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Figure 1: We propose a Tangent Kernel optimization for Incremental Learning (TKIL) with a novel
Gradient Tangent Kernel (GTK) loss for optimal class balanced learning.

ABSTRACT

When sequentially learning multiple tasks, deep neural networks tend to loose ac-
curacy on tasks learned in the past while gaining accuracy on the current task. This
phenomenon is called catastrophic forgetting. Class Incremental Learning (CIL)
methods address this problem by keeping a memory of exemplars from previous
tasks aimed to assist with overall accuracy of all tasks. However, existing meth-
ods are not always able to balance the accuracy across all seen tasks and could
overfit to the current task due to data imbalance between the complete training
data points for the current task and the limited exemplars in the memory buffer for
previous tasks. Here, we propose to address the data imbalance by learning a set
of generalized non-task-specific parameters in addition to task-specific models. In
particular, we propose a novel methodology of Tangent Kernel for Incremental
Learning (TKIL) that seeks an equilibrium between current and previous repre-
sentations. We achieve such equilibrium by computing and optimizing for a new
Gradient Tangent Kernel (GTK). Specifically, TKIL tunes task-specific parame-
ters for all tasks with GTK loss. Therefore, when representing previous tasks,
task-specific models are not influenced by the samples of the current task and are
able to retain learned representations. As a result, TKIL equally considers the con-
tribution from all task models. The additional generalized parameters that TKIL
obtains allow it to automatically identify which task is being considered and to
adapt to it during inference. Extensive experiments on 5 CIL benchmark datasets
with 10 incremental learning settings show that TKIL outperforms existing state-
of-the-art methods, e.g., a 9.4% boost on CIFAR100 with 25 incremental stages.
Furthermore, TKIL attains strong state-of-the-art accuracy on large-scale datasets,
with a much smaller model size (36%) compared to other approaches.

1 INTRODUCTION

Visual content is evolving and its volume is rapidly increasing. Indeed, high-quality and large-scale
visual media streaming data could easily become unfeasible to store and process in completeness
(Cheng & Wang| (2011))). Therefore, learning agents that do not require access to complete data
and continuously learn new data are appealing. Class Incremental Learning (CIL) addresses the
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development of such methods, where agents are expected to learn with incremental arrival of new
training data and limited exemplars from previous tasks (Rebuffi et al. (2017)).

This learning scenario is significantly different from conventional learning, especially for classifi-
cation tasks, due to the data imbalance between current and previous tasks. Since full past data is
not retained, there is significantly less data available for them than for the current task. Therefore,
CIL aims to achieve an equilibrium between current and previous representations. While current
advanced methods propose additional finetuning steps to correct this imbalance, e.g., balanced fine-
tuning or task-level bias rectification, training a fixed model for all tasks limits the ability to deal
with imbalanced data (|Ahn et al.[(2021); [Kang et al.| (2022)).

Here, we take a different approach based on the principle of attaining generic representations that
are task-independent. Instead of training a fixed model for all tasks, we propose to learn a set of
generalized parameters as a generic model. The model predicts the task that is at hand and would
adapt to the corresponding task automatically during inference. To achieve that, the gradients with
respect to the parameters of the generic model are supposed to consider the contributions of all tasks
in a balanced way. Motivated by Neural Tangent Kernel (NTK) theory that captures gradients (with
respect to parameters) into a non-trained deterministic kernel to represent an unbiased trained net-
work, we aim to find counterpart kernels in CIL where kernels represent previously trained unbiased
model and are expected to assist training a new unbiased generic model (Jacot et al.| (2018)).

Adaptation of NTK to incremental learning is not a direct implementation. The reason for this chal-
lenge stems from tangent kernels designed for ultra-wide neural networks only, while networks in
CIL are finite-width (Li et al.| (2019)). To overcome this challenge, we propose a novel Tangent
Kernel optimization approach for Incremental Learning (TKIL). Specifically, we propose a novel
Gradient Tangent Kernel (GTK) for CIL finite-width neural networks where GTK is a cosine simi-
larity kernel between the gradients (with respect to parameters) from previous and current models.
During updates of the generic model, TKIL tunes with GTK loss for different task-specific models
representing current and previous tasks and takes the average of task-specific updates as the update
of the generic model. In such updates, the GTK loss is expected to rectify the overfitting, if it oc-
curs in the generic model. During inference, such a generic model cooperates with the inference
pipeline to predict the task at hand when given testing points and adapts itself to this task to perform
classifications.

