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INTRODUCTION

Artificial intelligence (AI), especially deep learning, 
has significantly impacted clinical medicine, particularly 
radiology [1]. Convolutional neural networks have enhanced 
image recognition and segmentation, boosting diagnostic 
accuracy for specific tasks and altering components of 
the radiological workflow [2]. However, these early AI 

Multimodal Large Language Models in Medical Imaging: 
Current State and Future Directions
Yoojin Nam1,2*, Dong Yeong Kim1,3*, Sunggu Kyung1,4, Jinyoung Seo1,5, Jeong Min Song1,3,  
Jimin Kwon1,6, Jihyun Kim1,5, Wooyoung Jo1,5, Hyungbin Park1,5, Jimin Sung1,7, Sangah Park1,7, 
Heeyeon Kwon1,4, Taehee Kwon1,5, Kanghyun Kim1,5, Namkug Kim1,3,4

1Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea 
2Department of Radiology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea 
3Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea 
4Department of Biomedical Engineering, Brain Korea 21 Project, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea 
5University of Ulsan College of Medicine, Seoul, Republic of Korea 
6Department of Radiology, Dankook University Hospital, Dankook University College of Medicine, Cheonan, Republic of Korea 
7Chosun University College of Medicine, Gwangju, Republic of Korea

Multimodal large language models (MLLMs) are emerging as powerful tools in medicine, particularly in radiology, with the 
potential to serve as trusted artificial intelligence (AI) partners for clinicians. In radiology, these models integrate large 
language models (LLMs) with diverse multimodal data sources by combining clinical information and text with radiologic 
images of various modalities, ranging from 2D chest X-rays to 3D CT/MRI. Methods for achieving this multimodal integration 
are rapidly evolving, and the high performance of freely available LLMs may further accelerate MLLM development. Current 
applications of MLLMs now span automatic generation of preliminary radiology report, visual question answering, and 
interactive diagnostic support. Despite these promising capabilities, several significant challenges hinder widespread clinical 
adoption. MLLMs require access to large-scale, high-quality multimodal datasets, which are scarce in the medical domain. Risks 
of hallucinated findings, lack of transparency in decision-making processes, and high computational demands further 
complicate implementation. This review summarizes the current capabilities and limitations of MLLMs in medicine—
particularly in radiology—and outlines key directions for future research. Critical areas include incorporating region-grounded 
reasoning to link model outputs to specific image regions, developing robust foundation models pre-trained on large-scale 
medical datasets, and establishing strategies for the safe and effective integration of MLLMs into clinical practice.
Keywords: Artificial intelligence; Large language model; Medical imaging; Multimodal large language model

applications primarily focused on analyzing images in 
isolation [3]. This unimodal approach contrasts sharply with 
real-world clinical radiology, where practitioners routinely 
combine imaging findings with patient information from 
electronic health records (EHRs), including clinical notes, 
laboratory results, and patient history [3-5]. Given the 
inherently multimodal nature of radiological practice, 
the limitations of image-centric AI have prompted the 
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textual dependencies, with extensive pre‑training on 
web‑scale corpora providing broad linguistic and domain-
specific knowledge (Fig. 2) [12,13]. Second, parallel 
innovations in multimodal architectures, particularly 
vision transformers (ViTs) [14], provide high‑capacity 
encoders adaptable to medical imaging modalities such 
as CT and MRI. Third, multimodal learning strategies, 
including contrastive pre‑training (Fig. 3A) [15] and 
instruction‑tuned fusion architectures (Fig. 3B) [16], permit 
the seamless integration of image and text representations, 
enabling natural‑language prompts to drive complex visual 
reasoning. Finally, the availability of high-performance 
computing infrastructure, including graphics processing 
units (GPUs) and tensor processing units (TPUs), provides 
the computational throughput required to train and deploy 
these parameter‑intensive systems at clinically relevant 
scales [17]. Together, these advancements support the 
foundation model (FM) approach, where large, broadly pre-
trained models are adapted for specific tasks, potentially 
accelerating development in specialized domains like 
medical imaging [18].

This review provides a comprehensive overview of 
MLLMs in medical imaging, with a particular focus on 
radiology. Aimed at medical professionals, the discussion 
highlights clinical relevance, potential applications, and key 
implementation challenges, based on recent research. 

emergence of multimodal large language models (MLLMs) 
designed to integrate diverse clinical and imaging data [3-5].

MLLMs, also known as large multimodal models (LMMs), 
represent a significant evolution in medical AI [6]. Their 
core capability is the concurrent processing and integration 
of heterogeneous data modalities [7]. In clinical settings, 
this includes various imaging types (e.g., radiologic imaging 
such as CT, MRI, and X-ray, endoscopy, digital pathology, 
and various clinical photos) alongside textual data such 
as radiology reports, clinical notes, and structured EHR 
data (Fig. 1) [8]. MLLMs build upon large language models 
(LLMs)—sophisticated AI trained on vast text datasets using 
transformer-based architectures to understand and generate 
human-like language [9]. MLLMs extend these capabilities 
by incorporating advanced computer vision modules 
and multimodal learning techniques [8]. The defining 
feature is their ability to integrate and align information 
across modalities, often mapping them into a shared 
representational space [8]. This synergy allows for a more 
comprehensive understanding than unimodal approaches 
permit [10]. Consequently, MLLMs can tackle complex cross-
modal tasks such as radiology report generation (RRG) from 
images and visual question answering (VQA) that incorporates 
both imaging and clinical context [11].

The rapid development of MLLMs reflects several 
converging technological advancements. First, the evolution 
of LLMs, powered by the transformer architecture and its 
self‑attention mechanism, allows the capture of long‑range 

Fig. 1. Example of a MLLM. A patient’s chest X-ray and corresponding clinical information, including a key clinical question, are encoded 
separately by an image encoder and a text encoder, respectively. By integrating these multimodal inputs, the MLLM generates an 
appropriate answer to the user’s question. MLLM = multimodal large language model
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Brief Technical Principles and Concepts of 
MLLMs

MLLMs extend traditional text-only LLMs by incorporating 

diverse input modalities such as images, audio, and video. 
These models learn cross-modal connections, allowing 
them to process, reason about, and generate information 
across multiple data types [19]. A typical MLLM architecture 

Fig. 2. Global landscape of LLMs and their performance. Bubble chart displaying over 100 public LLM releases from 2020 to 2025, 
ranked by their MMLU score (y-axis; higher values indicate better performance) and release date (x-axis). Bubble size corresponds to 
the reported number of training parameters (in billions), while bubble color indicates the developer (e.g., OpenAI, Google, Anthropic). 
Dashed horizontal lines represent two reference benchmarks: the human-expert level (89.8%) and the “ideal clinical threshold” (70%) 
referenced in the text. Reprinted under open access from David et al. [13]. *Parameter undisclosed. LLM = large-language model, MMLU = 
massive multitask language understanding

