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ABSTRACT

Large language models (LLMs) show promise in solving scientific problems.
They can help generate long-form answers for scientific questions, which are cru-
cial for comprehensive understanding of complex phenomena that require detailed
explanations spanning multiple interconnected concepts and evidence. However,
LLMs often suffer from hallucination, especially in the challenging task of long-
form scientific question answering. Retrieval-Augmented Generation (RAG) ap-
proaches can ground LLMs by incorporating external knowledge sources to im-
prove trustworthiness. In this context, scientific simulators, which play a vital
role in validating hypotheses, offer a particularly promising retrieval source to
mitigate hallucination and enhance answer factuality. However, existing RAG ap-
proaches cannot be directly applied for scientific simulation-based retrieval due
to two fundamental challenges: how to retrieve from scientific simulators, and
how to efficiently verify and update long-form answers. To overcome these chal-
lenges, we propose the simulator-based RAG framework (SimulRAG) and provide
a long-form scientific QA benchmark covering climate science and epidemiology
with ground truth verified by both simulations and human annotators. In this
framework, we propose a generalized simulator retrieval interface to transform
between textual and numerical modalities. We further design a claim-level gen-
eration method that utilizes uncertainty estimation scores and simulator boundary
assessment (UE+SBA) to efficiently verify and update claims. Extensive experi-
ments demonstrate SimulRAG outperforms traditional RAG baselines by 30.4%
in informativeness and 16.3% in factuality. UE+SBA further improves efficiency
and quality for claim-level generation.

1 INTRODUCTION

The lofty goal of developing Al scientists has driven extensive LLM research across various scien-
tific tasks, ranging from exam-style question answering (QA) (Lu et al.,2022; Zhang et al.|[2024) to
hypothesis proposal (Wang et al.}|2024; [Yang et al.| | 2024) and experiment design (Chen et al.,2024;
Mialon et al., [2023). Among these, long-form QA is an important task that requires Al scientists
to provide answers that blend multiple scientific claims. This task tests an Al scientist’s ability to
reason through complex scientific phenomena and provide comprehensive explanations from dif-
ferent perspectives (Rein et al.l [2024; [Lee et al., 2023). For example, in epidemiology, predicting
disease spread dynamics requires analyzing multiple interconnected factors—including transmissi-
bility rates, incubation periods, clinical severity, seasonal variations, population demographics, and
contact mixing patterns—to model how diseases propagate through communities over time (Chang
et al., 2020} Cramer et al.|[2022). However, comprehensive studies on LLMs for long-form scientific
QA are limited, and existing works on general free-form QA already manifest persistent hallucina-
tion issues (Farquhar et al.| 2024).

Recent works have shown that grounding LLMs with external knowledge sources can help mitigate
hallucination and improve answer factuality (Schick et al.| 2023} [Patil et al.,[2024). In the scientific
domain, it is natural to consider scientific simulators or corresponding emulators as tools to solve
scientific problems (Ren et al.| [2025; [Ma et al., [2024). Compared with static textual knowledge
bases such as literature reviews, querying simulators can capture evolving dynamics and provide
more detailed information about specific scientific phenomena, making simulators more informative
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Figure 1: Left: Overall SimulRAG structure, including the simulator-based retriever and claim-level
generator. Right: Simulator retrieval interface: (1) prompting LLM with question and handbook to
extract simulator parameter settings; (2) executing simulator with parameters to obtain simulation
outputs; (3) converting outputs to textual context via predefined or LLM-generated templates.

tools to use and in a more timely fashion (Ren et al.| 2025). Existing works have focused on fine-
tuning LL.Ms to use scientific tools for predefined tasks (Lyu et al.,2024; Thulke et al., 2024} Zhang
et al.| |2024), which requires expensive computational resources, predefined question templates, pre-
collected datasets, and is therefore not generalizable and scalable across different scientific domains.

Retrieval-Augmented Generation (RAG) approaches have shown promise for enhancing LLMs by
incorporating external knowledge sources to improve answer factuality and informativeness (Lewis
et al.,[2020b; |Fan et al., 2024} |Gao et al.| [2023) without additional fine-tuning, making them promis-
ing candidates for grounding LLMs as trustworthy Al scientists. RAG consist of two main compo-
nents: a retriever that searches relevant documents and a generator that produces answers based on
the retrieved content. Unfortunately, two fundamental challenges hinder the application of the exist-
ing RAG approaches to the simulation-based retrieval for long-form QA in scientific domains. First,
the discrepancy between the textual space and the numerical space—where the simulation parame-
ters and outputs reside in—presents challenges to querying and retrieving from scientific simulators.
Second, existing RAG generators cannot effectively update long-form answers with new context due
to the lack of fine-grained control.

