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Abstract

In label-noise learning, the noise transition matrix reveals how an instance transi-
tions from its clean label to its noisy label. Accurately estimating an instance’s
noise transition matrix is crucial for estimating its clean label. However, when
only a noisy dataset is available, noise transition matrices can be estimated only for
some “special” instances. To leverage these estimated transition matrices to help
estimate the transition matrices of other instances, it is essential to explore relations
between the matrices of these “special” instances and those of others. Existing
studies typically build the relation by explicitly defining the similarity between
the estimated noise transition matrices of “special” instances and those of other
instances. However, these similarity-based assumptions are hard to validate and
may not align with real-world data. If these assumptions fail, both noise transition
matrices and clean labels cannot be accurately estimated. In this paper, we found
that by learning the latent causal structure governing the generating process of noisy
data, we can estimate noise transition matrices without the need for similarity-based
assumptions. Unlike previous generative label-noise learning methods, we consider
causal relations between latent causal variables and model them with a learnable
graphical model. Utilizing only noisy data, our method can effectively learn the
latent causal structure. Experimental results on various noisy datasets demonstrate
that our method achieves state-of-the-art performance in estimating noise transition
matrices, which leads to improved classification accuracy. The code is available at:
https://github.com/tmllab/2024_NeurIPS_CSGN.

1 Introduction

Supervised learning relies on annotated large-scale datasets, which can be both time-consuming and
costly to create. Although several existing annotation methods offer cost-effective alternatives, such
as online queries [5], crowdsourcing [53], and image engines [32], the datasets obtained by these
methods are imperfect. The labels of these datasets usually contain errors. These noisy labels would
be harmful to deep neural networks because the network can memorize noisy labels easily [60, 13, 3]
and lead to the degradation of classification accuracy.

Modeling label noise using noise transition matrices plays an important role in label-noise learning
[37, 41, 31, 15]. Let Y , X , and Ỹ denote the variables for the clean label, the instance, and
the noisy label, respectively. The noise transition matrix for an instance x can be represented
by p(Ỹ |Y,X = x), which reveals the probability that, given an instance, its latent clean label is
transited to the observed noisy label. Given these transition matrices, a classifier trained on noisy
data by leveraging these matrices can be consistent with the optimal classifier trained on clean
data [37, 41, 51].
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However, noise transition matrices are generally unknown and need to be estimated. When only
a noisy dataset is available, only the noise transition matrices of some “special” instances can be
estimated. For example, if instances belong to a clean class with a probability of one (known as anchor
points), their noise transition matrices can be estimated [51]. To utilize these learned transitions to
help in estimating others, it is crucial to establish relations between the transition matrices of these
“special” instances and those of the other instances. Existing studies usually build this relation by
proposing similarity assumptions for noise transition matrices across different instances. For example:
1). the noise transition matrices of instances within the same class are identical [37, 41, 51]; 2).
the noise transition matrices of instances lying in the same manifold are identical [8]; 3). the noise
transition matrices are the same for the closest three instances within the same clean class [62, 38].
However, these predefined assumptions may not hold in real-world cases. Moreover, verifying these
assumptions with only noisy data is challenging. If these assumptions are violated, it can lead to
estimation errors in both transition matrices and clean labels.

Noisy label: Dog

Clean label: Cat

(a)

Noisy label: Dog

Clean label: Cat

(b)

Figure 1: The pictures
contain the same noisy
labels.

In this paper, to establish relations between the transition matrices of these
“special” instances and those of the others without relying on predefined
similarities, we propose exploring the latent causal structure that generates
noisy data. By understanding this structure, the relations among noise tran-
sition matrices across instances would be implicitly captured. Subsequently,
the noise transition matrices of other instances can be estimated by making
use of the estimated noise transition matrices of the “special” instances.
To offer some intuition, in Fig. 1, we illustrate two noisy examples in the
benchmark noisy dataset CIFAR-10N. Suppose there is a latent variable
for the “presence of fur”, and an annotator is biased by the “presence of
fur”. If the first “cat” image containing “fur” is mislabeled as “dog” by this
annotator, then a second “cat” image also containing “fur” will likely be
mislabeled as “dog” with high probability by the same annotator. This leads us to understand that the
noise transition matrices for the two images are similar when their causal variables have the same
value. In essence, the relation between noise transition matrices across these two instances is estab-
lished through the causal structure. Such insights have driven us to develop an algorithm designed to
learn the latent causal structure, thereby enabling the accurate estimation of noise transition matrices
for new instances based on existing ones.
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Figure 2: Noisy data-
generating processes
assumed by different
methods. S is the vari-
able unrelated to the
clean label Y .

There are a few studies [56, 10] that tackle the label-noise learning problem
by modeling the data-generating process with a generative model and lever-
aging causality. However, they may fail to capture the relation among noise
transition matrices as the data-generating process proposed by these methods
is restrained. Specifically, as shown in Fig. 2a, current methods assume that
the instance X is a direct cause of the noisy label Ỹ in the data-generating
process. However, this assumption does not hold for many machine learning
datasets consisting of perceptual data such as images, videos, and natural
language. In these datasets, the latent causal variables such as shape, color,
and semantic concepts are the direct causes of the noisy label Ỹ rather than
the perceptual data X itself. As previously mentioned, the mislabeling of
an image of a “cat” as a “dog” could be due to the latent causal variable
“presence of fur”. Two images generated under similar latent variable values
should have similar transition matrices. Therefore, it is important to con-
sider and learn these latent causal variables in the data-generating process.
Motivated by this insight, we propose to incorporate latent causal variables
in the data-generating process.

As shown in Fig. 2b, we adhere to a general setting outlined in [26], where
the observed instance X is generated by two sets of latent variables: S which
are not influenced by the clean label Y and Z which are caused by the clean
label Y . Furthermore, we allow for causal dependencies among the variables
in Z. To learn the data-generating process, we employ a learnable graphical
model that models all latent causal variables and their causal relations. Once
the model is trained, it can infer the values of latent causal variables for different images, thereby
implicitly capturing the relations among noise transition matrices across instances. Theoretically, we
explain the sufficient conditions for identifying the latent causal structure of noisy data in Appendix
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B. Empirically, our method achieves state-of-the-art performance in estimating the noise transition
matrices and predicting clean labels.

2 Related Work

Modeling the Noise Transition Matrices Modeling label noise by noise transition matrices plays
an important role for label-noise learning. Some methods [37, 41, 51, 57, 31] assume the noise
transition matrix is instance-independent, i.e., p(Ỹ = i|Y = j,X = x) = p(Ỹ = i|Y = j). The
instance-independent transition matrix is identifiable under some mild conditions. For example,
the instance-independent transition matrix can be estimated using anchor points, where the clean
class posterior probability of a class is one [37, 41, 51, 57]. Li et al. [31] assume that the clean
class-posterior distribution is sufficiently scattered and learn the instance-independent transition
matrix by minimizing the volume of the transition matrix.

To learn instance-dependent transition matrices, Xia et al. [50] assume the label noise is part-
dependent. Then, the instance-dependent transition matrices can be approximated by combining the
transition matrices of the instances’ parts. Cheng et al. assume [8] close instances should have similar
transition matrices, leading to the development of a manifold-regularized technique to learn transition
matrices. CausalNL [56] and InstanceGM [10] use generative models and leverage causality to
learn transition matrices. However, the data-generating process proposed by these methods can be
restrained, as it does not account for latent causal relations and variables. The estimation of noise
transition matrices could be improved by considering causal relations. Other methods for learning
with noisy labels are introduced in Appendix G.

Causal Representation Learning Causal representation learning [44] aims to identify latent causal
variables from observations. The generating process for observations from the latent variables
is typically non-linear. Previous research has established that identifying latent variables in an
unsupervised manner is generally infeasible [20, 40]. Recently, the focus has shifted to weakly-
supervised or self-supervised methods that incorporate additional supervised information. For
example, methods utilizing temporal information [45, 18, 19], auxiliary variables that cause the latent
variables [21, 23], and multiview information [6] have been employed to learn causal representations.

3 Learning the Latent Causal Structure for Generation of Noisy Data
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Figure 3: An illus-
tration of the noisy
data-generating pro-
cess with 4 latent vari-
ables.