Fig. 3.  Multimodal pipelines linking chest radiographs with text. A: Contrastive pre-training. Separate image and report encoders are 
trained to learn a shared embedding space by pulling true image–report pairs together and pushing mismatches apart, enabling zero-
shot study retrieval, automatic report drafting, and label-efficient classification. Adapted from Radford et al., Proc Mach Learn Res 
2021;139:8748-8763, originally published under a CC BY license [15]. B: Instruction-tuned fusion. Visual features extracted by a frozen 
vision encoder are projected and integrated into the token stream of a large language model that has been fine-tuned with radiology-
specific instructions. This setup enables the model to process natural-language prompts (e.g., “Is there right-sided effusion?”) and 
generate clinically relevant outputs such as key findings, differential diagnoses, or follow-up recommendations. Adapted from Liu et al., a 
preprint published under a CC BY license [16]. I = image embedding, Hq = image-aware hidden states after cross attention, Hv = linearly 
projected visual tokens, T = text embedding, Xa = autoregressively generated answer tokens, Xq = prompt (query) text tokens, Xv = input 
radiograph, Zv = vision-encoder feature map

A B
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comprises pre-trained encoders for different data types, a 
pre-trained LLM, and a multimodal connector that aligns 
the representations across components (Fig. 4). Some 
architectures also include a generative module capable of 
creating images or videos when needed. In this architecture, 
the LLM functions as a ‘cognitive engine,’ maintaining its 
text-centric pre-trained state to provide powerful reasoning 
capabilities without requiring additional fine-tuning for 
multimodal inputs [7]. This design supports a wide range of 
applications, including RRG, VQA, and content-based retrieval 
across modalities. Given the substantial computational 
demands of large-scale MLLM models, optimization strategies 
developed for LLMs—such as compression, quantization, and 
knowledge distillation—are critical for reducing inference 
costs and facilitating deployment in real-world clinical 
settings [20-22].

Architectures
Modality-specific encoders transform complex data 

types—such as images, audio, and video—into simpler, 

meaningful representations. These encoders extract 
essential features from each modality, converting high-
dimensional inputs into streamlined formats suitable for 
downstream processing. Instead of training new encoders 
from scratch (i.e., using randomly initialized weights 
without prior knowledge), researchers typically employ 
existing pre-trained models [7]. A popular choice is 
contrastive language-image pre-training (CLIP) [15], which 
aligns visual data with corresponding textual descriptions 
through extensive training (Fig. 3A).

To bridge the modality gap between non-text data and 
natural language, a multimodal connector is introduced 
as a learnable interface. Since LLMs operate solely on 
textual input, this connector maps diverse data types 
to their corresponding textual representations within a 
shared semantic space. This approach enables the outputs 
of specialized encoders to be translated into formats 
interpretable by the LLM, thereby eliminating the need 
to train a multimodal model from scratch [7]. Multimodal 
connectors can be categorized into four main types (Fig. 4). 

Fig. 4. Schematic illustration of a typical multimodal LLM architecture. The architecture generally comprises three main components: 
an encoder, a connector, and a LLM. An optional generator can be attached to the LLM to generate additional modalities beyond text. 
The encoder processes input data—such as images, audio, or video—and extracts modality-specific features. These features are then 
transformed by the connector to enhance the LLM’s interpretability. Connectors are broadly categorized into four types: (A) projection-
based, (B) query-based, (C) fusion-based, and (D) expert-driven language transformation connectors. Adapted from Yin et al., Natl 
Sci Rev 2024;11:nwae403, originally published under a CC BY license [7]. LLM = large language model, MLP = multi-layer perceptron, 
Q-Former = query transformer, MH-Attn = multi-head attention
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Projection-based connectors employ a multi-layer perceptron 
(MLP), a type of neural network analogous to neural 
communication in the human brain (Fig. 4A) [16]. The MLP 
transforms visual data into a representation that aligns closer 
to language, making it easier for the LLM to understand and 
process [23]. Query-based connectors utilize specialized 
trainable ‘query tokens’ to extract salient visual details from 
images [24]. These tokens guide the model in efficiently 
identifying and retrieving relevant visual information (Fig. 
4B) [25]. Both projection- and query-based connectors 
convert features into token representations, which are 
then passed to the LLM alongside text tokens, enabling 
effective multimodal information integration within the 
LLM’s processing pipeline. Fusion-based connectors facilitate 
feature-level integration within the LLM architecture (Fig. 
4C) [26]. Through a cross-attention mechanism, the model 
establishes direct interactions between pairs of visual and 
language representations, enabling effective multimodal 
information integration [27]. Specifically, this mechanism 
allows language representations to selectively focus on and 
incorporate relevant details from visual inputs by forming 
pairwise relationships [19]. As a result, feature-level 
fusion allows for richer multimodal interactions throughout 
the LLM’s processing stages [7]. Expert-driven language 
transformations convert non-linguistic data directly into 
text, similar to image captioning (Fig. 4D) [25]. This 
approach uses specialized models to translate multimodal 
inputs directly into language that LLMs can process 
without additional training [7,28]. While straightforward 
to implement, this method often results in information 
loss when complex data like videos are reduced to text 
descriptions that cannot fully preserve spatial-temporal 
relationships [7,29]. 

Pre-trained LLMs form the cognitive backbone of modern 
multimodal systems, providing a significantly more efficient 
alternative to building models from scratch. Their extensive 
training on large-scale text corpora enables broad reasoning 
and contextual understanding, which can be leveraged for 
multimodal tasks [7,30]. These models inherently support 
capabilities such as zero-shot generalization and few-
shot learning, chain-of-thought reasoning, and instruction 
following [31]. Empirical studies indicate that larger models 
improve accuracy, contextual understanding, fluency, and 
problem-solving, while demonstrating emergent capabilities 
like cross-lingual understanding [7,30].

Training Strategies
MLLMs are typically developed through three sequential 

stages: pre-training, instruction tuning, and alignment 
tuning. Each stage uses different data types and learning 
objectives to progressively improve the model’s cross-modal 
understanding and reasoning capabilities [7]. In the pre-
training stage, a multimodal connector learns to align visual 
and textual representations, often using autoregressive 
captioning on image-text pairs [32]. Research indicates 
that selectively fine-tuning components of the vision 
encoder enables more precise alignment between modalities 
[33]. The training data at this stage includes both large-
scale web-collected materials and refined content from 
human annotation or high-performance MLLMs [34]. 

During instruction tuning, the model is fine-tuned using 
datasets containing diverse natural language instructions 
and multimodal inputs, teaching it to follow complex 
directives reliably (Fig. 3B). The model is trained to 
generate appropriate responses to various inputs, including 
images and text. This process involves fine-tuning the LLM 
using low-rank adaptation (LoRA) while simultaneously 
training the multimodal connector to process heterogeneous 
input modalities effectively [35]. The vision encoder may 
be selectively fine-tuned, depending on performance needs. 
Several strategies are employed during this stage, including 
converting question-answer pairs into instruction formats 
or generating multimodal instructions using advanced 
LLMs [36]. Research shows that incorporating both 
multimodal with text-only data during instruction tuning 
significantly enhances the model’s conversational quality 
and instruction-following capabilities, thereby improving its 
adaptability across various tasks [37]. 