To overcome these challenges, we introduce the simulator-based RAG framework (SimulRAG) for
long-form scientific QA. The overall structure is illustrated in Figure |1|left. It provides a general-
ized simulator retrieval interface to transform between textual and numerical modalities, enabling
seamless integration of scientific simulators into RAG systems. We introduce a granular genera-
tion method which decomposes the long-form answers into atomic claims then verifies and updates
each claim. To further improve generation efficiency, we utilize uncertainty estimation scores and
simulator boundary assessment (UE+SBA) to only verify and update claims when necessary. To
systematically evaluate various methods for long-form scientific QA, we additionally construct the
benchmark for such tasks using simulators as retrieval tools, covering climate modeling and epi-
demiology with ground truth verified by both simulations and human annotators to ensure high
quality. The extensive experimental results demonstrate that SimulRAG outperforms traditional
RAG baselines in factuality and informativeness, while UE+SBA improves efficiency and quality
for claim-level generation.

Our contributions are summarized as follows:

* We introduce SimulRAG, a simulator-based RAG framework for long-form scientific QA.

* We propose a generalized simulator retrieval interface to transform between textual and
numerical modalities.

* We present a claim-level generation method to improve long-form answer quality.

* We utilize uncertainty estimation scores and simulator boundary assessment (UE+SBA) to
efficiently verify and update claims.

* We construct a long-form scientific QA benchmark for climate science and epidemiology.

* We conduct extensive experiments to verify SimulRAG framework and UE+SBA method
effectiveness. Results show SimulRAG outperforms RAG baselines by 30.4% in informa-
tiveness and 16.3% in factuality.
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2 RELATED WORK

2.1 SCIENTIFIC QUESTION ANSWERING

Scientific question answering encompasses multiple formats and domains. ScienceQA (Lu
et al. 2022) contains multimodal multiple choice questions from high school textbooks. Mi-
crovqa (Burgess et al., [2025) provides multimodal reasoning benchmarks for microscopy-based re-
search. These works focus on multi-choice questions (MCQs) rather than free-form QA. Climate
Crisis QA (Zhu & Tiwari, [2023)) and SciQAG-24D (Wan et al., [2024)) explore synthetic data gener-
ation using LL.Ms, but suffer from hallucinations and lack scientific validity. CLIMAQA (Manivan-
nan et al., [2024) provides automated evaluation frameworks for climate science QA. SciQA (Auer,
et al.| [2023) benchmarks scientific QA using hand-crafted queries on the Open Research Knowl-
edge Graph (Jaradeh et all 2019). Both support free-form QA but address short-form questions.
Their answers are simple, typically containing single claim. Our questions require multiple claims
forming complete answers. We provide the benchmark for long-form scientific QA across climate
modeling and epidemiological modeling domains. The ground truth answers are verified by both
scientific simulators and human annotators to ensure high quality.

2.2 RETRIEVAL-AUGMENTED GENERATION (RAG) FOR LLMS

RAG systems consist of retrieval and generation components (Lewis et al., 2020bj; |[Fan et al.| 2024;
Gao et al.| 2023)). The retriever searches relevant documents from knowledge bases by measuring
distance between queries and documents. Two main retrieval methods exist: dense retrieval maps
queries and knowledge into vector spaces (Khandelwal et al., 2019; [Karpukhin et al., 2020; |Lewis
et al.,|2020a), while sparse retrieval uses word-based matching (Robertson et al.,|2009; |Sparck Jones),
1972). The generation module takes queries and retrieved documents as input to generate final an-
swers. Three generation strategies exist: input-layer integration combines queries with retrieved
documents as LLM input (Ram et al., 2023} [[zacard & Grave, 2020); output-layer integration refines
generation results using retrieval (Khandelwal et al} |2019; [Yogatama et al., [2021}; | Yu et al., [2023);
intermediate-layer integration uses semi-parametric modules within generation models (Borgeaud
et al., 2022; Wu et al,, [2022). However, intermediate approaches require model access which is
unavailable using LLM APIs (Ma et al} 2023). Existing RAG methods rely on search-based re-
trieval mechanisms unsuitable for scientific simulators. Recent work explored scientific tool inte-
gration (Lyu et al.| |2024; Wang et al., [2024; |Yang et al., |2024; Majumder et al., 2024), but targets
predefined tasks rather than free-form scientific QA with versatile open-ended questions. Our work
proposes the general RAG framework using simulators as retrieval tools.

2.3  CLAIM-LEVEL UNCERTAINTY ESTIMATION

Long-form answer uncertainty estimation decomposes answers into multiple claims for granu-
lar assessment. Several methods (Duan et al., 2023} |Band et al., [2024)) obtain claim uncertainty
scores from long-form outputs but require white-box model access, limiting applicability to API-
based LLMs. SelfCheckGPT (Manakul et al., [2023)) extends self-consistency (Wang et al.| [2022)
to sentence-level uncertainty within long-form outputs, applicable to black-box LLMs. Mohri et
al. (Mohri & Hashimoto| |2024) perform claim-level uncertainty estimation using conformal predic-
tion. Jiang et al. (Jiang et al.| [2024) improve granular uncertainty estimation through entailment
graphs capturing fine-grained semantic information. We adapt this claim-level uncertainty method
to guide the claim-level generation process, improving its efficiency and quality.