A Data-Generating Process Let X and Ỹ denote the observed variables
of instances and noisy labels, respectively. The observed variable X is
generated by a subset of causal variables, Z, along with other variables
S. Similarly, the noisy label Ỹ is also generated by a subset of the causal
variables Z. The causal variables in Z can exhibit causal dependence,
meaning some variables are effects of others. The influence of other variables
on a causal variable Zi can be represented as Zi := fZ(pa(Zi), Ni), where
fZ is the causal mechanism, pa(Zi) denotes all the causes of Zi, and Ni is
the corresponding latent noise variable. The latent causal structure, which
includes the latent causal variables Z and the causal dependencies among
them, can be represented by a Directed Acyclic Graph (DAG). Given that this
latent causal structure is unknown, our aim is to learn the causal mechanisms
that generate both the observed instances and the noisy labels.

The data-generating process is illustrated in Fig. 3. The latent noise variable
N is generated by its parent variables, denoted as pa(Zi), along with a
corresponding latent noise variable Ni. The instance X and the noisy label Ỹ are generated by
different subsets of latent variables. The black arrow in the graph indicates the causal direction in
the structural causal model, while the blue arrow indicates the weights of the edges vary with the
clean label Y . The instance X and the noisy label Ỹ are dependent because they are generated by
the common cause variables Z [42, 43], which implies that the transition matrices in our model are
instance-dependent.
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Let pa(X) and pa(Ỹ ) denote the sets of causal variables for generating X and Ỹ , respectively. Let
fX and fỸ denote nonlinear mixing functions. Let εX and εỸ denote independent noise variables
with probability density functions pεX (εX) and pεỸ (εỸ ). The generating process of the noisy data
can be modeled as a structural causal model (SCM) as follows:

Ni :∼ N (µNi(Y ), σ2
Ni(Y )), Zi := W T

i (Y )Z +Ni, (1)

X := fX(pa(X),S) + εX , Ỹ := fỸ (pa(Ỹ )) + εỸ ,

where N (µNi(Y ), σ2
Ni

(Y )) represents the Gaussian distribution with mean µNi(Y ) and variance
σ2
Ni

(Y ). The matrix W (Y ) represents the causal association among causal variables. The conditional
distribution for the causal variables Z given the clean label Y can be denoted as pW ,µN ,σ2

N
(Z|Y ).

Unlike previous methods [56, 10], we do not assume the latent causal variables are independent. We
allow causal relations between different causal variables in Z, which is more general. For example,
in an image, the causal variable associated with the “presence of the sun” can influence the causal
variable related to “brightness”. Moreover, we allow both the latent noise variable N and the weights
of causal association Wi,j(Y ) to be different across different clean labels. This variability enables
latent causal variables to exert varying degrees of influence on noisy labels in different classes. For
example, mislabeling a “cat” as a “dog” might be influenced by the causal variable “presence of fur”,
whereas mislabeling a “house” as a “car” is likely less influenced by “presence of fur” and more by
other causal variable, such as the causal variable related to “shape”. The data-generating process in
our model is nonlinear. Specifically, the instance X and the noisy label Ỹ are generated through
nonlinear functions. However, to establish sufficient conditions for identifiability, the causal relations
within Z are assumed to be linear. This assumption is further elaborated in Appendix B.

Intuition about Learning Latent Data-Generating Process Existing theories in causal represen-
tation learning [54, 39] suggest that the data-generating process can be efficiently learned with the aid
of additional supervised information. In label-noise learning, this additional supervised information
typically requires some clean examples. We follow the previous methods [56, 10] that assume a
subset of clean examples can be selected from the noisy training data using current techniques
[29]. With some supervised information derived from these selected clean examples, learning the
data-generating process becomes feasible.

Here, we provide some intuition about the core idea behind the existing identifiability result [39],
explaining why the data-generating process can be effectively learned. Central to this understanding is
the realization that the parameters governing this data-generating process are not unique to individual
examples but are shared across them. Specifically, examples from the same class share the same
data-generating process. The essence of learning the data-generating process lies in learning these
shared parameters. When these parameters are shared across different examples, the total number of
parameters does not increase as more examples are provided. Instead, these parameters are selected
to fit the examples as well as possible. For example, in a linear model, as more data are provided,
the system accumulates more linear equations but maintains a fixed number of parameters. This
setup leads to identifiability when the number of equations exceeds the number of parameters, which
enables a precise estimation of the parameters. With a set of selected clean examples along with their
noisy labels, one can calculate the most probable parameter value for generating these examples.
This approach reduces the uncertainty of the parameter value. In Appendix B, we discuss the specific
assumption to make the latent generating process of noisy data fully identifiable.

3.1 Methodology

We propose a model-based method which learns the latent Causal Structure for the Generation of
Noisy data (CSGN). The workflow of our method is illustrated in Fig. 4. A classification network gY
is used to model the distribution qψ(Y |X). An encoder gZ,S is employed to model the distribution
qφ(Z,S|X, Y ). Two vectors MX and MỸ are employed to mask some causal variables Z. These
vectors select different causal variables for the generation of the instance X and the noisy label Ỹ .
The distribution pfX (X|MX ⊙Z,S) is modeled by a decoder fX for generating instances. The
distribution pfỸ (Ỹ |MỸ ⊙Z) is modeled by a decoder fỸ for generating noisy labels. These encoders
and decoders can be effectively learned within the Variational Autoencoder (VAE) framework [24].
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Figure 4: A workflow of our method. In the inference stage, a classification network is used to learn
the clean labels of instances; An encoder is used to learn the causal variables. In the generation
stage, different subsets of causal variables used to generate instances and noisy labels are selected by
masking. Two decoders are used to generate the instances and noisy labels.

Warmup Existing methods [56, 10] that employ generative models require some clean examples.
Similarly, our method also requires clean examples, where their clean labels provide additional
supervised information to learn latent causal variables and their causal relations. In settings in-
volving label-noise learning, the clean label is typically unknown. We only have a noisy dataset
D̃ = {(x(i), ỹ(i))}ni=1, where n is the number of examples. To obtain the additional supervision
information, we follow the existing methods [56, 10] which adopt the small-loss trick [13] to select
some clean examples. This method is based on the observation that a classification network trained
on noisy data tends to first memorize examples with correct labels before those with incorrect ones.
Consequently, during the early stages of training, the losses for examples with correct labels are
usually smaller than those for examples with incorrect labels. By analyzing these loss values, we
can distinguish clean examples from noisy ones. We adopt a semi-supervised learning approach, as
detailed in [4], to train the classification network for selecting clean examples. Further specifics of
this approach are provided in Appendix C. After this initial warmup phase, once some clean examples
have been identified, we compile a new dataset consisting of instances, noisy labels, and clean labels
as D = {(x(i), ỹ(i), y(i))}mi=1, where m is the size of the dataset.

Modeling Latent Causal Variables and their Causal Relations We first model the generating
process of the causal variables Z using the SCM in Eq. (1). Given that the relationships between
the latent variables are linear functions of their causes, plus some independent Gaussian noise, this
linearity implies that the distribution of the latent causal variables Z, conditioned on the true label Y ,
also follows a Gaussian distribution. Specifically, the conditional distribution is given by:

pW ,µN ,σ2
N
(Z|Y ) = N (µZ ,Σ), (2)

where µZ is the mean vector, and Σ is the covariance matrix of the latent variables Z. The mean µZ
and the covariance Σ are determined by the weight matrix W and the parameters of the latent noise
variables, specifically µN and σ2

N . Note that the weight matrix W encodes the causal relationships
among the latent variables Z, with each entry representing the strength of the causal effect from one
variable to another.

Let σ2
Zi,Zj

denote the element in the i-th row and j-th column of the covariance matrix Σ. Given
that the generating process of causal variables is modeled by a linear SCM, we can compute the
parameters µZi , σ

2
Zi,Zi

, and σ2
Zi,Zj

for a causal variable Zi by the following recursion relations [25]:

µZi =
∑
j∈pai

Wi,j(Y )µZj + µNi(Y ),

σ2
Zi,Zi =

∑
j∈pai

W 2
i,j(Y )σ2

Zj ,Zj + σ2
Ni(Y ),

σ2
Zi,Zj =

∑
k∈pai

Wk,j(Y )σ2
Zi,Zj , for i ̸= j,

where pai represents the set of indices for the parents of the causal variable Zi. We let W , µN and
σ2
N be influenced by Y . To provide identifiable results, W , µN and σ2

N have to be determined by
Y [39]. Exploring ways to relax this assumption will be a focus of our future work.
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Modeling the Generation of Observed Variables In real-world scenarios, instances and noisy
labels may be generated by different subsets of latent causal variables. To accommodate this,
two learnable masks are employed to selectively activate different subsets of causal variables for
generating instances and noisy labels, respectively. We also utilize distinct decoders to model the
generation processes of instances and noisy labels.