The final stage, alignment tuning, optimizes the model’s 
outputs to better reflect human preferences, thereby 
improving response quality and reliability. This is typically 
achieved through reinforcement learning from human 
feedback [38]. A reward model is first trained on human 
preference data, after which the policy model is fine-tuned 
to maximize reward scores. This stage relies on small-scale, 
high-quality comparison responses, which help reduce 
hallucination risks and better reflect human preferences.

Representative General-Purpose MLLMs 
Table 1 presents prominent MLLM models that have 

significantly influenced architectural and training paradigms. 
Flamingo [26], developed by DeepMind, was an early model 
that effectively used feature fusion to combine visual 
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information with language processing (Fig. 4C). It inserted 
visual features into the middle layers of an LLM using cross-
attention, allowing the language components to attend 
selectively to relevant visual elements, promoting deeper 
multimodal integration. Subsequent query-based approaches 
improved efficiency by simplifying visual-language 
connections. Bootstrapped language-image pre-training 
(BLIP)-2 [25] advanced this paradigm by introducing a 
two-stage query transformer (Q-Former) that connects an 
image encoder to an LLM. The Q-Former uses learnable query 
tokens to extract salient visual features and convert them 
into LLM-compatible format, enabling end-to-end vision-to-
language generation without complete retraining (Fig. 4B). 
Remarkably, BLIP-2 achieved performance comparable to 
Flamingo while using 54 times fewer trainable parameters. 
Further simplifying the architecture, large language and 
vision assistant (LLaVA) [16] adopted projection-based 
connectors (Fig. 4A), requiring only 595000 image-text 
pairs for initial alignment—significantly fewer than BLIP-2’s 
100 million samples. 

Recent models, such as GPT, Gemini, and Claude, 

increasingly use extensive instruction tuning and human 
feedback alignment, applying text-only reinforcement 
learning techniques to visual domains [39-41]. While 
larger models and more training data generally improve 
multimodal capabilities, as seen in the evolution from 
Flamingo to more advanced models, strategic architectural 
design choices, such as the use of lightweight adapters, 
have enabled smaller models to achieve impressive results 
in specific areas [42,43]. These developments highlight the 
critical balance between model scale and design efficiency 
in advancing multimodal AI.

2D Medical Imaging MLLMs

Early research on MLLM in medicine primarily focused 
on 2D radiological images, particularly chest X-rays (CXRs) 
[44]. This emphasis was driven by two principal factors: 
1) the relative maturity and cross-domain transferability of 
2D vision encoders pre-trained on large-scale natural image 
datasets [14], and 2) the availability of extensive, publicly 
accessible datasets that pair 2D medical images with 

Table 1. Summary of representative general-purpose multimodal LLMs 

Model (year)
Connector 

type
Vision encoder LLM backbone Pre-training data Model size  

Instruction 
tuning

Key features

Flamingo 
(2022) [26]

Fusion-
based 

NFNet image 
encoder with 
Perceiver 
resampler

Chinchilla 
(70B)

ALIGN and LTIP 
datasets

3.2–80B No (few-shot 
only)

Few-shot multimodal 
learning achieves SOTA 
performance on 16 tasks 
with a few, without 
additional fine-tuning

BLIP2 
(2023) [25]

Query-
based 

ViT from CLIP OPT (2.7B, 6.7B) 
or FlanT5 
(3B, 11B)

129M image–text 
pairs

3.1–12.1B No Strong zeroshot captioning, 
outperforming Flamingo 
by 8.7% on zero-shot VQA

LLaVA 
(2023) [16]

Projection-
based 

ViT from CLIP Vicuna (13B) 595K image-text 
pairs

UN Yes Achieves 85% of GPT-4’s 
performance on a 
multimodal instruction-
following dataset

GPT4 
(2023) [39]

UN UN Native 
multimodal

UN UN Yes Advanced VQA, reduced 
hallucination, robust 
multimodal reasoning

Gemini 
(2023) [40]

UN UN Native 
multimodal

UN UN Yes Strong reasoning across 
modalities; tool integration

Claude 3 
(2024) [41]

UN UN Native 
multimodal

UN UN Yes Strong OCR, structured data 
understanding, extended 
context window

LLM = large language model, ALIGN = a large-scale ImaGe and noisy text embedding, LTIP = long text and image pairs, SOTA = state-
of-the-art, BLIP = bootstrapped language-image pre-training, ViT = vision transformer, CLIP = contrastive language-image pre-training, 
OPT = open pre-trained transformer, T5 = text-to-text transfer transformer, VQA = vision question answering, LLaVA = large language and 
vision assistant, GPT = generative pre-trained transformer, UN = undisclosed, OCR = optical character recognition
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corresponding radiology reports [45].

Typical Datasets for 2D MLLM Research
Several high-quality public radiology datasets have 

significantly advanced the development and evaluation of 
2D medical multimodal models. Among them, MIMIC CXR 
[46], which contains hundreds of thousands of CXRs paired 
with corresponding radiology reports, serves as a primary 
resource for training models on RRG tasks. Building on this, 
the Chest ImaGenome [47] introduces detailed annotations, 
including anatomical structure bounding boxes, which 
support more granular analysis of model attention and 
enable more rigorous evaluation methodologies.

For VQA in medical imaging, benchmarks like VQA-RAD 
[48] and SLAKE [49] provide carefully selected CXRs and 
CT images, accompanied by clinician-generated questions 
and expert-verified answers. These datasets are crucial for 
rigorously evaluating a model’s ability to interpret medical 
images and extract clinically relevant information. A 
more recent resource, PMC-VQA [50], is created by taking 
radiology figures and their captions from PubMed Central 
articles and converting them into 227 thousands of diverse 

question-answer pairs using automated methods. This 
large-scale dataset expands the range of clinical scenarios 
and supports the fine-tuning of MLLMs to enhance their 
radiology reasoning capabilities.

Collectively, these datasets—whether offering 
comprehensive report collections (MIMIC-CXR), focused Q&A 
benchmarks (VQA-RAD, SLAKE), or large-scale synthetic VQA 
pairs (PMC-VQA)—have played a central role in shaping 
both the main research tasks and standard evaluation 
protocols used across 2D medical MLLM studies. Typically, 
models are pre-trained on the extensive MIMIC-CXR dataset 
and subsequently evaluated on VQA-RAD, SLAKE, or PMC-
VQA to assess their performance in real-world radiology 
applications [51].

