deletes znode specified by path if

version matches the current version, or if version is −1.
• getChildren(path,watch): returns the children of path

The read operations getData, exists, and getChildren
return the znode’s current version. Read operations have a
watch flag, which sets a watch on the znode if the flag is set.
ZK-MASON watches have the same semantics as ZooKeeper
watches. Watches are triggered by updates depending on the
type of read operation and the type of update operation. For
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example, a watch set by getChildren is triggered after a
create or delete of a child, but not by any setData on its
children, as that does not change the result of getChildren.
ZK-MASON notifies the client when its watch is triggered.

ZK-MASON execution protocol ZK-MASON’s execution
protocol is based on Eris’s execution protocol [35]. ZK-
MASON assigns znodes to shards based on a hash of the full
pathname. Shards consist of 2 f +1 servers; each shard toler-
ates f failures. Each server executes incoming operations in
order of the shard’s sequence space. When a proxy receives a
client operation, the service stub determines which shards are
involved in the operation and requests a multi-sequence num-
ber for the relevant sequence spaces. For example, to execute
a create, the service stub hashes the path and the parent path-
name to get the sequence spaces for those two shards. MASON
acquires and replicates a multi-sequence number with the two
sequence spaces. The service stub sends a create operation
to each server in path’s shard and an addChild operation to
each server in path’s parent’s shard in parallel. When the stub
receives a quorum of f +1 responses from each shard, the op-
eration is complete; the stub informs MASON of completion,
and MASON returns to the client.

Ephemeral znodes Ephemeral znodes are transient znodes
that exist only during an active client connection. They are
created by a client and deleted by the service when the client
disconnects, either explicitly or due to failure. Ephemeral zn-
odes can be used to add to a distributed queue: if the creating
client fails, the object is removed. They can also help manage
locks: if a client acquires a lock and fails, the lock is released
when the ephemeral object disappears [50]. Implementing
ephemeral znodes in ZK-MASON is straightforward. Shards
keep a timer that is reset with client heartbeats. After timing
out, the shard sends a delete to a proxy to delete the node.
The delete is ordered to prevent divergent shards.

The contiguous multi-sequence abstraction simplifies
ZK-MASON Implementing this service over a noncontigu-
ous multi-sequence would require consensus to deal with
holes. Because a missing sequence number could belong to a
multi-shard operation, e.g., create, the hole-filling consensus
would need to be service-wide to avoid partially executing
the operation on some shards but not others. To handle cases
where aborting a partially-executed operation is impossible,
each full operation would need to be persisted by the service
so it could be recovered by shards that never received it (e.g.,
the full operation could be sent to every relevant shard).

In ZK-MASON, if a shard encounters a gap in its sequence
space, it can wait for the missing operation and each shard
only needs to receive the parts of the operation that will exe-
cute on that shard. The contiguous multi-sequence guarantees
that the operation will be executed.

7 Evaluation
MASON provides two main innovations for building services.
First, it is a general, reusable building block that offers the
contiguous multi-sequence abstraction. This makes it easy to
build efficient implementations of complex services (§6). But,
as with any such abstraction, we expect overheads compared
to specialized implementations. Second, MASON provides
a scalable multi-sequence allowing previously unscalable
services to now scale. This section quantifies the overhead
of MASON’s general abstraction for two services (§7.2 and
§7.3), shows MASON provides scalable ordering (§7.1), that
its scalable ordering does indeed enable services to scale
(§7.2 and §7.3), and that MASON does provide a contiguous
multi-sequence despite failures (§7.4).

Implementation MASON is written in C++. All components,
including clients, service shards, and MASON components,
communicate with eRPC, a reliable RPC framework [25].
eRPC uses unreliable datagrams in Intel DPDK (v. 17.11.5)
as its transport layer [12]. We replicate proxies with Raft [44],
and periodically durably snapshot their state for Raft log com-
paction. MASON will be open-sourced by publication time.

Evaluation setup We evaluate MASON on the Emulab
testbed [54] with Dell R430 (d430) machines [9]. We run
Ubuntu 18.04.11 with Linux kernel version 4.15.0. The ma-
chines have two hyperthreaded 8-core CPUs (Intel E5-2630
“Haswell”, 2.4 GHz) with 20 MB L3 cache, 64 GB RAM, and
one dual-port 10 GbE PCI-Express NIC (Intel X710).

We load MASON with clients running on separate ma-
chines of the same type. Unless otherwise specified, each
client machine runs 16 threads, each implementing several
logical closed-loop clients that generate new operations as
previous operations complete. We control load by varying the
number of client machines and the number of logical closed-
loop clients per thread. Latency is measured at clients for
each operation. We report the median over five trials of the
median latency over all clients in a trial. We present latency as
median/99th percentile. Throughput is also measured at each
client and aggregated over all clients in a trial. For all scal-
ability experiments we derive the throughput by increasing
load (i.e., the number of logical clients). We report the highest
throughput before latency spikes from overload. We show the
median throughput over five trials. Trials are 68 seconds each;
the first and last 4 seconds of measurements are discarded.

