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ABSTRACT

In this study, we propose a novel architecture for a large vision-language model
adapted with a multi-granular prompt learning method to advance few-shot pathol-
ogy classification. Starting with the Prov-GigaPath foundation model - pre-trained
on 1.3 billion pathology image patches - we extend it into a vision-language model
by adding adaptors and aligning it with medical text encoders via contrastive
learning on 923K image-text pairs. In contrast to previous approaches that combine
prompts with frozen features using prefix embeddings or self-attention, our multi-
granular attention mechanism evaluates interactions between learnable prompts,
individual image patches, and patch groups, capturing both fine details and broader
context. We further improve the precision with an unbalanced optimal transport-
based visual-text distance that mitigates perturbations from data augmentation.
Experiments on lung and kidney pathology imaging modalities show that our
method outperforms state-of-the-art competitors and improves performance across
various architectures, including CLIP, PLIP, and the Prov-GigaPath integrated PLIP.
We provide pre-trained weights at this link.
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Figure 1: Unlike previous methods that add prompts at pre-
fix positions or patch-level attention - disrupting structural
correlations - our MGPATH framework integrates prompts
at both regional and individual patch levels (multi-granular
attention).

Whole slide images (WSIs) provide
high-resolution views of tissue sam-
ples and are the gold standard for can-
cer diagnostics and treatment. How-
ever, they can contain billions of pix-
els, making annotation and interpreta-
tion costly. Obtaining access to suffi-
ciently large, annotated datasets is par-
ticularly challenging for cancer sub-
types, which has spurred the develop-
ment of few-shot and weakly super-
vised methods (Madabhushi & Lee,
2016; Li et al., 2023; Lin et al., 2023;
Ryu et al., 2023; Shi et al., 2024) and
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especially multiple-instance learning
(MIL) (Ilse et al., 2018; Xu et al., 2019; Li et al., 2023; Lin et al., 2023; Tang et al., 2023; Shi et al.,
2023). Yet, MIL can struggle to capture meaningful regions in complex tissue structures.

Visual language models (VLMs) (Lu et al., 2023; Huang et al., 2023; Ikezogwo et al., 2024) address
this by integrating slide-level features and textual descriptions. Specifically, VLMs utilize multi-scale
images (Shi et al., 2024; Han et al., 2024), enabling the extraction of both global and local features
from whole slide images (WSIs) at various resolutions. To efficiently adapt a pre-trained vision-
language model, prompt learning (Zhou et al., 2022b; Gao et al., 2024) is applied, where learnable
prompts are incorporated into the input text to guide the model. Additionally, contextual prompts
(Li & Liang, 2021; Yao et al., 2024) are embedded into feature representations using a self-attention
mechanism (Vaswani, 2017).

Although effective, those approaches face some challenges. First, (i) prompt learning with frozen
visual features often overlooks the hierarchical interactions between prompts and visual features,
particularly multi-granular attention between prompts and both individual patches and patch groups.
This limitation weakens the model’s ability to capture dependencies across scales, from fine-grained
details to broader context, reducing its effectiveness in understanding complex pathology patterns.
Second, (ii) many VLMs are currently based on CLIP (Radford et al., 2021), which lacks explicit
pre-training on pathology images, restricting adaptability in few-shot settings, especially when prompt
learning is applied with a frozen architecture. While PLIP (Huang et al., 2023), trained on 200k
pathology image-text pairs or CONCH (Lu et al., 2024) (1.17M), has shown improvements, it remains
unclear whether scaling to larger pathology-specific samples would yield further gains. Lastly, (iii)
most whole-slide pathology VLMs rely on cosine similarity for vision-text alignment, which struggles
with multiple text descriptions for sub-regions (Chen et al., 2023) and data perturbations (Nguyen
et al., 2024b), limiting its ability to capture fine-grained alignments.