Typical 2D MLLMs and Architectures
Contrastive learning aligns radiologic images and their 

corresponding reports by pulling matched pairs together 
in the embedding space while pushing mismatched pairs 
further apart, thereby significantly reducing the need 
for manual annotations [15]. ConVIRT [52] first applied 
a bidirectional contrastive loss to CXR–report pairs, 

Table 2. Summary of representative 2D multimodal LLMs in radiology trained by contrastive learning

Model
Base architecture 

(vision + LLM)
Key technique(s) Primary task(s) Dataset(s) used

Key strength/ 
contribution

ConVIRT 
[52]

ResNet50 + 
ClinicalBERT

Bidirectional imagetext 
contrastive pretraining, 
largebatch unsupervised 
learning

Zeroshot classification & 
retrieval

MIMICCXR v2 
(227K) + internal 
musculoskeletal set 
(48K pairs)

First medical imagetext 
contrastive framework

MedCLIP 
[53]

ViT + 
BioClinicalBERT

Decoupled contrastive 
learning, semantic 
matching loss (using 
medical knowledge)

Zero-shot classification, 
supervised 
classification, image-
text retrieval

Unpaired images/
text (e.g., CheXpert, 
MIMIC-CXR)

High data efficiency, 
addresses false 
negatives, strong zero-
shot performance

BioViL-T 
[54]

Hybrid CNN-
transformer 
multi-image 
encoder + 
CXR-BERT

Temporal vision-language 
pretraining, contrastive 
learning

Progression classification, 
phrase grounding, RRG

MIMIC-CXR (longitudinal 
pairs)

First model with 
temporal awareness, 
SOTA on temporal tasks

BioMedCLIP 
[56]

ViT + 
PubMedBERT

Large-scale contrastive 
pre-training

Cross modal retrieval, 
zero-shot/few-shot/
full-shot image 
classification, VQA

PMC-15M (15 million 
diverse biomedical 
image-text pairs)

Domain-specific 
adaptations, positive 
transfer learning 
demonstrated

LLM = large language model, ConVIRT = contrastive learning of medical visual representations, ResNet = residual network, BERT = 
bidirectional encoder representation from Transformers, MIMIC-CXR = medical information mart for intensive care chest X-ray dataset, 
CXR = chest X-ray, MedCLIP = medical contrastive language-image pre-training, ViT = vision transformer, BioClinicalBERT = clinical BERT 
pretrained on biomedical notes, CheXpert = chest X-ray expert-labeled dataset from Stanford, BioViL-T = biomedical vision-language model 
with temporal modeling, CNN = convolutional neural network, CXR-BERT = BERT variant trained on chest X-ray reports, RRG = radiology 
report generation, SOTA = state-of-the-art, BioMedCLIP = biomedical CLIP-style pretraining using ViT and PubMedBERT, PubMedBERT = 
BERT pretrained on PubMed abstracts, VQA = visual question answering, PMC = PubMed Central
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establishing a strong radiology-specific pre-training 
baseline. MedCLIP [53] improved data efficiency and 
enabled zero-shot transfer with limited paired examples by 
introducing separate image and text encoders along with a 
terminology-aware semantic loss. BioViL-T [54] extended 
this approach by integrating CXR-BERT [55] text encoders 
with multi-image transformers to model temporal disease 
progression, achieving state-of-the-art (SOTA) performance 
in phrase grounding and progression tasks. BioMedCLIP [56] 
further demonstrated that pre-training on large, diverse 
biomedical image–text corpora can outperform radiology-
specific models, highlighting the benefit of cross-domain 
knowledge transfer. Table 2 summarizes these methods.

Research then shifted toward MLLMs, where general 
architectures are adapted through instruction tuning or fine-
tuning to enhance reasoning and generation capabilities. 
Several MLLMs have shown notable progress in 2D 
radiological image analysis (Table 3). LLaVA-Med [57] pairs 
a CLIP-based ViT with a Vicuna/Llama LLM. After aligning 
15 million PMC image–caption pairs and a brief GPT-4-guided 
tuning stage, it achieves expert-level performance in VQA 
and medical dialogue. Med-PaLM M [58] adopts a generalist 
design by integrating PaLM-E [59] with a ViT, enabling 
a single set of parameters to handle multiple biomedical 

modalities. Fine-tuning on MultiMedBench [58] enabled 
the model to attain SOTA performance across all evaluated 
tasks, and its automatically generated chest radiograph 
reports were preferred over those of human radiologists in 
approximately 40% of blinded comparisons. Med-Flamingo 
[60] adapts the few-shot OpenFlamingo-9B framework 
to the medical domain. Without weight updates, it can 
answer image-based exam questions and generate free-form 
explanations deemed accurate by experts. Targeting thoracic 
imaging, X-rayGPT [61] maps a MedCLIP [53] encoder 
into Vicuna-7B using a single linear projector and 217000 
annotated summaries, supporting concise impression 
generation, abnormality description, and interactive VQA. 

In summary, the current landscape of 2D radiology MLLMs 
is shaped by two complementary approaches: contrastive 
pre-training for efficient visual representation learning and 
instruction-tuned generalist models for advanced reasoning 
and generation capabilities.

Target Tasks for 2D MLLMs
Integrating visual and language processing in MLLMs has 

enabled several capabilities that directly enhance radiology 
workflows. First, RRG leverages MLLMs to translate complex 
image features into coherent narrative text, automatically 

Table 3. Summary of representative 2D MLLMs in radiology trained via instruction tuning or fine-tuning

Model
Base architecture 

(vision + LLM + interface)
Key technique(s) Primary task(s) Dataset(s) used Key strength/contribution

LLaVA-Med 
[57]

CLIP/ViT or 
BioMedCLIP/ViT + 
Vicuna/Llama + 
Linear Projection

Instruction tuning, 
curriculum 
learning

Visual conversation, 
VQA

PMC-15M (captions), 
GPT-4 generated 
instruction-
following data

Efficient adaptation of 
general MLLM for biomedical 
conversation

Med-PaLM 
M [58]

ViT-e, ViT-22B + PaLM-E 
8B, 62B, 540B + 
Linear projection

End-to-end fine-
tuning, instruction 
prompting, one-
shot exemplar

VQA, RRG, 
classification, 
genomics etc.

MultiMedBench 
(diverse medical 
tasks/modalities) 

Generalist model with SOTA 
performance on many tasks, 
strong reasoning 

Med-
Flamingo 
[60]

CLIP ViT-L/14 + Llama-
7B + Perceiver 
Resampler & 
Cross-Attention 

Continued pre-
training, few-
shot in-context 
learning

Generative VQA, 
Rationale 
generation

MTB, publications 
(PMC-OA)

First medical MLLM with few-
shot learning capability for 
VQA and reasoning

X-rayGPT 
[61]