Let ZX and ZỸ denote the subsets of causal variables used to generate the instance X and the noisy
label Ỹ . To select the subsets of causal variables ZX and ZỸ , we employ two masks. Specifically,
let MX and MỸ denote two vectors for sparsity. They contain learnable parameters that dictate
which causal variables are active during the generation process. The masking process is as follows:

ZX = MX ⊙Z, ZỸ = MỸ ⊙Z,

where ⊙ is the element-wise multiplication. To let vectors MX and MỸ act as masks, these vectors
are designed to be sparse. This sparsity is encouraged through an L1 regularization loss:

LM = ∥MX∥1 + ∥MỸ ∥1. (3)

Note that since parameters in the mask is learnable, our masking method can select either different
subsets or the same subsets of variables for generating the instance X and the noisy label Ỹ by
optimizing the loss defined in Eq. 5.

Instances and noisy labels are generated through different mechanisms. Thus, we employ two
different decoders: fX for the instances and fỸ for the noisy labels. The generating process of these
variables is defined as follows:

X = fX(ZX ,S) + εX , Ỹ = fỸ (ZỸ ) + εỸ ,

where εX and εỸ represent independent noise variables, each with its respective probability density
functions pεX (εX) and pεỸ (εỸ ). The above equations establish the framework for our generative
models for instances and noisy labels, which are probabilistic models defined as follows:

pfX (X|ZX ,S) = pεX (X − fX(ZX ,S)),

pfỸ (X|ZỸ ) = pεỸ (Ỹ − fỸ (ZỸ )).

As shown in Fig. 3, we consider the mechanisms generating instances and noisy labels to be
independent. Therefore, the joint generating process of X and Ỹ conditioned on the latent variables
can be modeled by the product of their individual probabilities, i.e.,

pf (X, Ỹ |Z,S) = pfX (X|ZX ,S)pfỸ (Ỹ |ZỸ ),

where f = {fX ,fỸ } encompasses both decoders, and Z = {ZX ∪ZỸ }.
We further assume that p(S), which is the distribution of the latent variable S, follows a standard
multivariate normal distribution. Integrating all components, the overall generative model is defined
as a probabilistic model parameterized by θ = (f ,W ,µN ,σ2

N) defined as:

pθ(X, Ỹ ,Z,S|Y ) = pf (X, Ỹ |Z,S)pW ,µN ,σ2
N
(Z|Y )p(S). (4)

Here, pW ,µN ,σ2
N
(Z|Y ) specifies the distribution of the latent variables conditioned on the true label

Y , parameterized by the weight matrix W and the parameters of the independent noise, µN , σ2
N .

Optimization After the warmup phase, we can construct a new dataset D = {(x(i), ỹ(i), y(i))}mi=1,
where each instance includes the data x(i), the noisy label ỹ(i), and the corresponding true label
y(i). We train our model’s parameters using this dataset. Let p(X, Ỹ , Y ) denote the underlying
joint distribution of the variables X , Ỹ , and Y . In line with prior work [56], we approximate this
distribution with qD(X, Ỹ , Y ) using the product of the empirical data distribution and the model’s
predictive distribution qD(X, Ỹ , Y ) ≈ qD̃(X, Ỹ )qψ(Y |X) where qD̃(X, Ỹ ) is the empirical distri-
bution derived from the noisy dataset D̃, and qψ(Y |X) is the estimated clean class posterior provided
by the classification network gY . To optimize the encoder and parameters in θ for the generative
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model, we maximize the Evidence Lower Bound (ELBO) on the marginal likelihood of the observed
data D. The ELBO is formulated as:

ELBO =E(x,ỹ,y)∼qD̃qψ
[
E(z,s)∼qφ [log pf (x, ỹ|z, s)]

−KL(qφ(z|x, y)||pW ,µN ,σ2
N
(z|y))−KL(qφ(s|x, y)||p(s))

]
, (5)

where KL denotes the Kullback–Leibler divergence, qφ(z|x, y) and qφ(s|x, y) are approximate
posterior distributions which can be derived by with the encoder gZ,S . The derivation of ELBO is
detailed in Appendix A. The final loss function used to train the networks is

L = Lsemi − λELBOELBO + λMLM , (6)

where λELBO and λM are hyperparameters. The algorithm of CSGN is given in Alg. 1.

4 Experiments

In this section, we report the experiment results of our method. We first compare the effectiveness
of the proposed data-generating process with existing methods. We then compare the estimation
error of noise transition matrices with other methods and the classification performance of the
proposed method with that of state-of-the-art methods on synthetic and real-world noisy datasets.
The sensitivity tests of the hyper-parameters are in Appendix H. The results of the ablation study are
in Appendix I. The number and the accuracy of the selected clean samples are available in Appendix
J. We report the performance of a classification network trained on these clean samples in Appendix
K. To verify the effectiveness of our method in recovering the causal graph, we conduct experiments
on the synthetic dataset in Appendix L. The visualization of the transition matrices is in Appendix M.

4.1 Experiment Setup

Datasets We empirically verify the performance of our method on three synthesis datasets, i.e.,
Fashion-MNIST [52], CIFAR-10 [27], CIFAR-100 [27], and two real-world datasets, i.e., CIFAR-N
[49] and Webvision [30]. Fashion-MNIST contains 70,000 28x28 grayscale images with 10 classes
total, 60,000 images for training, and 10,000 images for testing. Both CIFAR-10 and CIFAR-100
contain 50,000 training images and 10,000 testing images. The image size is 32x32. CIFAR-10 has
10 classes of images, and CIFAR-100 has 100 classes of images. The three datasets contain clean
labels. We corrupted the training data manually according to the instance-dependent noisy label
generation method proposed in [50]. CIFAR-N contains CIFAR-10N and CIFAR-100N. CIFAR-10N
is a real-world label-noise version of CIFAR-10. It contains human-annotated noisy labels with five
different types of noise (Worst, Aggregate, Random 1, Random 2, and Random 3). The corresponding
noise rates are 40.21%, 9.03%, 17.23%, 18.12%, and 17.64%. CIFAR-100N is a real-world label-
noise version of CIFAR-100. It contains the type of noise (Fine). The corresponding noise rates are
40.20%. Webvision dataset [30] is a large-scale real-world dataset. We follow the previous work
[7] to train the model on the first 50 classes of the Google image subset and test the model on the
WebVision validation set and the ImageNet ILSVRC12 validation set.

Implementation We implement our algorithm using PyTorch and conduct experiments on eight
RTX-3090 GPUs. We use a PreAct ResNet-18 [14] as the classification network for Fashion-MNIST
[52], CIFAR-10 [27], CIFAR-100 [27], and CIFAR-N [49], an inception-resnet v2 [46] as the
classification network for WebVision. More details about the structure of decoders and encoders are
in Appendix D. To prevent the accumulation of errors from biased selection, we adopt the approach
of using two neural networks to select clean examples for each other, following the approach in
previous work [13]. The number of variables in Z is set to 4 in all our experiments. For experiments
on Fashion-MNIST, CIFAR-10, CIFAR-100 and CIFAR-N, we employed SGD with a momentum of
0.9 and a weight decay of 0.0005 to optimize the classification network gY . We used Adam with
default parameters to optimize the encoder gZ,S , the decoder fX , and the decoder fỸ and other
parameters {W ,µN ,σ2

N}. The initial learning rate for SGD was set at 0.02 and for Adam at 0.001.
Our networks were trained for 200 epochs with a batch size of 64. Both learning rates were reduced
by a factor of 10 after 100 epochs. For experiments on WebVision, we changed the weight decay
of SGD to 0.001. The initial learning rate for SGD was set at 0.04 and for Adam at 0.004. Other
parameters of optimizers remain unchanged. Our networks were trained for 80 epochs with a batch
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(b) Fashion-MNIST
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(c) CIFAR-10
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(d) CIFAR-100
Figure 5: The estimation error of noise transition matrices. The datasets are MNIST, Fashion-MNIST,
CIFAR-10 and CIFAR-100 with the instance-dependent label noise. The error bar for standard
deviation in each figure has been shaded.

Table 1: Replace the generative model of CausalNL and InstanceGM with ours. Experiments are on
CIFAR-10.