We present MGPATH, a vision-language model (VLM), namely MGPATH, designed for whole-slide
pathology classification. Building on Prov-GigaPath (Xu et al., 2024), which is pre-trained on
1.3 billion pathology patches, we extend it into a VLM using contrastive learning. This is achieved by
integrating the PLIP text encoder (Huang et al., 2023), trained on 200K pathology image-text pairs,
through a parameter-efficient adaptor. We strengthen alignment using 923K additional image-text
pairs from ARCH (Gamper & Rajpoot, 2021), PatchGastricADC22 (Tsuneki & Kanavati, 2022),
and Quilt-1M (Ikezogwo et al., 2024), training only lightweight adaptors. Next, we introduce multi-
granular prompt learning for few-shot WSI tasks by generating visual embeddings and descriptive
text prompts for image patches at multiple resolutions using large language models (Han et al.,
2024; Shi et al., 2024; Qu et al., 2024). Unlike prior methods that concatenate patches or apply
conventional attention (Li & Liang, 2021; Zhou et al., 2022b; Yao et al., 2024; Shi et al., 2024), our
approach integrates learnable prompts with frozen visual features at both fine- and coarse-grained
levels (Figure 1). We model WSI patches as a spatial graph, using bounding box coordinates for
region-level aggregation via message passing. This structure is encoded as Key-Value tokens, which
interact with Query embeddings from prompts. By directing attention across both patch and region
levels, our method effectively captures hierarchical information, enhancing feature representation and
refining focus on critical tissue areas.

Finally, we leverage the optimal transport (OT) (Nguyen et al., 2021; Pham et al., 2020; Séjourné
et al., 2023; Chen et al., 2023; Dong et al., 2023; Nguyen et al., 2024b; Zhan et al., 2021) to define
the distance between prompt-fused visual embeddings and multiple text prompts, which flexibly
aligns heterogeneous data distributions. This is particularly useful for few-shot WSI classification,
as OT (i) adapts to data augmentation and noise while preserving structural relationships and (ii)
handles modality imbalances, especially when text prompts describe only sub-regions of WSI samples.
Across three datasets and multiple architectures (CLIP-ResNet50, CLIP-ViTB16, PLIP, and
(Prov-GigaPath)-PLIP), MGPATH consistently outperforms 14 state-of-the-art MIL and VLM
models. Notably, MGPATH (Prov-GigaPath-PLIP) surpasses MSCPT (Han et al., 2024) by 5% in F1
and 8% in AUC on TCGA-BRCA and outperforms foundation VLMs CONCH (Lu et al., 2024) and
QUILT (Ikezogwo et al., 2024) by 6% in accuracy on the same dataset.

2 RELATED WORKS

Large-scale Pre-trained Models for Pathology. Recent advances in large-scale pre-trained pathol-
ogy models fall into two categories: vision models and VLMs. Vision models like Virchow (Ike-
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zogwo et al., 2024), Hibou (Nechaev et al., 2024), UNI (Chen et al., 2024), and Prov-GigaPath
(Xu et al., 2024) learn robust visual features from massive datasets, with Prov-GigaPath (1.3B
patches) excelling in high-resolution tissue analysis. VLMs such as PLIP (Huang et al., 2023)
(200K image-text pairs), CONCH (Lu et al., 2024) (1.17M), and QUILTNET (Ikezogwo et al., 2024)
(1M) combine images and text for enhanced pathology interpretation. Our MGPATH bridges these
approaches by using a parameter-efficient adaptor to integrate Prov-GigaPath (the largest vision
encoder) with a VLM text encoder (e.g., PLIP or CONCH), leveraging both rich visual and semantic
features. While our experiments use PLIP for consistency with baselines, the method is adaptable to
larger pre-trained text models.

Few-shot learning in WSI. MIL models WSIs as bags of patches, aggregating features via non-
parametric methods like mean/max pooling. However, these can diminish critical disease-related
signals. To improve relevance, attention-based MIL, GNNs, and Transformers have been explored
(Lu et al., 2021; Chen et al., 2021; Ilse et al., 2018; Li et al., 2021; Shao et al., 2021; Zheng et al.,
2022). Meanwhile, VLMs use contrastive learning to align image-text pairs, enhancing pathology
tasks despite the challenge of collecting large-scale labeled data. Models like MI-Zero, PLIP, and
CONCH have been trained on hundreds of thousands to over a million pathology image-text pairs (Lu
et al., 2023; Huang et al., 2023; Lu et al., 2024). Some also integrate multi-magnification images and
multi-scale text to mimic pathologists’ workflows (Shi et al., 2024; Han et al., 2024). Our MGPATH
builds on VLMs, amplifying the advantages of large pre-trained pathology models while introducing
parameter-efficient multi-granular prompt learning to improve few-shot adaptation.