3 METHODOLOGY

3.1 OVERALL FRAMEWORK

Our proposed simulator-based RAG (SimulRAG) framework retrieves from scientific simulators to
ground LLMs for long-form scientific QA tasks. The problem formulation is as follows. Given a
open-ended question ¢, the SimulRAG framework first retrieves relevant simulation outputs d from
the scientific simulator .S through the simulator retrieval interface I:
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d=1(S,q) (D

The output d is converted to textual context c. The generator G takes the question ¢, context ¢, and
LLM model M as input to generate the claim set C = {c1, ¢, ...,k }:

C=G(g,c, M) 2)

where the claim set C contains multiple atomic claims that form the final long-form answer a.

The overall SimulRAG framework is illustrated in Figure [I] left. Our main contributions in this
framework are the design of simulator retrieval interface I and the claim-level generator G. For the
simulator retrieval interface I, we design a generalized approach to transform between textual and
numerical modalities. For the claim-level generator G, we utilize uncertainty estimation scores and
simulator boundary assessment (UE+SBA) to efficiently verify and update claims. The details of 1
and G are described in the following sections. The complete algorithm is presented in Algorithm 1]

3.2 SIMULATOR RETRIEVAL INTERFACE

Our simulator retrieval interface transforms between textual and numerical modalities. Figure[I|right
illustrates the overall process. We use question ¢ and simulator S’s handbook as context A to guide
the LLM in understanding simulator functionality and parameter space. The LLM extracts multiple
relevant parameter settings from question ¢ and context h. These parameters are transformed to
JSON format and executed by simulator .S to obtain outputs d. The simulation outputs are converted
to textual format c using predefined templates for subsequent claim verification and updating. We
can predefine output templates since simulator output format is fixed. The key challenge solved is
extracting correct parameter settings from versatile open-ended questions. Unlike existing methods
requiring predefined templates with token indicators, our method supports different types of open-
ended questions. Prompts and templates used are provided in Appendix[A.2]

3.3 CLAIM-LEVEL GENERATION

Traditional RAG generation methods directly produce answers given questions and retrieved con-
text. This one-step mechanism often yields suboptimal informativeness and factuality. To im-
prove this, we generate multiple diverse answers A = {a1,as, ..., a,,} through m LLM queries,
covering different aspects of the question. Each answer a; is decomposed into atomic claims
{ei1, cia, - - -, cin } following (Min et al., [2023)), where each claim c;; represents an independently
verifiable factual statement. Claims from different answers merge into a single deduplicated set
C ={c1,¢9,...,cr} using the LLM deduplication approach from (Jiang et al.| [2024).

This claim-level decomposition serves two critical purposes: (1) enabling targeted verification and
updates of individual claims rather than holistic response modification, providing more precise and
flexible long-form answer refinement; (2) simplifying the verification task by focusing on atomic
factual statements. Each claim represents a concise scientific assertion about phenomena, relation-
ships, or quantitative predictions that can be directly validated against simulation outputs.

However, verifying all k claims requires O(k) simulator queries, creating computational bottle-
necks. We address this through uncertainty estimation scores and simulator boundary assessment
(UE+SBA), which selectively verify only uncertain and verifiable claims. Figure [2]illustrates the
complete claim-level generation process.

Claim-level Uncertainty Estimation To assess the uncertainty estimation score of each claim ¢;,
we construct bipartite graphs between the answer set A and the claim set C. Each node represents
either an answer or a claim, while edges capture semantic entailment relationships between them.
We estimate claim-level uncertainty using graph centrality metrics, specifically adopting closeness
centrality which measures how close a claim node is to all other nodes.

vi-1 WM
Zuev d(C,;, u) |VF7 |
where V is the set of all nodes, d(c;, ) is the shortest path distance between claim node ¢; and
node u, and |V,,| represents the size of the connected component containing ¢;. Higher closeness

3)

conf(c;) =
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Claim-level Generation

Original Claims UE Score Boundary Final Claims Updated UE Score
Open-ended Question
P e Nebraska is expected to peak around January. 0.80 True Nebraska is expected to peak around January. 0.80
|
Answer Multiple Times
J The italizations could be 0.72 False The italizations could be 0.72
\ ——————— RAG Threshold = = = = = = = \
@ Public health interventions will be critical. False @ @
Updated
LLM Vermont see an earlier peak on December. 0.40 True Vermont see an earlier peak on October. 1.00 EEM
Verified
RO of 2.6 indicates a highly contagious virus. 0.32 True RO of 2.6 indicates a highly contagious virus. 1.00
Updated Final Answer
Hospitals may see a peak prevalence of 5-10. 0.26 True Hospitals may see a peak prevalence of 60-50. 1.00
Urban areas experience more rapid spread. 010  [False W 0.10