MedClip ViT + Vicuna-7B 
+ Linear Projection

Medical visual-text, 
alignment fine-
tuning

Imageconditioned 
CXR summary 
generation, 
interactive VQA

Generated summaries 
(217K) from MIMIC-
CXR, OpenI reports

Specialized conversational model 
for CXRs

MLLM = multimodal large language model, LLM = large language model, LLaVA = large language and vision assistant, CLIP = contrastive 
language-image pretraining, ViT = vision transformer, VQA = visual question answering, PMC = PubMed Central, GPT = generative pre-
trained transformer, Med-PaLM = medical pathways language model, PaLM = pathways language model, RRG = radiology report generation, 
MultiMedBench = benchmark suite for diverse medical tasks, SOTA = state-of-the-art, MTB = medical textbooks, PMC-OA = PubMed Central 
open access subset, X-rayGPT = instruction-tuned conversational MLLM for chest radiographs, MedCLIP = medical contrastive language-
image pretraining, CXR = chest X-ray
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generating the “Findings” and “Impression” sections of a 
report (Fig. 5A) [4]. This automation can reduce radiologists’ 
workload, accelerate report delivery times, and improve 
consistency across examinations by standardizing language 
and minimizing repetitive dictation. Second, VQA allows 
clinicians—and potentially patients—to interactively query 
medical images and receive accurate, contextual responses 
(Fig. 5B) [50,62]. This interactive approach supports 
quick clinical decision-making and serves as an intuitive 
educational tool for trainees. Finally, text-to-image retrieval 
applications allow radiologists to search large imaging 
archives using natural language queries (e.g., “find all CXRs 

suggesting tuberculosis”) or retrieve relevant reports for a 
specific image [7]. These systems can streamline research 
cohort selection, support case reviews in team meetings, 
and enhance quality control by efficiently identifying similar 
studies.

Progress in 3D Medical Imaging MLLMs

The transition to 3D medical imaging in MLLMs is driven 
by the clinical need for detailed spatial information inherent 
in volumetric modalities like CT and MRI, which allows for 
superior pathology localization, disease staging, and surgical 

Fig. 5. Representative vision-language tasks in radiology. A: Automated report generation using RadFM. The upper and lower panels 
illustrate generated reports compared to the corresponding reference reports. Keywords that are correctly matched or missed are 
highlighted using color coding to enhance interpretability. B: VQA. Examples include both closed-ended (choice-based) and open-ended 
(free-text) responses. Adapted from Wu et al., a preprint published under a CC BY license [71]. RadFM = radiology foundation model, VQA 
= visual question answering

A

B
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planning compared to 2D imaging [63]. In contrast, applying 
2D networks to individual slices is both computationally 
inefficient and fails to capture inter-slice contextual 
information. Similarly, selecting only a few representative 
slices risks overlooking critical spatial relationships [64].

However, developing true 3D MLLMs presents several 
significant challenges. These include the lack of large, 
annotated 3D datasets; the substantial computational 
demands from processing many voxels, leading to token 
explosion; difficulties in adapting pre-trained 2D vision 
models to 3D structures; and the need for new evaluation 
methods that can assess spatial features in a volumetric 
context [44,45,65,66]. Despite these obstacles, research in 
3D medical MLLM has gained momentum, driven by pressing 
clinical needs and supported by the emergence of large-
scale 3D medical image-text datasets [44,45].

New Datasets Fueling 3D MLLM Development
Several new datasets are accelerating 3D MLLM development 

by providing well-annotated volumetric studies with matching 
textual reports.

CT-RATE [67] includes over 25000 non-contrast chest CT 
scans from about 21000 patients, reconstructed into nearly 
50000 volumes, each paired with the dictated radiology 
report. RadGenome-Chest CT [68] builds directly upon CT-
RATE by incorporating organ- and lesion-level masks—
spanning about 200 anatomical classes—generated via 
automated segmentation methods [69]. These anatomical 
annotations are aligned at the sentence level with the 
associated report text, enabling models to learn explicit 
voxel-to-language correspondences. This fine-grained 
alignment is an essential prerequisite for clinically 
meaningful, location-specific reasoning.

M3D-Data [45] extends the scope further by providing 
120000 publicly available 3D studies paired with free-
text descriptions, along with 662000 instruction–response 
exemplars covering key volumetric tasks, from RRG and VQA 
to slice-level localization and segmentation. To address 
privacy concerns, all data are sourced exclusively from 
open-access repositories.

MedErr-CT [70] augments approximately 3000 CT-RATE 
studies with 41000 question-answer pairs covering six 
clinically salient error categories. It provides a robust 
training and evaluation resource for developing error-
aware models and represents the first benchmark designed 
to systematically assess a 3D MLLM’s ability to classify, 
localize, and correct inaccuracies in radiology reports.

Collectively, these resources advance the field beyond 
basic image-report matching toward datasets that embed 
detailed anatomical context. Through voxel-wise or region-
wise alignment of images and language, 3D MLLMs are now 
capable of generating targeted findings (e.g., “tiny cavity 
in the right upper lobe”), answering spatially grounded 
queries, and supporting nuanced clinical decision-making, 
capabilities that conventional paired datasets alone could 
not deliver.

Typical 3D MLLMs and Architectures
Recent architectural innovations aim to overcome the 

major computational and representational challenges of 
applying MLLMs to 3D medical images (Fig. 6). Table 4 
summarizes several notable designs created for this purpose. 

Radiology foundation model (RadFM) [71] integrates a 
3D ViT with a perceiver that distills whole-volume features 
into a fixed 32-token sequence, enabling RRG and VQA 
on high-end GPUs, albeit with lower disease-specific 
accuracy compared to specialist models. MedBLIP [72] 
targets Alzheimer’s MRI, pairing images with EHR data. 
It employs a learnable patch layer to adapt a frozen 2D 
ViT for 3D input, and uses the medical query transformer 
(MedQFormer) to filter task-relevant features, enabling 
strong zero-shot reporting. CT2Rep [63] tokenizes chest CT 
volumes for input into a 3D autoregressive transformer with 
relational memory. Cross-attention to prior scans mimics 
routine longitudinal comparisons, aligning automated CT 
reporting more closely to clinical workflows. M3D-LaMed [45] 
combines a 3D ViT with an aggressively pooled perceiver to 
process full-resolution volumes on a standard workstation. 
A downstream LLM performs RRG, VQA, retrieval, and 
segmentation, functioning as a multitask assistant. Med-2E3 
[65] fuses global 3D and slice-level 2D encoders, enhancing 
RRG and VQA performance, particularly for subtle focal 
lesions often missed using purely volumetric compression.

Across these systems, performance gains rely less on 
scaling LLMs and more on radiology-specific intermediate 
modules. These include perceiver-based compression 
[45,71], query-driven feature filtering [72], sequential 
patch encoding [63], and dual-stream fusion [65], which 
collectively transform gigabyte-scale inputs into concise, 
diagnostically meaningful representations. Further gains are 
likely to stem from further refinement of such cross-modal 
connectors and the integration of prior-study context, 
rather than from simply scaling language parameters.
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Advancing MLLMs for Medicine 

MLLMs for medicine are rapidly advancing by addressing 
existing limitations and exploring new paradigms to 
enhance clinical utility. Key developments include improved 
spatial granularity by incorporating region-level visual 
details [16,45,63,73,74] and the use of large-scale pre-
trained FMs for broad generalization [75,76]. Additionally, 
emerging paradigms, such as Vision-Language-Action (VLA) 
frameworks, further extend capabilities by integrating 
medical image interpretation with language-guided clinical 

actions [77,78]. Additionally, collaborative multi-agent 
approaches enable knowledge sharing among specialized AI 
agents, facilitating more comprehensive medical reasoning 
[79,80]. Collectively, these innovations lay the groundwork 
for next-generation medical MLLMs that can operate within 
real-world resource constraints while maintaining diagnostic 
fidelity.