Prompt Learning for Vision-Language Adaptation. Prompt tuning is key to adapting large pre-
trained models, as seen in multimodal systems like CLIP. Instead of handcrafted templates, methods
such as CoOp (Zhou et al., 2022b), CoCoOp (Zhou et al., 2022a), and MaPLe (Khattak et al., 2023)
learn prompts for domain generalization (Ge et al., 2023; Yao et al., 2024), knowledge prototypes
(Zhang et al., 2022b; Li et al., 2024), or diversity (Lu et al., 2022; Shu et al., 2022). However, these
focus on natural images rather than the multi-scale, structurally complex data in WSIs. While some
methods (Shi et al., 2024; Qu et al., 2024) apply prompts via self-attention to frozen features, they can
miss intricate tissue structures. By contrast, our multi-granular prompt learning framework applies
attention to both individual patches and spatial groups, better aligning with WSIs’ hierarchical
complexity.
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Figure 2: The pipeline of the proposed MGPATH method. Low- and high-resolution image patches
are processed with large language models to generate contextual descriptions (Section 3.2). Visual
prompts are integrated with frozen features through multi-granular attention at both patch and group-
of-patch levels 3.3. The final output is obtained by aligning visual and text embeddings using optimal
transport (Section 3.4).
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3.1 BRIDGING PATHOLOGY VISUAL AND TEXT ENCODERS

To leverage Prov-GigaPath’s pre-trained visual features, we implement lightweight adaptors that
map patch-level image features into the embedding space of the PLIP text encoder. These adaptors
enable joint image-text training with minimal parameter updates, since only the adaptor weights are
fine-tuned.

Given pathology image-text pairs {(Ii,Ti)| i = 1, 2.., N }, let EI(.) be the Prov-GigaPath
vision encoder for patch-level features, and ET (.) the PLIP text encoder. For each batch of size B,
the image and text embeddings are xi = EI(Ii) ∈ Rdv , ti = ET (Ti) ∈ Rdt .

We then design two trainable adaptors, AI(.) and AT (.), to project (xi, ti) into a shared dimension
Rd, optimizing the noise contrastive loss (Oord et al., 2018):

Lcon = EB

[
− log

exp (cos(AI(xi), AT (ti))/τ)∑
j exp (cos(AI(xi), AT (tj))/τ)

]
, (1)

where cos(.) is the cosine similarity, and τ denotes for temperature of the softmax function. Both
the Prov-GigaPath vision encoder and the PLIP text encoder remain frozen, while only AI(.)
and AT (.) are trained. Once Eq. equation 1 is optimized, the adaptor outputs serve as visual and text
embeddings for downstream tasks. We refer to this model as GigaPath-PLIP.

3.2 MULTI-MAGNIFICATION DESCRIPTIVE TEXT PROMPTS

Designing effective text prompts is crucial for enhancing vision-language models (VLMs) in whole-
slide image (WSI) analysis. Pathologists typically assess WSIs by first examining tissue structures at
low magnification, then zooming in to observe finer details such as nuclear shape and size. Recent
works (Shi et al., 2024; Han et al., 2024) have harnessed this multi-scale approach by introducing dual-
scale descriptive text prompts and leveraging large language models (LLMs), yielding considerable
gains in classification performance. Building on this idea, we further refine and extend the strategy to
boost model effectiveness. The prompt template is described in Figure 3 where {class name} is
replaced by specific categories.

LLM Prompt

What visually descriptive features characterize {class name} at
both low and high resolutions within the whole-slide image? Please
summarize into a single paragraph.

Figure 3: LLM template prompt.

