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Multimodal large language models (MLLMs) are emerging as powerful tools in medicine, particularly in radiology, with the
potential to serve as trusted artificial intelligence (AI) partners for clinicians. In radiology, these models integrate large
language models (LLMs) with diverse multimodal data sources by combining clinical information and text with radiologic
images of various modalities, ranging from 2D chest X-rays to 3D CT/MRI. Methods for achieving this multimodal integration
are rapidly evolving, and the high performance of freely available LLMs may further accelerate MLLM development. Current
applications of MLLMs now span automatic generation of preliminary radiology report, visual question answering, and
interactive diagnostic support. Despite these promising capabilities, several significant challenges hinder widespread clinical
adoption. MLLMs require access to large-scale, high-quality multimodal datasets, which are scarce in the medical domain. Risks
of hallucinated findings, lack of transparency in decision-making processes, and high computational demands further
complicate implementation. This review summarizes the current capabilities and limitations of MLLMs in medicine—
particularly in radiology—and outlines key directions for future research. Critical areas include incorporating region-grounded
reasoning to link model outputs to specific image regions, developing robust foundation models pre-trained on large-scale
medical datasets, and establishing strategies for the safe and effective integration of MLLMs into clinical practice.
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INTRODUCTION applications primarily focused on analyzing images in
isolation [3]. This unimodal approach contrasts sharply with

Artificial intelligence (AI), especially deep learning, real-world clinical radiology, where practitioners routinely

has significantly impacted clinical medicine, particularly combine imaging findings with patient information from

radiology [1]. Convolutional neural networks have enhanced  electronic health records (EHRs), including clinical notes,

image recognition and segmentation, boosting diagnostic laboratory results, and patient history [3-5]. Given the

accuracy for specific tasks and altering components of inherently multimodal nature of radiological practice,

the radiological workflow [2]. However, these early AI the limitations of image-centric AI have prompted the
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emergence of multimodal large language models (MLLMs)
designed to integrate diverse clinical and imaging data [3-5].

MLLMs, also known as large multimodal models (LMMs),
represent a significant evolution in medical AI [6]. Their
core capability is the concurrent processing and integration
of heterogeneous data modalities [7]. In clinical settings,
this includes various imaging types (e.qg., radiologic imaging
such as CT, MRI, and X-ray, endoscopy, digital pathology,
and various clinical photos) alongside textual data such
as radiology reports, clinical notes, and structured EHR
data (Fig. 1) [8]. MLLMs build upon large language models
(LLMs)—sophisticated AI trained on vast text datasets using
transformer-based architectures to understand and generate
human-Llike language [9]. MLLMs extend these capabilities
by incorporating advanced computer vision modules
and multimodal learning techniques [8]. The defining
feature is their ability to integrate and align information
across modalities, often mapping them into a shared
representational space [8]. This synergy allows for a more
comprehensive understanding than unimodal approaches
permit [10]. Consequently, MLLMs can tackle complex cross-
modal tasks such as radiology report generation (RRG) from
images and visual question answering (VQA) that incorporates
both imaging and clinical context [11].

The rapid development of MLLMs reflects several
converging technological advancements. First, the evolution
of LLMs, powered by the transformer architecture and its
self-attention mechanism, allows the capture of long-range
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textual dependencies, with extensive pre-training on
web-scale corpora providing broad linguistic and domain-
specific knowledge (Fig. 2) [12,13]. Second, parallel
innovations in multimodal architectures, particularly
vision transformers (ViTs) [14], provide high-capacity
encoders adaptable to medical imaging modalities such
as CT and MRI. Third, multimodal learning strategies,
including contrastive pre-training (Fig. 3A) [15] and
instruction-tuned fusion architectures (Fig. 3B) [16], permit
the seamless integration of image and text representations,
enabling natural-language prompts to drive complex visual
reasoning. Finally, the availability of high-performance
computing infrastructure, including graphics processing
units (GPUs) and tensor processing units (TPUs), provides
the computational throughput required to train and deploy
these parameter-intensive systems at clinically relevant
scales [17]. Together, these advancements support the
foundation model (FM) approach, where large, broadly pre-
trained models are adapted for specific tasks, potentially
accelerating development in specialized domains like
medical imaging [18].

This review provides a comprehensive overview of
MLLMs in medical imaging, with a particular focus on
radiology. Aimed at medical professionals, the discussion
highlights clinical relevance, potential applications, and key
implementation challenges, based on recent research.

Image encoder

Clinical information

Age / Sex: 65 / Male

Ht / Wt: 178 cm / 65 kg

Hx: known HTN, COPD on med, 30PY current
smoker

V/S: BP 145/92 HR 81bpm RR 12 BT 36.7
Lab: Hb 13.2, Na 135, K 3.8 albumin 3.6

Last PFT: FEV1/FVC = 58%

— Text encoder [~

“Is this patient at high risk for
anesthesia during hernia surgery?

Output

———

“Yes, based on the
patient’s most recent
PFT results, ...”

MLLM

Fig. 1. Example of a MLLM. A patient’s chest X-ray and corresponding clinical information, including a key clinical question, are encoded
separately by an image encoder and a text encoder, respectively. By integrating these multimodal inputs, the MLLM generates an
appropriate answer to the user’s question. MLLM = multimodal large language model
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Brief Technical Principles and Concepts of diverse input modalities such as images, audio, and video.
MLLMs These models learn cross-modal connections, allowing

them to process, reason about, and generate information
MLLMs extend traditional text-only LLMs by incorporating across multiple data types [19]. A typical MLLM architecture
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Fig. 2. Global landscape of LLMs and their performance. Bubble chart displaying over 100 public LLM releases from 2020 to 2025,

ranked by their MMLU score (y-axis; higher values indicate better performance) and release date (x-axis). Bubble size corresponds to

the reported number of training parameters (in billions), while bubble color indicates the developer (e.g., OpenAl, Google, Anthropic).
Dashed horizontal lines represent two reference benchmarks: the human-expert level (89.8%) and the “ideal clinical threshold” (70%)
referenced in the text. Reprinted under open access from David et al. [13]. *Parameter undisclosed. LLM = large-language model, MMLU =
massive multitask language understanding
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Fig. 3. Multimodal pipelines linking chest radiographs with text. A: Contrastive pre-training. Separate image and report encoders are
trained to learn a shared embedding space by pulling true image-report pairs together and pushing mismatches apart, enabling zero-
shot study retrieval, automatic report drafting, and label-efficient classification. Adapted from Radford et al., Proc Mach Learn Res
2021;139:8748-8763, originally published under a CC BY license [15]. B: Instruction-tuned fusion. Visual features extracted by a frozen
vision encoder are projected and integrated into the token stream of a large language model that has been fine-tuned with radiology-
specific instructions. This setup enables the model to process natural-language prompts (e.g., “Is there right-sided effusion?”) and
generate clinically relevant outputs such as key findings, differential diagnoses, or follow-up recommendations. Adapted from Liu et al., a
preprint published under a CC BY license [16]. I = image embedding, Hq = image-aware hidden states after cross attention, Hv = linearly
projected visual tokens, T = text embedding, Xa = autoregressively generated answer tokens, Xq = prompt (query) text tokens, Xv = input
radiograph, Zv = vision-encoder feature map
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comprises pre-trained encoders for different data types, a
pre-trained LLM, and a multimodal connector that aligns

the representations across components (Fig. 4). Some
architectures also include a generative module capable of
creating images or videos when needed. In this architecture,
the LLM functions as a ‘cognitive engine, maintaining its
text-centric pre-trained state to provide powerful reasoning
capabilities without requiring additional fine-tuning for
multimodal inputs [7]. This design supports a wide range of
applications, including RRG, VQA, and content-based retrieval
across modalities. Given the substantial computational
demands of large-scale MLLM models, optimization strategies
developed for LLMs—such as compression, quantization, and
knowledge distillation—are critical for reducing inference
costs and facilitating deployment in real-world clinical
settings [20-22].