CIFAR-10

IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%

CausalNL 90.31 ± 0.09 89.76 ± 0.08 88.06 ± 0.53 80.97 ± 1.99 57.93 ± 7.53
CausalNL′ 91.59 ± 0.26 91.29 ± 0.07 90.44 ± 0.05 89.49 ± 0.31 88.83 ± 0.09
InstanceGM 96.07 ± 0.14 96.00 ± 0.09 95.95 ± 0.11 95.99 ± 0.10 95.81 ± 0.07
InstanceGM′ 96.20 ± 0.07 96.59 ± 0.07 96.45 ± 0.11 96.52 ± 0.11 96.32 ± 0.07

Table 2: Replace the generative model of CausalNL and InstanceGM with ours. Experiments are on
CIFAR-100.

CIFAR-100

IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%

CausalNL 65.33 ± 0.64 63.40 ± 0.49 55.37 ± 1.09 48.73 ± 1.49 38.69 ± 1.72
CausalNL′ 72.24 ± 0.14 71.54 ± 0.09 70.36 ± 0.12 67.60 ± 0.25 59.64 ± 0.99
InstanceGM 79.30 ± 0.11 78.03 ± 0.15 77.89 ± 0.18 77.48 ± 0.16 76.64 ± 0.38
InstanceGM′ 79.87 ± 0.09 79.53 ± 0.17 79.43 ± 0.16 79.45 ± 0.15 79.23 ± 0.12

size of 16. Both learning rates were reduced by a factor of 10 after 40 epochs. Due to limited space,
more details about the hyperparameters are in Appendix D.

Baselines The baselines used in our experiments for comparison are: 1). CE, training the clas-
sification network using standard cross-entropy loss on noisy data directly; 2). MentorNet [22],
pretraining a classification network to select reliable examples for the main classification network; 3).
Co-Teaching [13], which uses two classification networks to select reliable examples for each other;
4). Reweight [37], using the importance reweighting method to estimate the unbiased risk defined
on clean data; 5). Forward [41], which assumes the noise transition matrix is class-dependent, then
corrects the loss function; 6). PTD [50], estimating instance-dependent noisy transition through the
parts of instances; 7). CausalNL [56], which explores the information in the instances to help the
learning of classification network; 8). CCR [9] uses forward-backward cycle-consistency regulariza-
tion to learn noise transition matrtices; 9). MEIDTM [8], which uses Lipschitz continuity to constrain
the noise transition matrix in the manifold; 10). BLTM [55], which learn the noise transition matrix
on a part of dataset with Bayes optimal label; 11). NPC [1], which boosts the pre-trained classifier
performances by calibrating the noisy predictions; 12). RENT [2], which utilizes the transition
matrix for resampling. 13). DivideMix [29], which divides the noisy examples into labeled examples
and unlabeled examples and trains the classification network using the semi-supervised technique
MixMatch [4]; 14). SOP [36], which employs the sparse property of the label noise to prevent models
from overfitting to label noise.

4.2 Effectiveness the Proposed Data-Generating Process

To demonstrate our data-generating process (shown in Fig. 2b) is more effective than the existing
one (shown in Fig. 2a), we replace the generative model in CausalNL and InstanceGM with our
proposed model while other experiment settings remain the same. We refer to the modified versions of
CausalNL and InstanceGM as CausalNL′ and InstanceGM′, respectively. Experiments are conducted
on CIFAR-10 and CIFAR-100 datasets with instance-dependent label noise. The experiment results
are presented in Tab. 1 and 2, which show that CausalNL′ and InstanceGM′ outperform their original
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Table 3: Means and standard deviations (percentage) of classification accuracy on Fashion-MNIST.
Fashion-MNIST

IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%

CE 94.23 ± 0.08 93.94 ± 0.13 93.14 ± 0.03 89.54 ± 0.32 63.82 ± 3.87
MentorNet 93.16 ± 0.01 91.57 ± 0.29 90.52 ± 0.41 88.14 ± 0.76 61.62 ± 1.42
Co-Teaching 94.67 ± 0.08 94.23 ± 0.01 93.79 ± 0.07 92.83 ± 0.10 83.99 ± 4.57
Reweight 93.42 ± 0.16 93.12 ± 0.18 92.19 ± 0.18 88.51 ± 1.52 75.00 ± 5.28
Forward 93.48 ± 0.11 92.82 ± 0.12 91.05 ± 1.44 87.82 ± 1.81 78.34 ± 2.98
PTD 92.01 ± 0.35 91.08 ± 0.46 89.66 ± 0.43 85.69 ± 0.77 75.96 ± 1.38
CausalNL 93.97 ± 0.34 93.83 ± 0.14 93.37 ± 0.16 92.23 ± 0.24 90.13 ± 0.38
CCR 88.48 ± 0.16 83.59 ± 0.25 75.40 ± 0.19 64.39 ± 0.30 50.17 ± 0.29
MEIDTM 86.00 ± 0.84 80.99 ± 0.64 73.12 ± 2.34 63.81 ± 3.02 58.60 ± 3.32
BLTM 91.28 ± 1.93 91.20 ± 0.27 85.51 ± 4.77 82.42 ± 1.51 67.65 ± 5.65
NPC 88.78 ± 0.30 88.05 ± 0.02 84.99 ± 1.20 82.59 ± 1.22 70.58 ± 4.43
RENT 85.50 ± 0.57 79.82 ± 0.40 71.81 ± 0.86 61.70 ± 0.50 48.98 ± 1.57
DivideMix 95.24 ± 0.11 94.95 ± 0.10 94.36 ± 0.10 89.95 ± 0.15 83.35 ± 0.45
SOP 95.72 ± 0.08 95.40 ± 0.03 94.88 ± 0.03 92.54 ± 0.09 81.75 ± 0.30

CSGN 95.71 ± 0.10 95.46 ± 0.06 95.41 ± 0.07 95.25 ± 0.03 94.59 ± 0.05

Table 4: Means and standard deviations (percentage) of classification accuracy on CIFAR-10.
CIFAR-10

IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%

CE 88.22 ± 0.22 86.04 ± 0.38 82.40 ± 0.50 77.89 ± 1.46 53.97 ± 6.54
MentorNet 89.56 ± 0.19 88.80 ± 0.14 86.10 ± 0.12 81.13 ± 0.05 58.57 ± 0.71
Co-Teaching 90.32 ± 0.19 89.45 ± 0.33 87.08 ± 0.36 81.81 ± 0.62 52.09 ± 2.00
Reweight 89.63 ± 0.27 87.85 ± 0.97 81.29 ± 6.49 80.33 ± 3.75 75.14 ± 2.40
Forward 88.89 ± 0.18 87.83 ± 0.30 82.01 ± 3.29 79.49 ± 1.85 71.11 ± 8.78
PTD 79.01 ± 0.20 76.05 ± 0.53 72.28 ± 0.49 58.62 ± 0.88 53.98 ± 2.34
CausalNL 90.31 ± 0.09 89.76 ± 0.08 88.06 ± 0.53 80.97 ± 1.99 57.93 ± 7.53
CCR 91.43 ± 0.05 90.93 ± 0.07 90.15 ± 0.11 89.01 ± 0.15 86.05 ± 0.18
MEIDTM 86.52 ± 0.38 82.93 ± 0.44 77.35 ± 0.21 68.21 ± 2.09 57.84 ± 3.51
BLTM 80.16 ± 0.37 77.50 ± 1.30 71.47 ± 2.33 63.20 ± 4.52 48.12 ± 9.03
NPC 84.83 ± 0.22 83.13 ± 0.28 79.48 ± 0.31 73.85 ± 0.41 67.04 ± 0.06
RENT 80.90 ± 1.15 75.91 ± 1.39 74.06 ± 1.30 66.95 ± 2.82 52.73 ± 4.92
DivideMix 96.11 ± 0.07 95.75 ± 0.04 95.55 ± 0.23 95.30 ± 0.11 86.30 ± 0.14
SOP 96.08 ± 0.06 95.61 ± 0.05 94.14 ± 0.07 85.43 ± 0.24 63.43 ± 0.55

CSGN 96.46 ± 0.06 96.32 ± 0.05 96.27 ± 0.11 96.30 ± 0.11 95.88 ± 0.08

counterparts. This improvement indicates that our data-generating process is more effective than their
data-generating process.