Next, at each low/high scale, rather than inserting a single learnable text prompt of length K alongside
a frozen contextual prompt obtained from LLMs (Shi et al., 2024; Han et al., 2024), we propose using
M learnable prompts. This strategy captures different sub-regions or structural features within each
patch that might be missed by a single prompt. Specifically, we define visual descriptive text prompts
for both low- and high-resolution scales as follows:

T
(l)
i =

{(
[ω

(l)
i ]1 [ω

(l)
i ]2 ...[ω

(l)
i ]K [LLMcontext]

)
|Mi=1

}
T

(h)
i =

{(
[ω

(h)
i ](1) [ω

(h)
i ]2 ...[ω

(h)
i ]K [LLMcontext]

)
|Mi=1

}
,

(2)

where [ωβ
i ]j , j ∈ [1, ...,K], i ∈ [1, ..,M ] are KM trainable textual prompts for each resolution

β ∈ {l, h}.

3.3 GRANULARITY-AWARE VISUAL PROMPT LEARNING

For each WSI W , we denote by
{
W (l),W (h)

}
are representations of W at low and high magnification.

We define a bag of multiple instances of W as I =
{
I(l), I(h)

}
where I(l) ∈ RNl×Nb×Nb×3,

I(h) ∈ RNh×Nb×Nb×3 with Nl, Nh indicate the number of low and high-resolution image patches
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and Nb is the patch size. We use a non-overlapping sliding window technique to extract patches I .
from the WSI.

3.3.1 PATCHES-BASED PROMPTING

A frozen image encoder EI(.) (or AI(EI(.)) for GigaPath-PLIP) maps each patch I into feature
vectors H = {H(l) ∈ RNl×d, H(h) ∈ RNh×d} where d is the feature dimension. To consolidate
the large set of patch features into a final slide-level representation, we introduce a set of learnable
visual prompts pv ∈ RNp×d, which progressively merge patch features in H(l). Concretely, we treat
pv as the QUERY and all features in H(l) as the KEYS K

(l)
p and VALUES V

(l)
p in a self-attention

mechanism Vaswani (2017). We then associate pv with the patch features as:

p(l)
v,p = Normalize

(
SoftMax

(
pvK

(l)T

p√
d

)
V (l)
p

)
+ pv . (3)

3.3.2 SPATIAL PATCH GROUP-BASED PROMPTING

To quantify spatial correlations across multiple instances of I , we extract the coordinates for all its
patches. Let I(l) =

{
I
(l)
1 , I

(l)
2 , ..., I

(l)
Nl

}
denote the patches and H(l) =

{
H

(l)
1 , H

(l)
2 , ...,H

(l)
Nl

}
their

corresponding features. We construct a graph G(l) = (V (l), E(l)) to capture regional tissue structure,
where V (l) = I(l), and E(l) ∈ {0, 1}Nl×Nl . Edges in E(l) are defined by linking each path to its K−
nearest neighbors in the coordinate space. We set the node feature embedding X(l) = H(l) ∈ RNl×d,
so each vertex v

(l)
i is associated with a feature x

(l)
i = H

(l)
i .

We design a trainable message-passing network gϵ(.) using the graph attention layer (GAT) Veličković
et al. (2017) to capture the feature representation of each node and its local neighbors. The GAT layer
performs message passing as follows:

αi,j =
exp

(
σ(aTs Θs x

(l)
i + aTt Θt x

(l)
j )
)

∑
k∈N (i)∪{i} exp(σ(a

T
s Θs x

(l)
i + aTt Θt x

(l)
k ))

x
(l)′

i = αi,iΘs x
(l)
i +

∑
j∈N (i)

αi,jΘt x
(l)
j ,

(4)

where x(l)′

i is aggregated features of x(l)
i with its local region after GAT layer, σ(.) is the LeakyReLU

activation function, N (i) denote the neighboring nodes of the i-th node, αi,j are the attention
coefficients and as, at,Θs,Θt are weight parameters of gϵ(.).