Architectures
Modality-specific encoders transform complex data
types—such as images, audio, and video—into simpler,
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meaningful representations. These encoders extract
essential features from each modality, converting high-
dimensional inputs into streamlined formats suitable for
downstream processing. Instead of training new encoders
from scratch (i.e., using randomly initialized weights
without prior knowledge), researchers typically employ
existing pre-trained models [7]. A popular choice is
contrastive language-image pre-training (CLIP) [15], which
aligns visual data with corresponding textual descriptions
through extensive training (Fig. 3A).

To bridge the modality gap between non-text data and
natural language, a multimodal connector is introduced
as a learnable interface. Since LLMs operate solely on
textual input, this connector maps diverse data types
to their corresponding textual representations within a
shared semantic space. This approach enables the outputs
of specialized encoders to be translated into formats
interpretable by the LLM, thereby eliminating the need
to train a multimodal model from scratch [7]. Multimodal
connectors can be categorized into four main types (Fig. 4).
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Fig. 4. Schematic illustration of a typical multimodal LLM architecture. The architecture generally comprises three main components:
an encoder, a connector, and a LLM. An optional generator can be attached to the LLM to generate additional modalities beyond text.
The encoder processes input data—such as images, audio, or video—and extracts modality-specific features. These features are then
transformed by the connector to enhance the LLM’s interpretability. Connectors are broadly categorized into four types: (A) projection-
based, (B) query-based, (C) fusion-based, and (D) expert-driven language transformation connectors. Adapted from Yin et al., Nat!
Sci Rev 2024;11:nwae403, originally published under a CC BY license [7]. LLM = large language model, MLP = multi-layer perceptron,

Q-Former = query transformer, MH-Attn = multi-head attention
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Projection-based connectors employ a multi-layer perceptron
(MLP), a type of neural network analogous to neural
communication in the human brain (Fig. 4A) [16]. The MLP
transforms visual data into a representation that aligns closer
to language, making it easier for the LLM to understand and
process [23]. Query-based connectors utilize specialized
trainable ‘query tokens’ to extract salient visual details from
images [24]. These tokens guide the model in efficiently
identifying and retrieving relevant visual information (Fig.
4B) [25]. Both projection- and query-based connectors
convert features into token representations, which are

then passed to the LLM alongside text tokens, enabling
effective multimodal information integration within the
LLM’s processing pipeline. Fusion-based connectors facilitate
feature-level integration within the LLM architecture (Fig.
4C) [26]. Through a cross-attention mechanism, the model
establishes direct interactions between pairs of visual and
language representations, enabling effective multimodal
information integration [27]. Specifically, this mechanism
allows language representations to selectively focus on and
incorporate relevant details from visual inputs by forming
pairwise relationships [19]. As a result, feature-level
fusion allows for richer multimodal interactions throughout
the LLM’s processing stages [7]. Expert-driven language
transformations convert non-linguistic data directly into
text, similar to image captioning (Fig. 4D) [25]. This
approach uses specialized models to translate multimodal
inputs directly into language that LLMs can process
without additional training [7,28]. While straightforward
to implement, this method often results in information
loss when complex data like videos are reduced to text
descriptions that cannot fully preserve spatial-temporal
relationships [7,29].

Pre-trained LLMs form the cognitive backbone of modern
multimodal systems, providing a significantly more efficient
alternative to building models from scratch. Their extensive
training on large-scale text corpora enables broad reasoning
and contextual understanding, which can be leveraged for
multimodal tasks [7,30]. These models inherently support
capabilities such as zero-shot generalization and few-
shot learning, chain-of-thought reasoning, and instruction
following [31]. Empirical studies indicate that larger models
improve accuracy, contextual understanding, fluency, and
problem-solving, while demonstrating emergent capabilities
like cross-lingual understanding [7,30].

kjronline.org https://doi.org/10.3348/kjr.2025.0599

Korean Journal of Radiology

Training Strategies

MLLMs are typically developed through three sequential
stages: pre-training, instruction tuning, and alignment
tuning. Each stage uses different data types and learning
objectives to progressively improve the model’s cross-modal
understanding and reasoning capabilities [7]. In the pre-
training stage, a multimodal connector learns to align visual
and textual representations, often using autoregressive
captioning on image-text pairs [32]. Research indicates
that selectively fine-tuning components of the vision
encoder enables more precise alignment between modalities
[33]. The training data at this stage includes both large-
scale web-collected materials and refined content from
human annotation or high-performance MLLMs [34].

During instruction tuning, the model is fine-tuned using
datasets containing diverse natural language instructions
and multimodal inputs, teaching it to follow complex
directives reliably (Fig. 3B). The model is trained to
generate appropriate responses to various inputs, including
images and text. This process involves fine-tuning the LLM
using low-rank adaptation (LoRA) while simultaneously
training the multimodal connector to process heterogeneous
input modalities effectively [35]. The vision encoder may
be selectively fine-tuned, depending on performance needs.
Several strategies are employed during this stage, including
converting question-answer pairs into instruction formats
or generating multimodal instructions using advanced
LLMs [36]. Research shows that incorporating both
multimodal with text-only data during instruction tuning
significantly enhances the model’s conversational quality
and instruction-following capabilities, thereby improving its
adaptability across various tasks [37].

The final stage, alignment tuning, optimizes the model’s
outputs to better reflect human preferences, thereby
improving response quality and reliability. This is typically
achieved through reinforcement learning from human
feedback [38]. A reward model is first trained on human
preference data, after which the policy model is fine-tuned
to maximize reward scores. This stage relies on small-scale,
high-quality comparison responses, which help reduce
hallucination risks and better reflect human preferences.

Representative General-Purpose MLLMs

Table 1 presents prominent MLLM models that have
significantly influenced architectural and training paradigms.
Flamingo [26], developed by DeepMind, was an early model
that effectively used feature fusion to combine visual
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Table 1. Summary of representative general-purpose multimodal LLMs

Nam et al.

