
Small Molecule Optimization
with Large Language Models

Menua Bedrosian
YerevaNN

Yerevan State University

Philipp Guevorguian
YerevaNN

Yerevan State University

Tigran Fahradyan
YerevaNN

American University of Armenia

Gayane Chilingaryan
YerevaNN

Hrant Khachatrian
YerevaNN

Yerevan State University

Armen Aghajanyan

Abstract

The rise of large language models has created an opportunity for practical appli-
cations of machine learning algorithms in different areas like life science. In this
work, we take advantage of the immense learning abilities of large language models
and combine that with a training corpus of 110M small molecules to train a model
that can predict molecular properties and more. More specifically, we take three
publicly available large language models of 125M, 1B and 2B parameter sizes and
train them on roughly 40B tokens comprising of molecules in SMILES format
and their respective properties. These models demonstrate strong performance
in generating molecules with specified properties and predicting new molecular
characteristics from limited samples. We introduce a novel optimization algorithm
that leverages our language models to optimize molecules for arbitrary properties
given limited access to a black box oracle. Our approach combines ideas from
genetic algorithms, rejection sampling, and prompt optimization. It achieves state-
of-the-art performance on multiple molecular optimization benchmarks, including
an 8% improvement on Practical Molecular Optimization compared to previous
methods. We publicly release the language models and the dataset.

1 Introduction

Molecular optimization is a cornerstone of drug discovery, involving the complex task of identifying
compounds with specific desirable properties. This process traditionally requires extensive laboratory
experimentation, making it time-consuming and costly. Computational methods have emerged as
powerful tools to accelerate this process, yet they often need help with the vast and discrete nature of
chemical space [Wu et al., 2018].

Large language models (LLMs) have recently demonstrated remarkable capabilities across various
domains, from natural language processing to code generation [Brown et al., 2020, OpenAI, 2023].
While there have been initial attempts to apply LLMs to chemical tasks [Irwin et al., 2022, Edwards
et al., 2022, Chilingaryan et al., 2024], these efforts have often been limited in scope or performance.
Our work represents a significant leap forward, leveraging the full power of LLMs to revolutionize
molecular optimization for drug discovery.

We present a novel approach that harnesses LLMs to generate and optimize small molecules with
unprecedented efficiency and accuracy. Our method uniquely combines LLMs’ generative capabilities

Foundation Models for Science Workshop,38th Conference on Neural Information Processing Systems (NeurIPS
2024).



with evolutionary strategies, enabling more effective exploration of chemical space than traditional
graph-based or SMILES-based models.

2



Our research makes several contributions to the field:

1. We develop a comprehensive molecular corpus derived from PubChem [Kim et al., 2015],
encompassing over 110 million molecules and their properties. This corpus, richer in
chemical information compared to SMILES-only corpora used in previous studies, serves as
the foundation for training our specialized LLMs: Chemlactica (125M and 1.3B parameters)
and Chemma (2B parameters). These models demonstrate a deep understanding of molecular
structures and properties, enabling more accurate predictions and generations.

2. We introduce a new molecule optimization algorithm that unifies concepts from genetic
algorithms, rejection sampling, and prompt optimization. This algorithm leverages our
trained LLMs to efficiently navigate the vast chemical space, generating molecules with
targeted properties.

3. Our approach demonstrates state-of-the-art performance on multiple molecular optimization
benchmarks. On the challenging Practical Molecular Optimization (PMO) tasks [Gao et al.,
2022], we achieved an average improvement of 8% over the previous best method. In drug
discovery case studies involving protein-ligand docking, our method generates viable drug
candidates up to 4 times faster than existing approaches.

4. We illustrate the adaptability of our models through efficient fine-tuning for various molecu-
lar property predictions. With just a few hundred training examples, our models achieve
competitive performance on standard benchmarks like ESOL and FreeSolv, showcasing
their potential for rapid adaptation to new tasks in drug discovery pipelines.

2 Related Work

Language Models for Molecular Representation While graph-based representations are common
for molecules, string-based representations, particularly Simplified Molecular Input Line Entry
System (SMILES) [Weininger, 1988], have gained traction due to their compatibility with language
models. This approach leverages the power of pre-trained language models and enables efficient
processing of molecular data. Notable examples include ChemFormer [Irwin et al., 2022], MolT5
[Edwards et al., 2022], and BARTSmiles [Chilingaryan et al., 2024], which adapt traditional language
model architectures to chemical tasks. These models demonstrate the potential of applying natural
language processing techniques to molecular design and property prediction.

Molecular Optimization Techniques Molecular optimization, a key challenge in drug discovery,
involves navigating a vast combinatorial space of potential drugs while satisfying multiple constraints.
Traditional approaches include genetic algorithms adapted for molecular graphs [Yoshikawa et al.,
2018] and Monte Carlo tree search over molecular graphs [Jensen, 2019]. More recent methods
leverage machine learning, particularly deep learning techniques. For instance, variational autoen-
coders [Kingma and Welling, 2013] have been applied to generate and optimize molecules in latent
space, such as [Gómez-Bombarelli et al., 2018] and [Jin et al., 2018]. The GFlowNets [Bengio
et al., 2021] represents a novel approach designed to sample compositional objects (like molecules)
with reward-proportional probability, making it well-suited for optimization tasks. Extensions of
GFlowNets [Kim et al., 2024] incorporating genetic search have shown promising results in molecular
optimization.

Recurrent Neural Networks in Molecular Design Recurrent neural networks (RNNs) have
also been applied to molecular optimization. A notable example is REINVENT [Olivecrona et al.,
2017], which uses policy-based reinforcement learning to generate molecules with desired properties.
Recent enhancements to REINVENT, such as augmented memory and Beam Enumeration [Guo and
Schwaller, 2023b], have further improved its performance. These approaches combine molecular
diversity filters, experience replay mechanisms, and substructure filtering to increase sample efficiency
in molecular optimization tasks.

Large Language Models in Optimization The success of large language models (LLMs) has led
to their application in various optimization tasks beyond text generation. For instance, Chen et al.
[2023] combined prompt tuning with evolutionary algorithms to design neural network architectures,
outperforming human experts on specific tasks. Similarly, EvoPrompt [Guo et al., 2023] developed a

3



general evolutionary algorithm using language models, optimizing task-specific prompts for various
downstream applications. These studies demonstrate the potential of LLMs in complex optimization
problems, paving the way for their application in molecular design and optimization.

Our work builds upon these foundations, uniquely combining the strengths of large language models
with evolutionary strategies for molecular optimization. We extend the application of LLMs beyond
simple property prediction or generation, developing a comprehensive framework for navigating the
complex landscape of molecular design.

3 Training Corpus

Molecular Database from PubChem We constructed a comprehensive SQL database using
PubChem dumps, encompassing information on molecules, similar molecule pairs, experimental
properties, and bioassays. Using rdkit [Landrum et al., 2013], we computed key molecular properties,
including synthesizability score (SAS), quantitatively estimated drug-likeness (QED), molecular
weight (MW), total polar surface area (TPSA), partition coefficient (CLogP), and various struc-
tural features such as hydrogen donors/acceptors and ring counts. Due to differences in SMILES
canonicalization between PubChem and rdkit, we standardized all SMILES strings using rdkit’s
implementation.

Our dataset’s cutoff date is January 26th, 2023, excluding any subsequent additions or modifications
to PubChem. To ensure data integrity, molecules that failed rdkit’s MolFromSmiles parsing were
discarded.

To incorporate similarity information, we utilized PubChem’s related molecule data, which includes
pairs with Tanimoto similarity ≥0.8 based on PubChem fingerprints. From the resulting 200 billion
pairs, we sampled 4 billion and recalculated their similarities using the ECFC4 fingerprint for
improved accuracy and consistency with widely used methods.

JSONL Corpus Generation We transformed our database into a corpus of JSONL files, with each
molecule represented as a single JSON object. Below is an abbreviated example for aspirin:

[WEIGHT]180.16[/WEIGHT][TPSA]63.60[/TPSA][CLOGP]1.31[/CLOGP]

[START_SMILES]CC(=O)OC1=CC=CC=C1C(=O)O[END_SMILES]

[SAS]1.58[/SAS][QED]0.92[/QED]

[SIMILAR]O=C(Oc1ccccc1C(=O)O)c1ccccc1O 0.59[/SIMILAR]

[PROPERTY]Vapor Pressure 2.52X10-5 mm Hg at 25 °C (calc)[/PROPERTY]

This representation includes molecular identifiers, computed properties, similarity data, synonyms,
experimental properties, and the PubChem compound identifier (CID).

Text Generation Template We developed a template system using paired tags to delimit each
property and data point. For instance, a molecule’s QED value is represented as [QED]0.84[/QED].
To enhance the model’s versatility in both property prediction and property-conditioned molecular
generation, we randomized the property order and alternated the position of the primary molecule
(start vs. in-between other tags) with equal probability.

This carefully curated and structured corpus forms the foundation for training our language models,
enabling them to learn complex relationships between molecular structures and properties.

4 Model Training and Evaluation

Selection of Pretrained Language Models We chose models for continued pretraining based on
their general-purpose performance and domain-specific knowledge. At its release, Galactica [Taylor
et al., 2022] outperformed models like OPT [Zhang et al., 2022], Chinchilla [Hoffmann et al., 2022],
and BLOOM [Workshop et al., 2022] on tasks such as BIG-bench [bench authors, 2023], MMLU
[Hendrycks et al., 2020], and TruthfulQA [Lin et al., 2021]. Its pretraining included two million
PubChem molecules, SMILES-specific tagging, and a scientific corpus, making it well-suited for
molecular data. Gemma [Team et al., 2024], while not explicitly trained on molecular data, underwent

4



Table 1: RMSE (RSME corrected for mean) ↓ for Property Prediction and Conditional Generation
for different tasks and models.