Region-Focused MLLMs
While general research on MLLMs has shown that adding 

local visual details to LLMs significantly enhances their 

Fig. 6. Representative architecture for integrating 3D medical imaging with LLMs. To address the challenges of processing volumetric 
data, recent designs segment CT scans by anatomical region (e.g., chest, abdomen, pelvis) and employ frozen 3D encoders in 
combination with trainable fusion modules. Visual and textual inputs are integrated using LoRA-adapted LLMs to support tasks such as 
report generation and VQA. This figure illustrates a model developed in our laboratory based on the M3D-LaMed framework. Adapted 
from Bai et al., a preprint published under a CC BY license [45]. LLM = large language model, LoRA = low-rank adaptation, VQA = visual 
question answering
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ability to reason about specific regions [73,74], similar work 
in medical imaging remains in its early stages. Most medical 
MLLMs still process entire medical images as single global 
units, limiting their ability to generate text descriptions 
about specific, clinically relevant areas. This limitation is 
especially problematic in radiology, where reports typically 
describe findings across multiple anatomical locations and 
disease processes [81]. To address these challenges, several 
region-focused medical MLLMs have been developed (Table 5).

Researchers have fine-tuned MLLM using specialized 
training data that connects textual descriptions to specific 
image locations, a process known as “Refer-and-Ground” 
conversations [82-84]. These datasets enable models to 
localize anatomical structures, detect lesions, and generate 
reports that reference specific image areas. For example, 
MAIRA-2 [81] established a benchmark for CXR reporting 
by linking each clinical finding to its exact location. Other 
efforts have focused on integrating regions-of-interest (ROI) 
features directly into language models. One such approach, 
Region-Guided Radiology Report Generation (RGRG) [85], 
identifies potential abnormalities, extracts features from 
these ROIs, and then uses these detailed features to 
generate reports. More recently, pixel-level guidance via 
semantic segmentation has become a powerful alternative. 
MAIRA-SEG [86], for example, uses a specialized system 

to generate segmentation tokens from outlines of major 
organs and lesions, enhancing the CXR information fed into 
the language model (Fig. 7). Similarly, Reg2RG [87] applies 
this approach to CT scans by providing organ outlines that 
maintain spatial relationships, while preserving texture 
details in the visual features, effectively combining detailed 
and overall information. MedRegion-CT [88] further extends 
region-focused modeling for chest CT by fusing global and 
segmentation-guided regional tokens with quantitative 
organ- and lesion-level attributes, generating organ-specific 
paragraphs that achieve SOTA accuracy. Spatial grounding 
will likely shape the next generation of radiology AI models. 
Systems that combine overall context with region-specific 
features can create focused, interpretable reports centered 
on specific findings.

Multimodal Foundation Models: 
Balancing Specialist and Generalist Approaches

AI in medical imaging is undergoing a significant 
transformation with the emergence of FMs [89]. These 
large-scale deep learning systems are trained on vast, 
diverse datasets, often using self-supervised learning to 
reduce the need for manual annotations [18,75,90,91]. 
Unlike traditional approaches that develop specialized 
models for specific tasks, FMs serve as flexible platforms 

Table 4. Summary of typical 3D multimodal LLMs in radiology

Model Key architectural feature(s) Primary task(s) Training data highlights Key strength/contribution
RadFM 

[71]
3D ViT + Perceiver Module RRG, VQA  

(multimodal 2D/3D)
Pre-train: MedMD (16M 

scans); Fine-tune: RadMD 
(3M image-report pairs)

Foundation model concept for 
radiology, handles multiple 
modalities

MedBLIP 
[72]

Learnable 3D Patch Embedding 
+ Frozen 2D Encoder + 
MedQFormer + Frozen LLM 
(LoRA)

Zero-shot Classification, 
VQA (3D + EHR)

AD datasets 
(30K MRI + EHR) 

Lightweight, integrates 3D images 
with EHR text using query 
mechanism

CT2Rep 
[63]

3D Autoregressive Causal 
Transformer + Hierarchical 
Memory Decoder

3D CT RRG (chest) CT-RATE  First dedicated 3D RRG model, 
sequential processing, longitudinal 
data integration

M3D-
LaMed 
[45]

3D ViT + 3D Spatial Pooling 
Perceiver + LLM

RRG, VQA, retrieval, 
positioning, 
segmentation (3D)

M3D-Data (120K pairs, 662K 
instructions)

Efficient 3D token compression via 
perceiver, generalist across multiple 
3D tasks

Med-2E3 
[65]

Integrated 3D Encoder + 2D 
Encoder + Text-Guided Inter-
Slice Scoring

RRG, VQA (3D) Benchmarked on public 3D 
datasets (M3D-data) 

Novel dual-encoder approach 
mimicking radiologist workflow, 
task-specific attention

LLM = large language model, RadFM = radiology foundation model, ViT = vision transformer, RRG = radiology report generation, VQA = 
visual question answering, MedMD = medical multimodal dataset, RadMD = radiology multimodal dataset, MedBLIP = medical bootstrapping 
language-image pre-training from 3D medical images and texts, MedQFormer = medical query transformer, LoRA = low-rank adaptation, 
EHR = electronic health record, AD = Alzheimer’s disease, M3D-LaMed = a versatile multi-modal large language model for 3D medical image 
analysis, M3D-Data = 3D multi-modal medical dataset, Med-2E3 = 2D-enhanced 3D medical multimodal large language model
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that can be efficiently fine-tuned or prompted for various 
clinical applications, while requiring substantially less 
task-specific labeled data [92]. This evolution is driven 

by increased access to large, multi-institutional data 
repositories [45-50,67,68] and a growing recognition that 
complex clinical challenges require models with broad 

Table 5. Summary of typical region-focused multimodal LLMs in radiology

Model 
Imaging 
modality

Key input data Key method/approach Primary task(s)

MAIRA-2 
[81]

CXR CXR, text-bounding 
box pairs

Fine-tuned using “refer-and-ground” conversation corpora 
(free-text dialogue coupled to bounding-box coordinates). 
Links each reported finding in CXR reports to an annotated 
location

Formalized a 
grounded radiology 
report generation 
benchmark

RGRG 
[85]

CXR CXR, detected ROI 
features

Detects or allows radiologists selection of candidate 
abnormalities. Utilizes features corresponding to these ROIs. 
Conditions the report generator on these refined, fine-grained 
embeddings

Report generation 
conditioned on ROI

MAIRA-SEG 
[86]

CXR CXR, pseudo-masks 
(SEG info)

Leverages the mask-aware extractor of Osprey. Derives “SEG 
tokens” from pseudo-masks of major organs and lesions to 
enrich the CXR representation ingested by the LLM

Enhance CXR 
representation using 
pixel-level SEG

Reg2RG 
[87]