In summary, our main contributions are: 1) We propose a novel class incremental learning approach,
TKIL, that addresses the imbalances in memory-based incremental learning. 2) The core of TKIL is
a novel tangent kernel (GTK) for finite-width neural networks. We mathematically prove that mini-
mizing GTK loss associated with TKIL, expressed as the cosine distance of two Jacobian matrices,
avoids local optimums and achieves balanced representations. Such balanced representations allow
TKIL to generate robust task predictions and to update to corresponding task-specific models during
inference. 3) Extensive experiments on MNIST, SVHN, CIFAR-100, and ImageNet show that TKIL
achieves robust accuracy on task predictions and this accuracy translates to outperforming existing
incremental learning methods, especially in multi-class incremental learning scenarios.

2 RELATED WORK

Class Incremental Learning typically includes three components: Exemplars Selection With Re-
hearsal (Rebuffi et al.| (2017); [Castro et al.| (2018); [Hou et al.| (2019)), Forgetting Constraints
(Kirkpatrick et al.| (2017); Li et al.| (2020); (Chaudhry et al.| (2018); |/Aljundi et al.|(2018))), and Bias
Corrections (Wu et al.|(2019); Belouadah & Popescu|(2019);|Hou et al.|(2019); Zheng et al.| (2020)).
In addition, End-to-End IL (Castro et al.| (2018])) proposed a finetuning phase to boost the overall
accuracy. In summary, consequent works contributed to the enhancement and combination of these
four components. As a result, the exemplar-based method combined with forgetting constraints has
been shown to be the current leading approach (Ahn et al.| (2021))). We describe these two compo-
nents in detail below.

» Exemplars Selection With Rehearsal. Rehearsal methods store a small set of previous task ex-
emplars in a memory buffer to represent previously learned tasks. Multiple methods proposed
herding heuristics (Welling (2009)) to select the most representative exemplars (Rebuffi et al.
(2017); |Castro et al.[(2018); Hou et al.| (2019)). Additional methods estimated the distribution of
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Figure 2: Illustration of Tangent kernel Incremental Learning approach. In the mini-batch, we
separate training steps into different tasks. 1) For the previous tasks (task i,7 = 1,2,3,...N — 1),
we optimize task-specific models with BCE loss (brown color), knowledge Distillation loss (pink
color), and the Gradient Tangent kernel loss (red loss) with exemplars from a fixed memory; 2)
For the current task (task 7°), only employs BCE loss (brown loss backward) (FE: Feature extractor
layers, FC: Fully Connected layers)

previously learned tasks and generated extra pseudo-exemplars or images to avoid the imbalance
between classes (Liu et al.[ (2020); |Ostapenko et al.[ (2019); (Odena et al.| (2017)). Our approach
does not rely on a particular selection of exemplars to boost accuracy, and therefore, sampling is
performed from each class randomly.

» Forgetting Constraints. Various regularization terms have been added to the classification loss
to constrain forgetting of previous representations (Kirkpatrick et al| (2017); [Li et al.| (2020);
Chaudhry et al.| (2018)); |Aljundi et al.| (2018)). In addition, Knowledge Distillation (KD) has
been proposed to restore previous knowledge representations (Rebuffi et al.|(2017); |Castro et al.
(2018); L1 & Hoiem| (2017); |Ahn et al.| (2021))). Furthermore, Adaptive Feature Consolidation
(AFC) (Kang et al.[(2022)) further modified KD to define the discrepancy loss, which estimates
representation changes and retains important representation features. While KD loss turned out
to be effective, it appears that KD alone cannot fully resolve imbalanced data distributions. Thus,
our method tunes different task-specific models with GTK loss to learn previous and current tasks
separately. As such, TKIL is able to obtain unbiased knowledge representations for all tasks.

Neural Tangent Kernels (NTK). NTK were first introduced in Jacot et al.|(2018)) and developed in
multiple subsequent works (|Arora et al.|(2019);[L1 et al.| (2019); Novak et al.| (2019); [Wallace et al.
(2021)). NTK employs kernels gradient to describe the convergence behavior of over-parameterized
DNNs in a limit of infinite width such that it can mimic the accuracy in this limit. A recent work
introduced Task Tangent Kernel (TTK) ( |Wallace et al.| (2021))), which uses a kernelized distance
across the gradients of multiple random initialized networks to estimate the similarity over different
tasks. While NTK and related methods motivated our work, infinite-width neural networks do not
apply to incremental learning and finite-width networks require a novel tangent kernel framework
for such a scenario.

