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Abstract

Narrow Band Imaging (NBI) is increasingly being used in laryngology because it increases
the visibility of mucosal vascular patterns which serve as important visual markers to de-
tect premalignant, dysplastic and malignant lesions. To this end, deep learning methods
have been used to automatically detect and classify the lesions from NBI endoscopic videos.
However, the heterogeneity of the lesions, illumination changes due to phlegm on the mu-
cosa and imaging artifacts such as blurriness make inter-patient endoscopic videos exhibit
diverging image distributions. Therefore, learning representations that are robust to im-
age distribution changes can be beneficial and improve the generalizing capability of the
convolutional neural network (CNN). To this end, we propose a dual branch CNN that
learns robust representations by combining deep narrow band features and wavelet scat-
tering transform features of the narrow band images to classify vocal cord NBI images into
malignant and benign classes. We show the generalizing capability of our learnt represen-
tation by training our neural network using two different losses: cross-entropy (CE) loss
and supervised contrastive (SupCon) loss. Our source code is provided here.

Keywords: Narrow Band Imaging, Laryngeal Cancer, Cross Entropy Loss, Supervised
Contrastive Loss

1. Introduction

Narrow Band Imaging is an emerging optical technique to detect and classify lesions in
the upper respiratory tract as it enhances the contrast of vascular patterns compared to
standard white light endoscopy. Physicians analyse the vascular patterns to diagnose the
severity of the pathology (Arens et al., 2016). To this end, deep neural networks have
been used to leverage these vascular patterns to detect and classify laryngeal squamous
cell carcinoma (LSCC) from NBI video laryngoscopies (Azam et al.). However, there has
been little investigation on the properties that features must have to improve the laryngeal
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cancer classification from NBI images of vocal folds. Typically, the vocal folds appear at
different scales, have noise such as blurriness, reflection and illumination changes and ap-
pear in various orientations in the endoscopic videos. Therefore, learning representations
that are scale, noise and rotation invariant could be beneficial. While data augmentations
are typically employed to learn invariant representation, it is not guaranteed especially with
limited ground truth data. To this end, we use wavelet scattering transform to extract fea-
tures with defined properties such as scale, rotation, translation and deformation invariance
(Mallat, 2012). We incorporate wavelet scattering transform features through a dual branch
CNN with one branch extracting deep features from raw NBI images and a second branch
extracting deep features from wavelet scattering transform features of NBI images. We
show the improvement in generalization by evaluating on test set images that are grouped
by patients (patient-stratified). Furthermore, we show the generalizing capability of the
learnt representations by comparing our model trained on two losses (CE loss and SupCon
(Khosla et al., 2020)) with and without the wavelet scattering features.

2. Methods

The dataset for this study consists of NBI videos of the larynx of 14 patients that were
recorded using a flexible laryngoscope (ENF-VH, Olympus) attached to an NBI capable
endoscopy system (Evis Exera III, Olympus). The study was approved by the local ethics
committee (Project number 44-15, Ludwig Maximilian University of Munich). Written
informed consent was gained from all patients undergoing this study. Images showing the
vocal cords were extracted from NBI videos of 14 patients. 6 patients were diagnosed with
LSCC (positive class) based on histological analysis and 8 were diagnosed with no LSCC.
In total, there are 270 images of vocal cords with LSCC lesions and 553 images of vocal
cords with no LSCC. The mean and standard deviation of the number of vocal cord images
per patient was 50 ± 12. We performed a 6-fold cross validation approach where we left
one patient with LSCC and one patient with no LSCC out for cross-validation and test set.
The images of the remaining 10 patients were used in the training set. Data augmentations
such as random rotation, color jitter, grayscale, random affine, vertical and horizontal flip
were used. All are images were resized to 128×128. A batch size of 32 was used for all the
experiments.

Our proposed model consists of two parallel branches. Each branch is a ResNet18. The
first branch receives the NBI images of vocal cord. The second branch receives the wavelet
scattering transform feature maps of the NBI images of vocal cord. We use a wavelet
scattering transform with order J = 2 resulting in 81 feature maps per image channel.
The two branches produce latent vectors with dimension D1 and D2 respectively. In our
experiments, we keep the latent vector dimension of the ResNet that takes NBI images
constant at D1 = 128. We empirically found D2 = 32 to be most beneficial for our model
trained with CE loss based on our cross-validation experiments. Similarly, D2 = 8 showed
the best performance for our model trained with SupCon loss. The latent vectors of the
two branches are concatenated and a linear classifier is employed to classify into one of two
classes. We follow the training strategy described by (Khosla et al., 2020) for SupCon loss.

3. Results and Discussion

The results of our experiments are reported in Table 1. We observe that specificity, sen-
sitivity and F1 weighted metrics are higher for models with wavelet scattering features.
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Table 1: Results of our experiments

Method Loss D2 Specificity Sensitivity F1 weighted
w/o wavelet scattering CE - 0.58 ± 0.39 0.42 ± 0.44 0.40 ± 0.22
w/ wavelet scattering CE 32 0.74 ± 0.33 0.59 ± 0.36 0.62 ± 0.33

w/o wavelet scattering SupCon - 0.52 ± 0.46 0.59 ± 0.43 0.42 ± 0.19
w/ wavelet scattering SupCon 8 0.58 ± 0.37 0.63 ± 0.29 0.56 ± 0.26

The classification performance is better for models trained with CE loss than SupCon loss.
Our results indicate that incorporating wavelet scattering features improve the generalizing
capability of the CNN. The performance improvements indicate that features maps with
defined properties such as translation, rotation, noise and deformation invariance are im-
portant towards laryngeal cancer classification on our dataset of NBI images. However, we
also observe a relatively large standard deviation in our reported metrics. An extended
dataset containing more patient laryngoscopies may reduce the standard deviation of the
observed metrics. The large standard deviation also highlights the image distribution diver-
gence from patient to patient video laryngoscopies. Multiple factors such as heterogeneity
of pathology, blurriness, laryngeal content such as phlegm and reflections account for the
image distribution divergence in inter-patient NBI images. Therefore, it becomes critical to
evaluate a network using patient-stratified split to make a fair assessment of its generalizing
capability. Furthermore, patient-stratified evaluation better reflects the clinical use-case
where an inference must be made on an unseen endoscopic video of a new patient. In con-
clusion, we propose a model that combines wavelet scattering features and deep features.
We show improved generalizing capability due to wavelet scattering features by training our
model on two losses.
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