QED SIM SAS
PP CG PP CG PP CG

Chemlactica-125M 0.016 0.101 (0.108) 0.046 0.183 0.078 0.315 (0.379)
Chemlactica-1.3B 0.004 0.050 (0.050) 0.043 0.167 0.066 0.400 (0.400)
Chemma-2B-2.1B 0.016 0.100 (0.100) 0.049 0.126 0.073 0.384 (0.382)
Chemma-2B-39B 0.004 0.075 (0.075) 0.046 0.140 0.037 0.415 (0.415)

CLOGP TPSA WEIGHT
PP CG PP CG PP CG

Chemlactica-125M 0.106 0.568 (0.568) 1.322 5.216 (5.244) 9.350 30.276 (30.276)
Chemlactica-1.3B 0.100 0.405 (0.405) 0.893 5.543 (15.640) 3.576 16.877 (16.877)
Chemma-2B-2.1B 0.137 1.675 (1.675) 1.638 7.077 (7.077) 8.962 39.695 (41.109)
Chemma-2B-39B 0.034 0.461 (0.461) 0.959 6.942 (6.942) 1.931 18.933 (20.395)

extensive pretraining (2 trillion tokens for Gemma-2B) and demonstrated state-of-the-art performance
on benchmarks like MMLU, HellaSwag [Zellers et al., 2019], and Human eval [Chen et al., 2021],
comparable to larger models like LLaMA 2 [Touvron et al., 2023] and Mistral 7B [Jiang et al., 2023].

Tokenization and Sample Preparation We utilized the original tokenizers from Gemma and
Galactica, adding chemistry-specific tokens [START_SMILES] and [END_SMILES] to Gemma’s
tokenizer for consistency. To optimize training efficiency, we included all opening and closing tags
as special tokens (e.g., [QED]). Samples of varying lengths were tokenized and grouped into blocks
of 2048 tokens, separated by model-specific separator tokens (EOS "</s>" for Chemlactica, BOS
"<bos>" for Chemma).

Training Methodology Both Chemma and Chemlactica were trained using the Adam optimizer
[Kingma and Ba, 2014] with cross-entropy loss and a causal language modeling objective. We
applied dropout only to Chemlactica, maintaining consistency with the original model architectures.
Chemma-2B was trained in full bfloat16 for computational efficiency. We leveraged PyTorch’s
[Paszke et al., 2019] Fully Sharded Data Parallel (FSDP) [Zhao et al., 2023] and Flash Attention
[Dao, 2024] for optimized training. The training was conducted locally at Yerevan State University
(Chemlactica-125M: 306 A100 hours) and on Nebius.ai cloud (Chemma-2B: 488 H100 GPU hours,
Chemlactica-1.3B: 288 H100 GPU hours). Preparatory work before the final training runs consumed
multiple thousands of A100 hours.

4.1 Evaluation of Computed Property Prediction and Conditional Generation

To assess our models’ proficiency in learning computed properties, we conducted two comprehensive
experiments:

Property Prediction We randomly sampled a fixed set of 100 molecules from the validation set.
For each property, we prompted the models with [START_SMILES]Mi[END_SMILES][QED], where
Mi represents the SMILES string of the molecule. We then calculated the Root Mean Square Error
(RMSE) between predicted and actual property values to evaluate performance.

Conditional Generation For each property, we sampled 100 values vi from the distribu-
tion of PubChem molecules. We then prompted the models to generate molecules with
[QED]vi[/QED][START_SMILES]. Using rdkit, we computed the actual property values of the
generated SMILES and calculated the RMSE against the target vi.

Table 1 presents the results for both Property Prediction (PP) and Conditional Generation (CG) across
various properties for our three model variants. For Chemma-2B, we provide evaluations at different

5



training data volumes, including a compute-controlled run with 2.1B tokens to ensure fair comparison
with Chemlactica-125M.

To account for potential invalid generations, we compute a corrected RMSE by substituting the
property values of invalid SMILES with the mean value of the respective property’s distribution in
our dataset.

Our generation process incorporates several techniques to improve output quality:

• Chain-of-Thought (CoT): We omit [START_SMILES] from the initial prompt, enabling
the model to generate more property values before the molecule itself.

• Repetition Penalty: Applied to discourage repetitive outputs [Keskar et al., 2019].
• Undesired Token Suppression: Employed to ensure the model eventually generates
[START_SMILES].

Table 7 provides an ablation study of these sampling components across our three models, demonstrat-
ing their individual and combined impacts on generation quality. Surprisingly, the best combinations
of hyperparameters coincide for all three models.

These experiments comprehensively show our models’ capabilities in predicting molecular properties
and generating molecules with specified properties. These are crucial tasks in computational drug
discovery and molecular design.

5 Molecular Optimization Algorithm

We present a novel population-based algorithm for molecular optimization that leverages our trained
language models. The algorithm addresses the challenging task of navigating the vast chemical space
to find molecules with desired properties, subject to a limited evaluation budget. Formally, we define
the molecular optimization problem as:

m∗ = arg max
m∈M

O(m)

where m represents a molecule,M is the constraint set of valid molecules (typically very large), and
O :M→ R is a black-box oracle function that evaluates molecular properties. This oracle could
represent complex processes such as lab experiments or quantum simulations.

Our approach maintains a pool of P high-performing molecules and iteratively generates new
candidates using a language model. It is built on three key innovations:

LLM-enhanced genetic algorithm We leverage our language models to generate molecules similar
to the current pool. This can be viewed as a genetic algorithm where traditional crossover/mutation
operations are replaced by language model generation. For S randomly selected molecules from the
pool, we generate a new molecule using the prompt:

[SIMILAR]msmiles
1 0.8[/SIMILAR]...[SIMILAR]msmiles

S 0.8[/SIMILAR][START_SMILES]

This approach allows for more intelligent exploration of the chemical space compared to traditional
mutation operators.

Explicit oracle modeling Inspired by the rejection sampling technique [Bai et al., 2022, Touvron
et al., 2023], we incorporate oracle feedback directly into the language model by fine-tuning on
high-performing molecules. This is done using prompts of the form:

[PROPERTY]O(m)[/PROPERTY][START_SMILES]msmiles[END_SMILES]

This explicit modeling allows the language model to learn the relationship between molecular
structure and oracle scores, enabling more targeted generation.

6



Algorithm 1 molecules2prompt

Input: (m1,m2, . . . ,mS),m
1. Check if the outcome should be a molecule generation prompt or a training sample.
if m is null then

1.1. Sample similarity values for molecules in the prompt, desirable oracle score and set the
suffix for a molecule generation.
vsimi ∼ U(0.4, 0.9), i = 1, . . . , S
vmax ← the maximum oracle score achieved at this moment
vprop ∼ U(vmax, oracle_max)
suffix← [START_SMILES]

else
1.3. Compute the correct similarity values for the molecules in the prompt and the correct oracle
score, set the suffix for a training sample.
vsimi = similar(mi,m), i = 1, . . . , S
vprop = O(m)
suffix← [START_SMILES]msmiles[END_SMILES]eos

end if
2. Concatenate all molecules in the prompt with their similarity values.
p← [SIMILAR]msmiles

1 vsim1 [/SIMILAR]...[SIMILAR]msmiles
S vsimS [/SIMILAR]

if at least one fine-tuning has been performed then
2.1. Add the oracle score to the prompt.
p← concat(p, [PROPERTY]vprop[/PROPERTY])

end if
3. Add the appropriate suffix.
return concat(p, suffix)

Algorithm 2 presents our complete optimization procedure, which includes initialization of an
empty molecule pool, iterative generation of new molecules using the language model, evaluation
of new molecules using the oracle function, updating the pool to maintain the top-P molecules, and
periodic fine-tuning of the language model when progress stagnates. Algorithm 1 details our prompt
construction process, which is crucial for effective molecule generation and model fine-tuning.

We employ a dynamic fine-tuning strategy to adapt the language model throughout the optimization
process. Fine-tuning is triggered if the best molecule doesn’t improve for K consecutive iterations,
with the maximum number of fine-tuning rounds limited by the oracle budget. We use a learning rate
scheduler with warm-up steps, and each fine-tuning step consists of multiple epochs with a portion of
data reserved for validation to prevent overfitting.

Given the complexity of our algorithm, we adopt a focused hyperparameter tuning strategy, prioritiz-
ing the most sensitive parameters while keeping others fixed. This approach balances computational
efficiency with optimization performance. Detailed methodology and results of our hyperparameter
tuning experiments are provided in Appendix A.1.

By combining these elements, our algorithm effectively leverages the power of large language models
for molecular optimization, demonstrating strong performance across a range of tasks as detailed in
Section 6.

6 Experiments

6.1 Practical Molecular Optimization

Problem formulation. Inspired by real-world molecular design setting Gao et al. [2022] propose
a practical molecular optimization (PMO) benchmark consisting of 23 molecular optimization
problems. PMO focuses on sample efficiency, generalizability to different optimization objectives,
and robustness to hyperparameter selection of the molecular optimization algorithms. To assess the
optimization ability and sample efficiency, Gao et al. [2022] put a limit on the number of oracle calls
for each task to be 10000 and report the area under the curve (AUC) of the top-10 average property

7



Algorithm 2 molecular_optimization

Input: P , S, N , K
Initialize an empty Pool← {}
while optim. problem stopping condition do

1. Generate prompts for molecule generation.
for i = 1 to N do

(mi,1,mi,2, . . . ,mi,S)← random_subset(Pool)
pi ← molecules2prompt((mi,1,mi,2, . . . ,mi,S), null)

end for
2. Generate N new and unique molecules with the language model.
mi ← LM(pi), i = 1, . . . , N
3. Update the pool with mis and keep only the top-P molecules.
Pool← Pool ∪ {m1, . . . ,mN}
Pool← top-P (Pool)
4. Fine-tune if necessary.
if the best molecule (in terms of oracle score) has not improved for K iterations then

5. Take all the molecules from the Pool with their corresponding similar molecules (using
which they have been generated), mi, (mi,1,mi,2, . . . ,mi,S), i = 1, . . . , P respectively.
train_samplesi ← molecules2prompt((mi,1,mi,2, . . . ,mi,S),mi), i = 1, . . . , P

6. Train LM on train_samplesi, i = 1, . . . , P .
end if

end while

Table 2: PMO benchmark with Chemlactica-125M, Chemlactica-1.3B and Chemma-2B in compari-
son with other methods. REINVENT results are taken from Gao et al. [2022], Augmented memory
is taken from Guo and Schwaller [2023a], and Genetic-guided (GG) GFlowNets are taken from
Kim et al. [2024]. Values are the average of 5 runs with different seeds, metric is Top-10 AUC ↑ ±
standard deviation

jnk3 median1 scaffold_hop sitagliptin_mpo sum of 4 sum of 23

REINVENT 0.783 ± 0.023 0.356 ± 0.009 0.560 ± 0.019 0.021 ± 0.003 1.720 14.196
Augmented memory 0.739 ± 0.110 0.326 ± 0.013 0.567 ± 0.008 0.284 ± 0.050 1.916 15.002
GG GFlowNets 0.764 ± 0.069 0.379 ± 0.010 0.615 ± 0.100 0.634 ± 0.039 2.392 16.213

Chemlactica-125M 0.881 ± 0.058 0.359 ± 0.060 0.626 ± 0.016 0.649 ± 0.051 2.515 ± 0.119 17.170 ± 0.424
Chemlactica-1.3B 0.866 ± 0.021 0.382 ± 0.047 0.673 ± 0.080 0.586 ± 0.062 2.506 ± 0.155 17.284 ± 0.284
Chemma-2B 0.891 ± 0.032 0.382 ± 0.022 0.669 ± 0.110 0.613 ± 0.018 2.555 ± 0.099 17.534 ± 0.214

value versus the number of oracle calls as the performance metric. AUC values are calculated after
every 100 oracle call, then combined and normalized to map the [0, 1] range.