3 METHODS

Given an imbalanced training distribution at each stage, incremental learning aims to train a uni-
fied classifier sequentially for all seen tasks. To this end, we propose a Tangent Kernel Incremen-
tal Learning approach for continually training an unbiased generic model. Figure 2] illustrates an
overview of our approach. In the following subsections, we describe the approach by introducing
notations in Section and defining tangent kernels for CIL finite-width networks in Section
To resolve imbalances, TKIL tunes task-specific models with GTK loss and combines all task mod-
els into a final generic model in Section [3.3] We compare TKIL with other related methods in
Section 3.4



Under review as a conference paper at ICLR 2023

3.1 NOTATIONS

We denote a sequence of data as a batch of datasets D={D1, D, ..., Dy} for N tasks. Dy (p< N)
is T-th dataset in D, which contains the training images = {z; }?_; and labels y ={y; }?_,. Each
D, (7<) dataset includes m classes, with total m X N classes in D. At T-th 1ncremental stage,
only complete data for current classes D and a small set of previous exemplars My = {M; C
Dy,M5 C Dg,...,Mr_1 C Dp_1} in a fixed memory buffer are available for training. We
denote the T-th generic model as Fr = F(0p,x), where 7 = {0r,ér} is all parameters in
the network and {61, @1} denote the parameters in feature extractor layers and fully connected
layers, respectively. We use @7, us; and 07 4,4 ; as the parameters for the task-specific model 4
in T-th incremental stage. We denote F'(0) to represent a finite-width neural network and 6 as
corresponding parameters when not involving incremental learning.

3.2 GRADIENT TANGENT KERNEL

In this section, we describe a finite-width deep neural network as our generic model and show
that training the 7-th model in CIL with the assistance of the previous (7'—1)-th model gives rise
to the minimization of cosine distance of Gradient Tangent Kernel (GTK). GTK inherits its name
from Neural Tangent Kernel (NTK), since NTK theory shows that randomly initialized ultrawide
deep neural network trained with gradient descent with infinitesimal step size is equivalent to a
kernel regression with a deterministic kernel (Arora et al.| (2019)). However, in contrast to NTK,
we consider a more general case of tangent kernels for finite-width neural networks. Therefore, we
establish a similar property in Lemma 1 below (with the corresponding proof in the Appendix [A.T)).

Lemma 1. Consider minimization of the squared loss £(8) = £ 37| (F(, z;) — y;)? by gradient

descent with infinitesimally small learning rate de t) —L(6(t)). Let u(t) = F(0(t), z) be the
network outputs at time ¢ and y is the ground truth u( ) follows the evolution with respect to a
kernel K(t) with the dynamics of u(t) as follows

du(t)
Cdt

AF(O(t),x) IF(O(1), a:)> | 0

= —K(t)(u(t) — y), Wh”e’c(t)< 06 ' 06

Note that the above dynamics are identical to dynamics of kernel regression under the gradient flow
(Assuming ©(0) = 0). Thus, the output of a trained neural network at time ¢ for any testing input z’
is

F(6(t),2") = K(a', 2) T Ko(, ) "1y, 2)

where we have extended the notation from K(¢) to K (x, ) to include additional terms. From Eq.
we can obtain training predictions when we set the inputs to be the training data points, i.e., 2’ = x,

FO(t),z) = Ki(@, )" Ki(z, ) y. 3)

Alternatively to NTK theory which shows that K;(x, ) is deterministic during training (Arora
et al.[(2019)), here we focus on finite-width networks and aim to customize the tangent kernel for
training an unbiased generic model. From Egs.[T]and [3] we note that the only variable in training

predictions is the mapping function /C; determined by the Jacobian matrix % such that the
Jacobian matrix solely determines the training outputs u(t).

In incremental learning, the current model Fr is supposed to address a new task while preserving
previously learned knowledge representations. We thus proceed and customize Eq.[3|for incremental
learning and show in Theorem 1 that minimization of GTK transfers previous knowledge to F7-. The
proof of Theorem 1 is included in Appendix[A.2]

Theorem 1. Consider the training of 7-th model Frr with a previously fully trained model Fr_;.
While the T'-th task is being learned, the kernels XCp_; and [ are the tangent kernels with training
points x, respectively. Minimization of the cosine distance between training outputs of Frp_; and
Fr with the same training data points  transfers the learned representations of Fr_; to Frr. In
a kernel formulation, such optimization corresponds to GTK loss, i.e. minimization of the cosine
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Algorithm 1 TKIL Algorithm in one mini-batch
Require: Dataset: Dp, Memory: M, Note mini-batch By C {Dp U My} Hyperparameters:
a, B,y

1: Initialize the Model (For the first mini-batch):