Each proxy is replicated on 3 machines. Experiments in
Sections 7.1 and 7.4 use a stub service with one operation:
clients indicate relevant sequence spaces and the service re-
turns the assigned multi-sequence number to the client.

7.1 MASON Scales Ordering Throughput
MASON uses two mechanisms to scale ordering throughput:
adding more proxies and increasing batching to the sequencer.
The first mechanism, adding more proxies, is evaluated in Fig-
ure 2. Ordering throughput is the number of client operations
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Figure 2: MASON ordering throughput with increasing
proxy count.

per second that receive a multi-sequence number and return
to clients. To stress ordering throughput, the proxies do not
execute operations on behalf of clients in this experiment.

Figure 2 shows that, as the number of proxies doubles,
the ordering throughput also roughly doubles for each se-
quence space count. As the number of sequence spaces in
the system increases, the per-proxy machine throughput de-
creases, so overall ordering throughput with the same number
of proxies is lower. Latency at these throughputs ranges from
~243/~380 µs for a single sequence space to ~358/~693 µs for
8 sequence spaces. This experiment demonstrates that adding
more proxies enables MASON to scale ordering throughput.

We are unable to test our second mechanism, increasing
batching to the sequencer, because we cannot saturate the
sequencer with the machines available on Emulab. With 48
proxy machines, the sequencer processes ~3.2 Mops/s, which
is far from the ~14.5 Mops/s possible at line rate. As MASON
scales linearly with increasing proxies, we expect to be able
to achieve over 142 Mops/s before the sequencer becomes the
bottleneck. At that point, we expect to be able to continue
doubling the ordering throughput of MASON by doubling the
number of proxies and doubling the batch sizes. Average batch
size for 48 proxies with one sequence space is ~8 operations.

7.2 Making CORFU Scalable
MASON provides scalable ordering that, when coupled with a
scalable execution protocol, enables services to scale. Corfu-
MASON replaces CORFU’s monolithic sequencer with MA-
SON, yielding a scalable distributed shared log (§6.2).

We compare Corfu-MASON with CORFU′, our implemen-
tation of CORFU in the same environment as Corfu-MASON,
using C++ and eRPC over DPDK. CORFU′’s sequencer pro-
cesses requests at ~14.2 Mops/s, nearly line-rate for our mes-
sage size (~14.5 Mops/s). This is a fairer baseline than using
CORFU’s improved sequencer, whose maximum ordering
throughput is ~570 Kops/s [3, 4].

Figure 3a evaluates Corfu-MASON’s scalability. We run a
workload consisting entirely of 64 B appends and increase the
number of Corfu shards. We use 6 (replicated) proxies for ev-
ery Corfu shard, keeping the ratio of proxies to Corfu shards
constant. CORFU′ roughly doubles throughput from one to
two Corfu shards before the sequencer saturates and latency
increases; the maximum observed throughput of CORFU′ is

~14.1 Mops/s with latency of ~70/~90 µs. MASON allows or-
dering in Corfu-MASON to scale, enabling service throughput
to increase linearly: Corfu-MASON scales from ~7.3 Mops/s
with one Corfu shard to ~29.1 Mops/s with four Corfu shards,
an increase of ~3.98x. Append latency at four Corfu shards
is ~200/297 µs. The increase in latency is from extra round
trips (clients sending requests to proxy leaders, which leaders
replicate) and proxies waiting for 20 µs to batch requests.

Figure 3b shows the scalability of reads. Clients execute
reads on random log positions in CORFU′ by reading a
shard’s tail replica. Reads in Corfu-MASON are executed
by proxy leaders, which read the tail replica. Reads are not
sequenced in either service, so reads scale the same in both
services. Latency for Corfu-MASON is ~97/~147 µs, ~65 µs
higher than CORFU′’s ~32/~62 µs, from the extra round trip
through the proxy leader.

7.3 Making ZooKeeper Scalable
ZK-MASON is a ZooKeeper-like coordination service [20]
(see Sec. 6.3). ZK-MASON uses a scalable execution protocol
with MASON’s scalable ordering to scale the entire service.

To compare ZK-MASON and ZooKeeper we implemented
RSMKeeper, a prototype of ZooKeeper over Raft [44]. RSM-
Keeper has the same operations as ZK-MASON. Both are
implemented in C++ with eRPC over DPDK [12, 25]; RSM-
Keeper uses a single thread. We note that RSMKeeper has
much higher throughput than the original ZooKeeper imple-
mentation, providing a fairer baseline.