Model (year) Connector Vision encoder LLM backbone  Pre-training data Model size Instru'ct1on Key features
type tuning
Flamingo Fusion- NFNet image  Chinchilla ALIGN and LTIP  3.2-80B No (few-shot Few-shot multimodal
(2022) [26] based encoder with ~ (70B) datasets only) learning achieves SOTA
Perceiver performance on 16 tasks
resampler with a few, without
additional fine-tuning
BLIP2 Query- ViT from CLIP  OPT (2.7B, 6.7B) 129M image-text 3.1-12.1B No Strong zeroshot captioning,
(2023) [25] based or FlanT5 pairs outperforming Flamingo
(3B, 11B) by 8.7% on zero-shot VQA
LLaVA Projection- ViT from CLIP  Vicuna (13B) 595K image-text  UN Yes Achieves 85% of GPT-4's
(2023) [16] based pairs performance on a
multimodal instruction-
following dataset
GPT4 UN UN Native UN UN Yes Advanced VQA, reduced
(2023) [39] multimodal hallucination, robust
multimodal reasoning
Gemini UN UN Native UN UN Yes Strong reasoning across
(2023) [40] multimodal modalities; tool integration
Claude 3 UN UN Native UN UN Yes Strong OCR, structured data
(2024) [41] multimodal understanding, extended

context window

LLM = large language model, ALIGN = a large-scale ImaGe and noisy text embedding, LTIP = long text and image pairs, SOTA = state-
of-the-art, BLIP = bootstrapped language-image pre-training, ViT = vision transformer, CLIP = contrastive language-image pre-training,
OPT = open pre-trained transformer, T5 = text-to-text transfer transformer, VQA = vision question answering, LLaVA = large language and
vision assistant, GPT = generative pre-trained transformer, UN = undisclosed, OCR = optical character recognition

information with language processing (Fig. 4C). It inserted
visual features into the middle layers of an LLM using cross-
attention, allowing the language components to attend
selectively to relevant visual elements, promoting deeper
multimodal integration. Subsequent query-based approaches
improved efficiency by simplifying visual-language
connections. Bootstrapped language-image pre-training
(BLIP)-2 [25] advanced this paradigm by introducing a
two-stage query transformer (Q-Former) that connects an
image encoder to an LLM. The Q-Former uses learnable query
tokens to extract salient visual features and convert them
into LLM-compatible format, enabling end-to-end vision-to-
language generation without complete retraining (Fig. 4B).
Remarkably, BLIP-2 achieved performance comparable to
Flamingo while using 54 times fewer trainable parameters.
Further simplifying the architecture, large language and
vision assistant (LLaVA) [16] adopted projection-based
connectors (Fig. 4A), requiring only 595000 image-text
pairs for initial alignment—significantly fewer than BLIP-2’s
100 million samples.

Recent models, such as GPT, Gemini, and Claude,

increasingly use extensive instruction tuning and human
feedback alignment, applying text-only reinforcement
learning techniques to visual domains [39-41]. While
larger models and more training data generally improve
multimodal capabilities, as seen in the evolution from
Flamingo to more advanced models, strategic architectural
design choices, such as the use of lightweight adapters,
have enabled smaller models to achieve impressive results
in specific areas [42,43]. These developments highlight the
critical balance between model scale and design efficiency
in advancing multimodal AL

2D Medical Imaging MLLMs

Early research on MLLM in medicine primarily focused
on 2D radiological images, particularly chest X-rays (CXRs)
[44]. This emphasis was driven by two principal factors:
1) the relative maturity and cross-domain transferability of
2D vision encoders pre-trained on large-scale natural image
datasets [14], and 2) the availability of extensive, publicly
accessible datasets that pair 2D medical images with
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corresponding radiology reports [45].

Typical Datasets for 2D MLLM Research

Several high-quality public radiology datasets have
significantly advanced the development and evaluation of
2D medical multimodal models. Among them, MIMIC CXR
[46], which contains hundreds of thousands of CXRs paired
with corresponding radiology reports, serves as a primary
resource for training models on RRG tasks. Building on this,
the Chest ImaGenome [47] introduces detailed annotations,
including anatomical structure bounding boxes, which
support more granular analysis of model attention and
enable more rigorous evaluation methodologies.

For VQA in medical imaging, benchmarks like VQA-RAD
[48] and SLAKE [49] provide carefully selected CXRs and
CT images, accompanied by clinician-generated questions
and expert-verified answers. These datasets are crucial for
rigorously evaluating a model’s ability to interpret medical
images and extract clinically relevant information. A
more recent resource, PMC-VQA [50], is created by taking
radiology figures and their captions from PubMed Central
articles and converting them into 227 thousands of diverse

Korean Journal of Radiology

question-answer pairs using automated methods. This
large-scale dataset expands the range of clinical scenarios
and supports the fine-tuning of MLLMs to enhance their
radiology reasoning capabilities.

Collectively, these datasets—whether offering
comprehensive report collections (MIMIC-CXR), focused Q&A
benchmarks (VQA-RAD, SLAKE), or large-scale synthetic VQA
pairs (PMC-VQA)—have played a central role in shaping
both the main research tasks and standard evaluation
protocols used across 2D medical MLLM studies. Typically,
models are pre-trained on the extensive MIMIC-CXR dataset
and subsequently evaluated on VQA-RAD, SLAKE, or PMC-
VQA to assess their performance in real-world radiology
applications [51].

Typical 2D MLLMs and Architectures

Contrastive learning aligns radiologic images and their
corresponding reports by pulling matched pairs together
in the embedding space while pushing mismatched pairs
further apart, thereby significantly reducing the need
for manual annotations [15]. ConVIRT [52] first applied
a bidirectional contrastive loss to CXR-report pairs,

Table 2. Summary of representative 2D multimodal LLMs in radiology trained by contrastive learning

Model B?\S:S:‘O:h:tfﬁdu)re Key technique(s) Primary task(s) Dataset(s) used If:zyni:s::gz:/
ConVIRT ResNet50 + Bidirectional imagetext ~ Zeroshot classification &  MIMICCXR v2 First medical imagetext
[52] ClinicalBERT contrastive pretraining,  retrieval (227K) + internal contrastive framework
largebatch unsupervised musculoskeletal set
learning (48K pairs)
MedCLIP ViT + Decoupled contrastive Zero-shot classification,  Unpaired images/ High data efficiency,
[53] BioClinicalBERT  learning, semantic supervised text (e.g., CheXpert, addresses false
matching loss (using classification, image- MIMIC-CXR) negatives, strong zero-
medical knowledge) text retrieval shot performance
BioViL-T Hybrid CNN- Temporal vision-language Progression classification, MIMIC-CXR (longitudinal First model with
[54] transformer pretraining, contrastive  phrase grounding, RRG pairs) temporal awareness,
multi-image learning SOTA on temporal tasks
encoder +
CXR-BERT
BioMedCLIP VAT + Large-scale contrastive ~ Cross modal retrieval, PMC-15M (15 million Domain-specific
[56] PubMedBERT pre-training zero-shot/few-shot/ diverse biomedical adaptations, positive