Figure 2: Claim-level generation process: (1) decompose long-form answers into atomic claims; (2)
apply uncertainty estimation and simulator boundary assessment to select claims for verification; (3)
update selected claims using simulation context; (4) integrate verified claims into a coherent answer.

centrality indicates a more central claim with stronger support from multiple answers, thus higher
confidence. Our approach differs from (Jiang et al.} |2024) in purpose: while they detect uncertain
claims for abstention, we identify uncertain claims for verification and modification through simu-
lation output context to improve answer factuality. We evaluate additional graph centrality metrics
as uncertainty estimators, with results presented in Section 4.3

Simulator Boundary Assessment Another important factor to consider is whether claim c; can be
verified by simulator S. To this end, we introduce a boundary compatibility function

bound(c¢;, h) — {0,1} 4)

This function returns a binary value indicating whether claim ¢; parameters and conditions fall
within simulator S operational boundaries. We employ GPT-40 as an LLM judge, providing sim-
ulator handbook % and claim c¢; for evaluation. The judge determines compatibility between claim
parameters and simulator capabilities, returning 1 for compatible claims and 0 for incompatible
ones. This assessment filters incompatible claims before verification, reducing unnecessary queries
and improving efficiency.

UE+SBA Selection and Verification and Updating. We combine uncertainty estimation and
boundary assessment for selective claim verification. A claim ¢; undergoes simulator verification
when meeting two criteria: (1) uncertainty: conf(c;) < 7 where T represents a predefined confidence
threshold; (2) boundary compatibility: bound(c;, h) = 1. This dual-criterion approach optimally al-
locates computational resources to uncertain yet verifiable claims.

Selected claims undergo verification using simulation context c through three scenarios: (1) align-
ment: claims consistent with ¢ retain original content with conf(c;) = 1; (2) contradiction: claims
conflicting with ¢ are updated based on simulation evidence with conf(c;) = 1; (3) indeterminate:
unverifiable claims preserve original content and confidence scores. Finally, we apply confidence
threshold « to filter low-confidence claims. The high-confidence set {¢; € C|conf(¢;) > k} inte-
grates into the final answer a’.

3.4 SCIENTIFIC BENCHMARK GENERATION

We construct a benchmark dataset for long-form scientific QA using simulators as retrieval tools,
covering climate modeling and epidemiology domains. For climate modeling, we utilize the climate
emulator (N1u et al.,[2024) trained on Coupled Model Intercomparison Project Phase 6 (Eyring et al.,
2016) simulations, comprising general circulation and Earth system models representing the scien-
tific standard for climate projection. This emulator enables efficient exploration of climate scenarios
prohibitively expensive with full CMIP6 models. Focusing on four greenhouse and aerosol gases
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Climate Epidemiology

Q: Considering the climate projection for Syktyvkar, what is the total| | Q: For an influenza season in North Carolina, Missouri, Arizona, and Vermont
temperature change expected between the historical average in 2006 and | | beginning around October 7th, 2025, what is the comprehensive
the predicted temperature in 2040 under the ssp126 scenario, given a| | epidemiological forecast for hospital prevalence, assuming a high basic
20.41% increase in CO2 and a 46.77% increase in CH4 emissions? Does this | | reproduction number (R0) of 2.2, moderate seasonality, and a low 10%
change represent a warming or cooling trend, and is its magnitude | | pog i ide prior i ity? Please yze the outbreak's expected
considered negligible (less than 0.2°C), modest (0.2°C to 1.0°C), or||trajectory, considering its peak severity, and timing.

significant (over 1.0°C)?

A: The forecast points to a severe and rapidly escalating influenza season. The
A: The total predicted temperature change is 0.29°C, which indicates a| |outbreak is projected to begin with an extremely rapid growth phase. The
warming trend for Syktyvkar between the historical and future dates. | | peak magnitude of hospitalizations is expected to be very high, reaching a
Based on the provided thresholds, the magnitude of this warming is| | median of approximately 2234 cases. This significant peak is anticipated to
considered modest. The climate model suggests a noticeable but not||arrive approximately 7.3 weeks after the season's start. Collectively, these
extreme shift in local temperature under these conditions. indicators suggest a major and sustained wave of influenza.

Figure 3: Example questions and answers from our benchmark dataset for climate and epidemiology.