We configured RSMKeeper and ZK-MASON to maximize
service throughput while keeping latency low. RSMKeeper is
loaded by one client machine running 8 threads. ZK-MASON
clients use 16 threads. ZK-MASON uses 2 proxies per shard
and 1 client machine per proxy. Each proxy uses 8 threads
and each ZK-MASON shard uses 1 thread. This is the minimal
setup for a single shard that stresses the shard’s throughput.
We add more ZK-MASON shards, keeping the ratio of clients
and proxies to shards constant. Our ZK-MASON experiments
show the scalability of the contiguous multi-sequence abstrac-
tion when scaling out the number of shards.

Figure 4a shows the throughput of setData operations.
RSMKeeper’s (and ZooKeeper’s) design uses a single repli-
cated state machine to ensure consistency and thus cannot
run with more than one shard; its maximum throughput is
~150 Kops/s. With one shard, ZK-MASON has 8.6× the ser-
vice throughput of RSMKeeper, at ~1.29 Mops/s while pro-
viding latency in a similar range as shown in Figure 4c. ZK-
MASON’s higher single-shard throughput comes from the
proxy layer scaling with two (replicated) proxies handling
client requests for one ZK-MASON shard. Furthermore, ZK-
MASON shards do less work per setData operation than
RSMKeeper. For each operation, RSMKeeper handles oper-
ation execution, one round of client-to-leader communica-
tion, two rounds of leader-to-follower communication, and
snapshotting Raft state and log compaction to disk. On the
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(b) read throughput

Operation Med. 99%
CORFU′ append 70 90
Corfu-MASON append 200 297
CORFU′ read 32 62
Corfu-MASON read 97 147

(c) Latency (µs). append latency is for ser-
vice at peak throughput.

Figure 3: CORFU′ and Corfu-MASON comparison. Corfu-MASON append throughput scales linearly with more shards
while CORFU′ saturates at 2 shards. Corfu-MASON has higher latency in exchange for contiguity and linear scalability.
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(b) getData throughput.

Operation (shards) Med. 99%
RSMKeeper set. (1) 211 355
ZK-MASON set. (1) 192 268
ZK-MASON set. (8) 276 518
RSMKeeper get. (1) 209 352
ZK-MASON get. (1) 224 306
ZK-MASON get. (8) 327 667

(c) Latency (µs).

Figure 4: RSMKeeper and ZK-MASON comparison. ZK-MASON achieves higher throughput than RSMKeeper with a
single shard at comparable latency. ZK-MASON throughput scales linearly at the cost of a modest increase in latency.

other hand, MASON frees the ZK-MASON shard from han-
dling tasks related to ordering and consensus. The shard
only handles execution and one round of proxy-to-shard com-
munication. With more resources devoted to execution, one
ZK-MASON shard has a higher maximum throughput than
RSMKeeper. More importantly, ZK-MASON is able to scale
throughput by increasing the number of shards and proxies:
with eight shards its throughput scales to ~7 Mops/s.

Figure 4b shows the throughput of getData operations. We
configured RSMKeeper to replicate getData operations to
provide the same consistency as ZooKeeper’s sync-getData
construction and ZK-MASON’s getData operation. RSM-
Keeper’s maximum throughput is ~150 Kops/s with latency
~209/~352 µs. ZK-MASON’s getData throughput scales
from ~1.1 Mops/s with one shard to ~6 Mops/s with eight
shards. Latencies in those runs range from ~224/~306 µs (one
shard) to ~327/~667 µs (eight shards). getData operations
have slightly higher latency than setData operations because
proxies need to wait for a response from a ZK-MASON quo-
rum before returning to the client, while setData can be
executed on ZK-MASON shards asynchronously.

7.4 MASON Provides a Contiguous Sequence
This experiment validates that MASON provides a contiguous
sequence despite component failures. We run MASON with
16 proxies. Each proxy machine hosts either 8 leaders or 8
followers in 8 different proxies for a total of 6 proxy machines
(2 leader machines and 4 follower machines). Load is gen-
erated by 4 client machines. Clients request one sequence
number from each of 4 sequence spaces. We inject proxy and
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Figure 5: Highest contiguous multi-sequence number re-
ceived across all clients at time t. We induce proxy leader
failure at 10 s and sequencer failure at 20 s.

sequencer failure; network drops occur naturally.
Figure 5 shows the highest contiguous sequence number

successfully received by a client over time for each of 4 se-
quence spaces. That is, if Figure 5 indicates that at time x the
highest contiguous sequence number from a sequence space
is y, then each sequence number up to and including y in that
space was received by some client. We ran the experiment
with 4 sequence spaces and plotted the highest contiguous se-
quence number for each sequence space. Since clients request
one number from every sequence space, they advance at the
same rate and thus all four lines overlap.