4.3 Noise Transition Matrices Estimation Error

We compare the noise transition matrices estimation error of the proposed method with other methods
on the four datasets MNIST [28], Fashion-MNIST [52], CIFAR-10 [27] and CIFAR-100 [27].
The labels are corrupted manually by using the instance-dependent noisy label generation method
proposed in [50]. The noise rates are from 0.1 to 0.5. The baselines used to compare the noise
transition matrices estimation error are BLTM [55] and MEIDTM [8].

To calculate the noise transition matrix, we first estimate the clean class posterior p(Y |X) using a
classification network trained in the clean data. Then, the trained encoder and decoders are used
to learn the causal variables, reconstruct images and noisy labels based on the instance X and the
sampling from the estimated p(Y |X). The class posterior outputted by the noisy label decoder fỸ
is the estimated noise transition matrices. To quantify the estimation error, our methodology aligns
with the precedent set by previous research [51], employing the relative error as the evaluative metric.
The results of these experiments are shown in Fig. 5, which illustrates that our proposed method
surpasses the other approaches in the estimation of noise transition matrices.

4.4 Classification Accuracy

We conduct experiments on both synthetic datasets [52, 27] and real-world datasets [49, 30].
To synthesize noisy labels, we employed instance-dependent noisy label generation methods
for the synthetic datasets, as proposed by [50]. We experimented with noise rates of 0.1, 0.2,
0.3, 0.4, and 0.5, denoted by IDN-0.1, IDN-0.2, IDN-0.3, IDN-0.4, and IDN-0.5 respectively.
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Table 5: Means and standard deviations (percentage) of classification accuracy on and CIFAR-100.
CIFAR-100

IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%

CE 63.46 ± 0.56 58.92 ± 0.40 52.55 ± 0.18 45.28 ± 0.50 37.48 ± 0.62
MentorNet 67.13 ± 0.03 65.83 ± 0.18 61.79 ± 0.19 55.57 ± 0.37 47.78 ± 0.18
Co-Teaching 66.44 ± 0.41 63.76 ± 0.56 58.37 ± 0.27 49.72 ± 0.71 37.77 ± 1.31
Reweight 59.38 ± 0.33 55.14 ± 0.07 46.91 ± 1.26 37.80 ± 1.01 28.45 ± 2.57
Forward 59.58 ± 0.42 56.59 ± 0.25 52.75 ± 0.25 46.03 ± 0.65 35.07 ± 0.91
PTD 67.33 ± 0.33 65.33 ± 0.59 64.56 ± 1.55 59.73 ± 0.76 56.80 ± 1.32
CausalNL 65.33 ± 0.64 63.40 ± 0.49 55.37 ± 1.09 48.73 ± 1.49 38.69 ± 1.72
CCR 69.73 ± 0.07 68.84 ± 0.09 67.65 ± 0.08 66.54 ± 0.09 64.66 ± 0.11
MEIDTM 69.88 ± 0.45 69.16 ± 0.16 66.76 ± 0.30 63.46 ± 0.48 59.18 ± 0.16
BLTM 48.82 ± 0.44 46.61 ± 1.10 41.35 ± 0.85 35.67 ± 1.97 29.28 ± 0.74
NPC 57.84 ± 0.82 53.42 ± 0.31 50.05 ± 0.06 46.53 ± 0.07 32.60 ± 6.47
RENT 38.88 ± 2.24 35.64 ± 0.60 31.53 ± 1.03 26.03 ± 0.89 21.11 ± 0.60
DivideMix 77.26 ± 0.24 76.81 ± 0.14 76.54 ± 0.14 73.12 ± 0.32 61.54 ± 0.34
SOP 78.68 ± 0.06 77.26 ± 0.17 74.94 ± 0.06 68.94 ± 0.18 60.03 ± 0.12

CSGN 80.59 ± 0.07 79.35 ± 0.12 78.91 ± 0.11 78.58 ± 0.15 74.60 ± 0.17

Table 6: Means and standard deviations (percentage) of classification accuracy on CIFAR-N.
CIFAR-10N CIFAR-100N

Worst Aggregate Random 1 Random 2 Random 3 Noisy

CE 77.17 ± 0.56 88.28 ± 0.20 85.79 ± 0.32 85.35 ± 0.44 85.22 ± 0.03 52.45 ± 0.38
MentorNet 81.82 ± 0.21 89.92 ± 0.10 88.80 ± 0.18 88.68 ± 0.15 88.44 ± 0.35 57.70 ± 0.09
Co-Teaching 79.51 ± 0.72 90.59 ± 0.19 88.77 ± 0.19 89.00 ± 0.38 88.55 ± 0.33 55.11 ± 1.18
Reweight 77.68 ± 2.46 89.34 ± 0.09 88.44 ± 0.10 88.16 ± 0.10 88.03 ± 0.10 53.08 ± 0.61
Forward 79.27 ± 1.18 89.22 ± 0.21 86.84 ± 0.97 86.99 ± 0.10 87.53 ± 0.34 53.02 ± 0.52
PTD 65.62 ± 5.28 84.66 ± 3.28 82.11 ± 3.17 74.76 ± 9.98 84.29 ± 0.64 23.68 ± 2.65
CausalNL 78.48 ± 2.35 90.24 ± 0.12 88.08 ± 0.38 87.54 ± 0.34 87.67 ± 0.16 53.38 ± 1.42
CCR 80.43 ± 0.24 90.10 ± 0.09 88.53 ± 0.08 88.21 ± 0.11 88.46 ± 0.08 57.21 ± 0.25
MEIDTM 79.59 ± 0.89 90.15 ± 0.27 87.81 ± 0.52 88.07 ± 0.18 87.86 ± 0.21 38.90 ± 0.91
BLTM 68.21 ± 1.67 79.41 ± 1.00 78.09 ± 1.03 76.99 ± 1.23 76.26 ± 0.71 41.86 ± 0.46
NPC 75.40 ± 0.48 85.56 ± 0.47 83.07 ± 0.30 83.34 ± 0.18 83.27 ± 0.36 46.02 ± 0.36
RENT 70.01 ± 2.23 80.94 ± 0.53 77.46 ± 0.99 77.74 ± 1.06 77.42 ± 0.15 32.79 ± 1.39
DivideMix 93.41 ± 0.19 95.12 ± 0.15 95.32 ± 0.13 95.15 ± 0.09 95.23 ± 0.16 69.45 ± 0.19
SOP 93.24 ± 0.21 95.61 ± 0.13 95.28 ± 0.13 95.31 ± 0.10 95.39 ± 0.11 67.81 ± 0.23

CSGN 94.01 ± 0.12 95.87 ± 0.08 95.47 ± 0.12 95.45 ± 0.09 95.54 ± 0.06 71.99 ± 0.08

Table 7: Test accuracy of CSGN on the
WebVision validation set and the Ima-
geNet ILSVRC12 validation set.

WebVision ILSVRC12

top-1 top-5 top-1 top-5

Forward 61.12 82.68 57.36 82.36
Decoupling 62.54 84.74 58.26 82.26
MentorNet 63.00 81.40 57.80 79.92
Co-Teaching 63.58 85.20 61.48 84.70
DivideMix 77.32 91.64 75.20 90.84
ELR+ 77.78 91.68 70.29 89.76
CSGN 79.84 93.52 76.56 93.76

The experimental results for synthetic datasets are pre-
sented in Tab. 3, Tab. 4 and Tab. 5. The real-world dataset
experiment results are presented in Tab. 6 and Tab. 7. Gen-
erally, our proposed method outperforms existing methods
in terms of test accuracy on both synthetic and real-world
datasets containing label noise. In particular, when the
noise rate is equal to 50%, the accuracy of the model is
about ten percentage points higher than the best baseline
method. The results demonstrate that the proposed method
can capture the noise transition matrix under different set-
tings and improve the classification performance.