(COq,CHy, BC,S0>) as inputs and 2-meter surface temperature as output, it captures anthro-
pogenic warming drivers while targeting policy-relevant climate variables. This enables rapid as-
sessment of emission pathways and climate risk evaluation. For epidemiology, we employ GLEAM-
Al, a stochastic emulator capable of reproducing complex influenza transmission patterns in the
United States (Zahedi et al., [2024; |Wu et al., |2023)). This emulator accurately replicates the mecha-
nistic disease dynamics of the Global Epidemic and Mobility model (GLEAM) (Balcan et al.,2010;
Chinazzi et al.| |2024), a stochastic, age-stratified, metapopulation model integrating high-resolution
population data, age-stratified social mixing dynamics, human mobility, and disease transmission.
Our benchmark considers a Susceptible-Latent-Infectious-Removed-like compartmental model (Za-
hedi et al., |2024) simulating seasonal influenza outbreaks in the U.S., previously validated in in-
fluenza forecasting efforts (Mathis et al. 2024). We vary the following parameters in GLEAM-ALI:
basic reproduction number (RO0), the strength of the seasonality, the level of initial residual immunity
in the population, and the presumed starting date of the outbreak.

Using these emulators, we design a three-stage benchmark generation pipeline. First, the LLM
receives simulator handbooks and identifies core functionalities, generating textual templates de-
scribing input-output relationships. These human-readable templates contain placeholders for input
parameters and simulation results, stored in JSON format. Second, we programmatically sample
input parameters from scientifically plausible ranges, execute simulators, and populate template
placeholders with parameter-output pairs. Finally, we prompt the LLM to formulate open-ended
questions requiring quantitative reasoning and qualitative interpretation, directly referencing numer-
ical data. Crucially, the LLM generates ground-truth answers derived solely from simulation evi-
dence, ensuring factual consistency and eliminating external knowledge or hallucinations. Figure 3|
shows example questions and answers.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate our proposed SimulRAG framework and UE+SBA method across two scientific do-
mains: climate and epidemiological modeling. We employ GPT-40 and Claude-3.5 Sonnet as back-
bone LLM models. Our objective is demonstrating that SimulRAG improves answer informative-
ness and factuality compared to traditional RAG baselines, while UE+SBA enhances efficiency and
quality for claim-level generation.

Datasets. We construct two benchmark datasets described in Section [3.4] The climate modeling
dataset contains 200 free-form questions covering various climate phenomena. The epidemiolog-
ical modeling dataset comprises 200 free-form questions concerning disease spread dynamics and
plausible future scenarios. Detailed dataset examples and statistics are provided in Appendix[A.3]

Claim-level evaluation. We assess generated answer quality at the atomic claim level. Each an-
swer undergoes decomposition into constituent atomic claims via structured prompting. Claims
are subsequently evaluated for correctness through a rigorous two-stage verification process. First,
an LLM judge evaluates simulator-related claims using ground truth references. Subsequently, we
collaborate with PhD students in the relevant fields to manually assess remaining claims based on
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Figure 4: Factuality and informativeness comparison across RAG methods. SimulRAG consistently
outperforms baseline methods on both evaluation metrics, showing superior capability for generating
informative and factual long-form scientific answers.

correctness and relevance to the posed question. Claims receive true labels only when both correct
and relevant to the question.

Baselines. We evaluate SimulRAG against established RAG baselines: (1) Input-layer integra-
tion (Ram et al 2023)) directly concatenates queries with retrieved context as LLM input; (2)
Output-layer integration (Yu et al.| refines generated answers using retrieval context post-
processing. These baselines require adaptation for scientific simulators. We adapt them through
our simulator retrieval interface to extract textual context from simulation outputs. This enables
fair comparison, demonstrating SimulRAG’s superior performance in answer informativeness and
factual accuracy.

For claim-level generation, we evaluate UE+SBA against baselines: (1) Random: Randomly selects
claims for simulator verification. (2) Verbalized: Uses LLM verbalized uncertainty estimates
et al}[2022; [Tian et al.,[2023). (3) Uncertainty: Selects claims using confidence scores
2024). All methods use identical claim decomposition and answer regeneration procedures from
Section [3.3] This ensures fair comparison and demonstrates UE+SBA’s effectiveness in selecting
valuable claims for verification and modification.

Evaluation metrics. We assess SimulRAG and baselines using informativeness and factuality met-
rics for answers. Informativeness counts unique true claims within answers. Factuality measures the
proportion of true claims across all generated claims.

For claim-level methods, we evaluate efficiency and quality by varying verification budgets (per-
centage of claims selected for verification updates). Updated claims are verified against ground
truth references. We compute F1, AUPR, and AUROC metrics for updated claim sets using uncer-
tainty estimation scores. Higher values indicate superior claim verification and update quality. F1
uses balanced scoring to identify thresholds where precision approximates recall. Corresponding

values appear in Appendix [A:4.1]

4.2 SIMULRAG PERFORMANCE

We first assess the effectiveness of the SimulRAG framework for long-form scientific QA. Figure ]
demonstrates the informativeness and factuality of different RAG methods across two benchmarks:
Climate and Epidemiology, using two LLM models: GPT-40 and Claude-3.5. SimulRAG con-
sistently outperforms the existing baselines across both evaluation metrics. For informativeness,
SimulRAG achieves 30.4% more unique true claims on average over the best baseline. For factu-
ality, SimulRAG attains 16.3% higher proportions of true claims over the best baseline. These re-
sults substantiate SimulRAG’s effectiveness in generating high-quality long-form scientific answers
through systematic verification and updating of atomic claims using retrieved simulation outputs.