We first kill a proxy machine hosting 8 proxy leaders 10 s
into the experiment. The 8 recovering proxies stop processing
client operations and may have uncompleted operations. The
flat region in the plot indicates where the sequence increase
is blocked by uncompleted operations. Once failover is com-
plete, the new leaders respond to pending client operations.
The plot spikes as gaps in the sequence are filled in and oper-
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ations serviced by the two non-failing proxies are accounted
for. Proxy failure detection and failover take 3.06 s, including
1 s-2 s for the failure detection timeout, set randomly by Raft.

We kill the sequencer 20 s into the experiment. A proxy
times out 1 s later and begins the recovery protocol. Failure
detection and recovery take 2.38 s—the plot’s 2nd flat region—
and then the contiguous multi-sequence continues to grow.

8 Related Work
This section explains MASON’s relationship to the five cat-
egories of related work it builds upon. At a high level, the
primary distinction of MASON is that it provides strict se-
rializability, unlike atomic multicast; it is scalable, unlike
state machine replication and fast ordering systems; it pro-
vides multiple sequence spaces, unlike shared logs; and its
abstraction enables more efficient, specialized service imple-
mentations than distributed databases.

Atomic multicast Atomic multicast guarantees messages
are delivered reliably and satisfying a total order to one or
more groups of processes [8, 15, 16, 18]. Unlike the order
given by a contiguous multi-sequence, the total order given by
atomic multicast is not strictly serializable. Atomic multicast
is thus used directly in systems to provide weaker consistency
guarantees [37], or augmented to provide stronger consis-
tency [6, 32].

State machine replication There is a large body of work
on state machine replication (SMR) implemented with con-
sensus [1, 10, 13, 17, 21, 23, 26, 28–31, 38, 39, 42–44, 48],
which provides two properties MASON aims for: a contiguous
sequence via SMR’s log and fault tolerance via consensus.
These protocols have a fundamental throughput ceiling, the
rate a single machine can execute commands in order.

Distributed shared logs CORFU uses a monolithic se-
quencer to find the tail of a distributed shared log [3]. It cannot
scale beyond the throughput of the sequencer. MASON can
provide a contiguous sequence to a CORFU service while
scaling beyond the throughput of a monolithic sequencer, but
MASON requires more resources and has higher latency.

Delos [5] unifies separate shared log or storage instances
into a single virtualized shared log. It inherits the scalability
limitations of its underlying systems. Scalog [11] is a dis-
tributed shared log that uses a replicated ordering mechanism
to reliably totally order records in a log. Scalog increases the
write throughput ceiling compared to CORFU by two orders
of magnitude. It increases ordering throughput using a sim-
ilar technique as MASON: each storage server periodically
orders multiple records at once. Scalog, unlike CORFU but
like MASON, guarantees that services always see a contiguous
sequence of operations. ChronoLog [27] uses physical time
to order records by accounting for skew among distributed
components. It reports an order of magnitude higher through-
put than CORFU. Delos, Scalog, and ChronoLog cannot be
easily extended to multi-sequencing: Scalog orders opera-

tions using a summary of operations that arrived at individual
shards; ChronoLog and Delos lack mechanisms to atomically
append to multiple logs. Thus, they cannot easily be modified
to support strictly serializable cross-shard operations.

Chariots [41] scales by delegating the ordering of disjoint
ranges of a shared log to independent servers, providing only
causal consistency [36]. FuzzyLog partially orders records in
exchange for better performance [37]. MASON provides the
stronger guarantee of strict serializability.
Fast ordering systems State-of-the-art networks or network
appliances can support high-throughput, low-latency sequenc-
ing [24, 34, 35]. Unlike MASON, these sequencers cannot
scale, do not provide a contiguous sequence, and are not fault-
tolerant. However, such sequencers can provide sequencing
with much lower latency than MASON.

Kronos provides high-throughput happens-before order-
ing; services totally order operations [14]. Mostly-ordered
multicast uses datacenter network properties to provide con-
sistent multicasting except during network failures or packet
loss [48]. Reliable 1Pipe, 1Pipe’s strongest abstraction, pro-
vides ordered communication to receiver groups where mes-
sages eventually arrive absent failures and partitions [33].
Services detect and handle lost messages with consensus,
much like services using noncontiguous multi-sequences. In
contrast to these systems, MASON provides the stronger ab-
straction of a strictly serializable, contiguous sequence.
Distributed databases FoundationDB uses a single se-
quence space with batching to scalably implement commit
timestamps [56], but does not provide contiguity or multi-
sequencing. Eris [35], Calvin [51], vCorfu [53], Tango [4],
and other distributed databases [2, 40, 47, 49, 55, 56] pro-
vide a higher-level abstraction than MASON. It is harder for
services to build efficient, specialized implementations over
the distributed database abstraction compared to the multi-
sequence abstraction. For instance, ephemeral znodes (§6.3)
do not fit the traditional distributed database model; a service
developer would implement a new replicated component to
manage client connections and explicitly delete the znode at
connection termination. In contrast, implementing ephemeral
znodes in ZK-MASON was straightforward.