full-shot image
classification, VQA

image-text pairs) transfer learning

demonstrated

LLM = large language model, ConVIRT = contrastive learning of medical visual representations, ResNet = residual network, BERT =
bidirectional encoder representation from Transformers, MIMIC-CXR = medical information mart for intensive care chest X-ray dataset,
CXR = chest X-ray, MedCLIP = medical contrastive language-image pre-training, ViT = vision transformer, BioClinicalBERT = clinical BERT
pretrained on biomedical notes, CheXpert = chest X-ray expert-labeled dataset from Stanford, BioViL-T = biomedical vision-language model
with temporal modeling, CNN = convolutional neural network, CXR-BERT = BERT variant trained on chest X-ray reports, RRG = radiology
report generation, SOTA = state-of-the-art, BioMedCLIP = biomedical CLIP-style pretraining using ViT and PubMedBERT, PubMedBERT =
BERT pretrained on PubMed abstracts, VQA = visual question answering, PMC = PubMed Central
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establishing a strong radiology-specific pre-training
baseline. MedCLIP [53] improved data efficiency and
enabled zero-shot transfer with limited paired examples by
introducing separate image and text encoders along with a
terminology-aware semantic loss. BioViL-T [54] extended
this approach by integrating CXR-BERT [55] text encoders
with multi-image transformers to model temporal disease
progression, achieving state-of-the-art (SOTA) performance
in phrase grounding and progression tasks. BioMedCLIP [56]
further demonstrated that pre-training on large, diverse
biomedical image-text corpora can outperform radiology-
specific models, highlighting the benefit of cross-domain
knowledge transfer. Table 2 summarizes these methods.
Research then shifted toward MLLMs, where general
architectures are adapted through instruction tuning or fine-
tuning to enhance reasoning and generation capabilities.
Several MLLMs have shown notable progress in 2D
radiological image analysis (Table 3). LLaVA-Med [57] pairs
a CLIP-based ViT with a Vicuna/Llama LLM. After aligning
15 million PMC image-caption pairs and a brief GPT-4-guided
tuning stage, it achieves expert-level performance in VQA
and medical dialogue. Med-PaLM M [58] adopts a generalist
design by integrating PaLM-E [59] with a ViT, enabling
a single set of parameters to handle multiple biomedical

Nam et al.

modalities. Fine-tuning on MultiMedBench [58] enabled
the model to attain SOTA performance across all evaluated
tasks, and its automatically generated chest radiograph
reports were preferred over those of human radiologists in
approximately 40% of blinded comparisons. Med-Flamingo
[60] adapts the few-shot OpenFlamingo-9B framework
to the medical domain. Without weight updates, it can
answer image-based exam questions and generate free-form
explanations deemed accurate by experts. Targeting thoracic
imaging, X-rayGPT [61] maps a MedCLIP [53] encoder
into Vicuna-7B using a single linear projector and 217000
annotated summaries, supporting concise impression
generation, abnormality description, and interactive VQA.
In summary, the current landscape of 2D radiology MLLMs
is shaped by two complementary approaches: contrastive
pre-training for efficient visual representation learning and
instruction-tuned generalist models for advanced reasoning
and generation capabilities.

Target Tasks for 2D MLLMs

Integrating visual and language processing in MLLMs has
enabled several capabilities that directly enhance radiology
workflows. First, RRG leverages MLLMs to translate complex
image features into coherent narrative text, automatically

Table 3. Summary of representative 2D MLLMs in radiology trained via instruction tuning or fine-tuning

Base architecture

Model
oce (vision + LLM + interface)

Key technique(s)

Primary task(s)

Dataset(s) used Key strength/contribution

LLaVA-Med CLIP/VAT or
[57] BioMedCLIP/ViT +
Vicuna/Llama +
Linear Projection
Med-PaLM ViT-e, ViT-22B + PaLM-E End-to-end fine-

Instruction tuning,
curriculum VQA
learning

Visual conversation,

VQA, RRG,

PMC-15M (captions),
GPT-4 generated
instruction-
following data

MultiMedBench

Efficient adaptation of
general MLLM for biomedical
conversation

Generalist model with SOTA

M [58] 8B, 62B, 540B + tuning, instruction  classification, (diverse medical performance on many tasks,
Linear projection prompting, one- genomics etc. tasks/modalities) strong reasoning
shot exemplar
Med- CLIP ViT-L/14 + Llama-  Continued pre- Generative VQA, MTB, publications First medical MLLM with few-
Flamingo 7B + Perceiver training, few- Rationale (PMC-0A) shot learning capability for
[60] Resampler & shot in-context generation VQA and reasoning

Cross-Attention learning

X-rayGPT  MedClip ViT + Vicuna-7B Medical visual-text, Imageconditioned  Generated summaries Specialized conversational model
[61] + Linear Projection alignment fine- CXR summary (217K) from MIMIC-  for CXRs
tuning generation, CXR, OpenlI reports

interactive VQA

MLLM = multimodal large language model, LLM = large language model, LLaVA = large language and vision assistant, CLIP = contrastive
language-image pretraining, ViT = vision transformer, VQA = visual question answering, PMC = PubMed Central, GPT = generative pre-
trained transformer, Med-PaLM = medical pathways language model, PaLM = pathways language model, RRG = radiology report generation,
MultiMedBench = benchmark suite for diverse medical tasks, SOTA = state-of-the-art, MTB = medical textbooks, PMC-OA = PubMed Central
open access subset, X-rayGPT = instruction-tuned conversational MLLM for chest radiographs, MedCLIP = medical contrastive language-

image pretraining, CXR = chest X-ray
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generating the “Findings” and “Impression” sections of a

report (Fig. 5A) [4]. This automation can reduce radiologists

’

workload, accelerate report delivery times, and improve

consistency across examinations by standardizing language

and minimizing repetitive dictation. Second, VQA allows
clinicians—and potentially patients—to interactively query
medical images and receive accurate, contextual responses
(Fig. 5B) [50,62]. This interactive approach supports

quick clinical decision-making and serves as an intuitive
educational tool for trainees. Finally, text-to-image retrieval
applications allow radiologists to search large imaging

archives using natural language queries (e.g., “find all CXRs

Korean Journal of Radiology

suggesting tuberculosis”) or retrieve relevant reports for a
specific image [7]. These systems can streamline research
cohort selection, support case reviews in team meetings,
and enhance quality control by efficiently identifying similar
studies.

Progress in 3D Medical Imaging MLLMs

The transition to 3D medical imaging in MLLMs is driven
by the clinical need for detailed spatial information inherent
in volumetric modalities like CT and MRI, which allows for
superior pathology localization, disease staging, and surgical

—— Input image/prompt

e report

Injection of contrast via the orifice of purulent discharge
showed opacification of the left perianal abscess. No evidence
of obvious contrast extravasation into the anal canal or
rectum.

Generated report

Injection of contrast via the orifice of purulent discharge
showed opacification of the perianal abscess. No evidence of
bvi contrast ion into the anal canal or rectum is

seen.

e report

A 43*36mm hetero-enhancing mass is noted at right renal sinus. There is
no sign of local invasion to adjacent structures and no vascular
extension. No regional lymphadenopathy is identified. Degenerative
changes as osteophytosis are seen at the lumbar spine. Grade |
spondylolisthesis of L5 on S1 is present with bilateral spondylolysis.