2 FT(¢T; GT)Z Previous Model: FT,1(¢T,1, GTfl) — FT(¢T7 QT)

3: for All training Samples in Br do

4 fori =1,2,3,.. T do

5: Fr — Frski

6 if : < T then ,

7 L"Class = Z;*Mk ! EBCE (FT,task [ ((bT,msk () GT,msk (2 BT,j )7 yj)

8 Lxp = Z;Mh LBce(FTtask i (DT gask i> O task i» Br,5)s Fr—1(¢r 1,071, Brj))
9: Lotk = ngkl Lrce (G ask i (AT 1ask i» Br.j), Gr—1(¢7-1, Br,5))
10: Lan = aLcpass + BLxp + vLaTRL
11: Frasci = (O7 task i+ 07 1ask +) by minimizing the Ly
12: else if - = T then
13: Llass = Z;askm L (Fr ask i (DT task i OT ask i+ B1.,5)5 Y5)
14: FT,taskT = (¢T, 6‘T) by mll‘llmIle‘lg the Ljass
15: end if
16:  end for
172 Fr+«— 7 Z;‘F Erjask s
18: end for

} . . F(x,07— OF
distance between two Jacobian matrices 2 (ma’eT 1 and 2 (géeT).

min{Fr_1 (071, ), Fr(0r, x)) = min(CrKz'y, Kr1 K71 y), “)
. 8F(:1:70T,1) 8F(:c,0T)
= rngn< 50 T8 ) ()

Recent results from NTK for finite-width networks indicate that constraining the gradients in the
last feature layer is sufficient to extract representations across different tasks (Wallace et al.| (2021)).
Thus, we propose Gradient Neural Tangent Kernel loss (GTK loss) on feature layers g(¢, ), where
¢ are parameters in feature layers. Based on the Eq. |5} we define the kernel objective function as
follows

(Gr,Gr-1) dg(x, dr_1) dg(x, or)
G |G-l 99 ol N

where Gr_1 and G are the gradients of the last feature layer from the previous and current model,
respectively.

r%in ]E(ac,y)NMT [EGTK( )], Wh@l‘@, GT—l = y GT = (6)

3.3 TANGENT KERNEL INCREMENTAL LEARNING APPROACH

Incremental learning progressively learns N tasks with m classes per task. From notations defined in
Section we consider Frr(0r) as T-th stage generic model with feature extractor layers gr(¢r)
and fully connected layers f7(67). Training the first task (7" = 1) is straightforward. We initialize
the parameters of the generic model (6;) with Gaussian distribution and optimize the model with
D, with BCE loss.

The tangent kernel optimization approach (see Algorithm [I)) is used to train subsequent T-th tasks
(T € [2, N]). In particular, before considering a new task 7', the generic model obtained at 7" — 1 is
replicated into 7" duplicates where each duplicate will correspond to a task-specific model up to task
T. The different task-specific models are being trained on their corresponding tasks whether from
memory buffer (previous tasks) or from current task data. At the end of the training, the task-specific
models are collapsed into a single generic model that can accommodate 7" tasks. We describe the
training procedures of the tasks-specific models and the generic model in detail below.

At the beginning of training 7-th generic model, we initialize F’r with parameters of the previous
generic model (@7 _1). The training data points are from MU Dp, where M are training samples
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of previous tasks and Dy are training samples of the current task. We denote Task-Specific Model
Training and Generic Model Update as one step, and then, repeat such a step to find an optimal
T'-th generic model.

Task-Specific Model Training: When a new task is considered for the 7-th incremental learning
stage, TKIL first trains 7" task-specific models. Each task-specific model Frr ;44 ;, ¢ < T is initialized
with parameters of current generic model (87). The training data points are sampled from By =
M U Drp, such that the mini-batch By is the union of previous exemplars and current task data.
The sampled data points from By are being separated into different tasks and for each task z, an i-th
task-specific model Fir 44 ; 1S created and is trained only with data samples from B that correspond
to this task. To transfer learned representations from the previous generic model to task-specific
models, we employ different losses as follows.

(1) For task-specific models representing previous tasks (Frr i, ¢ € [1,T — 1]), we use three
losses: Classification, Knowledge Distillation (KD) and GTK. Classification loss minimizes the
difference between predicted logits F'(x) and labels y. KD Loss penalizes the change with respect
to the output from the previous expert model as a BCE loss. GTK loss rectifies the gradients and
avoids divergence from the learned feature representations. Thus, the overall objective function L,
contains three loss functions, expressed as (also described in Algorithm [I] lines 6-11):

\Gr,Gra) | (7)

minE(e.q) [0L(F (2),9) + BL(Fr-1(2), F(@)) + 2L (7 a

Where «, £ and v are hyperparameters.

(2) For the T'-th task-specific model, F'r s 7, we employ the classification loss only as it is the first
time that this task is being learned. The loss is expressed as (also shown in Algorithm[T] lines 13-14)

minE ) [£(F (), ) ®)

Generic Model Update: At the end of each mini-batch training, the trained task-specific models
are being collapsed to a single updated generic model Frr, which represents the average direction
of all task-specific models (Fr sk, ¢ € [1,T7]). Specifically, we update the parameters by capturing
the average of all parameters from the task-specific models as parameters of the generic model. The
average of task-specific models is computed as follows (Algorithm I] line 17)

T
1
Fr = T 21: Fr iask i- )

As the training progresses, the generic model is enhanced by learning new tasks while simultane-
ously preserving previous representations.