MASON’s contiguous multi-sequence abstraction is an ex-
cellent candidate for implementing distributed databases. Its
contiguity would eliminate significant complexity in ported
implementations of Eris and vCorfu. Similarly, its contiguity
would greatly simplify developing new multi-sequence-based
distributed databases. Its scalable multi-sequence would en-
able Eris, vCorfu, and future databases to scale far higher than
the throughput ceiling of monolithic sequencers. This is an
important avenue for future work.

9 Conclusion
This paper proposed the contiguous multi-sequence abstrac-
tion for building consistent services. It is a stronger abstrac-
tion than the noncontiguous multi-sequence abstraction in use
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today, making it easier to build services with multi-sequences.
We also presented MASON, the first system to expose the
contiguous multi-sequence abstraction and the first to provide
a scalable multi-sequence. We demonstrated MASON’s use-
fulness as a building block for scalable, consistent services
by using it to enable scalability in two services that were
previously fundamentally unscalable.
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Algorithm 1: Sequencer Protocol

1 S ; // Set of sequence spaces
2 atMostOnce[]; // Map of (proxy, seqReqId) to

the response
3 activeSequencer← False;
4 when the sequencer receives a message m, from proxy p

do
5 case m = RequestSeqNum(seqReqId,{counti}

|S |
i=0)

do
6 if ¬activeSequencer then
7 return null;

8 if (p,seqReqId) ∈ atMostOnce then
9 return atMostOnce[(p,seqReqId)],True;

10 resp←{ /0}|S |i=0;
11 for i ∈ {0, ..., |S |} do
12 if counti 6= 0 then
13 respi← Si;
14 Si← Si + counti;

15 atMostOnce[(proxyId,seqReqId)]← resp;
16 return resp,False;

17 case m = Recover do
18 for each proxy do
19 send GetMaxAndSeal to each proxy

20 wait for all proxies to reply
// Portion of recovery for contiguity

is omitted.
21 for i ∈ {0, ..., |S |} do
22 Si← max

response∈responses
Si in response + 1;

23 activeSequence← True;

and D. R. Ports. Building Consistent Transactions
with Inconsistent Replication. ACM Transactions on
Computer Systems (TOCS), 35(4), 2018. URL https:
//doi.org/10.1145/2815400.2815404.

[56] J. Zhou, M. Xu, A. Shraer, B. Namasivayam, A. Miller,
E. Tschannen, S. Atherton, A. J. Beamon, R. Sears,
J. Leach, et al. Foundationdb: A distributed unbun-
dled transactional key value store. In Proceedings of the
2021 International Conference on Management of Data,
pages 2653–2666, 2021. URL https://doi.org/10.
1145/3448016.3457559.

A Proof of Strict Serializability

This presents a proof of the strict serializability of assignment
of multi-sequence numbers to operations.

Algorithm 2: Proxy State and Request Protocol

1 curSeqReqId← 0;
2 maxCmtdSeqReqId←−1; // updated in ApplyLog

locally
3 cmtdSeqReqIds[]; // holds all committed

SeqReqIds
4 maxRecvdSeqNum[]; // max received sequence

number for each sequence space
5 sequencers[]; // array of sequencers
6 activeIndex← 0; // index of the active

sequencer
7 when proxy p receives a message m do
8 case m =ClientRequest(op) do
9 retx← True;

10 seqReqId← curSeqReqId;
11 curSeqReqId← curSeqReqId +1;
12 activeSequencer← sequencers[activeIndex];
13 nextSequencer← sequencers[activeIndex+1];
14 while retx do
15 send (resp,retx)←

seqnumReq(myProxyId,seqReqId,op.seqReq)
to activeSequencer;

16 wait for response or suspect
activeSequencer has failed;

17 if suspect activeSequencer has failed then
18 send Recover to nextSequencer

19 wait for response from activeSequencer;
20 if sequencers[activeIndex] 6=

activeSequencer then
21 return
22 if retx then
23 executeNoop(resp);
24 seqReqId← curSeqReqId;
25 curSeqReqId← curSeqReqId +1;

26 replicate(seqReqId,resp);
27 wait for commit;
28 updateMaxRecvdSeqNum(resp);
29 execute(op); // Determined by service.
30 return to op.client;

31 case m = GetMaxAndSeal do
32 activeIndex← activeIndex+1;
33 replicate(seal); // contains activeIndex
34 wait for commit;
35 return maxRecvdSeqNum;

A.1 Definitions

Strict serializability requires that there exists a legal total order
of operations and that the total order reflects the real-time
ordering constraints. Formally: A complete history h satisfies
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Algorithm 3: Proxy Leader Failover Recovery Protocol

1 when proxy replica gains Raft leadership do
2 UncmtdSeqReqIds←{i.i ∈ Z∧ i≤

maxCmtdSeqReqId};
3 UncmtdSeqReqIds←

UncmtdSeqReqIds\ cmtdSeqReqIds;
4 for seqReqId ∈UncmtdSeqReqIds do
5 send (resp,retx)←

seqnumReq(myProxyId,seqReqId,0);
6 wait for response;
7 if retx then
8 executeNoop(resp);

9 curSeqReqId← maxCmtdSeqReqId +1;

linearizability if there exists a legal total order τ of ops(h)
such that ∀op1,op2 ∈ ops(h).op1 <h op2⇒ op1 <τ op2.