Generated report

A 35 mm large exophytic mass is seen in the lower pole of the right
kidney. The neoplasm has a similar density to normal renal parenchyma
on non-enhanced CT scan. No regional lymphadenopathy is noted. After
IV contrast media injection, the attenuation value didn't widened and
the mass didn't enhance. Mild degenerative changes as osteophytosis
are seen at the lumbar spine.

Input image VQA Type

Example Prediction

Closed-ended —>

Open-ended —>

Q: Is there evidence of
pleural effusion? A: Yes
A: Yes.

Q: Which abnormalities

can be detected in the A: Right pleural effusion
right hilar region? is present, small in

A: Mild right-sided volume.

pleural effusion is noted.

Closed-ended —

Open-ended —>

Q: What is the CT phase
of the image?
Choices:

A. Non-contrast A: C. Arterial phase
B. Contrast

C. Arterial phase

D. Portal venous phase

A: C. Arterial phase

Q: Which contrast phase

is shown in this CT image? # Arterial phass

Fig. 5. Representative vision-language tasks in radiology. A: Automated report generation using RadFM. The upper and lower panels
illustrate generated reports compared to the corresponding reference reports. Keywords that are correctly matched or missed are
highlighted using color coding to enhance interpretability. B: VQA. Examples include both closed-ended (choice-based) and open-ended
(free-text) responses. Adapted from Wu et al., a preprint published under a CC BY license [71]. RadFM = radiology foundation model, VQA
= visual question answering
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planning compared to 2D imaging [63]. In contrast, applying
2D networks to individual slices is both computationally
inefficient and fails to capture inter-slice contextual
information. Similarly, selecting only a few representative
slices risks overlooking critical spatial relationships [64].

However, developing true 3D MLLMs presents several
significant challenges. These include the lack of large,
annotated 3D datasets; the substantial computational
demands from processing many voxels, leading to token
explosion; difficulties in adapting pre-trained 2D vision
models to 3D structures; and the need for new evaluation
methods that can assess spatial features in a volumetric
context [44,45,65,66]. Despite these obstacles, research in
3D medical MLLM has gained momentum, driven by pressing
clinical needs and supported by the emergence of large-
scale 3D medical image-text datasets [44,45].

New Datasets Fueling 3D MLLM Development

Several new datasets are accelerating 3D MLLM development
by providing well-annotated volumetric studies with matching
textual reports.

CT-RATE [67] includes over 25000 non-contrast chest CT
scans from about 21000 patients, reconstructed into nearly
50000 volumes, each paired with the dictated radiology
report. RadGenome-Chest CT [68] builds directly upon CT-
RATE by incorporating organ- and lesion-level masks—
spanning about 200 anatomical classes—generated via
automated segmentation methods [69]. These anatomical
annotations are aligned at the sentence level with the
associated report text, enabling models to learn explicit
voxel-to-language correspondences. This fine-grained
alignment is an essential prerequisite for clinically
meaningful, location-specific reasoning.

M3D-Data [45] extends the scope further by providing
120000 publicly available 3D studies paired with free-
text descriptions, along with 662000 instruction-response
exemplars covering key volumetric tasks, from RRG and VQA
to slice-level localization and segmentation. To address
privacy concerns, all data are sourced exclusively from
open-access repositories.

MedErr-CT [70] augments approximately 3000 CT-RATE
studies with 41000 question-answer pairs covering six
clinically salient error categories. It provides a robust
training and evaluation resource for developing error-
aware models and represents the first benchmark designed
to systematically assess a 3D MLLM’s ability to classify,
localize, and correct inaccuracies in radiology reports.
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Collectively, these resources advance the field beyond
basic image-report matching toward datasets that embed
detailed anatomical context. Through voxel-wise or region-
wise alignment of images and language, 3D MLLMs are now
capable of generating targeted findings (e.g., “tiny cavity
in the right upper lobe”), answering spatially grounded
queries, and supporting nuanced clinical decision-making,
capabilities that conventional paired datasets alone could
not deliver.

Typical 3D MLLMs and Architectures

Recent architectural innovations aim to overcome the
major computational and representational challenges of
applying MLLMs to 3D medical images (Fig. 6). Table 4
summarizes several notable designs created for this purpose.

Radiology foundation model (RadFM) [71] integrates a
3D ViT with a perceiver that distills whole-volume features
into a fixed 32-token sequence, enabling RRG and VQA
on high-end GPUs, albeit with lower disease-specific
accuracy compared to specialist models. MedBLIP [72]
targets Alzheimer's MRI, pairing images with EHR data.
It employs a learnable patch layer to adapt a frozen 2D
ViT for 3D input, and uses the medical query transformer
(MedQFormer) to filter task-relevant features, enabling
strong zero-shot reporting. CT2Rep [63] tokenizes chest CT
volumes for input into a 3D autoregressive transformer with
relational memory. Cross-attention to prior scans mimics
routine longitudinal comparisons, aligning automated CT
reporting more closely to clinical workflows. M3D-LaMed [45]
combines a 3D ViT with an aggressively pooled perceiver to
process full-resolution volumes on a standard workstation.
A downstream LLM performs RRG, VQA, retrieval, and
segmentation, functioning as a multitask assistant. Med-2E3
[65] fuses global 3D and slice-level 2D encoders, enhancing
RRG and VQA performance, particularly for subtle focal
lesions often missed using purely volumetric compression.

Across these systems, performance gains rely less on
scaling LLMs and more on radiology-specific intermediate
modules. These include perceiver-based compression
[45,71], query-driven feature filtering [72], sequential
patch encoding [63], and dual-stream fusion [65], which
collectively transform gigabyte-scale inputs into concise,
diagnostically meaningful representations. Further gains are
likely to stem from further refinement of such cross-modal
connectors and the integration of prior-study context,
rather than from simply scaling language parameters.
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Fig. 6. Representative architecture for integrating 3D medical imaging with LLMs. To address the challenges of processing volumetric
data, recent designs segment CT scans by anatomical region (e.g., chest, abdomen, pelvis) and employ frozen 3D encoders in
combination with trainable fusion modules. Visual and textual inputs are integrated using LoRA-adapted LLMs to support tasks such as
report generation and VQA. This figure illustrates a model developed in our laboratory based on the M3D-LaMed framework. Adapted
from Bai et al., a preprint published under a CC BY license [45]. LLM = large language model, LoRA = low-rank adaptation, VQA = visual

question answering

Advancing MLLMs for Medicine

MLLMs for medicine are rapidly advancing by addressing
existing limitations and exploring new paradigms to
enhance clinical utility. Key developments include improved
spatial granularity by incorporating region-level visual
details [16,45,63,73,74] and the use of large-scale pre-
trained FMs for broad generalization [75,76]. Additionally,
emerging paradigms, such as Vision-Language-Action (VLA)
frameworks, further extend capabilities by integrating
medical image interpretation with language-guided clinical

kjronline.org https://doi.org/10.3348/kjr.2025.0599

actions [77,78]. Additionally, collaborative multi-agent
approaches enable knowledge sharing among specialized Al
agents, facilitating more comprehensive medical reasoning
[79,80]. Collectively, these innovations lay the groundwork
for next-generation medical MLLMs that can operate within
real-world resource constraints while maintaining diagnostic
fidelity.