3.4 TANGENT KERNEL APPROACH VS. OTHER METHODS

To further interpret TKIL and its effectiveness, we demonstrate in Figure [3]how GTK loss updates
the generic model parameters such that these will fall in the optimal area. The complementary
calculation of the gradients for different methods appears in Appendix [A.3]

Training a generic model with all samples in B, together will result in a biased model due to the
imbalanced data distribution in My and Dp. The gradient for such training is Vg L(6, ¢, x).
To address this imbalance distribution in each incremental learning stage, existing methods train
task-specific models with a standard loss (like MSE or KD). The gradient of such models
is + Zz;l Vo, 6:L5(0:, i), where £* denotes MSE or KD loss (shown as blue arrow per task-
specific model in Figure[3](a)). It is typically the case that the current task (navy blue) will skew the
gradients of the generic model (green arrow) when the task-specific models are being collapsed to
it, leading to a non-optimal generic model (located outside the green area).

TKIL approach introduces an additional loss, GTK loss (red transformation in Figure 3| (b)), which
adapts the gradients of previous tasks. Therefore, the new generic model, collapsed from the rec-
tified task-specific models, will be balanced and more optimal as shown by the green arrow being
positioned in the expected green area in Figure [3] (b). In effect, the rectification of task-specific
models corresponding to previous tasks with GTK loss allows TKIL to avoid local optimums and
stay in the balanced optimal position for the generic model as it learns novel incremental tasks.
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Figure 3: An illustration of how TKIL moves model parameters when learning a new task 7', e.g.,
T'=3. Assume the green dash circle is the optimal parameters area for all tasks. The objective
is to constrain the parameters of the generic model (green arrow) in that circle. (a) Training task-
specific models without GTK loss and taking the average direction of the task is non-optimal (located
outside the green area). (b) TKIL rectifies updating directions of the previously learned tasks (Task
i, € [1,T — 1]) with GTK loss (red arrows) to keep the generic model in the optimal circle.

4 EXPERIMENTS AND RESULTS

4.1 DATASETS AND IMPLEMENTATION

We conduct experiments on three popular benchmarks, i.e., CIFAR (Krizhevsky et al.| (2009)),
ImageNet-100 and ImageNet-1K (Russakovsky et al.|(2015) with different incremental learning sce-
narios. CIFAR100 dataset contains 50, 000 training images and 10, 000 testing images. ImageNet-
1k dataset consists of 1,281, 167 images for training and 50, 000 images for validation across 1, 000
classes. ImageNet-100 dataset includes 100 randomly sampled classes from ImageNet-1k. Experi-
ments on additional two benchmarks of MNIST (Deng|(2012)) and SVHN (Netzer et al.| (2011)) are
included in the Appendix.

We employ a ResNet-18 as the generic model. For all datasets, we use RAdam (Liu et al.| (2019))
with an initial learning rate of 0.01 for 70 epochs, which is notably less than previous methods, e.g.,
PODNet |Douillard et al.| (2020) requires 160 epochs. The batch size is set to 128 for CIFAR and 64
for ImageNet. The learning rate is divided by 10 after every 20 epochs. The fixed exemplar memory
is 2k for MNIST, SVHN, CIFAR100, and ImageNet-100, and 20K for ImageNet-1K. Our inference
pipeline records the task predictions first and then finetunes the generic model to the corresponding
task model to perform the classification. Implementation details are included in Appendix
All models are trained on 2080Ti GPUs with a parallel computation mode. The previous method
is implemented based on the publicly available official code (Rajasegaran et al.| (2020); Javed &
Shafait| (2018))). For fair comparisons with previous methods, we report the average incremental
accuracy over seen classes across all incremental stages with the same setting.