That is, if an operation x ends before an operation y begins
then x must appear before y in the total order.

Let S = {S0,S1, ...} be the set of all sequence spaces. We
say that two multi-sequence numbers a and b conflict if ∃n∈ S
such that an 6= ∆∧ bn 6= ∆. Multi-sequence numbers are or-
dered by the partial ordering τ over all multi-sequence num-
bers where a < b ⇐⇒ ∀n∈ S,an 6= ∆∧bn 6= ∆ =⇒ an < bn.

Note that this partial ordering includes the possibility of
conflicting multi-sequence numbers not being ordered: i.e.
where ai < bi∧b j < a j for some i, j ∈ S =⇒ a‖b.

The goal of MASON is to provide an ordering for a service
built on MASON. Thus, we prove that the partial ordering τ

produced by MASON is a legal total order satisfying lineariz-
ability. It is then up to the service to apply the operations in
the order determined by τ.

An operation is assigned a multi-sequence number when
the Raft entry containing the operation and multi-sequence
number pair is committed. Multi-sequence numbers are allo-
cated by the sequencer to a request from the proxy; this does
not guarantee the operation for which the proxy requested a
multi-sequence number will be assigned the allocated multi-
sequence number.

We allow operations to be assigned a range of sequence
numbers in each sequence space. We will share notation for
operations and sequence numbers where for an operation
x, xn denotes the maximum sequence number assigned to
operation x in sequence space n. The comparison xn < yn,
and xn ≤ yn compares the highest assigned sequence number
for operation x in sequence space n and the lowest assigned
sequence number for operation y in sequence space n That is,
xn < yn ⇐⇒ max

i∈xn
i < min

i∈yn
i and xn ≤ yn ⇐⇒ max

i∈xn
i≤min

i∈yn
i.

The term proxy indicates a replicated state machine that
executes the MASON protocol detailed in Alg 2 and Alg 3.
Sequencer denotes a machine executing the protocol detailed
in Alg 1. A backup sequencer may begin executing the se-

quencer protocol from line 17 of Alg 1 when notified by any
proxy.

A.2 Assumptions
The model consists of a set of processes, P , which contains
clients, proxy replicas, and sequencers. Processes may fail
according to the crash failure model, where processes stop
executing requests, and the failure is undetectable to other
processes.

We assume an asynchronous network model where mes-
sages can be arbitrarily delayed and reordered.

We develop MASON’s proxies with Raft and assume the
following as guarantees from Raft [44], the guarantee A.1
being explicitly stated in the paper.

Guarantee A.1 “If a log entry is committed in a given term,
then that entry will be present in the logs of the leaders for
all higher-numbered terms.”

Guarantee A.2 Raft is available as long as a majority of
replicas have not failed.

A.3 Proof of total order
To prove that MASON provides a linearizable ordering we
first show that its ordering is a total order and then prove that
the total order respects the real-time order.

To provide a total order MASON needs to ensure for any two
operations x and y one of x< y, y< x, or ∀n∈ S,xn =∆∨yn =
∆. The latter case describes when the two operations share
no sequence spaces, which we will call strictly concurrent
and denote x‖sy; in this case x and y are trivially ordered in
either order. When any of these relations are true we will
say operations x and y are strictly ordered. More specifically
for any two operations x and y, x and y are strictly ordered if
and only if (xn < yn∀n∈ S.(xn 6= ∆∧yn 6= ∆))∨(yn < xn∀n∈
S.(xn 6= ∆∧ yn 6= ∆)).

We prove that MASON provides a total order, that is, where
all operations are strictly ordered as described above.

Lemma A.1 The assigned multi-sequence numbers for any
replicated and committed operation do not change.

Proof: Directly implied by SMR Guarantee A.1; any elected
leader will have the operation and multi-sequence number
pairing in its log. �

The goal then is to prove that any two assigned operations
are totally ordered, that is we need to show that ∀x,y,(x <
y)∨ (y < x)∨ x‖sy. We first prove a total order for conflicting
operations.

Lemma A.2 Any two conflicting operations x, y are strictly
ordered.