CT CT, organ masks, 
embeddings

Uses universal SEG to supply organ masks (preserving geometric 
context). Retains local texture in accompanying visual 
embeddings. Enables coherent fusion of local (mask + texture) 
and global cues

Fuse local and global 
cues in CT imaging

MedRegion-CT 
[88]

CT CT, pseudo organ/
lesion masks + 
patient-specific 
attributes

Pools global & SEG-guided region tokens via R2 Token Pooling, 
adds mask-driven visual extractor and quantitative attribute 
prompts to condition the LLM, yielding organ-wise paragraphs

Region-grounded CT 
report generation

LLM = large language model, MAIRA = multimodal AI for radiology application, CXR = chest X-ray, RGRG = region-guided radiology 
report generation, ROI = region of interest, SEG = segmentation, Reg2RG = region-guided referring and grounding framework for report 
generation, R2 = region representative

Fig. 7. Representative architecture of region-grounded MLLMs. This figure illustrates the MAIRA-Seg framework, a region-focused MLLM 
architecture that integrates segmentation-aware spatial tokens with CXR image and text inputs. A frozen vision encoder and segmentation 
model generate structured representations, which guide a trainable LLM in producing fine-grained, mask-aware radiology reports. Adapted 
from Sharma et al., Proc Mach Learn Res 2025;259:941-960, originally published under a CC BY license [86]. MLLM = multimodal large 
language model, MAIRA-Seg = Mask-Aware Instruction-tuned Radiology Assistant with Segmentation, CXR = chest X-ray, LLM = large 
language model, MLP = multi-layer perceptron
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visual and semantic knowledge acquired during pre-training 
[75,93-95]. 

The heterogeneous nature of medical data and clinical 
needs has led to the development of various types of FMs. 
Some models are designed for specific imaging modalities—
for example, BrainIAC [96] for MRI and MaCo [97] for 
CXRs. These models achieve high performance within their 
respective domains by capturing the unique characteristics 
of each imaging method, but they typically struggle when 
applied to other types of medical images [92]. Other FMs are 
even more narrowly focused, targeting specific anatomical 
regions or clinical tasks. For instance, MoME [98] specializes 
in brain lesion segmentation, while MedYOLO [99] is 
designed for 3D object detection. These specialized models 
achieve SOTA performance while reducing the annotation 
work needed for highly specialized clinical applications. 
More broadly, FMs can be viewed along a continuum from 
generalist to specialist. Generalist models, such as RadFM 
[71] and M4oE [100], are designed to operate across multiple 
imaging modalities, often incorporating diverse data types. 
New architectural approaches, particularly the Mixture of 
Experts framework used in models like MoME [98] and M4oE 

[100], seek to balance these approaches by using specialized 
expert sub-networks within a more flexible structure.

Perhaps most ambitiously, FMs facilitate multimodal 
data integration, striving to emulate clinical reasoning by 
synthesizing information from diverse sources like imaging, 
EHRs, text, and genomics [101,102]. The development 
of robust multimodal FMs, alongside comprehensive 
benchmarks such as CLIMB [103], is pivotal for achieving 
a holistic patient assessment and advancing precision 
medicine (Fig. 8) [104].

FMs represent a promising evolution in medical imaging 
AI, offering more generalizable, adaptable, and data-
efficient systems. They speed up AI development through 
efficient fine-tuning, allowing quick adaptation to new 
tasks with minimal labeled data, a key advantage in settings 
involving rare diseases or limited datasets [97,105,106]. 
While challenges in data access, computational 
requirements, validation methods, and building clinical 
trust require significant attention, the potential to improve 
clinical workflows and patient outcomes provides strong 
motivation for continued responsible innovation in this 
field [75,91,107].

Fig. 8. Multimodal foundation model for integrated clinical reasoning. This figure illustrates the CLIMB framework, a multimodal foundation 
model that processes diverse medical data types (graphs, time-series signals, and 2D/3D images) via specialized encoders and unified 
fusion or transfer modules. Trained across multiple modalities, the model supports downstream tasks such as diagnosis and risk prediction 
with improved generalization, including for out-of-distribution data. Adapted from Dai et al., a preprint published under a CC BY SA license 
[103]. CLIMB = Continual Learning in Multimodality Benchmark, EKG = electrocardiogram, EEG = electroencephalography, EHR = electronic 
health record
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Beyond MLLMs
As multimodal AI continues to evolve, VLA models have 

emerged as a new paradigm that integrates medical image 
perception, language-based interpretation, and embodied 
action planning within a unified framework of embodied 
AI [77]. Unlike traditional modular pipelines, VLA models 
aim to combine these components end-to-end, enabling 
systems to not only interpret vision findings but also 
actively support or carry out procedural tasks [78]. The fully 
autonomous robotic ultrasound platform reported by Su et 
al. [108] integrates real-time image acquisition, anatomical 
recognition, and robot-assisted probe manipulation, 
enabling thyroid scans to be performed without human 
interventions. Although most existing systems concentrate 
on perception and low-level control, recent survey articles 
have underscored the potential of embedding language-
guided reasoning, whereby procedural instructions are 
parsed and translated into executable actions [78].

Furthermore, recent advances in collaborative learning 
paradigms among MLLMs have introduced novel approaches 
to enhance reasoning and generalization capabilities in 
medical imaging applications [79,80]. Notably, the model 
context protocol (MCP) and agent-to-agent (A2A) interaction 
frameworks facilitate effective inter-model communication 
and cooperation, offering new avenues for collaborative 
decision-making and task execution [109,110]. 

MCP establishes a unified client-server architecture 
that standardizes how MLLMs interact with external tools 
and data sources [111]. By enabling autonomous tool 
discovery and orchestration, MCP transforms passive models 
into active agents capable of context-aware operations, 
including API invocations and complex reasoning chains 
[109,112,113]. This protocol facilitates improved reasoning 
by allowing models to dynamically access and integrate 
diverse knowledge sources and computational resources. AI 
agents are autonomous systems designed to execute tasks 
independently by orchestrating workflows and leveraging 
available tools [114]. In multi-agent systems (MAS), 
these agents engage in A2A interactions to communicate 
and coordinate their activities [115]. MAS comprises 
multiple autonomous agents that collaborate to solve 
complex problems through distributed processing [116]. In 
healthcare settings, where diverse heterogeneous systems 
must integrate seamlessly, multi-agent architectures prove 
particularly valuable [110]. These agents can leverage 
their specialized capabilities and share domain-specific 
knowledge.

Challenges and Open Questions

MLLMs show great potential for medicine by integrating 
imaging with clinical data to enhance diagnostic accuracy 
and streamline workflows [117]. However, realizing 
this potential requires overcoming substantial hurdles 
spanning data acquisition, model reliability, technical 
implementation, evaluation, and clinical integration [7,8]. 

A major barrier is the lack of large-scale, high-quality 
multimodal medical datasets, particularly for 3D/4D imaging 
[118]. Developing such datasets is labor-intensive and 
requires expert annotation to support models capable of 
precise spatial reasoning. Additionally, data heterogeneity 
across institutions hinders the development of generalizable 
models [5]. Privacy regulations further complicate data 
sharing, necessitating advanced de-identification strategies 
or alternative approaches such as federated learning and 
synthetic data generation—methods whose effectiveness 
requires further validation [119-121]. 