4.3 UE+SBA PERFORMANCE

We evaluate the efficiency and quality of uncertainty estimation scores and simulator boundary as-
sessment (UE+SBA) for claim-level generation. Table [T] presents the performance comparison of
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I GPT-40 I Claude 3.5
| 15%  25%  45% || 15% = 25%  45%

Random 0.6685 0.6794 0.7039 || 0.7323 0.7419 0.7511
Verbalized 0.6519 0.647 0.7393 || 0.6766 0.7251 0.723

Benchmark Metric Method

FlScore 7 certainty || 0.6894 07113 0744 || 0.7384 07509 0793
UE+SBA || 0702 0731 07725 || 0.7511 0.7768 0.8242

Random || 07144 07383 0.7594 || 0.7876 0.7932 0.8048

Climate aupg | Verbalized || 0.6745 07071 07461 || 07532 07731 0.8023
Uncertainty || 0.7391 07522 0.7714 || 0.777 07817 0.8092
UE+SBA || 0.746 07629 0.7871 || 0.7879 0.8039 0.8297

Random || 0.6013 0.6267 0.6618 || 0.6672 06793 0.7031

AUROC  Verbalized || 05522 0.6006 0.6659 || 06172 0.66 07277
Uncertainty | 0.6405 0.6645 0.7040 || 0.6818 0.6975 0.7446
UE+SBA || 0.6531 0.6854 07253 || 0.7002 0.729  0.7709

Random || 0.5898 0.6157 0.6581 || 0.6961 0.7042 0.7374

Fl Seore Verbalized || 0.5654 0627 0.6953 | 0.6804 07421 0731

Uncertainty || 0.6103  0.644 0.7043 || 0.706 0.7319 0.7848
UE+SBA 0.6431 0.6957 0.8155 || 0.7231 0.7594 0.8207

Random 0.6727 0.7053 0.7555 || 0.7428 0.7687 0.8097
Epidemiology Verbalized 0.5972  0.6534 0.7402 || 0.7221 0.7599 0.8206

AUPR  Uncertainty || 0.6833 07243 07799 || 07482 0.7798  0.826
UE+SBA | 0.7239 07754 0.8424 || 0.7739 0.8113  0.859
Random || 0.6454 06753 07295 || 0.5716 0.6045 0.6723
AURoc  Verbalized || 06205 0.6834 07773 || 05358 05993 0.7175

Uncertainty || 0.6789 0.7325 0.8005 || 0.5972 0.6489 0.7397
UE+SBA 0.7308 0.7906 0.8634 || 0.6338 0.6971 0.7916

Table 1: Performance comparison of claim-level generation methods across two benchmarks and
two LLM models. Results show F1 Score, AUPR, and AUROC for 3 different verification budgets
(15%, 25%, 45%). The 15% budget means 15% of claims will be verified and possibly updated.
Best performing methods are bolded.

different claim-level generation methods across climate and epidemiology benchmarks, using GPT-
40 and Claude-3.5 models. We report F1 score, AUPR, and AUROC across 3 different verification
budgets (15%, 25%, 45%). For example, a 15% budget indicates verifying and updating 15% of
claims selected by each method. It can be observed that UE+SBA consistently outperforms all base-
line methods across all metrics, models, benchmarks, and budgets. For AUPR, UE+SBA achieves
up to 6.2% absolute improvements over the best baseline. For AUROC, UE+SBA attains up to 6.3%
absolute improvements over the best baseline. Meanwhile, the Uncertainty baseline consistently
ranks second, demonstrating the effectiveness of uncertainty estimation for claim selection, a key
component of UE+SBA. The next section analyzes simulator boundary assessment (SBA) effective-
ness in detail.

4.4 SIMULATOR BOUNDARY ASSESSMENT (SBA) EFFECTIVENESS

To evaluate SBA effectiveness, we visualize the proportion of SBA-selected claims verifiable by
the simulator. Figure [5left demonstrates that SBA effectively filters out non-verifiable claims. For
climate, SBA filters out 34.5% of claims on average. For epidemiology, SBA filters out 41% on
average. Human evaluation confirms most filtered claims are indeed non-verifiable by the simulator.
Thus, SBA reduces unnecessary claim-level verification and updates. Additionally, we compare
UE+SBA with Uncertainty across 5 uncertainty estimation scores (Jiang et al.,[2024): (1) Closeness,
(2) Degree, (3) Betweenness, (4) Eigenvalue, (5) PageRank. Figure [5|right presents the performance
comparison between Uncertainty and UE+SBA across these uncertainty estimation scores. Results
show UE+SBA consistently outperforms Uncertainty alone across all scores on climate science and
epidemiology benchmarks. This demonstrates SBA effectively complements uncertainty estimation
to select more valuable claims for verification, yielding higher quality updated claim sets.
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Figure 5: Left: Proportion of SBA-selected claims verifiable by simulator. Right: Performance
comparison between Uncertainty and UE+SBA across five uncertainty estimation scores on climate
science and epidemiology benchmarks.
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Figure 6: F1 score comparison of SimulRAG across RAG verification budgets (15%, 25%, 45%)
versus no-RAG and all-RAG.