Proof: We prove by case analysis on all possible combinations
of failures of MASON components.
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Case 0: No failures. The sequencer trivially guarantees the
existence of a total order in normal operation. Consider
any two conflicting operations x,y ∈ ops(h) and any two
sequence spaces on which x and y conflict, n,m, such that
xn 6= ∆∧ yn 6= ∆∧ xm 6= ∆∧ ym 6= ∆. Without loss of general-
ity let x arrive at the sequencer before y. Let Sn = i,Sm = j
when x arrives. Lines 11 – 14 of Alg 1 increment Sn and Sm
by the respective counts before responding. Once the proxy
replicates the assigned multi-sequence numbers for x the as-
signment does not change by Lemma A.1. Then, y, arriving
later, must receive Sn ≥ i+xn.count,Sm ≥ i+xm.count where
xn.count is the number of sequence numbers requested for Sn
by operation x (line 14 of Alg 1). Thus, xn < yn ∧ xm < ym;
that is, they are strictly ordered.
Case 1: Proxy follower failure. This case is equivalent to
Case 0 by SMR guarantee A.2: proxies execute as normal
with a majority of non-failing machines in the proxy.
Case 2: Proxy leader failure. Consider two conflicting op-
erations x,y, and any two sequence spaces on which x and y
conflict n,m. Upon proxy leader failure there are four cases.

Case 2a: x and y are assigned (committed) before failure.
This case is equivalent to Case 0 by Lemma A.1.

Case 2b: Neither x nor y are assigned before failure. When
x and y are retransmitted by their clients (not shown) they will
be allocated seqReqIds greater than maxCmtdSeqReqId, by
line 9 of Alg 3 and 10 of Alg 2. Without loss of generality
consider x and its seqReqId, x.seqReqId. If the sequencer has
already allocated a multi-sequence number for x.seqReqId
the sequencer responds with retx == True and the new leader
will allocate a new seqReqId, by lines 8 – 9 of Alg 1 and lines
14 – 25 of Alg 2. The x.seqReqId is then incremented and
the request to the sequencer is resent lines 14 – 25 of Alg 2.
This is repeated, line 14 of Alg 2, until the sequencer has not
allocated a multi-sequence number for x.seqReqId, indicated
by returning retx == False, line 16 of Alg 1 and line 14 of
Alg 2. x is then allocated a new multi-sequence number. Thus,
x and y eventually receive new sequence numbers and this
case is equivalent to Case 0.

Case 2c: Either x or y is assigned before failure, and the
other is not. Without loss of generality assume x is assigned a
multi-sequence number and y is not. The logic is similar to
Case 2b. When y is retransmitted by its client (not shown) it
will be allocated a seqReqId greater than maxCmtdSeqReqId,
by line 9 of Alg 3 and 10 of Alg 2. Consider y’s seqReqId,
y.seqReqId. If the sequencer has already allocated a multi-
sequence number for y.seqReqId the sequencer responds
with retx == True and the new leader will allocate a new
seqReqId, by lines 8 – 9 of Alg 1 and lines 14 – 25 of Alg 2.
The y.seqReqId is then incremented and the request to the se-
quencer is resent lines 14 – 25 of Alg 2. This is repeated,
line 14 of Alg 2, until the sequencer has not allocated a
multi-sequence number for y.seqReqId, indicated by return-
ing retx == False, line 16 of Alg 1 and line 14 of Alg 2.
y is then allocated a new multi-sequence number. Thus, y

eventually receives a new sequence number and this case is
equivalent to y arriving to the sequencer later as in Case 0.
These subcases exhaust all 4 combinations of the state of
processing of x and y.

Case 3: Sequencer failure. All multi-sequence numbers
replicated (and assigned) before sequencer failure are totally
ordered by Case 0 and Lemma A.1. What remains to show
is that all multi-sequencers assigned after failure are totally
ordered. No multi-sequence number allocated by the previous
sequencer will be assigned after line 34 of Alg 2 because
of lines 32 and 20 – 21 of Alg 2. Proxies trivially ensure
maxRecvdSeqNum≥ all assigned multi-sequence numbers at
commit time, line 28 of Alg 2. Thus, for any assigned multi-
sequence number x at the time of seal commit: xi ≤ Si.i ∈ S ,
by lines 21 – 22 of Alg 1. For any multi-sequence number,
y, assigned after recovery, Si < yi.i ∈ S , line 14 of Alg 1. So,
x < y for any pair (x,y) where x is assigned before recovery
seal and y is assigned after recovery seal. ∀ j,k ∈ ops(h). j,k
assigned after recovery, j and k are strictly ordered or strictly
concurrent by Case 0.

Case 4: Concurrent proxy leader and proxy follower
failure. This case is equivalent to Case 2 by the guaran-
tee of availability when fewer than a majority of machines
failed A.2.

Case 5: Concurrent proxy follower failure and sequencer
failure. As a guarantee of SMR, proxies continue to operate
as normal with a majority of non-failing machines (A.2). Thus,
this case is equivalent to Case 3.