Our approach. Using our proposed optimization algorithm we evaluate Chemlactica-125M,
Chemlactica-1.3B and Chemma-2B models. The hyperparameters for the optimization algorithm
are tuned for each model separately according to the hyperparameter tuning methodology. For this
benchmark, we use the bfloat16 data type for the language model’s parameters.

Results. Our method performs strongly, surpassing the existing approaches. Our algorithm powered
by the smallest Chemlactica-125M model already improves over the state-of-the-art by a significant
margin, with an AUC Top-10 of 17.170 (Chemlactica-125M) vs 16.213 (Genetic-guided GFlowNets).
Additionally, strengthening the generator model improves the performance. Chemlactica-1.3B and
Chemma-2B achieve AUC Top-10 of 17.284 and 17.534, respectively. For a more comprehensive
understanding of the optimization dynamics, Figures 3-5 illustrate visualizations of the optimization
processes for sitagliptin_mpo task with different seeds for different models.

Note that, unlike most of the other methods, our language models can leverage additional information
about the oracle if the oracle internally calculates common molecular properties. These properties
can be explicitly written in the prompts used in the optimization loop. In Appendix A.6 we show that
such rich prompts can significantly improve the metrics on several PMO tasks.

8



6.2 Multi-property Optimization with Docking

Problem formulation. This benchmark, initially proposed in the REINVENT paper [Blaschke
et al., 2020], evaluates a model’s capability to generate viable molecules for practical drug discovery.
Specifically, it assesses the model’s ability to generate plausible molecules that optimize docking
scores (minimize docking energy) against specified protein targets. The benchmark focuses on three
targets with extensive real-world applications: the dopamine type 2 receptor (DRD2), MK2-kinase,
and acetylcholinesterase. To ensure the generation of realistic molecules, the oracle reward function
incorporates additional constraints, including the maximization of QED and a molecular weight limit
of 500 Da.

The primary objective is to maximize the reward function with minimal oracle calls, emphasizing
sample efficiency. We quantify this efficiency using two metrics: oracle burden and generative
yield. Oracle burden measures the number of oracle calls required to generate N unique molecules
above a predefined reward threshold. At the same time, generative yield represents the number of
unique molecules generated above a reward threshold for a fixed number of oracle calls. To maintain
consistency with recent implementations, we adopt the molecular preprocessing, conformational
generation, docking parameters, and aggregate reward function from the Beam Enumeration paper,
specifically comparing our results with the beam structure 15 methods, which demonstrated superior
average-case performance.

Results. We used the exact same hyperparameters as those selected in the PMO experiment. Table 3
presents our approach’s performance on this benchmark, simulating real-world drug design scenarios.
Chemma-2B consistently achieves the highest performance for the generative yield metric across all
evaluated receptors. Conversely, Chemlactica-125M demonstrates superior performance in terms
of oracle burden, except for MK2 at oracle burden 1, where Chemma outperforms it. Notably,
Chemlactica-1.3B achieved even better yield scores on the DRD2 target. Appendix A.9 shows the
set of molecules generated at the beginning and at the end of the optimization trajectory for DRD2
docking.

These results suggest that model size is crucial in balancing exploration and exploitation of the
molecular space. Smaller models appear more adept at initial space exploration, while larger models
excel in exploiting the reward space. This trade-off between oracle burden and generative yield could
have significant implications for applied drug design, particularly when access to oracle functions is
limited or costly.

Our findings validate the effectiveness of our approach, demonstrating that our models can leverage
pre-training information and selective fine-tuning to optimize complex reward functions, even with
limited data unseen during pre-training. Furthermore, the successful transfer of training parameters
and sampling strategies from the molecular optimization benchmark to this task underscores our
method’s flexibility and robustness. This adaptability suggests that our approach could be particularly
valuable in scenarios where extensive hyperparameter tuning is impractical or undesirable.

6.3 QED Maximization with Similarity Constrained Molecular Design

Problem formulation. The objective of this optimization problem is to generate a molecule that has
a high QED and is similar to some given molecule. More formally, given a molecule M , the objective
of the problem is to generate a new molecule M ′ such that sim(M ′,M) ≥ 0.4 and qed(M ′) ≥ 0.9.
Following Wang et al. [2023] 800 molecules are selected with QED in the range [0.7, 0.8] as the inputs
to the optimization problem, and the performance is measured by the percentage of the molecules that
have been optimized (satisfy the QED and similarity constraints). In addition, a maximum number of
QED evaluations is chosen to optimize each lead molecule.

Our approach. Since this is a lead optimization problem, we add the lead molecule to all prompts
in addition to the molecules added from the pool. The lead molecule is added by enclosing it
in [SIMILAR] tag. For this task, we design an oracle function by combining the QED value of
the generated molecule with the similarity value of the lead molecule and the generated molecule.
Additionally, we decreased the maximum number of QED evaluations to 10000, compared to the
baselines, which used 50000.

9



Table 3: Drug discovery case studies via docking function reward optimization. All experiments were
run with a maximum oracle budget of 5000 oracle calls. Note that both oracle burden and generative
yield values are reward-threshold dependent, and mean values from the reported baseline works are
reported. The parentheses for oracle burden indicate how many unique molecules need to be generated
for consideration. The best performance on each task-metric combination is bolded. Note that the
hyperparameters of our models are not tuned for this task; instead, we used the best-performing
hyperparameters on the PMO benchmark.

Metric Target Reinvent Beam Chemlactica Chemlactica Chemma
Baseline Structure 15 125M 1.3B 2B

Generative Yield 0.7 ↑ DRD2 1879 ± 16 3474 ± 158 3733 ± 512 3659 ± 288 3848 ± 98
MK2 879 ± 10 3127 ± 138 3772 ± 578 3660 ± 535 3578 ± 452
AChE 2437 ± 53 3824 ± 162 4108 ± 67 4193 ± 128 4092 ± 284

Generative Yield 0.8 ↑
DRD2 102 ± 6 1780 ± 439 2827 ± 510 2621 ± 614 2985 ± 194
MK2 2 ± 0 987 ± 211 2569 ± 1156 2216 ± 522 1058 ± 465
AChE 147 ± 11 2059 ± 327 3246 ± 168 3652 ± 349 3096 ± 372

Oracle burden 0.8 (1) ↓
DRD2 168 ± 149 126 ± 90 20 ± 29 11 ± 10 74 ± 62
MK2 1724 ± 802 736 ± 166 345 ± 312 78 ± 125 189 ± 278
AChE 83 ± 29 105 ± 29 22 ± 28 15 ± 23 74 ± 72

Oracle burden 0.8 (10) ↓
DRD2 883 ± 105 582 ± 83 114 ± 08 160 ± 130 240 ± 11
MK2 Failed 1122 ± 154 493 ± 418 248 ± 261 440 ± 548
AChE 481 ± 108 462 224 ± 17 91 ± 103 168 ± 94

Oracle burden 0.8 (100) ↓
DRD2 4595 ± 0 1120 ± 25 364 ± 119 430 ± 250 518 ± 41
MK2 Failed 2189 ± 181 865 ± 533 486 ± 346 934 ± 918
AChE 3931 ± 286 1110 ± 265 497 ± 58 333 ± 131 433 ± 143

Table 4: Performance comparison of different algorithms on QED and Similarity constrained molecu-
lar optimization problem.

Success Rate (%) ↑
QMO 92.8
RetMol 94.5

Chemlactica-125M 99.0

Results. For this task, we only evaluate the Chemlactica-125M model, which achieves better
success rates compared to the best existing approaches, 99.0% (Chemlactica-125M) versus 94.6%
(RetMol), while being constrained to use 5 times less QED evaluations at maximum. Since the
performance of the Chemlactica-125M is very close to perfect, we have not evaluated other models
for this task. Table 4 illustrates the performance of different algorithms.

7 Conclusion

This paper presents three language models: Chemlactica-125M, Chemlactica-1.3B, and Chemma-2B.
These models were trained on a novel corpus encompassing over 100 million molecules and their
properties. We demonstrate the efficacy of these models on multiple tasks in chemistry research,
with a particular focus on molecular optimization. Our proposed optimization algorithm combines
the capabilities of language models with concepts from genetic algorithms. This approach has
shown strong performance across various benchmarks, indicating its potential for addressing complex
molecular design challenges. We publicly release our training corpus, pretrained models, optimization
algorithm, and associated training recipes to support reproducibility and further research in this area.
While our work demonstrates promising results in molecular optimization and related tasks, we
acknowledge that it represents an early step in applying language models to chemical research. We
hope our contributions will provide a valuable foundation for future work in this domain, potentially
enabling new molecular design and analysis approaches.

10



References
Y. Bai, S. Kadavath, S. Kundu, A. Askell, J. Kernion, A. Jones, A. Chen, A. Goldie, A. Mirho-

seini, C. McKinnon, et al. Constitutional ai: Harmlessness from ai feedback. arXiv preprint
arXiv:2212.08073, 2022.

B. bench authors. Beyond the imitation game: Quantifying and extrapolating the capabilities of
language models. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL
https://openreview.net/forum?id=uyTL5Bvosj.

E. Bengio, M. Jain, M. Korablyov, D. Precup, and Y. Bengio. Flow network based generative models
for non-iterative diverse candidate generation. Advances in Neural Information Processing Systems,
34:27381–27394, 2021.

T. Blaschke, J. Arús-Pous, H. Chen, C. Margreitter, C. Tyrchan, O. Engkvist, K. Papadopoulos, and
A. Patronov. Reinvent 2.0: an ai tool for de novo drug design. Journal of chemical information
and modeling, 60(12):5918–5922, 2020.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 2020.