4.5 ABLATION STUDIES

We compare SimulRAG performance across RAG verification budgets (15%, 25%, 45%) against no-
RAG and all-RAG in Figure[6|using F1 score. Results show SimulRAG with 15% RAG significantly
outperforms no-RAG across both benchmarks and models. SimulRAG with 45% RAG achieves
performance comparable to all-RAG scenarios. This demonstrates SimulRAG effectively balances
efficiency and quality by selectively verifying a subset of valuable claims rather than all. This
targeted approach maximizes verification impact while minimizing computational overhead.

5 CONCLUSION

In this work, we introduce SimulRAG, a simulator-based retrieval-augmented generation (RAG)
framework for long-form scientific question answering. SimulRAG proposes a generalized simu-
lator retrieval interface to transform between textual and numerical modalities, enabling seamless
integration of scientific simulators into RAG systems. To improve answer generation quality, we
present a claim-level generation method that decomposes long-form answers into atomic claims for
fine-grained verification and updates. To efficiently verify and update claims, we utilize uncertainty
estimation scores and simulator boundary assessment (UE+SBA) to selectively identify valuable
claims for verification. Finally, we construct a long-form scientific QA benchmark covering climate
science and epidemiology. Extensive experiments verify the effectiveness of our proposed Simul-
RAG framework and UE+SBA method. One limitation of SimulRAG is assuming all questions
relate to available simulators. Future work could develop automatic question-simulator relevance
detection to avoid failed retrieval when prompts are unrelated and enable broader applicability across
diverse scientific domains.
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Reproducibility Statement

We will release all code, simulators, and benchmark dataset for reproducibility. The code repository
is submitted as supplementary material and will be publicly available upon acceptance. Implemen-
tation details are provided in the repository readme file.

Ethics Statement

Despite two-stage verification and updating, SimulRAG may still generate factually incorrect an-
swers. Fully trusting this automated system without human expert review could be risky for public
health and climate policy decision making. We recommend human expert review as a necessary
safeguard.

LLM Usage

We only use LLMs to polish writing, not for content or idea generation.
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A APPENDIX

A.l

SIMULRAG ALGORITHM

The SimulRAG algorithm is shown in Algorithm [T} The key functions used in the algorithm are
defined as follows:

* I(S,q,h): Simulator retrieval interface that extracts parameters from question g using
handbook h, executes simulator .S, and converts outputs to textual context d.

* LLM(q): Generates diverse initial answer given question g.

* Decompose(a;): Decomposes answer a; into atomic claims following factual statement
extraction principles.

* Merge(+): Merges and deduplicates claim sets from multiple answers using semantic equiv-
alence detection.

* UE(c¢;, A,C): Uncertainty estimation that computes confidence score for claim ¢; using
entailment graph centrality.

* bound(c;, h): Boundary assessment function that determines whether claim c; is verifiable
by simulator using handbook h.

* VerifyAndUpdate(c;, d): Verifies claim ¢; against simulation context d and updates if con-
tradictory or aligns if consistent.

* GenerateCoherentAnswer(q, Csnar): Synthesizes final answer from high-confidence claims
in response to question q.

A.2 PROMPT AND TEMPLATE DETAILS

Here we provide detailed prompts and templates used in our SimulRAG framework.

A.2.1

CLAIM DECOMPOSITION PROMPT

After the answer set is recieved, the Claim Decomposition Prompt is used to decompose each answer
into multiple claims. It preserves the semantic meaning of the original answer and focuses on single

Algorithm 1 SimulRAG Framework

1: Input: Question g, Scientific simulator S, Handbook A, Thresholds 7,
: Output: Refined answer o’
cd<+ I(S,q,h)
: A« {a1,...,a,} where a; - LLM(q)

{¢j1,..-,Cjn; } ¢ Decompose(a;)

: end for

¢ €« Merge(U;{cj1,---,¢jn; })
9: Cselected «— 0
10: for ¢; € C do

2
3
4
5. for j = 1tomdo
6.
7
8

11:  conf(c;) < UE(c;, A,C)

12:  if conf(¢;) < 7 and bound(c;, h) = 1 then
13: Csetected < Cselected U {Ci}

14:  endif

15: end for

16: for ¢; € Celected dO

17:  ¢; < VerifyAndUpdate(c;, d)
18:  conf(c;) + 1
19: end for

20: Chipal < {Ci eC ‘ Conf(ci) > IQ}

21: o

<+ GenerateCoherentAnswer(q, Cpina )

22: return o’
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setting related to the answer, not the repetition of the question. We adapt the prompt from [Jiang
et al.| (2024)), the prompt is given as follows:

Please deconstruct the following paragraph into the smallest possible
standalone self-contained facts without semantic repetition, and return
the output as a jsonl, where each line is {claim:[CLAIM]}.