Region-Focused MLLMs

While general research on MLLMs has shown that adding
local visual details to LLMs significantly enhances their
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Table 4. Summary of typical 3D multimodal LLMs in radiology

Nam et al.

Model Key architectural feature(s) Primary task(s)

Training data highlights Key strength/contribution

RadFM 3D ViT + Perceiver Module RRG, VOA
[71] (multimodal 2D/3D)
MedBLIP Learnable 3D Patch Embedding Zero-shot Classification, AD datasets
[72] + Frozen 2D Encoder + VQA (3D + EHR)
MedQFormer + Frozen LLM
(LoRA)
CT2Rep 3D Autoregressive Causal 3D CT RRG (chest)
[63] Transformer + Hierarchical
Memory Decoder
M3D- 3D ViT + 3D Spatial Pooling RRG, VQA, retrieval,
LaMed Perceiver + LLM positioning,
[45] segmentation (3D)
Med-2E3 Integrated 3D Encoder + 2D RRG, VQA (3D)
[65] Encoder + Text-Guided Inter-

Slice Scoring

Pre-train: MedMD (16M

CT-RATE

M3D-Data (120K pairs, 662K

Benchmarked on public 3D

Foundation model concept for
radiology, handles multiple
modalities

scans); Fine-tune: RadMD

(3M image-report pairs)

Lightweight, integrates 3D images
with EHR text using query
mechanism

(30K MRI + EHR)

First dedicated 3D RRG model,
sequential processing, longitudinal
data integration

Efficient 3D token compression via
perceiver, generalist across multiple
3D tasks

Novel dual-encoder approach
mimicking radiologist workflow,
task-specific attention

instructions)

datasets (M3D-data)

LLM = large language model, RadFM = radiology foundation model, ViT = vision transformer, RRG = radiology report generation, VQA =
visual question answering, MedMD = medical multimodal dataset, RadMD = radiology multimodal dataset, MedBLIP = medical bootstrapping
language-image pre-training from 3D medical images and texts, MedQFormer = medical query transformer, LoRA = low-rank adaptation,

EHR = electronic health record, AD = Alzheimer’s disease, M3D-LaMed = a versatile multi-modal large language model for 3D medical image
analysis, M3D-Data = 3D multi-modal medical dataset, Med-2E3 = 2D-enhanced 3D medical multimodal large language model

ability to reason about specific regions [73,74], similar work
in medical imaging remains in its early stages. Most medical
MLLMs still process entire medical images as single global
units, limiting their ability to generate text descriptions
about specific, clinically relevant areas. This limitation is
especially problematic in radiology, where reports typically
describe findings across multiple anatomical locations and
disease processes [81]. To address these challenges, several

region-focused medical MLLMs have been developed (Table 5).

Researchers have fine-tuned MLLM using specialized
training data that connects textual descriptions to specific
image locations, a process known as “Refer-and-Ground”
conversations [82-84]. These datasets enable models to
localize anatomical structures, detect lesions, and generate
reports that reference specific image areas. For example,
MAIRA-2 [81] established a benchmark for CXR reporting
by linking each clinical finding to its exact location. Other
efforts have focused on integrating regions-of-interest (ROI)
features directly into language models. One such approach,
Region-Guided Radiology Report Generation (RGRG) [85],
identifies potential abnormalities, extracts features from
these ROIs, and then uses these detailed features to
generate reports. More recently, pixel-level guidance via
semantic segmentation has become a powerful alternative.
MAIRA-SEG [86], for example, uses a specialized system

12

to generate segmentation tokens from outlines of major
organs and lesions, enhancing the CXR information fed into
the language model (Fig. 7). Similarly, Reg2RG [87] applies
this approach to CT scans by providing organ outlines that
maintain spatial relationships, while preserving texture
details in the visual features, effectively combining detailed
and overall information. MedRegion-CT [88] further extends
region-focused modeling for chest CT by fusing global and
segmentation-guided regional tokens with quantitative
organ- and lesion-level attributes, generating organ-specific
paragraphs that achieve SOTA accuracy. Spatial grounding
will likely shape the next generation of radiology AI models.
Systems that combine overall context with region-specific
features can create focused, interpretable reports centered
on specific findings.

Multimodal Foundation Models:
Balancing Specialist and Generalist Approaches

Al in medical imaging is undergoing a significant
transformation with the emergence of FMs [89]. These
large-scale deep learning systems are trained on vast,
diverse datasets, often using self-supervised learning to
reduce the need for manual annotations [18,75,90,91].
Unlike traditional approaches that develop specialized
models for specific tasks, FMs serve as flexible platforms
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that can be efficiently fine-tuned or prompted for various by increased access to large, multi-institutional data
clinical applications, while requiring substantially less repositories [45-50,67,68] and a growing recognition that
task-specific labeled data [92]. This evolution is driven complex clinical challenges require models with broad

Table 5. Summary of typical region-focused multimodal LLMs in radiology

Model ;:Zgl?tf/ Key input data Key method/approach Primary task(s)
MAIRA-2 CXR  CXR, text-bounding Fine-tuned using “refer-and-ground” conversation corpora Formalized a
[81] box pairs (free-text dialogue coupled to bounding-box coordinates). grounded radiology
Links each reported finding in CXR reports to an annotated report generation
location benchmark
RGRG CXR  CXR, detected ROI  Detects or allows radiologists selection of candidate Report generation
[85] features abnormalities. Utilizes features corresponding to these ROIs. conditioned on ROI
Conditions the report generator on these refined, fine-grained
embeddings
MAIRA-SEG CXR  CXR, pseudo-masks  Leverages the mask-aware extractor of Osprey. Derives “SEG Enhance CXR
[86] (SEG info) tokens” from pseudo-masks of major organs and lesions to representation using
enrich the CXR representation ingested by the LLM pixel-level SEG
Reg2RG cT CT, organ masks, Uses universal SEG to supply organ masks (preserving geometric  Fuse local and global
[87] embeddings context). Retains local texture in accompanying visual cues in CT imaging

embeddings. Enables coherent fusion of local (mask + texture)
and global cues
MedRegion-CT (T (T, pseudo organ/  Pools global & SEG-guided region tokens via R? Token Pooling, Region-grounded CT

[88] lesion masks + adds mask-driven visual extractor and quantitative attribute report generation
patient-specific prompts to condition the LLM, yielding organ-wise paragraphs
attributes

LLM = large language model, MAIRA = multimodal AI for radiology application, CXR = chest X-ray, RGRG = region-guided radiology
report generation, ROI = region of interest, SEG = segmentation, Reg2RG = region-guided referring and grounding framework for report
generation, R® = region representative

CXR images Segmentation Mask
Pseudo-labels
) g ]\
eeoeo
Segmentation Mask-aware
Models n "u Prompting
N Textual context
Task instruction (prior report,

Current frontal Current lateral Prior frontal )

additional sections)

Only in multi il
N\ G . (
Image Encoder % Segmentatlo! t

System
RAD - DINO (ViT-B) extiactor messages

[ MLP adaptor ‘] [ Tokenizer and embedding ]
v ¥ ] ¥ ¥

tokens

Fig. 7. Representative architecture of region-grounded MLLMs. This figure illustrates the MAIRA-Seg framework, a region-focused MLLM
architecture that integrates segmentation-aware spatial tokens with CXR image and text inputs. A frozen vision encoder and segmentation
model generate structured representations, which guide a trainable LLM in producing fine-grained, mask-aware radiology reports. Adapted
from Sharma et al., Proc Mach Learn Res 2025;259:941-960, originally published under a CC BY license [86]. MLLM = multimodal large
language model, MAIRA-Seg = Mask-Aware Instruction-tuned Radiology Assistant with Segmentation, CXR = chest X-ray, LLM = large
language model, MLP = multi-layer perceptron
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visual and semantic knowledge acquired during pre-training
[75,93-95].