A. Chen, D. Dohan, and D. R. So. Evoprompting: Language models for code-level neural architecture
search. ArXiv, abs/2302.14838, 2023. URL https://api.semanticscholar.org/CorpusID:
257232765.

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. D. O. Pinto, J. Kaplan, H. Edwards, Y. Burda,
N. Joseph, G. Brockman, et al. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374, 2021.

G. Chilingaryan, H. Tamoyan, A. Tevosyan, N. Babayan, K. Hambardzumyan, Z. Navoyan, A. Agha-
janyan, H. Khachatrian, and L. Khondkaryan. Bartsmiles: Generative masked language models
for molecular representations. Journal of Chemical Information and Modeling, 2024. URL
https://doi.org/10.1021/acs.jcim.4c00512.

T. Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=mZn2Xyh9Ec.

C. N. Edwards, T. Lai, K. Ros, G. Honke, and H. Ji. Translation between molecules and natural lan-
guage. ArXiv, abs/2204.11817, 2022. URL https://api.semanticscholar.org/CorpusID:
248376906.

C. Fang, Y. Wang, R. Grater, S. Kapadnis, C. Black, P. Trapa, and S. Sciabola. Prospective validation
of machine learning algorithms for absorption, distribution, metabolism, and excretion prediction:
An industrial perspective. Journal of Chemical Information and Modeling, 63(11):3263–3274,
2023a.

C. Fang, Y. Wang, R. Grater, S. Kapadnis, C. Black, P. Trapa, and S. Sciabola. Prospective validation
of machine learning algorithms for absorption, distribution, metabolism, and excretion prediction:
An industrial perspective. Journal of Chemical Information and Modeling, 63(11):3263–3274,
2023b.

W. Gao, T. Fu, J. Sun, and C. W. Coley. Sample efficiency matters: A benchmark for practical
molecular optimization. ArXiv, abs/2206.12411, 2022. URL https://api.semanticscholar.
org/CorpusID:250072218.

R. Gómez-Bombarelli, J. N. Wei, D. Duvenaud, J. M. Hernández-Lobato, B. Sánchez-Lengeling,
D. Sheberla, J. Aguilera-Iparraguirre, T. D. Hirzel, R. P. Adams, and A. Aspuru-Guzik. Automatic
chemical design using a data-driven continuous representation of molecules. ACS central science,
4(2):268–276, 2018.

J. Guo and P. Schwaller. Augmented memory: Capitalizing on experience replay to accelerate de
novo molecular design. ArXiv, abs/2305.16160, 2023a.

11

https://openreview.net/forum?id=uyTL5Bvosj
https://api.semanticscholar.org/CorpusID:257232765
https://api.semanticscholar.org/CorpusID:257232765
https://doi.org/10.1021/acs.jcim.4c00512
https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=mZn2Xyh9Ec
https://api.semanticscholar.org/CorpusID:248376906
https://api.semanticscholar.org/CorpusID:248376906
https://api.semanticscholar.org/CorpusID:250072218
https://api.semanticscholar.org/CorpusID:250072218


J. Guo and P. Schwaller. Beam enumeration: Probabilistic explainability for sample efficient self-
conditioned molecular design. ArXiv, abs/2309.13957, 2023b.

Q. Guo, R. Wang, J. Guo, B. Li, K. Song, X. Tan, G. Liu, J. Bian, Y. Yang, T. University, and
M. Research. Connecting large language models with evolutionary algorithms yields powerful
prompt optimizers. ArXiv, abs/2309.08532, 2023. URL https://api.semanticscholar.org/
CorpusID:262012566.

D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and J. Steinhardt. Measuring
massive multitask language understanding. arXiv preprint arXiv:2009.03300, 2020.

J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. d. L. Casas, L. A.
Hendricks, J. Welbl, A. Clark, et al. Training compute-optimal large language models. arXiv
preprint arXiv:2203.15556, 2022.

R. Irwin, S. Dimitriadis, J. He, and E. J. Bjerrum. Chemformer: a pre-trained transformer for
computational chemistry. Machine Learning: Science and Technology, 3(1):015022, 2022.

N. Jain, P.-y. Chiang, Y. Wen, J. Kirchenbauer, H.-M. Chu, G. Somepalli, B. R. Bartoldson,
B. Kailkhura, A. Schwarzschild, A. Saha, et al. Neftune: Noisy embeddings improve instruction
finetuning. arXiv preprint arXiv:2310.05914, 2023.

J. H. Jensen. A graph-based genetic algorithm and generative model/monte carlo tree search for the
exploration of chemical space. Chemical science, 10(12):3567–3572, 2019.

A. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. Singh Chaplot, D. de las Casas, F. Bressand,
G. Lengyel, G. Lample, L. Saulnier, et al. Mistral 7b. arxiv. arXiv preprint arXiv.2310.06825,
2023.

W. Jin, R. Barzilay, and T. Jaakkola. Junction tree variational autoencoder for molecular graph
generation. In International conference on machine learning, pages 2323–2332. PMLR, 2018.

N. S. Keskar, B. McCann, L. R. Varshney, C. Xiong, and R. Socher. Ctrl: A conditional transformer
language model for controllable generation. arXiv preprint arXiv:1909.05858, 2019.

H.-S. Kim, M. Kim, S. Choi, and J. Park. Genetic-guided gflownets: Advancing in practical molecular
optimization benchmark. ArXiv, abs/2402.05961, 2024.

S. Kim, P. A. Thiessen, E. E. Bolton, J. Chen, G. Fu, A. Gindulyte, L. Han, J. He, S. He,
B. A. Shoemaker, J. Wang, B. Yu, J. Zhang, and S. H. Bryant. Pubchem substance and
compound databases. Nucleic Acids Research, 44:D1202 – D1213, 2015. URL https:
//api.semanticscholar.org/CorpusID:9567253.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

D. P. Kingma and M. Welling. Auto-encoding variational bayes. CoRR, abs/1312.6114, 2013. URL
https://api.semanticscholar.org/CorpusID:216078090.

G. Landrum et al. Rdkit: A software suite for cheminformatics, computational chemistry, and
predictive modeling, 2013.

S. Lin, J. Hilton, and O. Evans. Truthfulqa: Measuring how models mimic human falsehoods. arXiv
preprint arXiv:2109.07958, 2021.

M. Olivecrona, T. Blaschke, O. Engkvist, and H. Chen. Molecular de-novo design through
deep reinforcement learning. Journal of Cheminformatics, 9, 2017. URL https://api.
semanticscholar.org/CorpusID:2978311.

OpenAI. Gpt-4 technical report. 2023.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems, 32:8026–8037, 2019.

12

https://api.semanticscholar.org/CorpusID:262012566
https://api.semanticscholar.org/CorpusID:262012566
https://api.semanticscholar.org/CorpusID:9567253
https://api.semanticscholar.org/CorpusID:9567253
https://api.semanticscholar.org/CorpusID:216078090
https://api.semanticscholar.org/CorpusID:2978311
https://api.semanticscholar.org/CorpusID:2978311


R. Taylor, M. Kardas, G. Cucurull, T. Scialom, A. Hartshorn, E. Saravia, A. Poulton, V. Kerkez, and
R. Stojnic. Galactica: A large language model for science. arXiv preprint arXiv:2211.09085, 2022.

G. Team, T. Mesnard, C. Hardin, R. Dadashi, S. Bhupatiraju, S. Pathak, L. Sifre, M. Rivière, M. S.
Kale, J. Love, et al. Gemma: Open models based on gemini research and technology. arXiv
preprint arXiv:2403.08295, 2024.

H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288, 2023.

Z. Wang, W. Nie, Z. Qiao, C. Xiao, R. Baraniuk, and A. Anandkumar. Retrieval-based controllable
molecule generation. International Conference on Learning Representations, 2023.

D. Weininger. Smiles, a chemical language and information system. 1. introduction to methodology
and encoding rules. Journal of chemical information and computer sciences, 28(1):31–36, 1988.

B. Workshop, T. L. Scao, A. Fan, C. Akiki, E. Pavlick, S. Ilić, D. Hesslow, R. Castagné, A. S.
Luccioni, F. Yvon, et al. Bloom: A 176b-parameter open-access multilingual language model.
arXiv preprint arXiv:2211.05100, 2022.

Z. Wu, B. Ramsundar, E. N. Feinberg, J. Gomes, C. Geniesse, A. S. Pappu, K. Leswing, and V. Pande.
Moleculenet: a benchmark for molecular machine learning. Chemical science, 9(2):513–530,
2018.

N. Yoshikawa, K. Terayama, M. Sumita, T. Homma, K. Oono, and K. Tsuda. Population-based de
novo molecule generation, using grammatical evolution. Chemistry Letters, 47(11):1431–1434,
2018.

R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi. Hellaswag: Can a machine really finish
your sentence? arXiv preprint arXiv:1905.07830, 2019.

S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan, M. Diab, X. Li, X. V. Lin,
et al. Opt: Open pre-trained transformer language models. arXiv preprint arXiv:2205.01068, 2022.

Y. Zhao, A. Gu, R. Varma, L. Luo, C.-C. Huang, M. Xu, L. Wright, H. Shojanazeri, M. Ott,
S. Shleifer, A. Desmaison, C. Balioglu, P. Damania, B. Nguyen, G. Chauhan, Y. Hao, A. Mathews,
and S. Li. Pytorch fsdp: Experiences on scaling fully sharded data parallel. Proc. VLDB Endow.,
16(12):3848–3860, aug 2023. ISSN 2150-8097. doi: 10.14778/3611540.3611569. URL https:
//doi.org/10.14778/3611540.3611569.

13

https://doi.org/10.14778/3611540.3611569
https://doi.org/10.14778/3611540.3611569


A Appendix

Limitations

The language models introduced in this paper operate only on SMILES representations and do
not support 3D coordinates of atoms, limiting their reliability in scenarios where 3D conformation
is critical. Furthermore, the models have very limited understanding of other biological entities
like proteins, which constrains their practical applicability in certain areas of biochemistry and
drug discovery. While effective, the optimization algorithms presented in this paper have not been
exhaustively tuned, suggesting potential room for improvement. Additionally, our current approach
does not account for synthetic accessibility or other practical considerations in drug design, which
may limit its immediate applicability in real-world drug discovery pipelines.