After performing message passing with gϵ(.), we obtain an updated graph G(l)′ , where each node
encapsulates its respective local feature region. We then aggregate all the feature nodes in G(l)′

into a single vector H(l)
gr , which acts as another set of KEYS K

(l)
gr and VALUES V

(l)
gr for region-

level features. Following the same approach as equation 3, we associate the prompt pv with these
group-level features:

pl
v,gr = Normalize

(
SoftMax

(
pvK

(l)T

gr√
d

)
V (l)
gr

)
+ pv. (5)

The final output of our multi-granular is computed as:

p(l)
v = (1− α) · p(l)

v,p + α · p(l)
v,gr . (6)

3.4 OPTIMAL TRANSPORT FOR VISUAL-TEXT ALIGNMENT

In this study, we employ OT to measure the alignment between visual prompt-guided slide features
p
(l)
v and p

(h)
v , and descriptive text prompts T(l) and T(h). Although OT has been explored for

prompt learning in natural images and multi-modal learning (Kim et al., 2023; Chen et al., 2023;
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Nguyen et al., 2024a; Séjourné et al., 2023), we are the first to adapt it for whole-slide imaging (WSI),
effectively handling the alignment of multi-magnification patches to capture rich structural details
across scales.

Recap OT. Given two sets of points (features), we can represent the corresponding discrete
distributions as follows:

µ =

M∑
i=1

piδfi , ν =

N∑
j=1

qjδgi , (7)

where δf and δg represent Dirac delta functions centered at f and g, respectively, and M and
N indicate the dimensions of the empirical distribution. The weight vectors p = {pi}Mi=1 and
q = {qi}Nj=1 lie within the M and N -dimensional simplex, respectively, meaning they satisfy∑M

i=1 pi = 1 and
∑N

j=1 qj = 1. The discrete optimal transport problem can then be expressed as:

T ∗ = argmin
T∈RMXN

M∑
i=1

N∑
j=1

TijCij

s.t. T1N = µ, T⊤1M = ν. (8)

where T ∗ is denoted as the optimal transport plan, which is optimized to minimize the total distance
between the two probability vectors, C is the cost matrix which measures the distance between fi

and gj . We then define the OT distance between µ and ν as:

dOT(µ,ν) = ⟨T ∗,C⟩. (9)

Objective functions. Given the visual prompt-guided slide features p(l)
v ∈ RNp×d in equation 6

and the text prompts T(l) in equation 2, we obtain the textual embedding p
(l)
t by applying ET

to T(l), i.e., p(l)
t = ET (T

(l)). Let T(l)
c denote the input text prompts for class c,

(
p
(l)
t

)
c

be the

corresponding textual embedding, and
(
p
(l)
v

)
c

be the visual prompt-guided slide features associated

with the same class c. We apply OT to minimize the distance between T
(l)
c and

(
p
(l)
v

)
c
, denoted by

dOT

(
T

(l)
c ,
(
p
(l)
v

)
c

)
. Then, the cost matrix C is computed as C =

(
1− F T G

)
∈ RM×Np , where(

p
(l)
t

)
c
→ F =

{
fi|Mi=1

}
and

(
p
(l)
v

)
c
→ G =

{
gj |

Np

j=1

}
. We can produce dOT

(
T

(h)
c ,

(
p
(h)
v

)
c

)
by using the same procedure at high-resolution image patches. Then, the prediction probability is
written as:

Pc =
exp(2−

∑
k∈{l,h} dOT

(
T

(k)
c ,

(
p
(k)
v

)
c

)
)∑C

c′=1 exp(2−
∑

k∈{l,h} dOT

(
T

(k)

c′ ,
(
p
(k)
v

)
c

)
)
, (10)

where λk controls contribution of each-resolution. Finally, we can train the model with the cross-
entropy as:

Lclass = Cross(P,GT), (11)
with Cross(.) be the cross-entropy and GT denotes slide-level ground-truth.

4 EXPERIMENTS

Datasets for contrastive learning. PatchGastricADC22 Tsuneki & Kanavati (2022) contains
about 262K patch-level images from H&E-stained gastric adenocarcinoma specimens, each paired
with diagnostic captions from Mita Hospital, Japan. QUILT-1M Ikezogwo et al. (2024) comprises
approximately 653K images and one million pathology image-text pairs obtained from 1,087 hours of
educational histopathology videos on YouTube. ARCH Gamper & Rajpoot (2021) provides a multiple-
instance captioning dataset featuring bag- and tile-level pathology images. For our contrastive
training, we focus on tile-level samples from these datasets, yielding roughly 923K total images.