4.2 RESULTS: CIFAR-100 AND IMAGENET-100

We test TKIL on various incremental learning scenarios and compare it with existing methods on
CIFAR-100 and ImageNet-100 in Table[I] TKIL achieves accuracy that is more optimal than other
compared methods on all compared scenarios. The margin in the accuracy of TKIL vs. existing
approaches is particularly evident in the large tasks (stages) scenario which is consistent with the
intent of TKIL to balance performance across tasks and classes. For example, on CIFAR-100 with
25 incremental stages, TKIL achieves an improvement of 9.4% in accuracy vs. the second best
method AFC. In such a scenario, the accuracy of the existing state-of-the-art method, iTAML, drops
to 55.9% from 76.6% due to unstable prediction of tasks, where AFC becomes a leading exist-
ing method among existing methods with 64.1%. In addition, we conduct similar experiments on
MNIST and SVHN (in Appendix, Table[5). TKIL achieves 97% or higher accuracy on these bench-
marks when learning 2 classes each time. These experiments show that TKIL predicts consistently
stable and accurate task predictions. As a result, TKIL translates to more optimal accuracy for
multi-class problems.
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Table 1: Performance comparison between TKIL and other SOTA methods on CIFAR100 (left-
half) and ImageNet-100 (right-half)

Method CIFAR-100, M = 2k ImageNet-100, M = 2k
Stages 25 10 5 5 10 25 10 5 5 10
New classes per stage 2 5 10 20 10 2 5 10 20 10
iCaRL Rebuffi et al.|(2017) 50.6% 53.8% 581% 572% 52.6% 54.6% 60.8% 65.6% 60.1% 59.6%
BIC|Wu et al.|[(2019) 49.0% 532% 569% 593% 542% 59.7% 65.1% 69.0% 70.1% 64.9%

iTAML [Rajasegaran et al.[(2020)  55.9% - - 745% 76.6% 64.7% - - 69.3%  70.4%
Mnemonics|Liu et al.|(2020) 61.0% 623% 64.1% 633% 622% 69.7% 71.4% 72.6% 70.6% 70.4%
PODNet|Douillard et al.[(2020)  62.7% 64.1% 64.5% 589% 59.7% 683% 743% 75.6% 72.5% 71.5%
PODNet+DDE Hu et al.|(2021) - 60.1% 63.4% 59.1% 55.3% - 702% 723% 692%  65.5%
AFC |Kang et al.|(2022) 64.1% 643% 659% 649% 644% T3.4% T158% 76.9% 129% 11.7%

TKIL(Ours) 735% 805% 83.6% 79.5% 825% 755% 77.5% 79.7% 747% 73.3%

4.3 RESULTS: IMAGENET-1K

Table 2: Performance comparison between TKIL and other SOTA methods on ImageNet-1k

Method ImageNet-1k, M = 10k  ImageNet-1k, M = 20k Model Size
Stages 10 5 10
iCaRL Rebuffi et al.|(2017) 44.8% 51.5% 46.8% 35M
BIC|Wu et al.|(2019) 48.5% 62.6% 58.7% 35M
Mnemonics Liu et al.|(2020) 48.6% 64.5% 63.5% 34.7M
PODNet Douillard et al.[(2020) 48.8% 64.1% 62.0% 35.4M
SS-IL|Ahn et al.|(2021) 64.5% 65.5% 65.2% 35.4M
TKIL(Ours) 64.9% 66.9% 65.4% 12.8M

Table 2] shows the results of all existing CIL algorithms and TKIL on the large-scale dataset with
different memory settings. The results again indicate that TKIL is the most accurate method in all
settings. The most comparable existing method, SS-IL, has similar accuracy. However, notably,
TKIL’s model size is much more compact with only 36% of SS-IL’s model size. This gap is due to
TKIL’s generic model being unbiased on all tasks while SS-IL trains a fixed model to fit all tasks. We
reaffirm it with more comparisons in Appendix Table[6] which shows that TKIL is more robust than
SS-IL and outperforms SS-IL in all incremental learning settings in CIFAR-100 and ImageNet-100.

4.4 ANALYSIS AND ABLATION STUDIES

TKIL VS. Other Approaches. In Figure [d we investigate the accuracy of the compared approaches
(KD, iTAML) when tasks are added incrementally, i.e., 5, 10, or 20 classes are added each time
on the CIFAR-100 benchmark. In these experiments, TKIL consistently outperforms the compared
methods by a large margin (e.g. 82% vs. 72% in 20 stages scenario). These results also show that
KD on Features only slightly improves the accuracy compared to iTAML (also shown in Appendix,
Table[7). The reason for only a slight improvement is that those losses fail to constrain the task model
and direct it toward a common optimum for all seen tasks. However, TKIL succeeds to maintain the
smallest slope of the drop and no significant collapse events in the accuracy curve. In addition, we
compute the accuracy of task prediction for all compared methods and add the prediction component
to methods if they did not originally include one, such as iCaRL.