5 Conclusion

Noise transition matrices are important for many label-noise learning algorithms. However, current
label-noise learning methods often can only estimate the noise transition matrices of some instances.
To leverage these estimated transition matrices to help estimate transition matrices of other instances.
It is crucial to establish the connection among the noise transition matrices for different instances.
Prior work tackled this issue by manually defining the similarities of noise transition matrices across
different instances. Given only noisy data, the introduced similarity-based assumptions are hard
to verify. If similarities are not truthful, the estimation error of the noise transition matrix could
be large, leading to performance degeneration for label-noise learning algorithms. We propose an
effective method to capture the connection among the noise transition matrices implicitly by modeling
the latent causal structures in the generation of noisy data. Experimental results on different noisy
datasets show that our method achieves state-of-the-art performance in estimating noise transition
matrices, which leads to improved classification accuracy.
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A Derivation of ELBO

The derivation of ELBO is shown as follows:

E(x,ỹ,y)∼qD [log pθ(x, ỹ|y)]

=E(x,ỹ,y)∼qD

[
log

pθ(x, ỹ,z, s|y)
qφ(z, s|x, y)

qφ(z, s|x, y)
pθ(z, s|x, ỹ, y)

]
(7)

=E(x,ỹ,y)∼qD

[∫∫
qφ(z, s|x, y) log

pθ(x, ỹ,z, s|y)
qφ(z, s|x, y)

qφ(z, s|x, y)
pθ(z, s|x, ỹ, y)

dzds

]
(8)

=E(x,ỹ,y)∼qD

[∫∫
qφ(z, s|x, y) log

pθ(x, ỹ,z, s|y)
qφ(z, s|x, y)

dzds

+KL(qφ(z, s|x, y)||pθ(z, s|x, ỹ, y))] (9)

≥ E(x,ỹ,y)∼qD

[∫∫
qφ(z, s|x, y) log

pθ(x, ỹ,z, s|y)
qφ(z, s|x, y)

dzds

]
. (10)
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ELBO =E(x,ỹ,y)∼qD

[∫∫
qφ(z, s|x, y) log

pθ(x, ỹ,z, s|y)
qφ(z, s|x, y)

dzds

]
(11)

=E(x,ỹ,y)∼qD

[∫∫
qφ(z, s|x, y) log

pf (x, ỹ|z, s, y)pW ,µN ,σ2
N
(z|y)p(s)

qφ(z, s|x, y)
dzds

]
(12)

=E(x,ỹ,y)∼qD

[∫∫
qφ(z, s|x, y) log pf (x, ỹ|z, s, y)dzds

+

∫∫
qφ(z|x, y)qφ(s|x, y) log

pW ,µN ,σ2
N
(z|y)p(s)

qφ(z|x, y)qφ(s|x, y)
dzds

]
(13)

=E(x,ỹ,y)∼qD
[
E(z,s)∼qφ [log pf (x, ỹ|z, s, y)]

−KL(qφ(z|x, y)||pW ,µN ,σ2
N
(z|y))−KL(qφ(s|x, y)||p(s))

]
(14)

=E(x,ỹ,y)∼qD̃qψ
[
E(z,s)∼qφ [log pf (x, ỹ|z, s)]

−KL(qφ(z|x, y)||pW ,µN ,σ2
N
(z|y))−KL(qφ(s|x, y)||p(s))

]
, (15)

where Eq. 13 holds because we the approximate the distribution qφ(Z,S|X, Y ) by the posterior
distribution qφ(Z|X, Y ) and qφ(S|X, Y ), i.e., qφ(Z,S|X, Y ) ≈ qφ(Z|X, Y )qφ(S|X, Y ).

B Identifiability Analysis

In this section, we discuss the required conditions for identifying latent causal structures.

The data-generating process can be defined as:

pf (X, Ỹ |Z,S) = pfX (X|MX ⊙Z,S)pfỸ (Ỹ |MỸ ⊙Z)

= pεX (X − pfX (MX ⊙Z,S))pεỸ (Ỹ − pfỸ (MỸ ⊙Z)), (16)

which means that the value of X and Ỹ can be decomposed as X = fX(MX ⊙Z,S) + εX , Ỹ =
fỸ (MỸ ⊙ Z) + εỸ , where εX and εỸ are independent noise variables with probability density
functions pεX (εX) and pεỸ (εỸ ). The variables S represent other variables unrelated to the clean
label in the instances, such as the rotation and brightness [17].

Intuitively, the instances are generated by a subset of the causal variables and the variables S,
while the noisy labels are generated by another subset of the causal variables. Let fs represent the
combination of the functions fX and fỸ given a style s. In this case, both functions fX and fỸ are
bijective, the overall mapping fs used to generate X and Ỹ is also bijective.

Let m denote the number of the causal variables, which is also the number of the latent noise
variables; Let k denote the dimension of the sufficient statistics for the causal variables Z. We have
the following theorem:

Theorem B.1. [39] Suppose latent causal variables Z and the observed variables Y, Ỹ follow the
generative model defined in Eq. (4) with parameters (fs,W ,µN ,σ2

N ). Given a style s, assume the
following holds:

1. The set {x ∈ X |φε(x)} has measure zero, where is the characteristic function of the density
pε.

2. The function fs is bijective.

3. There exist 2m+ 1 distinct points yN 0,yN 1, . . . ,yN 2m, such that the matrix

LN = (ηN (Y = yN 1)− ηN (Y = yN 0), . . . ,ηn(Y = yN 2m)− ηN (Y = yN 0)) (17)

of size 2m× 2m is invertible.

4. There exist k + 1 distinct points yZ0,yZ1, . . . ,yZk, such that the matrix

LZ = (ηZ(Y = yZ1)− ηZ(Y = yZ0), . . . ,ηZ(Y = yZk)− ηz(Y = yZ0)) (18)

of size k × k is invertible.
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5. The function class of Wi,j can be expressed by a Taylor series: for each Wi,j , W (0)i,j = 0.

then the true latent causal variables Z are related to the estimated latent causal variables Ẑ by
the following relationship: Z = PẐ + c, where P denotes the permutation matrix with scaling, c
denotes a constant vector.

The theorem guarantees that the causal variables can be identified up to simple linear transformations,
i.e., permutation and scaling, under these assumptions. Intuitively, it shows that in the worst case,
given a fixed style s (fixed rotations, lighting conditions, positions, etc.), it requires k + 1 clean
examples from distinct classes to recover the causal variables and their relations, where k is the
dimension of the sufficient statistics for the causal variables Z. In our method, we assume the causal
association among causal variables is a fully-connected directed acyclic graph, and we assume the
distribution of latent noise variables is Gaussian; then, we can obtain k = m + (m(m + 1))/2,
where m is the number of causal variables. If ns is the number of different style combinations,
then ns(k + 1) clean examples from distinct classes are required. This is because, for each style
combination, the parameters of the generative models can generally differ, necessitating the selection
of clean examples for each style combination to identify the different parameters. Given that the
number of latent causal variables in our causal graph is four, ns × 15 clean examples from distinct
classes are required to identify the causal model.

Note that this is the theoretical worst-case scenario under the nonlinear ICA framework. If we
assume that changes in style combinations do not affect the parameters (fs,W ,µN ,σ2

N ), then
the data-generating process is invariant across different styles. Under this assumption, a best-case
scenario can be derived such that we only need k + 1 clean examples to identify the parameters. For
our causal graph, which includes four latent causal variables, only 15 clean examples from distinct
classes are necessary to identify the causal model.

By demonstrating both the worst-case and best-case scenarios, and showing the assumptions required
to achieve the best cases, we believe the theorem not only provides valuable insight into our methods
but also enhances the understanding of previous methods for learning the data-generating process
[56].

C More Details of the Warmup Strategy

To improve the performance of the classification network, the information of the remaining exam-
ples is exploited to train the classification network by using the semi-supervised learning method
MixMatch [4]. Specifically, let the selected clean examples be the labeled examples SX and the
remaining examples be the unlabeled examples SU . The labels in the labeled examples SX are refined
through the output of the classification network gY . The outputs of the classification network gY for
unlabeled examples are used to generate guessed labels. Then, the temperature sharpening is applied
to the refined labels and guessed labels on the labeled examples and unlabeled examples, respectively.
After that, the labeled examples SX and the unlabeled examples SU are transformed into augmented
labeled examples S ′X and augmented unlabeled examples S ′U by using a linear mixing. The loss
function used to train the classification network is

Lsemi = LSX + λuLSU + λrLreg,

where LSX is the cross-entropy loss for the labeled examples; LSU is the mean squared error the
unlabeled examples; Lreg is a regularization term to prevent the model from predicting all examples
to belong to a single class. These three terms are defined as follows specifically.