Broader Impact

The molecular optimization models presented in this work have the potential for both positive and
negative societal impacts. On the positive side, these models could significantly benefit the drug
discovery and healthcare industries by accelerating the development of new therapeutic compounds.
This acceleration may lead to faster responses to emerging health challenges and potentially reduce
the cost of drug development.

However, as with many dual-use technologies, there is a risk that sufficiently advanced versions
of these models could lower the barriers for malicious actors attempting to develop chemical or
biological weapons. This risk underscores the importance of responsible development and deployment
of such technologies.

Given these potential impacts, we recommend that future work in this area include rigorous evaluation
of these algorithms and language models in designing potentially harmful substances to better
understand and mitigate risks. Additionally, developing safeguards and ethical guidelines for using
and disseminating molecular optimization models is crucial. Collaboration with experts in biosecurity
and ethics will be essential to ensure that the development of these technologies proceeds in a manner
that maximizes benefits while minimizing the potential for harm.

A.1 Hyperparameters

Table 5 lists the hyperparameters we used for pretraining the language models.

For supervised fine-tuning we did a grid search over the following hyperparameters: peak learning
rate, number of epochs, warmup steps and the amount of Neftune noise. Table 6 shows the best
values for all tasks and models. Warmup steps are written as a ratio of the total training steps here.

Table 5: Hyperparameters of our language models. All cross-entropy losses use mean reduction.
Chemlactica-125M Chemlactica-1.3B Chemma-2B

Peak learning rate 1.4e-3 1.0e-4 1.0e-3
Warmup steps 500 500 500
Context length 2048 2048 2048
ADAM β1 0.9 0.9 0.9
ADAM β2 0.95 0.95 0.95
ADAM ϵ 1e-8 1e-8 1e-8
Weight Decay 0.1 0.1 0.1
Dropout 0.1 0.1 None
Attention Dropout 0.1 0.1 None
Precision Mixed Mixed BF16
Loss Function CE Loss CE Loss CE Loss
Vocabulary Size 50066 50066 256000
Gradient Clipping 1.0 1.0 1.0

14



Methodology for Hyperparameter Tuning of the Optimization Algorithm Given the large
number of hyperparameters in our optimization algorithm, we adopt a two-step approach. First,
we identify and freeze the hyperparameters that empirically show less sensitivity to the algorithm’s
performance. Then, we focus on tuning the more sensitive hyperparameters using grid search.

For tuning, we utilize the perindopril_mpo and zaleplon_mpo tasks from the PMO benchmark,
following the methodology in [Gao et al., 2022]. We report the AUC Top-10 metric from three
independent runs with different seeds for each hyperparameter configuration. The best-performing
configuration is then applied across all benchmarks in our evaluation. Notably, we tune the hyper-
parameters separately for Chemlactica-125M, Chemlactica-1.3B, and Chemma-2B to account for
model-specific optimal settings.

A key hyperparameter, N , which determines the number of molecules generated before updating the
pool, is set to 200. We employ vanilla temperature sampling for molecule generation throughout the
optimization process. To address the need for generating thousands of unique molecules in many
optimization benchmarks, we implement a dynamic temperature scheduling strategy. The sampling
temperature starts at 1 and linearly increases to 1.5 as the number of oracle evaluations grows. This
gradual temperature increase promotes the generation of more diverse molecules over time, reducing
repetition and encouraging exploration of the chemical space.

Grid search. We perform grid search on P (pool size), S (number of similar molecules), K (fine-
tuning tolerance level) and lr (fine-tuning peak learning rate) with the following grid:

• P = [10, 30, 50]

• S = [0, 1, 2, 5]

• K = [3, 5, 7]

• lr = [10−4, 10−5]

A.2 Model Calibration

A.2.1 Methodology

Model calibration in language modeling refers to the alignment between a model’s predicted prob-
abilities for generating specific text and the actual likelihood of that text being correct. To assess
the calibration of our models, we developed a suite of multiple-choice property prediction questions
based on our training data format.

We generated 2000 questions for each computed property, resulting in 10,000 responses. Each
question presented a SMILES string as input:

[START_SMILES]msmiles[END_SMILES]

followed by five potential continuations, with only one being correct. This methodology is inspired
by the calibration analysis in the GPT-4 technical report [OpenAI, 2023], which highlights calibration
as a key indicator of high-quality pretraining.

Table 6: Selected hyperparameters for property prediction tasks as a result of the grid search. We
report learning rate (LR), warmup ratio (WU), number of epochs (Ep.) and Neftune noise (Nef.).

Chemlactica-125M Chemlactica-1B Chemma-2B
Task LR WU Ep. Nef. LR WU Ep. Nef. LR WU Ep. Nef.

RLM 5.0e-5 0.0 20 10 5.0e-5 0.4 10 10 2.0e-4 0.0 10 10
HLM 1.0e-4 0.4 10 5 1.0e-5 0.4 10 10 1.0e-4 0.4 10 10
MD1 1.0e-4 0.4 15 0 5.0e-5 0.4 10 10 2.0e-4 0.4 10 0
hPPB 1.0e-4 0.4 10 0 1.0e-5 0.0 10 0 2.0e-4 0.4 10 10
rPPB 2.0e-4 0.0 10 5 5.0e-5 0.0 10 5 2.0e-4 0.4 20 0
Sol 2.0e-4 0.4 15 0 5.0e-5 0.0 20 0 2.0e-4 0.0 15 5

freesolv 2.0e-4 0.0 15 0 5.0e-5 0.0 15 5 2.0e-4 0.4 15 5
esol 5.0e-4 0.4 20 0 1.0e-5 0.0 10 5 2.0e-4 0.0 15 5
lipo 5.0e-4 0.4 10 5 1.0e-5 0.4 10 10 2.0e-4 0.4 10 10

15



Table 7: Ablation study on Conditional Generation hyperparameters. Each row represents one
combination of Chain-of-Thought (CoT), repetition penalty (rep.), and suppression (supp.). All
experiments are done on the molecular weight prediction task.

Chemlactica-125M Chemlactica-1.3B Chemma-2B
CoT rep. supp. RMSE (c) ↓ Invalids ↓ RMSE (c) ↓ Invalids ↓ RMSE (c) ↓ Invalids ↓
No 1.0 No 70.02 (70.02) 0/100 15.41 (65.22) 1/100 16.56 (65.58) 1/100
No 1.0 No 70.11 (70.11) 0/100 15.81 (65.32) 1/100 12.15 (64.54) 1/100
Yes 1.0 No 112.52 (112.52) 0/100 187.26 (187.26) 0/100 198.48 (191.89) 46/100
Yes 1.010 No 82.28 (82.28) 0/100 137.19 (137.19) 0/100 170.02 (170.02) 0/100
Yes 1.0 Yes 33.46 (33.46) 0/100 18.53 (25.22) 1/100 31.98 (31.85) 1/100
Yes 1.005 Yes 34.52 (34.52) 0/100 17.14 (17.14) 0/100 29.71 (29.71) 0/100
Yes 1.010 Yes 30.27 (30.27) 0/100 16.87 (16.87) 0/100 18.93 (20.39) 1/100
Yes 1.015 Yes 30.27 (30.27) 0/100 18.07 (19.61) 1/100 18.99 (20.44) 1/100
Yes 1.020 Yes 31.17 (31.17) 1/100 16.33 (18.03) 1/100 24.16 (25.27) 1/100
Yes 1.050 Yes 45.38 (45.38) 1/100 16.49 (34.48) 1/100 74.78 (130.11) 63/100
Yes 1.100 Yes 35.20 (35.20) 0/100 16.61 (32.37) 1/100 740.28 (488.73) 59/100

(-0.001, 0.1]
(0.1, 0.2]
(0.2, 0.3]
(0.3, 0.4]
(0.4, 0.5]
(0.5, 0.6]
(0.6, 0.7]
(0.7, 0.8]
(0.8, 0.9]
(0.9, 1.0]

Bin Ranges

0.0

0.2

0.4

0.6

0.8

1.0

P(
co

rre
ct

)

0

25000

50000

75000

100000

125000

150000

175000

Nu
m

be
r o

f O
cc

ur
en

ce
s

(a) Calibration of Chemma-2B.

(-0.001, 0.1]
(0.1, 0.2]
(0.2, 0.3]
(0.3, 0.4]
(0.4, 0.5]
(0.5, 0.6]
(0.6, 0.7]
(0.7, 0.8]
(0.8, 0.9]
(0.9, 1.0]

Bin Ranges

0.0

0.2

0.4

0.6

0.8

1.0

P(
co

rre
ct

)

0

25000

50000

75000

100000

125000

150000

175000

Nu
m

be
r o

f O
cc

ur
en

ce
s

(b) Calibration of Chemlactica-125M.

Figure 1: Model calibration on synthetic multiple choice question where y=x represents perfect
calibration.

For each response, we calculated the model’s predicted probability based on the perplexity of the
text, normalizing it against other responses for the same question. These probabilities were then
aggregated and sorted into 10 equal-width bins. We plotted the fraction of correct responses for each
bin, allowing us to visualize the relationship between the model’s confidence and accuracy.

A.2.2 Results

Figures 1a and 1b present the calibration plots for Chemma-2B and Chemlactica-125M, respectively.
The x-axis represents the 10 probability bins, while the left y-axis shows the correct response fraction.
The right y-axis and red bars indicate the number of occurrences within each bin.

Chemlactica and Chemma models demonstrate robust calibration, as evidenced by the near-linear
relationship between assigned probabilities and correct outcomes across all computed properties.
This relationship closely follows the diagonal grey line, which represents perfect calibration.

These results suggest that the perplexity scores generated by our models serve as reliable confidence
indicators for molecular data predictions (averaged over a set of molecules), provided the data falls
within the distribution of the training corpus. This calibration is crucial for practical applications, as it
allows users to accurately gauge the reliability of the models’ outputs in various molecular prediction
and generation tasks.