Table 3: Ablation study of the fixed memory M

Stage S1 S2 S3 S4 Ss Se S7 S8 S9 S10

M=1k 922% 89.5% 873% 854% 843% 80.4% 787% 7T7.1% 76.6% 753%
M=2k 922% 89.5% 882% 87.4% 86.7% 857% 84.5% 83.7% 83.1% 82.5%
M=4k 922% 90.5% 89.4% 888% 87.7% 86.5% 854% 843% 842% 83.7%
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Figure 4: Top: Task accuracy over seen classes on CIFAR-100, with 5, 10, and 20 tasks from left to
right; bottom: classification accuracy over seen classes on CIFAR100, with 5, 10, and 20 tasks from
left to right. TKIL consistently outperforms other existing methods across different settings.

Table 4: Ablation study of the hyperparameter ~y selection
S1 S2 S3 S4 S5
Task-prediction over all seen classes

v=10 100% 82.0% 33.5% 219% 17.5%
vy=1 100% 100% 97.5% 943% 92.5%
v=0.1 100% 100% 100% 100%  100%

Parameter

Memory Size. In Table [3] we investigate the impact of memory size on TKIL. We find that TKIL
achieves robust SOTA accuracy for different memory sizes. Increasing memory size from 1% to 4k
boosts the final accuracy from 75.3% to 83.7%. When the memory size is limited to M = 1k, TKIL
does not exhibit a significant collapse in the accuracy curve, and outperforms 10.4% than the most
comparable existing method, AFC, even with a larger memory size (M = 2k).

Hyperparameter Tuning. In Table [d] we demonstrate the importance of GTK loss and the related
parameter, . We compare the TKIL method with its variants with parameters (y = 0.1, 1, 10) to
estimate the ability to retain the feature representations with it. Based on these results, we select 7y
as v = 0.1. More parameter searching experiments are included in Appendix Table 8]

5 CONCLUSION

We propose a tangent kernel optimization approach for class balanced incremental learning, TKIL,
that addresses imbalances in memory-based incremental learning. Specifically, we formulated gra-
dient tangent kernels over feature layers to learn balanced representations for the generic model.
The generic model is able to execute accurate task predictions and automatically to adapt itself to
the corresponding task during inference. Our experiments on multiple benchmarks show that TKIL
outperforms existing state-of-the-art methods in various incremental learning settings.
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A APPENDIX

A.1 PROOF OF LEMMA 1

Proof of lemma 1. We consider the standard supervised learning setting with n training data points
drawn from some underlying distribution. The deep neural network is F'(0,x), where 0 is the
collection of all the parameters in the network,  denotes the inputs, y denotes the labels and ¢ is
the continuous time index. The parameters 6 evolve in the following equation:

o (1) AF(O(t), z)

- — 0(t)) =—(F(0 — 10
From Equation |10} the evolution of the network outputs can be written as:
dF(0(t), =) _ FO(t), z) F(0(t), z)
We denote u(t) = F(0(t),x) and use differentiation and chain rule. Thus, we can obtain the
dynamics of u(t) as follows:
du(t
WO — k) ) - v). (12)

. . . . . [ OF(6(t),x:i) OF(8(t).x;)
where K(t) € R™*" is a positive define matrix, whose %, j-th entry is < T — 57— >

A.2 PROOF OF THEOREM 1

Proof of Theorem 1. consider the outputs of current model F'(67) and previous generic model
F(07_1) with respect to the same input & € M. The training prediction is:

8F(:c, OT) 8F(a:, QT)

F(0r, @) = K1 Ky'y, where, Ky = (——52==>, = -2=>), (13)
_ OF(x,07r_1) OF(x,07_
F(BT,l,w):ICgfllCTily,where,/CT,l = (80T 1), (80T 1)>, (14)

Where [Cp_1 is constant as Frp_1 (67_1) is fully trained and requires no updating when training F’r.
From Equation we note that the only variable is the mapping function X and such mapping
function determines the output of the model. Thus, minimizing the cosine distance of two Jacobian

. F(x,0 OF (x,07_ S . )
matrices 2 (gé ) and (méeT 1) can minimize the difference between current model and previous
model.

A.3 GRADIENTS IN TRAINING: TKIL VS. OTHER METHODS

In this section, we need to prove the gradient updating direction of each method:

Given a set of feature space parameter 6 and task classification parameters ¢ = {¢1, ¢2..., o1}, we
can obtain the gradients for different methods:

Training without task models:
9="VooL(0,9 ), (15)

KD with task models:
T

1
9kp = T z; 9i KD
i=

1 T
=7 > VoL (@)
i=1

T
1 *
-T Z Vo0 L7 (05, b3)
i=1

12
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where £* denotes the Knowledge distillation loss.

while the GTK with task models:

T
9JGTK = T Z g; + gGTKz
,vaqw i)+ Vo, 6, Li(0i,6)
— Z Vo,.6:Li i(0s, 0i) + Vo, Li(0;)

A.4 INFERENCE IMPLEMENTATIONS

1 Task-ID Prediction Class Prediction I

Test sets | Test batch FE+FC  __— !
U B FE+FC / Fine-tune | Dtask Otask |

¢NI GN :

' Task |

Memory :

Figure 5: During Inference, the generic model generates task predictions when given the test sets for
all samples. Then the predicted corresponding task model with the highest probability is finetuned
from the generic model with exemplars from memory to predict the class.