LSX = − 1

|S ′
X |

∑
x,p∈S′

X

∑
i

pi log(qψ(Y = i|x)),

LSU =
1

|S ′
U |

∑
x,p∈S′

U

∥p− qψ(Y |x)∥22 ,

Lreg =
∑
i

1

C
log(1

/
C

|S ′
X |+ |S ′

U |
∑

x∈SX+SU

qψ(Y = i|x)),

where p is the label, qψ(Y |x) := [qψ(Y = 1|x), . . . , qψ(Y = C|x)]T , and C denote number of
class.
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D More Implementation Details

We use a 6-hidden-layer convolutional network as the encoder gZ,S , and the channel sizes of
corresponding feature maps are 32, 64, 128, 256, 512, and 512 for Fashion-MNIST, CIFAR-10,
CIFAR-100, and CIFAR-N. We use a 5-hidden-layer convolutional network as the encoder gZ,S ,
and the channel sizes of corresponding feature maps are 32, 64, 128, 256, and 512 for WebVision.
A 6-hidden-layer transposed-convolutional network as the instance decoder and the channel size
of corresponding feature maps are 512, 512, 256, 128, 64, and 32 for Fashion-MNIST, CIFAR-
10, CIFAR-100, and CIFAR-N. A 5-hidden-layer transposed-convolutional network is used as the
instance decoder, and the channel sizes of the corresponding feature maps are 512, 256, 128, 64, and
32 for WebVision. We use a three-layer MLP with the Leak ReLU activation function as the weight
model to learn the weight of causal relations among the causal variables. To generate noisy labels, a
three-layer MLP with the Leak ReLU activation function is used as the noisy label decoder.

The settings of hyperparameters for semi-supervised loss follow previous work [29]. The hyperpa-
rameter λr is set to 1. For FashionMNIST and CIFAR-10 dataset, the hyperparameter λu is set to
5, 10, 15, 20 and 25 for noise rates 10%, 20%, 30%, 40% and 50%. For CIFAR-100 dataset, the
hyperparameter λu is set to 10, 25, 50, 100 and 150 for noise rates 10%, 20%, 30%, 40% and 50%.
For the CIFAR-N dataset, λu is set to 20 for the noise type “Worst”, 100 for the noise type “Noisy”
and 0 for other noise types. For WebVision dataset, λu is set to 0. The hyperparameters λELBO and
λM are set to 0.5 and 0.001 for synthetic datasets. For the real-world datasets, λELBO and λM are
set to 0.1 and 0.001.

Algorithm 1 CSGN

Input: A noisy dataset D̃, Warm Up epoch Tw, Total epoch Tmax. .
1: g1

Y , g
2
Y ←WarmUP(D̃);

2: For T = 1, . . . , Tw:
3: For k=1, 2:
4: Sample (x, ỹ) ∼ D̃;
5: ŷ ← gkY (x);
6: Sample (z, s) ∼ qkϕ(Z,S|X = x, Y = ŷ);
7: Calculate the prior distribution pk

W ,µN ,σ2
N
(Z|Y = ŷ) based on ŷ;

8: Sample x̂ ∼ pkfX (X|Z = MX ⊙ z,S = s);
9: Sample ˆ̃y ∼ pkfỸ

(Ỹ |Z = MỸ ⊙ z);
10: Calculate the loss using Eq. (5) and update networks qkϕ(·), pkW ,µN ,σ2

N
(·), pkfX (·) and pkfỸ

(·);
11: For T = 1, . . . , Tmax:
12: SX ,SU ← Selection(D̃, g1

Y , g
2
Y );

13: S ′X ,S ′U ← MixUp(SX ,SU );
14: For k=1, 2:
15: Sample (x, ỹ) ∼ D̃;
16: ŷ ← gkY (x);
17: Sample (z, s) ∼ qkϕ(Z,S|X = x, Y = ŷ);
18: Calculate the prior distribution pk

W ,µN ,σ2
N
(Z|Y = ŷ) based on ŷ;

19: Sample x̂ ∼ pkfX (X|Z = MX ⊙ z,S = s);
20: Sample ˆ̃y ∼ pkfỸ

(Ỹ |Z = MỸ ⊙ z);
21: Calculate the loss using Eq. (5) and update networks gkY (·), qkϕ(·), pkW ,µN ,σ2

N
(·), pkfX (·) and

pkfỸ
(·);

Output: The classification networks g1
Y , g

2
Y .

E Pseudocode

The algorithm of the proposed method, Causal Structure for the Generation of Noisy data (CSGN),
is shown in Alg. 1. To prevent the accumulation of errors from biased selection, we adopt the
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approach of using two neural networks, g1Y and g2Y , to select clean examples for each other, following
the approach in previous work [13]. These neural networks model the distributions q1ψ(Y |X) and
q2ψ(Y |X), respectively.

F Limitations

In our paper, to provide the theoretical analysis, we assume that the causal relations among the latent
causal variables are linear, i.e., the causal variables are influenced by other causal variables linearly.
How to identify nonlinear causal relations among the latent causal variables is still an open problem.
We will continually target this problem in our future work. Moreover, to identify causal variables,
similar to many existing work [13, 29, 56, 10], we also require to selected clean examples from noisy
data. In future work, we will study how to reduce the required number of clean examples to achieve
better accuracy with realistic assumptions. Last, our method is a generative-based method, and it
requires an additional generative network, leading to more computation costs.

G Other Methods in Learning with Noisy Labels

Label-noise learning is a subset of learning with noisy labels. Methods in label-noise learning refer
specifically to the methods that model the transition matrices. In this section, we briefly introduce
other approaches in learning with noisy labels. Some algorithms [13, 29, 58, 34] select examples
which likely to be correct for training. These selections are based on the memorization effect
[60, 35, 3, 33, 59], which suggests deep neural networks initially memorize major patterns before
progressively memorizing minor ones. In datasets containing noisy labels, correctly labeled examples
often form the majority. This enables the networks to prioritize learning from these examples at the
early stage of training. As a result, these examples can typically be identified by their low loss values
early on. Co-Teaching [13] employs this principle to identify small-loss examples as probably clean
examples. DivideMix [29] uses a Gaussian Mixture Model to separate training examples into labeled
and unlabeled sets based on their training loss, with the labeled set assumed to contain correct labels
and trains networks in a semi-supervised manner [4, 16]. Some methods design robust loss functions
for learning with noisy labels. If a loss function ℓ is symmetric, i.e.,

∑
i ℓ(gY (X), i) = c, where

c is a constant, the loss function ℓ is robust to label noise [11, 12]. By combating Cross Entropy
and Reverse Cross Entropy, Symmetric Cross Entropy Learning is robust to label noise [48]. Some
methods correct noisy labels in datasets [47, 61]. Tanaka et al. proposed a method that updates
network parameters and class labels alternatively. Zheng et al. provided theoretical guarantees for
data-re-calibrating methods and proposed a label-correction algorithm with a guaranteed success rate
[61]. NPC [1] is a post-processing method that models the generation process of clean labels and
then uses the model to calibrate the prediction of classifiers.

H Sensitivity Tests for Hyper-Parameters
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Figure 6: Illustration of the test accuracy on CIFAR-10 under instance-dependent noise with noise
rate 0.5 and Worst human label set, respectively. The error bar for standard deviation has been shaded.

We conduct sensitivity tests on hyperparameters λELBO and λM on CIFAR-10 dataset under the
instance-dependent label noise with the noise rate of 0.5 and CIFAR-10N dataset under the real-world
label noise, the Worst human label set. The experiment results are shown in Fig. 6. The experiment
results demonstrate that the hyperparameters λELBO and λM are not sensitive. For the datasets under
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Figure 7: The test accuracy on CIFAR-10 for different numbers of causal variables under instance-
dependent noise with a noise rate of 0.5. The error bar for standard deviation has been shaded.

the synthesis noise, the hyperparameters λELBO and λM are set as 0.5 and 0.001. For the datasets
under the real-world noise, the hyperparameters λELBO and λM are set as 0.1 and 0.001.

We also conduct a sensitivity test for the number of causal variables on CIFAR-10 dataset under
instance-dependent noise with a noise rate of 0.5. Experiment results are shown in Fig. 7. The results
demonstrate that the proposed method is not sensitive to the number of causal variables ranging from
1 to 12. We set the number of causal variables at 4 for all experiments.

I Ablation Study

Table 8: Ablation study for warmup strategies. CSGN-WOSM indicates the version of CSGN without
warmup using the semi-supervised learning technique. Experiments on CIFAR-10.