The heterogeneous nature of medical data and clinical
needs has led to the development of various types of FMs.
Some models are designed for specific imaging modalities—
for example, BrainIAC [96] for MRI and MaCo [97] for
CXRs. These models achieve high performance within their
respective domains by capturing the unique characteristics
of each imaging method, but they typically struggle when
applied to other types of medical images [92]. Other FMs are
even more narrowly focused, targeting specific anatomical
regions or clinical tasks. For instance, MoME [98] specializes
in brain lesion segmentation, while MedYOLO [99] is
designed for 3D object detection. These specialized models
achieve SOTA performance while reducing the annotation
work needed for highly specialized clinical applications.

More broadly, FMs can be viewed along a continuum from
generalist to specialist. Generalist models, such as RadFM
[71] and M4oE [100], are designed to operate across multiple
imaging modalities, often incorporating diverse data types.
New architectural approaches, particularly the Mixture of
Experts framework used in models like MoME [98] and M4oE

Nam et al.

[100], seek to balance these approaches by using specialized
expert sub-networks within a more flexible structure.

Perhaps most ambitiously, FMs facilitate multimodal
data integration, striving to emulate clinical reasoning by
synthesizing information from diverse sources like imaging,
EHRs, text, and genomics [101,102]. The development
of robust multimodal FMs, alongside comprehensive
benchmarks such as CLIMB [103], is pivotal for achieving
a holistic patient assessment and advancing precision
medicine (Fig. 8) [104].

FMs represent a promising evolution in medical imaging
Al, offering more generalizable, adaptable, and data-
efficient systems. They speed up AI development through
efficient fine-tuning, allowing quick adaptation to new
tasks with minimal labeled data, a key advantage in settings
involving rare diseases or limited datasets [97,105,106].
While challenges in data access, computational
requirements, validation methods, and building clinical
trust require significant attention, the potential to improve
clinical workflows and patient outcomes provides strong
motivation for continued responsible innovation in this
field [75,91,107].
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Fig. 8. Multimodal foundation model for integrated clinical reasoning. This figure illustrates the CLIMB framework, a multimodal foundation
model that processes diverse medical data types (graphs, time-series signals, and 2D/3D images) via specialized encoders and unified
fusion or transfer modules. Trained across multiple modalities, the model supports downstream tasks such as diagnosis and risk prediction
with improved generalization, including for out-of-distribution data. Adapted from Dai et al., a preprint published under a CC BY SA license
[103]. CLIMB = Continual Learning in Multimodality Benchmark, EKG = electrocardiogram, EEG = electroencephalography, EHR = electronic

health record
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Beyond MLLMs

As multimodal AI continues to evolve, VLA models have
emerged as a new paradigm that integrates medical image
perception, language-based interpretation, and embodied
action planning within a unified framework of embodied
Al [77]. Unlike traditional modular pipelines, VLA models
aim to combine these components end-to-end, enabling
systems to not only interpret vision findings but also
actively support or carry out procedural tasks [78]. The fully
autonomous robotic ultrasound platform reported by Su et
al. [108] integrates real-time image acquisition, anatomical
recognition, and robot-assisted probe manipulation,
enabling thyroid scans to be performed without human
interventions. Although most existing systems concentrate
on perception and low-level control, recent survey articles
have underscored the potential of embedding language-
guided reasoning, whereby procedural instructions are
parsed and translated into executable actions [78].

Furthermore, recent advances in collaborative learning
paradigms among MLLMs have introduced novel approaches
to enhance reasoning and generalization capabilities in
medical imaging applications [79,80]. Notably, the model
context protocol (MCP) and agent-to-agent (A2A) interaction
frameworks facilitate effective inter-model communication
and cooperation, offering new avenues for collaborative
decision-making and task execution [109,110].

MCP establishes a unified client-server architecture
that standardizes how MLLMs interact with external tools
and data sources [111]. By enabling autonomous tool
discovery and orchestration, MCP transforms passive models
into active agents capable of context-aware operations,
including API invocations and complex reasoning chains
[109,112,113]. This protocol facilitates improved reasoning
by allowing models to dynamically access and integrate
diverse knowledge sources and computational resources. Al
agents are autonomous systems designed to execute tasks
independently by orchestrating workflows and leveraging
available tools [114]. In multi-agent systems (MAS),
these agents engage in A2A interactions to communicate
and coordinate their activities [115]. MAS comprises
multiple autonomous agents that collaborate to solve
complex problems through distributed processing [116]. In
healthcare settings, where diverse heterogeneous systems
must integrate seamlessly, multi-agent architectures prove
particularly valuable [110]. These agents can leverage
their specialized capabilities and share domain-specific
knowledge.

kjronline.org https://doi.org/10.3348/kjr.2025.0599
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MLLMs show great potential for medicine by integrating
imaging with clinical data to enhance diagnostic accuracy
and streamline workflows [117]. However, realizing
this potential requires overcoming substantial hurdles
spanning data acquisition, model reliability, technical
implementation, evaluation, and clinical integration [7,8].

A major barrier is the lack of large-scale, high-quality
multimodal medical datasets, particularly for 3D/4D imaging
[118]. Developing such datasets is labor-intensive and
requires expert annotation to support models capable of
precise spatial reasoning. Additionally, data heterogeneity
across institutions hinders the development of generalizable
models [5]. Privacy regulations further complicate data
sharing, necessitating advanced de-identification strategies
or alternative approaches such as federated learning and
synthetic data generation—methods whose effectiveness
requires further validation [119-121].

Model trustworthiness is critical for clinical deployment.
Multimodal LLMs are prone to hallucination, producing
fluent but factually incorrect statements that may misguide
diagnostic decisions and compromise patient safety [122].
While retrieval-augmented generation (RAG) can reduce this
risk, it does not eliminate it entirely [123]. These models
also inherit biases from their training data, potentially
exacerbating performance disparities across demographic
groups and deepening existing health inequities [124].
Effective risk mitigation hinges on balanced, expertly
curated datasets, continuous post-deployment auditing, and
cross-institutional benchmarking [125,126]. Furthermore,
LLMs must transparently communicate uncertainty to
prevent clinician over-reliance and to preserve critical
human oversight.