Downstream tasks. We evaluated our method on two TCGA datasets: TCGA-NSCLC and
TCGA-RCC obtained from the Cancer Genome Atlas Data Portal The Cancer Genome Atlas (TCGA).
We follow the data splitting settings of ViLa-MIL Shi et al. (2024) for dividing TCGA-NSCLC and
TCGA-RCC into training, validation, and test sets.
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4.1 RESULTS

Comparison to State-of-the-Art. We compare our MGPATH with state-of-the-art multi-instance
learning methods, including Maxpooling, Mean-pooling, ABMIL (Ilse et al., 2018), CLAM (Lu
et al., 2021), TransMIL (Shao et al., 2021), DSMIL (Li et al., 2021), GTMIL (Zheng et al., 2022),
DTMIL (Zhang et al., 2022a), RRT-MIL (Tang et al., 2024) and IBMIL (Lin et al., 2023), and
vision-language methods, including CoOp (Zhou et al., 2022b), CoCoOp (Zhou et al., 2022a),
Metaprompt (Zhao et al., 2024), TOP (Qu et al., 2024), ViLa-MIL (Shi et al., 2024), MSCPT (Han
et al., 2024), QUILT (Ikezogwo et al., 2024), CONCH (Lu et al., 2024). Among these, QUILT and
CONCH are foundation VLMs.

MGPath versions. We offer several versions of our MGPATH, including the CLIP backbone with
ResNet-50 (CLIP50) for TCGA-NSCLC and TCGA-RCC. Additionally, we provide a version
using the PLIP backbone, as well as our proposed GigaPath-PLIP pre-trained models.

Table 1: Comparison of methods on TCGA-NSCLC and TCGA-
RCC datasets with few-shot settings. Results are shown for AUC,
F1, and Accuracy (ACC).

Methods # Param. TCGA-NSCLC TCGA-RCC

AUC F1 ACC AUC F1 ACC

Max-pooling 197K 53.0±6.0 45.8±8.9 53.3±3.4 67.4±4.9 46.7±11.6 54.1±4.8
Mean-pooling 197K 67.4±7.2 61.1±5.5 61.9±5.5 83.3±6.0 60.9±8.5 62.3±7.4
ABMIL Ilse et al. (2018) 461K 60.5±15.9 56.8±11.8 61.2±6.1 83.6±3.1 64.4±4.2 65.7±4.7
CLAM-SB Lu et al. (2021) 660K 66.7±13.6 59.9±13.8 64.0±7.7 90.1±2.2 75.3±7.4 77.6±7.0
CLAM-MB Lu et al. (2021) 660K 68.8±12.5 60.3±11.1 63.0±9.3 90.9±4.1 76.2±4.4 78.6±4.9
TransMIL Shao et al. (2021) 2.54M 64.2±8.5 57.5±6.4 59.7±5.4 89.4±5.6 73.0±7.8 75.3±7.2
DSMIL Li et al. (2021) 462K 67.9±8.0 61.0±7.0 61.3±7.0 87.6±4.5 71.5±6.6 72.8±6.4
GTMIL Zheng et al. (2022) N/A 66.0±15.3 61.1±12.3 63.8±9.9 81.1±13.3 71.1±15.7 76.1±12.9
DTMIL Zhang et al. (2022a) 986.7K 67.5±10.3 57.3±11.3 66.6±7.5 90.0±4.6 74.4±5.3 76.8±5.2
IBMIL Lin et al. (2023) N/A 69.2±7.4 57.4±8.3 66.9±6.5 90.5±4.1 75.1±5.2 77.2±4.2
ViLa-MIL Shi et al. (2024) 8.8M/47M 74.7±3.5 67.0±4.9 67.7±4.4 92.6±3.0 78.3±6.9 80.3±6.2
CONCH (Lu et al. (2024)) 110M 89.46±10.2 78.5±9.31 78.78±9.1 88.08±4.59 78.21±4.2 71.67±19.4
QUILT Ikezogwo et al. (2024) 63M 79.66±13.19 72.30±13.35 72.42±13.24 96.92±1.6 78.46±5.55 86.34±1.56
MGPATH (CLIP) 1.6M/39M 77.2±1.3 70.9±2.0 71.0±2.1 92.1 ± 2.8 76.5 ± 5.2 81.7 ± 2.9
MGPATH (PLIP) 592K 83.6 ± 4.5 76.41 ± 4.8 76.5 ± 4.8 94.7 ± 1.6 78.6 ± 4.9 83.6 ± 3.5
MGPATH (PLIP-G) 5.35M 93.02±2.99 84.64±4.75 84.77±4.67 98.2±0.31 88.33±3.41 91.72±1.74