Model trustworthiness is critical for clinical deployment. 
Multimodal LLMs are prone to hallucination, producing 
fluent but factually incorrect statements that may misguide 
diagnostic decisions and compromise patient safety [122]. 
While retrieval-augmented generation (RAG) can reduce this 
risk, it does not eliminate it entirely [123]. These models 
also inherit biases from their training data, potentially 
exacerbating performance disparities across demographic 
groups and deepening existing health inequities [124]. 
Effective risk mitigation hinges on balanced, expertly 
curated datasets, continuous post-deployment auditing, and 
cross-institutional benchmarking [125,126]. Furthermore, 
LLMs must transparently communicate uncertainty to 
prevent clinician over-reliance and to preserve critical 
human oversight. 

The “black box” nature of complex MLLMs poses a 
significant barrier to clinical trust and adoption [127-129]. 
Interpretability—the ability to understand how a model 
reaches its conclusions—is essential for verification 
and responsible integration into clinical workflows 
[121,130,131]. Although explainable AI techniques such 
as attention maps offer some insight, achieving meaningful 
interpretability in multimodal radiology tasks remains 
challenging [132,133]. Effective explanations must bridge 
visual evidence and linguistic reasoning, ideally through 
fine-grained visual grounding that links specific image 
regions to generated text, mirroring established radiological 
practice.
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Evaluating MLLMs in medicine requires moving beyond 
conventional natural language processing and computer 
vision metrics (e.g., BLEU, ROUGE, accuracy), which fail 
to capture clinically relevant outcomes (Fig. 9) [134-136]. 
Specialized frameworks that assess key dimensions such 
as factual consistency, clinical utility, safety, fairness, 
and spatial grounding are urgently needed [137,138]. 
In radiology, emerging domain-specific metrics, such as 
RadGraph [139], GREEN [140], SFVE [141], and LAVE [142], 
exemplify this shift toward more meaningful, task-aligned 
assessments. Developing robust, standardized benchmarks 
covering diverse tasks, modalities, and clinical scenarios is 
also vital for progress. Despite advancements in automated 
evaluation, expert radiologist review remains essential for 
determining whether MLLM outputs are clinically acceptable 
and trustworthy [137]. 

Finally, successful clinical integration of MLLMs requires 
more than technical performance alone [143,144]. These 
models must be seamlessly integrated into existing clinical 
workflows, such as PACS/RIS and EHR systems, without 
causing disruption. This requires careful attention to 

human-computer interaction and interface design (Fig. 10) 
[145,146]. In parallel, clear regulatory frameworks must be 
established to guide the validation, deployment, and ongoing 
monitoring of these adaptive, generative models, addressing 
issues like model drift, accountability, and legal liability 
[147]. Numerous ethical considerations, including patient 
privacy, bias mitigation, accountability, transparency, the 
impact on the profession, and preventing misuse, must be 
proactively addressed through interdisciplinary collaboration 
[148,149].

While MLLMs hold significant promise for transforming 
medical practice, their safe and effective clinical 
deployment depends on solving foundational challenges 
in data quality, reliability, explainability, technical design, 
evaluation, and ethical implementation [150]. Collaborative 
innovation across these areas is essential for responsibly 
implementing these AI systems to enhance medical practice 
and improve patient outcomes [143,144].

Fig. 9. Comparison of evaluation metrics for radiology report generation. Six evaluation methods are applied to a candidate report, 
highlighting their respective strengths (blue) and blind spots (red) relative to the reference: “Pleural effusion is present in the right 
hemithorax. No evidence of pneumothorax.” Token-based (BLEU, ROUGE), semantic (BERTScore), and rule-based (CheXpert) metrics often 
fail to detect clinically significant errors, such as incorrect negation or anatomical misclassification. In contrast, entity- and structure-
aware metrics (e.g., F1RadGraph, Green Score) better capture clinical correctness but still lack full interpretability. Blue = correctly 
recognized content, Red = clinically important errors not penalized, ○ = metric strengths (e.g., token match, clinical entity), ∆ = metric 
limitations (e.g., missed negation or relation)
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CONCLUSION

MLLMs hold significant potential to transform medical 
practice by integrating imaging and clinical data within 
a unified inference framework. For example, FMs pre-
trained on extensive visual-text corpora provide broad 
prior knowledge that enables MLLMs to connect subtle 
radiographic cues with patient context, propose coherent 
differential diagnoses, and draft preliminary reports. 
Spatially grounded reasoning—where textual outputs are 
anchored to specific image regions—further enhances 
interpretability and fosters clinician trust. Collectively, 
these advances position MLLMs as cognitive co-pilots 
capable of improving diagnostic accuracy, streamlining 
routine documentation, and delivering interactive decision 
support in daily clinical workflows.

Despite this promise, several critical challenges must 
be addressed before MLLMs can be safely and effectively 
adopted in clinical settings. Progress is hampered by 
limited, well-annotated multimodal datasets; the propensity 
to hallucinate or perpetuate biases learned from non-

representative training data; and opaque decision pathways 
that undermine clinical explainability. Safe deployment, 
therefore, will require rigorous, multi-institutional 
validation to uncover performance gaps, accompanied by 
techniques that surface model rationale and uncertainty. 
Practical barriers, such as substantial computational 
demands and inference latency, must also be reduced 
to enable seamless integration into fast-paced imaging 
environments. Furthermore, clear regulatory and ethical 
guidance is essential to govern evaluation, monitoring, and 
accountability as these systems transition from laboratory 
to routine patient care.

Looking forward, interdisciplinary efforts should focus on 
refining model design and instituting safeguards to bridge 
the gap between experimental performance and clinical 
reliability. Promising directions include incorporating 
domain-specific constraints and modular expert components 
to balance generalizability with specialty-level accuracy, 
as well as implementing safety mechanisms such as 
output verification and clinician-in-the-loop review. With 
sustained innovation and careful governance, MLLMs could 

Fig. 10. Clinical integration of MLLMs in radiology: workflow, support, and challenges. This figure illustrates the potential roles of 
MLLMs in supporting radiologists across the clinical workflow—from triage and diagnosis to treatment planning and monitoring. Key 
applications include report generation, visual question answering, abnormality detection, and clinical decision support. Furthermore, key 
challenges include model drift, patient privacy, bias mitigation, preventing misuse, and transparency, which must be addressed for safe 
integration into clinical systems. MLLM = multimodal large language model
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become trusted partners in clinical practice rather than 
opaque oracles, supporting practitioners in diagnosis and 
decision-making while maintaining appropriate human 
oversight. In time, these technologies have the potential 
to substantially augment clinicians’ capabilities, improve 
diagnostic accuracy and efficiency, and ultimately enhance 
patient outcomes—but realizing this potential will require 
a measured, transparent approach to their integration into 
clinical practice.
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