16



Table 8: Regression tasks from MoleculeNet, all values are RMSE ↓.
ESOL FreeSolv Lipophilicity Avg

MoleculeNet GC 0.970 1.400 0.655 1.008
Chemformer 0.633 1.230 0.598 0.820
MoLFormer-XL 0.279 0.231 0.529 0.346
GROVER large 0.831 1.544 0.560 0.978
MolCLR 1.110 2.200 0.650 1.320
iMolCLR 1.130 2.090 0.640 1.287
BARTSmiles 0.308 0.338 0.540 0.395

Chemlactica-125M 0.270 ± 0.011 0.306 ± 0.011 0.533 ± 0.009 0.369 ± 0.000
Chemlactica-1.3B 0.281 ± 0.005 0.356 ± 0.009 0.557 ± 0.021 0.403 ± 0.013
Chemma-2B 0.298 ± 0.014 0.359 ± 0.040 0.563 ± 0.004 0.406 ± 0.012

Table 9: Regression tasks from the ADMET benchmark. All numbers are Pearson correlation ↑.
HLM MDR1-MDCK ER Solubility

MPNN2 (from the original paper) 0.68 0.78 0.59
Chemlactica-125M 0.68 ± 0.011 0.77 ± 0.012 0.57 ± 0.035
Chemlactica-1.3B 0.68 ± 0.004 0.77 ± 0.009 0.54 ± 0.043
Chemma-2B 0.67 ± 0.004 0.78 ± 0.009 0.53 ± 0.024

RLM hPPB rPPB

MPNN2 (from the original paper) 0.74 0.77 0.70
Chemlactica-125M 0.71 ± 0.004 0.73 ± 0.004 0.60 ± 0.098
Chemlactica-1.3B 0.65 ± 0.004 0.74 ± 0.001 0.62 ± 0.017
Chemma-2B 0.68 ± 0.005 0.75 ± 0.004 0.60 ± 0.030

A.3 Property Prediction

Supervised fine-tuning recipe. We designed and implemented a fine-tuning strategy to evaluate
our model’s adaptability to novel tasks not present in the initial training corpus. To this end, we
fined-tuned our models on 6 tasks introduced by Fang et al. [2023a] and 3 others by MoleculeNet
Wu et al. [2018]. Inspired by instruction tuning methodologies, we generated a specialized training
corpus formatted as follows:

[START_SMILES]msmiles[END_SMILES][PROPERTY]<VALUE>[/PROPERTY].

We only trained the model on generated responses following the [PROPERTY] tag during the fine-
tuning process. Our initial experiments indicated that a general fine-tuning recipe of 15 epochs
yielded satisfactory results with a peak learning rate of 10e − 4 with 3 epochs of warmup and a
NEFTune noise [Jain et al., 2023] of 5. However, we observed that our models could significantly
benefit from a more rigorous hyperparameter optimization process. Consequently, we conducted
an extensive hyperparameter tuning study, exploring a grid of values within the following ranges:
Learning rate: [0.00001, 0.00005, 0.0001, 0.0002], Number of epochs: [10, 15, 20], Warmup epoch
ratios: [0, 0.4, 1], NEFTune noise : [0.0, 5.0, 10.0]. The results presented in Table 8 and 9 showcase
the abilities of our models after the hyperparameter tuning stage. The details of hyperparameters
selected per task and model can be found in the Appendix A.1.

Results. Table 8 lists the results for three regression tasks from MoleculeNet [Wu et al., 2018]. Fang
et al. [2023b] introduces a new dataset for six ADMET targets. The authors provided training/test
split but no validation set. We used a random 20% of the training set as a validation set to pick the
best hyperparameters. Table 9 shows the results.

17



Table 10: Comparision of different methods on PMO. The values represent the AUC Top-10 ↑ metric
averaged over five independent runs with different seeds.

Oracle REINVENT Augmented Genetic Chemlactica Chemlactica Chemma
Memory GFN 125M 1.3B 2B

albuterol_similarity 0.882 ± 0.006 0.913 ± 0.009 0.949 ± 0.010 0.951 ± 0.011 0.947 ± 0.012 0.951 ± 0.009
amlodipine_mpo 0.635 ± 0.035 0.691 ± 0.047 0.761 ± 0.019 0.772 ± 0.091 0.769 ± 0.083 0.766 ± 0.107

celecoxib_rediscover 0.713 ± 0.067 0.796 ± 0.008 0.802 ± 0.029 0.906 ± 0.046 0.911 ± 0.013 0.920 ± 0.011
deco_hop 0.666 ± 0.044 0.658 ± 0.024 0.733 ± 0.109 0.801 ± 0.101 0.836 ± 0.117 0.831 ± 0.123

drd2 0.945 ± 0.007 0.963 ± 0.006 0.974 ± 0.006 0.965 ± 0.007 0.968 ± 0.005 0.972 ± 0.006
fexofenadine_mpo 0.784 ± 0.006 0.859 ± 0.009 0.856 ± 0.039 0.881 ± 0.031 0.891 ± 0.039 0.931 ± 0.014

gsk3 0.865 ± 0.043 0.881 ± 0.021 0.881 ± 0.042 0.926 ± 0.022 0.916 ± 0.027 0.928 ± 0.021
isomers_c7h8n2o2 0.852 ± 0.036 0.853 ± 0.087 0.969 ± 0.003 0.951 ± 0.012 0.933 ± 0.017 0.947 ± 0.009

isomers_c9h10n2o2pf2cl 0.642 ± 0.054 0.736 ± 0.051 0.897 ± 0.007 0.927 ± 0.006 0.929 ± 0.012 0.914 ± 0.017
jnk3 0.783 ± 0.023 0.739 ± 0.110 0.764 ± 0.069 0.881 ± 0.058 0.866 ± 0.021 0.891 ± 0.032

median1 0.356 ± 0.009 0.326 ± 0.013 0.379 ± 0.010 0.359 ± 0.060 0.382 ± 0.047 0.382 ± 0.022
median2 0.276 ± 0.008 0.291 ± 0.008 0.294 ± 0.007 0.328 ± 0.032 0.329 ± 0.016 0.366 ± 0.018

mestranol_similarity 0.618 ± 0.048 0.750 ± 0.049 0.708 ± 0.057 0.896 ± 0.064 0.850 ± 0.051 0.926 ± 0.023
osimertinib_mpo 0.837 ± 0.009 0.855 ± 0.004 0.860 ± 0.008 0.907 ± 0.015 0.892 ± 0.013 0.879 ± 0.016
perindopril_mpo 0.537 ± 0.016 0.613 ± 0.015 0.595 ± 0.014 0.709 ± 0.052 0.755 ± 0.066 0.711 ± 0.062

qed 0.941 ± 0.000 0.942 ± 0.000 0.942 ± 0.000 0.942 ± 0.000 0.942 ± 0.000 0.941 ± 0.000
ranolazine_mpo 0.760 ± 0.009 0.801 ± 0.006 0.819 ± 0.018 0.864 ± 0.014 0.883 ± 0.017 0.868 ± 0.015

scaffold_hop 0.560 ± 0.019 0.567 ± 0.008 0.615 ± 0.100 0.626 ± 0.016 0.673 ± 0.080 0.669 ± 0.110
sitagliptin_mpo 0.021 ± 0.003 0.284 ± 0.050 0.634 ± 0.039 0.649 ± 0.051 0.586 ± 0.062 0.613 ± 0.018

thiothixene_rediscovery 0.534 ± 0.013 0.550 ± 0.041 0.583 ± 0.034 0.624 ± 0.102 0.693 ± 0.119 0.698 ± 0.121
troglitazone_rediscovery 0.441 ± 0.032 0.540 ± 0.048 0.511 ± 0.054 0.734 ± 0.130 0.765 ± 0.138 0.824 ± 0.049

valsartan_smarts 0.178 ± 0.358 0.000 ± 0.000 0.135 ± 0.271 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
zaleplon_mpo 0.358 ± 0.062 0.394 ± 0.026 0.552 ± 0.033 0.569 ± 0.047 0.569 ± 0.020 0.608 ± 0.055

sum 14.196 15.002 16.213 17.170 ± 0.424 17.284 ± 0.284 17.534 ± 0.214

Table 11: Illustration of the results of ablation study on the fine-tuning step in the optimization
algorithm. The values represent AUC Top-10 ↑ obtained from five independent runs.

Chemlactica-125M Chemlactica-1.3B Chemma-2B
fine-tuning no fine-tuning fine-tuning no fine-tuning fine-tuning no fine-tuning

jnk3 0.881 ± 0.058 0.878 ± 0.040 0.866 ± 0.021 0.867 ± 0.036 0.891 ± 0.032 0.869 ± 0.033
median1 0.359 ± 0.060 0.371 ± 0.006 0.382 ± 0.047 0.395 ± 0.027 0.382 ± 0.022 0.380 ± 0.034

scaffold_hop 0.626 ± 0.016 0.648 ± 0.017 0.673 ± 0.080 0.721 ± 0.121 0.669 ± 0.110 0.700 ± 0.122
sitagliptin_mpo 0.649 ± 0.051 0.607 ± 0.051 0.586 ± 0.062 0.576 ± 0.082 0.613 ± 0.018 0.563 ± 0.059

sum 2.515 ± 0.119 2.504 ± 0.068 2.506 ± 0.155 2.559 ± 0.062 2.555 ± 0.099 2.512 ± 0.160

A.4 Detailed Results for Practical Molecular Optimization

Table 10 shows the evaluations of Chemlactica-125M, Chemlactica-1.3B and Gemma-2B, along with
other methods on 23 tasks of the PMO benchmark. There is no method that uniformly beats all others
on every task. None of our (and many other) methods get non-zero result on valsartan_smarts.
The reason is that the oracle has a binary multiplier term that is usually equal to zero, so there is no
supervision signal for the entire generation process.

A.5 Ablation Study on the Optimization Algorithm

A key component of our proposed optimization algorithm is the fine-tuning step, which is activated
when the algorithm’s progress stagnates. To assess the impact of this fine-tuning step, we conducted a
comparative analysis of optimization processes both with and without this feature. For this evaluation,
we selected four representative tasks from the PMO benchmark: jnk3, median1, sitagliptin_mpo,
and scaffold_hop. These tasks were chosen to provide a diverse set of challenges and to be
representative of the broader benchmark.

Table 11 presents the quantitative results of these experiments. To provide a more comprehensive
understanding of the fine-tuning effect, we visualize the optimization trajectories in Figures 6 through
8. These visualizations aggregate data from five independent runs, offering insights into both the
mean performance and its variance across different initializations.

This ablation study allows us to isolate the impact of the fine-tuning step and understand its contri-
bution to the overall performance of our optimization algorithm across different types of molecular
optimization tasks.

18



Table 12: The performance of the extended version of our optimization algorithm on selected PMO
tasks. The prompts used in the optimization contain the description of the tasks in the format our
language models has seen during pretraining. See Table 13 for the additional tags used in the prompts.