Table 2: Ablation studies on
multi-granular (M-Gran), ratio
combines two attention levels (α
in Eq (6)).

Configurations TCGA-NSCLC
AUC F1 ACC

MGPATH (CLIP) 76.2±2.2 69.0±3.5 69.3±2.8
- w/o M-Gran (CLIP) 74.6±2.2 67.8±2.4 67.8±2.5

MGPATH (PLIP-G) 91.7±3.6 84.2±4.6 84.4±4.5
- w/o M-Gran (PLIP-G) 90.6±4.5 82.4±5.7 82.5±5.7
MGPATH, α = 0.2 76.2±2.2 69.0±3.5 69.3±2.8
- α = 0.5 73.7±3.1 67.4±2.6 67.8±2.7
- α = 0.8 72.2±5.2 66.4±5.5 66.8±5.2

TCGA-RCC
MGPATH (CLIP) 92.1±2.8 76.5±5.2 81.7±2.9
- w/o M-Gran (CLIP) 91.6±3.5 72.3±6.4 80.2±4.4
MGPATH (PLIP-G) 98.1±0.6 85.7±1.1 89.9±2.0
- w/o M-Gran (PLIP-G) 98.1±0.6 85.0±4.0 89.3±3.0

Observed Results on Few-shot and Zero-shot Settings. As shown in Table 1, MGPATH, based
on CLIP50, achieves top recording performances and providing significant improvements over other
VLMs with similar architectures such as ViLa-MIL. Furthermore, PLIP backbone particularly
improved MGPATH. For instance, on TCGA-NSCLC using backbone CLIP50, MGPATH achieves
an accuracy of 71.0%, compared to 67.0% of ViLa-MIL. Moreover, using the PLIP backbone
provides an additional 6% improvement on TCGA-NSCLC, demonstrating MGPATH’s adaptability
and effectiveness across different backbones.

By incorporating distilled pathology features from Prov-GigaPath Xu et al. (2024) — pre-trained
on 1.3 billion pathology images — MGPATH(PLIP-G) achieves new state-of-the-art accuracies of
84.77% on TCGA-NSCLC and 91.72% on TCGA-RCC.

MGPATH also establishes a new benchmark in zero-shot tasks, demonstrating its ability to generalize
without additional fine-tuning. As shown in Table 5, it achieves the highest average performance
across two datasets, outperforming state-of-the-art foundation VLMs, including CONCH and PLIP.

4.2 ABLATION STUDIES

PLIP enhanced Prov-GigaPath. We evaluate the performance of our proposed PLIP-G under
the following settings. (i) using vision-language PLIP model; (ii) using our pre-trained architectures
through adaptors; (iii) Prov-GigaPath integrated with PLIP through randomly initialized adaptor
layers, (iv) Prov-GigaPath with an adaptor layer mapping to class output, training only the MLP
and last FFN layer. Table 3 demonstrates that combining Prov-GigaPath with PLIP by pre-
trained adaptors (Section 3.1) improves performance over using either model individually.