The “black box” nature of complex MLLMs poses a
significant barrier to clinical trust and adoption [127-129].
Interpretability—the ability to understand how a model
reaches its conclusions—is essential for verification

Challenges and Open Questions

and responsible integration into clinical workflows
[121,130,131]. Although explainable AI techniques such

as attention maps offer some insight, achieving meaningful
interpretability in multimodal radiology tasks remains
challenging [132,133]. Effective explanations must bridge
visual evidence and linguistic reasoning, ideally through
fine-grained visual grounding that links specific image
regions to generated text, mirroring established radiological
practice.
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Evaluating MLLMs in medicine requires moving beyond
conventional natural language processing and computer
vision metrics (e.g., BLEU, ROUGE, accuracy), which fail
to capture clinically relevant outcomes (Fig. 9) [134-136].
Specialized frameworks that assess key dimensions such
as factual consistency, clinical utility, safety, fairness,
and spatial grounding are urgently needed [137,138].

In radiology, emerging domain-specific metrics, such as
RadGraph [139], GREEN [140], SFVE [141], and LAVE [142],
exemplify this shift toward more meaningful, task-aligned
assessments. Developing robust, standardized benchmarks
covering diverse tasks, modalities, and clinical scenarios is
also vital for progress. Despite advancements in automated
evaluation, expert radiologist review remains essential for
determining whether MLLM outputs are clinically acceptable
and trustworthy [137].

Finally, successful clinical integration of MLLMs requires
more than technical performance alone [143,144]. These
models must be seamlessly integrated into existing clinical
workflows, such as PACS/RIS and EHR systems, without
causing disruption. This requires careful attention to

Nam et al.

human-computer interaction and interface design (Fig. 10)
[145,146]. In parallel, clear regulatory frameworks must be
established to guide the validation, deployment, and ongoing
monitoring of these adaptive, generative models, addressing
issues like model drift, accountability, and legal liability
[147]. Numerous ethical considerations, including patient
privacy, bias mitigation, accountability, transparency, the
impact on the profession, and preventing misuse, must be
proactively addressed through interdisciplinary collaboration
[148,149].

While MLLMs hold significant promise for transforming
medical practice, their safe and effective clinical
deployment depends on solving foundational challenges
in data quality, reliability, explainability, technical design,
evaluation, and ethical implementation [150]. Collaborative
innovation across these areas is essential for responsibly
implementing these AI systems to enhance medical practice
and improve patient outcomes [143,144].

Reference : “Pleural effusion is present in the right hemithorax. No evidence of pneumothorax.”

/ BLEU Evaluation

Candidate: There is a pleural effusion in
the right hemithorax. Pneumothorax is

not present.

seen.

ROUGE-L Evaluation
Candidate: Pleural effusion no present
in right hemithorax. Pneumothorax not

A

~

/ BERTScore Evaluation \

Candidate: Right-sided pleural fluid is
observed. No pneumothorax evidence.

A

O Word n-gram overlap
A Negation missed

A Missed meaning

O Longest common sequence match

O Semantic embedding
A Semantic # clinical equivalence
(fluid # pneumothorax)

= =/

/ F1RadGraph Evaluation

Candidate: There is right lower lung
effusion. No signs of collapsed lung.

A

Chexpert-Labeler Evaluation\

Candidate: No obvious pleural fluid
accumulation. Pneumothorax excluded.

a

Green Evalutation \

Candidate: Pleural effusion (+) in right
lower lung. Pneumothorax (-).

O Entity detection
A Relation mismatch & synonym
(collapsed lung # pneumothorax)

templates

O Label extraction from standard

A Expression diversity (e.g.,
“excluded”, “obvious” missed)

O Clinical finding & structure match
A Anatomical location mismatch

\

o 4

Fig. 9. Comparison of evaluation metrics for radiology report generation. Six evaluation methods are applied to a candidate report,
highlighting their respective strengths (blue) and blind spots (red) relative to the reference: “Pleural effusion is present in the right

hemithorax. No evidence of pneumothorax.” Token-based (BLEU, ROUGE), semantic (BERTScore), and rule-based (CheXpert) metrics often
fail to detect clinically significant errors, such as incorrect negation or anatomical misclassification. In contrast, entity- and structure-
aware metrics (e.g., F1RadGraph, Green Score) better capture clinical correctness but still lack full interpretability. Blue = correctly
recognized content, Red = clinically important errors not penalized, o = metric strengths (e.g., token match, clinical entity), A = metric
limitations (e.g., missed negation or relation)
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Fig. 10. Clinical integration of MLLMs in radiology: workflow, support, and challenges. This figure illustrates the potential roles of
MLLMs in supporting radiologists across the clinical workflow—from triage and diagnosis to treatment planning and monitoring. Key
applications include report generation, visual question answering, abnormality detection, and clinical decision support. Furthermore, key
challenges include model drift, patient privacy, bias mitigation, preventing misuse, and transparency, which must be addressed for safe
integration into clinical systems. MLLM = multimodal large language model

CONCLUSION

MLLMs hold significant potential to transform medical

practice by integrating imaging and clinical data

within

a unified inference framework. For example, FMs pre-
trained on extensive visual-text corpora provide broad

prior knowledge that enables MLLMs to connect s

ubtle

radiographic cues with patient context, propose coherent
differential diagnoses, and draft preliminary reports.
Spatially grounded reasoning—where textual outputs are
anchored to specific image regions—further enhances
interpretability and fosters clinician trust. Collectively,
these advances position MLLMs as cognitive co-pilots
capable of improving diagnostic accuracy, streamlining
routine documentation, and delivering interactive decision

support in daily clinical workflows.

Despite this promise, several critical challenges must
be addressed before MLLMs can be safely and effectively
adopted in clinical settings. Progress is hampered by

limited, well-annotated multimodal datasets; the

propensity

to hallucinate or perpetuate biases learned from non-
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representative training data; and opaque decision pathways
that undermine clinical explainability. Safe deployment,
therefore, will require rigorous, multi-institutional
validation to uncover performance gaps, accompanied by
techniques that surface model rationale and uncertainty.
Practical barriers, such as substantial computational
demands and inference latency, must also be reduced

to enable seamless integration into fast-paced imaging
environments. Furthermore, clear regulatory and ethical
guidance is essential to govern evaluation, monitoring, and
accountability as these systems transition from laboratory
to routine patient care.

Looking forward, interdisciplinary efforts should focus on
refining model design and instituting safeguards to bridge
the gap between experimental performance and clinical
reliability. Promising directions include incorporating
domain-specific constraints and modular expert components
to balance generalizability with specialty-level accuracy,
as well as implementing safety mechanisms such as
output verification and clinician-in-the-loop review. With
sustained innovation and careful governance, MLLMs could
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become trusted partners in clinical practice rather than
opaque oracles, supporting practitioners in diagnosis and
decision-making while maintaining appropriate human
oversight. In time, these technologies have the potential
to substantially augment clinicians’ capabilities, improve
diagnostic accuracy and efficiency, and ultimately enhance
patient outcomes—but realizing this potential will require
a measured, transparent approach to their integration into
clinical practice.
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