CIFAR-10

IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%

CSGN-WOSM 96.19 ± 0.12 96.05 ± 0.07 95.94 ± 0.07 95.88 ± 0.15 94.43 ± 0.07
CSGN (ours) 96.46 ± 0.06 96.32 ± 0.05 96.27 ± 0.11 96.30 ± 0.11 95.88 ± 0.08

Warmup Strategies We conduct the ablation study to assess the impact of removing the semi-
supervised learning warmup phase from the CSGN method. In the study, we replaced the semi-
supervised warmup with a regular early-stopping approach, where the neural networks were trained
for 10 epochs on the training data. The variant of CSGN without the semi-supervised learning
warmup is denoted as CSGN-WOSM. The experiment results are shown in Tab 8. The results indicate
that CSGN retains its effectiveness even without the semi-supervised learning warmup.

Table 9: Ablation study for ELBO loss and LM . Experiments are on CIFAR-10.
CIFAR-10

IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%

CSGN without ELBO and LM 96.03 ± 0.11 95.71 ± 0.10 95.46 ± 0.06 95.44 ± 0.12 88.10 ± 0.26
CSGN without ELBO 96.04 ± 0.05 95.75 ± 0.08 95.54 ± 0.09 95.29 ± 0.05 88.47 ± 0.13
CSGN without LM 96.26 ± 0.08 96.17 ± 0.05 96.24 ± 0.04 96.29 ± 0.07 95.74 ± 0.05
CSGN (ours) 96.46 ± 0.06 96.32 ± 0.05 96.27 ± 0.11 96.30 ± 0.11 95.88 ± 0.08

Loss Functions To evaluate the impact of the loss functions, ELBO and LM , we conduct an
ablation study by removing these loss functions and training classification networks to observe their
classification performances. The experiment results are shown in Tab. 9. The results demonstrate the
effectiveness of each loss function.

Semi-supervised Learning and Sample Selection We remove the semi-supervised learning tech-
nique and clean sample selection in our method. Instead, we use another simple algorithm PES [3]
which trains a label-noise-robust classifier via early stopping. We leverage the prediction of this
classifier for estimating the clean label. We refer to this variant of CSGN as CSGN-PES. The loss of
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Table 10: CSGN works with PES. Experiments are on CIFAR-10.
CIFAR-10

IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%

PES 92.95 ± 0.10 92.24 ± 0.18 91.08 ± 0.11 87.82 ± 1.11 82.70 ± 1.25
CSGN-PES 93.05 ± 0.06 92.61 ± 0.11 91.88 ± 0.07 89.42 ± 0.05 85.45 ± 0.05
CSGN (ours) 96.46 ± 0.06 96.32 ± 0.05 96.27 ± 0.11 96.30 ± 0.11 95.88 ± 0.08

CSGN-PES is

Lpes = E(x,ỹ)∼D̃[ℓce(qψ(x), ỹ)]− λELBOELBO + λMLM , (19)

where ℓce is the cross-entropy loss.

The experiment results are shown in Tab. 10. The experiment settings follow the settings of PES. The
experiment results show that our method can still work well when without using the semi-supervised
learning technique and clean sample selection.

J The Number and the Accuracy of the Selected Clean Samples

Table 11: The number and the accuracy of the selected clean samples on CIFAR-10.
CIFAR-10

IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%

Number 43707.00 ± 3.52 39911.20 ± 14.47 35040.20 ± 5.49 29913.40 ± 4.41 25016.40 ± 5.24
Accuracy 99.41 ± 0.00 99.05 ± 0.03 98.86 ± 0.01 98.77 ± 0.01 97.93 ± 0.02

Table 12: The number and the accuracy of the selected clean samples on CIFAR-100.
CIFAR-100

IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%

Number 41354.40 ± 49.30 37391.40 ± 126.90 32974.80 ± 66.08 28210.00 ± 44.47 26962.40 ± 37.79
Accuracy 99.74 ± 0.01 99.62 ± 0.03 99.40 ± 0.01 98.93 ± 0.01 85.58 ± 0.12

We report the number and the accuracy of the selected clean samples on CIFAR-10 and CIFAR-100
datasets. The results are shown in Tab. 11 and 12. The results indicate that our method can select a
large number of clean samples while maintaining high accuracy.

K The Performance on the Selected Clean Samples

Table 13: Performance of the classifier trained on selected clean samples. Experiments are on
CIFAR-10.

CIFAR-10

IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%

CE-clean 94.19 ± 0.09 93.69 ± 0.09 93.46 ± 0.07 92.16 ± 0.08 91.46 ± 0.05

CSGN 96.46 ± 0.06 96.32 ± 0.05 96.27 ± 0.11 96.30 ± 0.11 95.88 ± 0.08

Table 14: Performance of the classifier trained on selected clean samples. Experiments are on
CIFAR-100.

CIFAR-100

IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%

CE-clean 75.28 ± 0.16 74.66 ± 0.15 73.44 ± 0.12 71.89 ± 0.09 66.03 ± 0.25
CSGN 80.59 ± 0.07 79.35 ± 0.12 78.91 ± 0.11 78.58 ± 0.15 74.60 ± 0.17

We also conduct experiments on the selected clean samples. Specifically, we trained a classification
network using standard cross-entropy loss on these samples, employing the same architecture as our
model, CSGN. The results of these experiments are presented in Tab. 13 and 14. These experiment
results show that the performance of the network trained on the selected clean samples is lower than
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that of our method. The primary reasons are the reduced sample size of the selected clean samples
and a distribution shift from the overall dataset, i.e., the distribution of the selected clean samples
is different from the whole dataset. Consequently, despite a lower noise rate in the selected clean
samples, the performance of the classification network remains below that of our method.

L Experiments on the Synthetic Dataset

Figure 8: The visualization of the training data. The noise rate is dependent on feature 2. The average
noise rate is 0.3.

To verify the proposed method can learn the causal graph and the mask, we conduct an experiment
using a synthetic dataset known as the “moon dataset”. The data points have two dimensions and are
categorized into two distinct categories. To create noisy labels caused by a single factor, the noise
rate for each data point is dependent on the value of its second dimension. The visualization of noise
rates for all training samples is shown in Fig. 8. Note that the causal variables of the moon dataset
are independent. We train our model on this synthetic dataset with the dimension of the latent factor
Z set to 2.

After training, the causal weight between two causal variables is -0.0008. The influence is small
enough, which means that they are independent. The values of the mask variable MỸ for noisy labels
are [0.0000, 0.0232], which shows that our mask mechanism effectively identifies and selects the
critical latent factor responsible for generating noisy labels.

We also compare the performance of our method with that of MEIDTM and CausalNL. MEIDTM
does not model any causal mechanism. CausalNL roughly models the data-generating process, but
the direct cause of noisy labels is the image, which is not aligned with the generating process of the
moon dataset. Our model is the closest to the real-world data-generating process compared with these
methods. Empirically, our method can achieve a test accuracy of 98.07 ± 0.69% and an estimation
error for the transition matrix of 0.10 ± 0.07. In comparison, the test accuracy for CausalNL, which
does not model the latent causal structure, is 97.88 ± 0.75% and a transition matrix estimation error
of 0.12± 0.06. At the same time, the test accuracy of MEIDTM is 91.06± 0.75%, and the estimation
error of the transition matrix is 0.45 ± 0.16. The results show that a good causal structure can lead to
good transition matrix estimation.

M Comparison of the Noise Transition Matrix

We use t-SNE visualization to compare the noise transition matrix learned by our method with those
derived from the MEIDTM [8]. We also select 30 pairs of data points with the same predicted clean
labels. The dataset is CIFAR-10 with instance-dependent label noise, and the noise rate is 50%. The
experiment results are shown in Fig. 9. These data points are the same in two figures. We can see
that the distance between the same pair is different in the two images. For example, the pairs with
number 25 are close to each other in the first figure but are further apart in the second figure. This can
verify that the similarity learned by our method is different from the instance-dependent transition
matrix-based method MEIDTM.
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(a) CSGN (b) MEIDTM

Figure 9: The t-SNE visualization of the similarity of the learned noise transition. The pairs of data
points with the same predicted clean label are marked with the same number. The distances between
two data points represent the difference between the two noise transition matrices of these data points.
The distance between the pair with the same number is different in the two images.

N Impact Statements

This paper presents work whose goal is to advance the field of learning with noisy labels. This
work can reduce the cost (annotation costs) of training artificial intelligence models. Therefore, the
threshold for using artificial intelligence has been lowered, and artificial intelligence technology is
more widely used in society. There are no foreseeable negative effects.
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• Including this information in the supplemental material is fine, but if the main contribu-
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