Multi-Granular Prompt Learning. In Table 2, MGPATH with multi-granular (M-Gran) outperforms
the variant without it (rows 1–2 for CLIP and 3–4 for PLIP-G) on TCGA-NSCLC, with a similar
trend observed on TCGA-RCC. The table also indicates that a 0.2/0.8 ratio of graph-based to prototype-
guided attention yields the best performances.
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Table 3: Ablation studies on adaptor learning for Prov-
GiGaPath and PLIP . PLIP-G denotes for mixed ver-
sion between Prov-GiGaPath and PLIP.

Methods # Param. TCGA-NSCLC
AUC F1 ACC

MGPATH (PLIP) 592K 83.6±4.5 76.41±4.8 76.5±4.8
MGPATH (PLIP-G) 5.35M 91.7±3.6 84.2±4.6 84.4±4.5
MGPATH Random Adaptors 5.35M 91.4±4.2 82.8±5.7 83.0±5.6
GIGAPATH Tuning (MLP + last FFN) 4.7M 62.7±3.5 64.66±5.3 52.8±3.4

OT as Alignment between Contextual
Prompts. Table 4 confirms the benefits
of incorporating OT into MGPATH on the
TCGA-NSCLC and TCGA-RCC datasets.
Notably, using OT (rows 1 and 2) boosts
performance compared to cosine similarity
(rows 3 and 4). Moreover, the results in-
dicate that the optimal number of prompt
vectors can vary by dataset.

Table 4: Contribution of OT and multiple de-
scriptive text prompts

Methods TCGA-NSCLC
AUC F1 ACC

MGPATH (OT, 4 text prompts) 76.2±2.2 69.0±3.5 69.3±2.8
MGPATH (OT, 2 text prompts) 77.2±1.3 70.9±2.0 71.0±2.1
MGPATH (Cosine, 2 text prompts) 75.8±3.7 68.3±4.5 68.4±4.5

TCGA-RCC
MGPATH (OT, 4 text prompts) 92.1±2.8 76.5±5.2 81.7±2.9
MGPATH (OT, 2 text prompts) 92.1±2.6 75.6±3.9 80.4±2.4
MGPATH (Cosine, 4 text prompts) 91.8±2.8 75.9±4.3 80.5±2.6

Table 5: Zero-shot classification performance
on TCGA-NSCLC, and TCGA-RCC. Metrics in-
clude balanced accuracy (B-Acc) and weighted
F1-score (W-F1).

Zero-shot TCGA-NSCLC TCGA-RCC Average
B-Acc W-F1 B-Acc W-F1 B-Acc W-F1

QuiltNet 61.3 56.1 59.1 51.8 57.23 49.33
CONCH 80.0 79.8 72.9 69.1 72.3 70.03
PLIP 70.0 68.5 50.7 46.0 61.8 59.43

PLIP-G (Our) 72.7 72.6 81.3 81.4 74.67 74.63

4.3 DISCUSSION

In this study, we propose MGPATH, which achieves significant improvements in few-shot and zero-
shot WSI classification across multiple datasets. However, we have not explored other potential
challenges, leaving room for further investigation in future work. For instance, integrating VLMs
models with other pathology foundation models such as CONCH or extending the approach to
segmentation tasks.

5 CONCLUSION

Whole slide images have become indispensable in clinical practice — particularly for cancer diagnosis
— analyzing their complex, hierarchical, high-resolution structures remains a significant challenge
for automated methods. Although recent VLMs research leveraging few-shot and weakly supervised
learning has achieved promising results with limited annotations, these approaches often overlook
the hierarchical relationships among the learnable prompts, individual patches, and patch groups.
Furthermore, they lack the precision needed to capture fine-grained alignments between image-text
pairs. In this study, we propose MGPATH, a VLM that integrates Prov-GigaPath with PLIP, to
overcome these limitations. Our granular prompt learning approach effectively captures hierarchical
tissue interactions, resulting in significant improvements in WSI classification. Experimental results
demonstrate that our MGPATH achieves state-of-the-art results in WSIs classification. We expect this
work to inspire future research on integrating vision-language models with multi-granular prompt
learning to capture local, global, and spatial information in WSI structures while leveraging optimal
transport methods to enhance few-shot learning in pathology.
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