Chemlactica-125M Chemlactica-1.3B Chemma-2B
no add. props. add. props. no add. props. add. props. no add. props. add. props.

jnk3 0.881 ± 0.058 0.881 ± 0.058 0.866 ± 0.021 0.866 ± 0.021 0.891 ± 0.032 0.891 ± 0.032
median1 0.359 ± 0.060 0.479 ± 0.004 0.382 ± 0.047 0.488 ± 0.000 0.382 ± 0.022 0.479 ± 0.002

scaffold_hop 0.626 ± 0.016 0.983 ± 0.004 0.673 ± 0.080 0.975 ± 0.006 0.669 ± 0.110 0.983 ± 0.003
sitagliptin_mpo 0.649 ± 0.051 0.534 ± 0.041 0.586 ± 0.062 0.495 ± 0.035 0.613 ± 0.018 0.576 ± 0.055

sum 2.515 ± 0.119 2.920 ± 0.096 2.506 ± 0.155 2.824 ± 0.034 2.555 ± 0.099 2.887 ± 0.040

Table 13: The descriptions of tasks used in the prompts in the extended version of our optimization
algorithm. The results are in Table 12. See Section A.6 for details.

the syntax of additional properties added to the prompts

jnk3 (nothing added)

median1 [SIMILAR]camphor_smiles 0.55[/SIMILAR][SIMILAR]menthol_smiles 0.55[/SIMILAR]

scaffold_hop [SIMILAR]pharmacophor_smiles 0.80[/SIMILAR]

sitagliptin_mpo [SIMILAR]sitagliptin_smiles 0.99[/SIMILAR][CLOGP]2.02[/CLOGP][TPSA]77.04[/TPSA]

A.6 Leveraging Known Molecular Properties in Optimization Tasks

Our language models possess knowledge of various molecular properties such as QED, CLogP, and
TPSA. However, we deliberately avoid utilizing this information in Algorithm 2 to maintain fair
comparison with other methods. This decision stems from the fact that our models have been trained
on properties that are components of the oracle functions we optimize against (e.g., those in PMO).
Exploiting this partial oracle information could potentially give our method an unfair advantage.

We conducted a separate set of experiments to explore the models’ capacity to utilize additional
information in solving optimization problems. We selected four tasks from the PMO benchmark:
jnk3, median1, sitagliptin_mpo, and scaffold_hop. For these tasks, we modified Algorithm 1
to incorporate relevant known properties into the prompt p between steps 2 and 3.

Table 12 presents a performance comparison between our standard approach and this property-
augmented version. The specific syntax used for adding these properties to the prompts is detailed in
Table 13. Notably, no additional properties were added for the jnk3 task as our models lack specific
knowledge about its oracle function.

The results demonstrate a significant performance improvement across all models when these addi-
tional properties are incorporated. This finding suggests that our models can effectively leverage
their pre-existing knowledge of molecular properties to enhance their performance in molecular
design tasks. However, it’s important to note that while this approach showcases the potential of our
models, it may not provide a fair comparison with methods that don’t have access to such property
information.

A.7 The Impact of Floating Point Precision on Molecular Optimization

Numerical Precision in Model Training Lower precision training, including mixed and half-
precision methods, is commonly used to increase training throughput. These techniques, employed
during our models’ pretraining stages, typically have negligible impact on performance and may even
provide a regularizing effect. However, in the context of molecular optimization involving multiple
rounds of fine-tuning, lower numerical precision leads to significantly degraded performance. Several
factors contribute to this phenomenon in the specific case of molecular optimization with language
models.

Challenges in Batched Generation Molecular optimization pipelines require repeated model calls
for generation, followed by oracle function scoring. While batched processing accelerates this process

19



Table 14: Impact of numerical precision on multi-property optimization with docking task.
Metric Target Chemlactica-125M Chemlactica-125M

BF16 FP32

Generative Yield 0.7 ↑ DRD2 3501 ± 252 3733 ± 512
MK2 3000 ± 80 3772 ± 578
AChE 4337 ± 133 4108 ± 67

Generative Yield 0.8 ↑
DRD2 2574 ± 103 2827 ± 510
MK2 1223 ± 519 2569 ± 1156
AChE 3877 ± 272 3246 ± 168

Oracle burden 0.8 (1) ↓
DRD2 156 ± 100 20 ± 29
MK2 320 ± 83 345 ± 312
AChE 10 ± 8 22 ± 28

Oracle burden 0.8 (10) ↓
DRD2 283 ± 61 114 ± 08
MK2 631 ± 100 493 ± 418
AChE 123 ± 119 224 ± 17

Oracle burden 0.8 (100) ↓
DRD2 577 ± 71 364 ± 119
MK2 1134 ± 178 865 ± 533
AChE 350 ± 137 497 ± 58

through GPU parallelization, it introduces complications. The necessary padding for batch processing
alters matrix sizes, affecting multiply-accumulate operations within the model. These small errors
accumulate as they propagate through the model’s layers. Lower precision exacerbates these errors,
leading to larger discrepancies in logit values and, consequently more significant impacts on the
generated molecules.

Cascading Effects of Sub-optimal Generations In our approach, high-scoring generated
molecules are used for both additional fine-tuning and identifying similar molecules to guide op-
timization. However, when lower precision leads to sub-optimal molecule generation, it creates a
negative feedback loop. The model is fine-tuned on and guided by these lower-quality molecules,
hindering the generation of higher-scoring molecules in subsequent iterations. This causal relation-
ship between successive generations underlies the particularly adverse effects of low precision in
molecular optimization pipelines.

Precision Ablation Study To quantify the impact of numerical precision on the optimization
process, we conducted an ablation study comparing 32-bit floating point precision with bfloat16
precision. Table 14 presents the results of this comparison across all drug discovery case studies
described in Section 6.2. Despite the potential computational costs, these results demonstrate the
critical importance of maintaining higher numerical precision in molecular optimization tasks.

A.8 Visualization of the Model Outputs on Property Prediction and Conditional Generation
Tasks

Figures 2e-2e show the performance of Chemma-2B for property prediction and conditional molecular
generations tasks. Each dot in the scatter plot corresponds to one molecule. The histogram in the
background is the actual distribution of those properties in the database. The purple line shows RMSE
error for the given value of the property.

20



2 3 4 5 6 7 8 9
Ground truth SAS

0

2

4

6

8

Pr
ed

ict
ed

 S
AS

0

1

2

3

4

5
1e6

SAS Property Prediction (greedy sampling)
0/100 invalid SMILES

rmse 0.037 mape 0.005 corr: 1.000

(a) SAS prediction.

0 100 200 300 400 500
Ground truth TPSA

0

100

200

300

400

500

Pr
ed

ict
ed

 T
PS

A

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1e6

TPSA Property Prediction (greedy sampling)
0/100 invalid SMILES

rmse 0.959 mape 0.000 corr: 1.000

(b) TPSA Prediction.

2 3 4 5 6 7 8
Target SAS

0

2

4

6

8

Ge
ne

ra
te

d 
SA

S

0

1

2

3

4

5
1e6

SAS Conditional Generation (greedy sampling)
0/100 invalid SMILES, 7/100 from PubChem

rmse 0.415 rmse_c 0.415 mape 0.105 corr: 0.786

(c) SAS-conditioned generation of molecules.

20 40 60 80 100
Target TPSA

0

20

40

60

80

100

Ge
ne

ra
te

d 
TP

SA

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1e6

TPSA Conditional Generation (greedy sampling)
0/100 invalid SMILES, 15/100 from PubChem

rmse 6.942 rmse_c 6.942 mape 0.054 corr: 0.985

(d) TPSA-conditioned generation of molecules.

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22
Ground truth Similarity

0.05

0.10

0.15

0.20

0.25

Pr
ed

ict
ed

 S
im

ila
rit

y

Similarity Property Prediction (greedy sampling)
0/100 invalid SMILES

rmse 0.046 mape 0.329 corr: 0.803

(e) Prediction of similarity between two molecules.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Target Similarity

0.0

0.2

0.4

0.6

0.8

1.0

Ge
ne

ra
te

d 
Si

m
ila

rit
y

Similarity Conditional Generation (greedy sampling)
0/340 invalid SMILES

rmse 0.140 mape 0.234 corr: 0.874

(f) Similarity-conditioned generation of molecules.

Figure 2: Illustration of errors made by Chemma-2B during property prediction and conditional
generation for various properties.

21



Figure 3: Optimization process visualization using Chemlactica-125M model for sitagliptin_mpo
task with four different seeds.

0 2000 4000 6000 8000 10000
0.0

0.2

0.4

0.6

0.8

1.0

Or
ac

le
 S

co
re

seed 29

0 2000 4000 6000 8000 10000

seed 31

0 2000 4000 6000 8000 10000
Oracle Calls

0.0

0.2

0.4

0.6

0.8

1.0

Or
ac

le
 S

co
re

seed 37

0 2000 4000 6000 8000 10000
Oracle Calls

seed 41
Generated molecules
Molecules in the Pool
Molecules the model is trained on

Figure 4: Optimization process visualization using Chemlactica-1.3B model for sitagliptin_mpo
task with four different seeds.

0 2000 4000 6000 8000 10000
0.0

0.2

0.4

0.6

0.8

1.0

Or
ac

le
 S

co
re

seed 29

0 2000 4000 6000 8000 10000

seed 31

0 2000 4000 6000 8000 10000
Oracle Calls

0.0

0.2

0.4

0.6

0.8

1.0

Or
ac

le
 S

co
re

seed 37

0 2000 4000 6000 8000 10000
Oracle Calls

seed 41
Generated molecules
Molecules in the Pool
Molecules the model is trained on

22



Figure 5: Optimization process visualization using Chemma-2B model for sitagliptin_mpo task
with four different seeds.

0 2000 4000 6000 8000 10000
0.0

0.2

0.4

0.6

0.8

1.0
Or

ac
le

 S
co

re

seed 29

0 2000 4000 6000 8000 10000

seed 31

0 2000 4000 6000 8000 10000
Oracle Calls

0.0

0.2

0.4

0.6

0.8

1.0

Or
ac

le
 S

co
re

seed 37

0 2000 4000 6000 8000 10000
Oracle Calls

seed 41
Generated molecules
Molecules in the Pool
Molecules the model is trained on

Figure 6: Mean oracle score ± standard deviation of the generated molecule for Chemlactica-125M.