During the inference, we adopt the task prediction procedure described in iTAML |Rajasegaran et al.
(2020). As we have mentioned, we finetune task model (F'(¢usk, Orask)) from the generic model
(F(¢n,0n)) when given test samples 2/, since the generic model is not designed for any tasks and
learns the unbiased representations. We capture the logistic outputs of the generic model and predict
tasks based on the logistic outputs. Then the finetuned task model predicts the class classifications.
The inference pipeline is shown in Figure 3]

A.5 EXPERIMENTS SUPPLEMENTARY TO EXPERIMENTS REPORTED IN THE MAIN PAPER

Table 5: Performance comparison between the TKIL and other state-of-the-art methods on MNIST
and SVHN

Method MNIST(5) SVHN(S)
EWC [Kirkpatrick et al.|(2017) 19.80% 18.21%
MAS |Aljundi et al.|(2018) 19.52% 17.32%

RPS-net Rajasegaran et al.|(2019) 96.16% 88.91%
iTAML Rajasegaran et al.|(2020) 97.15% 92.93%

TKIL 97.81% 97.51%

Upper Bound Baseline. We consider the mixed training paradigm as our upper bound baseline.
For mixed training, we train a single model on the whole data D and then use the best model for
the inference. Our accuracy is closer to the upper bounds. Notably, while this training paradigm
achieves better performance than existing methods, they require re-training the whole dataset (as
shown in Table[6). Specifically, TKIL is closer to the upper bound and outperforms SS-IL in 5 and
10 tasks with CIFAR-100 and ImageNet-100, respectively.

Components Contribution. To demonstrate how different components contribute to TKIL perfor-
mance, we investigated ablations of the TKIL architecture in Table [/| We create baselines with

13
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Table 6: Performance comparison between the TKIL and SS-IL on CIFAR100 and ImageNet dataset

Method CIFAR-100 ImageNet-1k
Number of Tasks 5 10 5 10
iCaRL Rebuffi et al.|(2017) (baseline) 57.2% 52.6% 51.5% 46.8%
SS-IL(JAhn et al.|(2021)) 743% 76.7% 655% 65.2%
TKIL (Ours) 79.5% 825% 669% 65.4%
upper bound: TKIL 88.9% 69.7%
upper bound: SS-IL 93.5% 73.3%

Table 7: Ablation study on TKIL components: KD, GTK Loss on CIFAR-100, 10 incremental stages

Component Stage 1 Stage2 Stage3 Stage4 Stage5 Stage6 Stage7 Stage8 Stage9 Stage 10

KD Task T 100% 100% 100%  99.0% 972%  95.6% 94.0% 81.5% 74.2% 47.6%
ClassT 90.7%  88.0% 86.6% 828% 79.7% 76.8% 74.6% 62.8% 57.8% 46.6%

KD + Task T 100% 100% 100%  99.5% 100%  95.6% 100%  97.5%  94.2% 96.1%
Task model ClassT 90.3% 862%  86.5% 84.4% 813% 812% 787% 791% 77.2% 76.4%

TKIL Task 1 100% 100% 100% 100% 100% 100% 100% 100% 100% 99.9%
ClassT 922% 89.6% 832% 87.4% 86.6% 857% 84.6% 83.7% 832%  82.5%

KD-only and KD with task models. We find that task and class predictions decrease as more incre-
mental stages are introduced for the KD-only method. When considering KD with task models, we
observe improvement in task prediction from the KD-only variant however there is still a decrease in
accuracy for class prediction, eventually decreasing to 76.4%. When GTK Loss is added we indeed
observe a boost in accuracy on both task and class predictions with task prediction being 99.9% and

class prediction 82.46%.

Table 8: Ablation study of the ~y selection

S1 S2 S3 S4 S5
Parameter
Task-prediction over all seen classes
v =10 100% 82.0% 33.5% 21.9% 17.5%
y=1 100% 100% 97.5% 94.3% 92.5%
~v=0.1 100% 100% 100% 100% 100%
Task 1,S1  Task 1,S2 Task1,S3 Task1,S4 Task 1,S5
Task 1 Class-prediction at different Stages
v =10 89.6% 89.4% 88.3% 89.4% 87.4%
y=1 75.6% 89.4% 85.3% 78.4% 70.4%
v=0.1 92.2% 89.5% 88.5 % 88.3 % 87.9%
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