Case 6: Concurrent proxy leader and sequencer failure.
Case 6a: The sealing operation on the proxy was not repli-

cated. The new sequencer cannot execute the recovery process
until it receives confirmation from every proxy that they were
sealed, line 20 of Alg 1. Sealed confirmations are not sent un-
til the seal is replicated. Thus, the new leader will eventually
hear, via retransmits, from the new sequencer, and begin repli-
cating the seal, line 33 of Alg 2. Thus, this case is equivalent
to Case 3.

Case 6b: The sealing operation on the proxy was repli-
cated. SMR guarantees that only a replica with all committed
operations can become the new leader, guarantee A.1. Thus,
the new leader has the seal operation, and begins to execute
recovery. Thus, this case becomes equivalent to Case 3. These
two cases are exhaustive as the proxy either committed the
seal command or did not at any point in time.

Case 7: Concurrent proxy leader, proxy follower, and se-
quencer failure. This case is equivalent to Case 6 by the
guarantees of SMR when f or fewer replicas fail.

These cases are exhaustive because they are all combina-
tions of possible failures of components in MASON.�

Lemma A.3 MASON’s ordering is a total order, that is, ∀
assigned operations x,y,(x < y)∨ (y < x)∨ x‖sy.
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Proof: Either x and y conflict or they do not. If x and y con-
flict, then they are totally ordered by Lemma A.2. If they are
non-conflicting, then they are strictly concurrent and can be
ordered by τ in any order. �

A.4 Proof of real-time order
We need to show for any operation x returned to a client, any
operation y invoked after x returned is ordered after x in the
total order. We denote the event of the response to a client as
resp(op) and the invocation event inv(op).

Lemma A.4 If an operation, x, is assigned a multi-sequence
number, n, then a sequencer allocated n for x.

Proof: Lines 9 – 26 of Alg 2 imply that the proxy only
replicates, assigns, an operation if retx is False (line 14). This
implies the returned n was allocated for x, lines 8 – 16 of
Alg 1. �

Lemma A.5 For any two operations x and y, resp(x) pre-
cedes inv(y) in real-time implies x < y.

Proof: Given any two operations x and y and, without loss
of generality, assume resp(x) precedes inv(y) in real-time,
there are two cases x and y conflict or they do not.
Case 0: x and y do not conflict. In this case x and y are
strictly concurrent and can be assigned in either order. We
order y after x in the total order.
Case 1: x and y conflict. Given Lemma A.4, it is sufficient
to show that for any y invoked after resp(x), y is allocated a
higher multi-sequence number than x, such that x < y. There
are thus two cases: the sequencer that allocated the assigned
multi-sequence number for x allocates the assigned multi-
sequence number for y or it does not.

Case 1a: The sequencer that allocated the assigned multi-
sequence number for x allocates the assigned multi-sequence
number for y. In this case x < y by the normal case ordering.
Specifically resp(x) < inv(y) implies that x, being already
assigned, arrives to the sequencer before y. Line 11 – 14 of
Alg 1 increases all sequence spaces for which x requested
a sequence number. Thus, the conflicting sequence spaces
are increased. The sequence spaces on any sequencer do not
decrease, thus, y is allocated a higher multi-sequence number.
So, ∀n ∈ S .xn 6= ∆∧ yn 6= ∆,xn < yn, thus x < y.

Case 1b: The sequencer that allocated the assigned multi-
sequence number for x does not allocate the assigned multi-
sequence number for y. Without loss of generality let the
sequencer that allocates the multi-sequence number eventu-
ally assigned to x be Sx and the sequencer that allocates the
multi-sequence number eventually assigned to y be Sy. Be-
cause y is assigned a multi-sequence number allocated by Sy
and x is assigned a multi-sequence number allocated by Sx and
resp(x)< inv(y), Sy must have become the active sequencer
after x.seqnum was allocated. To become the active sequencer
Sy must have received a Recover message from a proxy

and executed recovery, receiving the maxRecvdSeqNum from
every proxy (lines 3, 17, 18 – 20, and 23 of Alg 1 and
31 – 35 of Alg 2). As Sx allocated the sequence number
eventually assigned to x, x.seqnum must be assigned (repli-
cated) before the proxy receives GetMaxAndSeal and repli-
cates the seal; otherwise, the proxy would have incremented
activeIndex and began to ignore messages from Sx, lines 20
– 21 and 30 – 31 of Alg 2. Thus, x.seqnum is replicated be-
fore seal and the proxy replies with a multi-sequence num-
ber, max such that ∀n.xn 6= ∆,xn ≤ maxn. Thus, Sy will have
xi ≤maxi < Si∀i.xi 6= ∆, line 19 of Alg 1 and line 35 of Alg 2.
The sequence spaces on any sequencer do not decrease and
so ∀n.xn 6= ∆∧ yn 6= ∆,xn ≤ maxn < yn. Thus, x < y. �

Theorem A.1 MASON provides a strictly serializable total
ordering.

Proof: MASON provides a total order, by A.3, that respects
real-time ordering, by A.5. �
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