0.0

0.2

0.4

0.6

0.8

1.0

Or
ac

le
 sc

or
e

jnk3 median1

0 2000 4000 6000 8000 10000
Oracle calls

0.0

0.2

0.4

0.6

0.8

1.0

Or
ac

le
 sc

or
e

scaffold_hop

0 2000 4000 6000 8000 10000
Oracle calls

sitagliptin_mpo
Chemlactica-125M
Chemlactica-125M (no tuning)

23



Figure 7: Mean oracle score ± standard deviation of the generated molecule for Chemlactica-1.3B.

0.0

0.2

0.4

0.6

0.8

1.0

Or
ac

le
 sc

or
e

jnk3 median1

0 2000 4000 6000 8000 10000
Oracle calls

0.0

0.2

0.4

0.6

0.8

1.0

Or
ac

le
 sc

or
e

scaffold_hop

0 2000 4000 6000 8000 10000
Oracle calls

sitagliptin_mpo
Chemlactica-1.3B
Chemlactica-1.3B (no tuning)

Figure 8: Mean oracle score ± standard deviation of the generated molecule for Chemma-2B.

0.0

0.2

0.4

0.6

0.8

1.0

Or
ac

le
 sc

or
e

jnk3 median1

0 2000 4000 6000 8000 10000
Oracle calls

0.0

0.2

0.4

0.6

0.8

1.0

Or
ac

le
 sc

or
e

scaffold_hop

0 2000 4000 6000 8000 10000
Oracle calls

sitagliptin_mpo
Chemma-2B
Chemma-2B (no tuning)

24



A.9 Generated Molecules in the Docking Experiments

A.9.1 DRD2

[C]=C1[C]C[C][CH][C]
(c2nnc(NC(=O)C3[C][C
]c4ccccc4[CH]3)s2)[C

H]1.[Rh]

Score: 0.0000

CC1CCCC(c2nnc(NC(=O)
C3CCc4ncccc4C3)s2)C1

.C[O-].[Na+]

Score: 0.0000

O=C(Nc1nnc(C2CCCCCC2
[CH][CH][CH][CH][CH]
[CH][CH][CH][C]2[CH]
[CH]CC[CH]2)s1)C1[C]
C2CC=CC[CH-]C2CC1

Score: 0.3769

Cc1cccc(N2CCC3(CCC3C
(=O)Nc3nnc(CC4CCCCC4

)s3)C2=O)n1

Score: 0.6945

COCC1C(C(=O)Nc2nnc(C
3CCCCC3)s2)CC(=O)N1c

1ccccn1

Score: 0.7572

O=C(Nc1nnc(C2[C][C]C
[C][C]C[C]CC2)s1)[C]

1[CH][CH]n2c(cccc2=O
)C1

Score: 0.7820

O=C(Nc1nnc(C2[CH][CH
][C][C][C]C[CH]C2)s1
)C1[C][C][C]n2c(cccc

2=O)C1

Score: 0.7995

Cc1nccc(N2CCC(NC(=O)
OCc3ccccc3)CC2)n1

Score: 0.8182

N[C]1[CH][CH][C](C(=
O)Nc2nnc(C3[C][C]=C4
CC=CC=C43)s2)[CH]1

Score: 0.8371

O=C(Nc1nnc(CC2CCCCC2
)s1)C1CCc2c(ncccc2=O

)C1

Score: 0.8523

O=C([CH][C]1[C][C]n2
c(cccc2=O)C1)Nc1nnc(
C2[C][C][C]C[CH]CC2)

s1

Score: 0.8640

[C][C]1[CH][CH][C](c
2nnc(NC(=O)C3[CH][CH
]c4ccccc4C3)s2)[CH]1

Score: 0.8731

O=C(Nc1nnc(CC2C[CH+]
CCC2)s1)C1[CH][CH]c2

[nH+]cccc2C1

Score: 0.8820

[O]C1C[CH]CC(c2nnc(N
C(=O)C3CCc4[nH+]cccc

4C3)s2)C1

Score: 0.8984

O=C(Nc1nnc(CC2[C]C[C
H][CH][CH]2)s1)C1[CH

][CH]c2ccccc2[CH]1

Score: 0.9122

0.0

0.2

0.4

0.6

0.8

1.0

Score
Structures Generated Throughout Optimization: DRD2

25



A.9.2 MK2

CO.Cc1ccc(C(=O)NCc2c
cc3c(c2)OCO3)c2c1C=C

(F)C(C)C2

Score: 0.0000

C[C]C1=C[C]OCC1C.[CH
]C1=C(F)Cc2c(CNC(=O)
c3c#cc4c(c3)=CO[C][C

]C=4C)c#ccc2C1

Score: 0.0000

CCS1(CC)Cc2c(F)ccc(C
(=O)NCc3ccc4c(c3)COC

4)c2C=C1F

Score: 0.6335

CC1=C(F)CC2=C(C=CC=C
3CC=CC=C31)CNC(=O)c1
c#cc3c(c1)=CO[C]2C=C

=3

Score: 0.6904

CC1=CC(C)(C)Cc2c(F)c
cc(C(=O)NCc3ccc4c(c3

)OCO4)c21

Score: 0.7225

CC1=C(F)Cc2c(C)ccc(C
(=O)NCC3Cc4cc5c(cc4O

3)COC5)c2C1

Score: 0.7333

Cc1ccc(S(=O)(=O)NCc2
ccc3c(c2)CCO3)c2c1OC

C2

Score: 0.7422

CC1=C(F)Cc2c(C(=O)NC
c3ccc4ooc4c3F)ccc(F)

c2C1

Score: 0.7669

CC1=C(F)OCc2c(F)cc(C
(=O)NCc3ccc4c(c3)OCO

4)c(C)c21

Score: 0.7714

CC1=C(F)Cc2c(cccc2C(
=O)NCc2c#cc3c(c2)COC

3=C=O)C1

Score: 0.7763

CC1=C(C)Cc2c(C(=O)NC
c3ccc4c(c3C)OCO4)ccc

(F)c2C1

Score: 0.7850

CC1=C(F)Cc2cccc(C(=O
)NCC3=COCC=C3)c2C1

Score: 0.7941

[CH]C1=C(F)C(C)=C(CN
C(=O)c2c#cc3c(c2)=CO

[C][C]C=3C)C#CC1

Score: 0.8045

CC1=CCc2c(cccc2C(=O)
NCc2ccc3c(c2)C(=O)NC

3)C1

Score: 0.8198

CC1=C(F)Cc2cccc(C(=O
)NCc3c#ccc4c3OCC4=O)

c2C1

Score: 0.8476

[CH]C1=C(F)[C]c2c(CN
C(=O)c3c#cc4c(c3)=CO
[CH]CC=4C)c#ccc2C1

Score: 0.8762

0.0

0.2

0.4

0.6

0.8

1.0

Score
Structures Generated Throughout Optimization: MK2

26



A.9.3 AChE

CO.Cc1ccc(P(C)(C)=O)
c(Nc2nc3ccccc3nc2NS(
=O)(=O)c2cn(C)cn2)c1

.Cl

Score: 0.0000

I.O=C1CC(NC(=O)CC2=C
C=CC3c4ccccc4C=CC23)

=NCN1

Score: 0.0000

COCc1c2ccc(C3OCCO3)c
c2c(C)c2cc(S(=O)(=O)

N3CCC4(CC3)OC(=O)NC4
C)ccc12

Score: 0.7190

Cc1cc(-
c2ccccc2)c2cc(S(=O)(

=O)C3CCC4(CC3)NC(=O)
OC4C)ccc2c1

Score: 0.7635

O=C(CCC1=CC=C2C(c3cc
ccc3)=C3C(=CCc4ccccc
43)C2S1)NC1=NCCO1

Score: 0.7877

Cc1ccc2c(C)c(S(=O)(=
O)C3CCC4(CC3)CC(=O)O

CN4C)ccc2c1

Score: 0.7975

Cc1ccc2cc(S(=O)(=O)C
3(O)CCC4(CC3)NC(=O)O

C4C)ccc2c1

Score: 0.8045

C=C1NC(=O)CC12[CH]CC
1(C=CC(S(=O)(=O)c3cc
c4cc(C)ccc4c3C)=CC1)

C(=O)C2

Score: 0.8255

Cc1ccc2c(C)c(S(=O)(=
O)C3CCC4(CC3)N(C)C(=
O)NC43NC3=O)ccc2c1

Score: 0.8295

CC1CN=C(NC(=O)C2CCc3
ccccc3C23c2ccccc2C3C

)O1

Score: 0.8338

Cc1ccc2cc(S(=O)(=O)C
3CCC4(CC3)NC(=O)OC43

C=C3)ccc2c1

Score: 0.8412

Cc1cc(N)c2cc(S(=O)(=
O)C3=CCC4(C=C3)CC(=O

)NC4C)ccc2c1

Score: 0.8488

CSC1=NC(NC(=O)Cc2ccc
c(-

c3cccc4c3C3=CC=C4C3)
c2)COC1

Score: 0.8572

Cc1ccc2c(C)c(S(=O)(=
O)C3=CCC4(CC3)NC(=O)

CC43C=C3)ccc2c1

Score: 0.8674

O=C(Cc1ccc(C2CCc3ccc
cc32)cc1)NC1=NCOCN1

Score: 0.8825

O=C(Cc1c#cc(C2C3=CC=
CC3=Cc3ccccc32)cc1)N

C1=NCCO1

Score: 0.9161

0.0

0.2

0.4

0.6

0.8

1.0

Score
Structures Generated Throughout Optimization: AChE

27


	Introduction
	Related Work
	Training Corpus
	Model Training and Evaluation
	Evaluation of Computed Property Prediction and Conditional Generation

	Molecular Optimization Algorithm
	Experiments
	Practical Molecular Optimization
	Multi-property Optimization with Docking
	QED Maximization with Similarity Constrained Molecular Design

	Conclusion
	Appendix
	Hyperparameters
	Model Calibration
	Methodology
	Results

	Property Prediction
	Detailed Results for Practical Molecular Optimization
	Ablation Study on the Optimization Algorithm
	Leveraging Known Molecular Properties in Optimization Tasks
	The Impact of Floating Point Precision on Molecular Optimization
	Visualization of the Model Outputs on Property Prediction and Conditional Generation Tasks
	Generated Molecules in the Docking Experiments
	DRD2
	MK2
	AChE