CRITICAL: Extract ONLY the 8-12 MOST IMPORTANT claims. Be extremely
selective. Focus ONLY on:

- Direct answers to the specific question asked

- Specific numerical values, percentages’%, or measurements

- Key causal relationships (A causes B)

- Critical scientific conclusions

STRICTLY AVOID:

- General background information

- Basic definitions (what S02 is, what SSP scenarios are, etc.)

- Procedural explanations

Location descriptions
- Any claim that doesn’t directly address the question

Each claim must be essential to answering the question. If unsure
whether to include a claim, DON’T include it.

The input is: {original text}

Response:

A.2.2 CLAIM MERGING PROMPT

Each answer is decomposed into a claim set. The Claim merging Prompt is used merge all claim
set into one single claim set. It is ensured all deplicated claims are merged and all claims are
independent with each other. We adopt the idea from Jiang et al|(2024) and designed the prompt
given as follows:

You are given two sets of claims. Find which claims in Set B are
already covered by claims in Set A.

Set A (Existing claims): {existing claim set}
Set B (New claims): {new_claim set}

For each claim in Set B, check if it says essentially the same thing as
any claim in Set A (i.e. semantic equivalence even if worded
differently). Should be equivalent in meaning, if A said something
turns up while B said something turns down, they are not equivalent.

If A said something turns up and B said the same thing goes up, they
are equivalent.

You must respond with ONLY a valid Json array of pairs. Each pair is
[existing index, new_index] where Set A[existing index] covers Set
B[new_index] .

Examples:

- If Set A[0] covers Set B[1] and Set A[2] covers Set B[0]: [[0, 1],
[2, 0]]

- If no claims match: []
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- If Set A[1] covers Set B[0]: [[1, 0]]

Response:

A.2.3 SCIENTIFIC BOUNDARY ANALYSIS PROMPT

As mentioned in[3.3] given the scientific simulator’s handbook and the claim. The Scientific Bound-
ary Analysis Promptis used to identify if the claim could be verified or updated by the existing tools.
The prompt is given as follows:

You are an expert in [Dataset] science and computational tools. You
will evaluate whether [Dataset]-related claims can be verified using
available [Dataset] simulation tools.

*+xAVAILABLE CLIMATE TOOLS:** {tools_handbook}

**EVALUATION TASK:** For each claim provided, you need to determine how
well the available tools can help verify or assess the accuracy of that
claim.

**SCORING CRITERIA:*x*

- *x0xx: The claim cannot be verified or assessed using any of the
available tools

- Examples: Claims about non-climate topics, general policy
statements, claims requiring data/tools not available, claims that
touch on climate aspects but cannot be directly verified with the
specific tools provided

- **x1%x: The claim can be directly and comprehensively verified or
assessed using the available tools

- Examples: Claims about temperature changes, climate scenarios,
aerosol/greenhouse gas impacts, geographic classifications, specific
quantitative climate predictions

*+RESPONSE FORMAT:** Respond with ONLY a JSON object containing a
single key "tool_confidence" with a value of O or 1.

Example: {"tool_confidence": 1}
*xYQUR TASK: **
Question: {question} Claim: {claim}

Evaluate how well the available climate simulation tools can verify or
assess this specific claim in the context of the given question.

Response:

A.2.4 VERIFICATION AND UPDATING PROMPT

The Verification and Updating Prompt is used to ask model use simulation’s textual content to update
and verify each selected claim. It will identifiy the claim is included in the content or not, and
perform update when necessary. The prompt is given as follows:

You are a fact-checking assistant. You have been given a claim and
some quantitative context information. Your task is to analyze the
relationship between the claim and the RAG context to see if you should
update the claim or not. You should assume the RAG context is 100%
correct and accurate.

INSTRUCTIONS:
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1. First, determine if the RAG context contains information relevant
to the claim’s topic (set "is_included")

2. 1If relevant, check if the claim should be updated for better
accuracy (set "should_update")

3. If updating, modify the claim directly - do not generate new claims
or unrelated content.

4. Only update the related part of the claim, don’t add extra
information (i.e. if the claim is related to A, and the rag provides
information about all of A, B, C, then you should update the parts
related to A only, but not B or C)

5. Keep updates as minimal as possible and focused on improving
accuracy

6. You may need to do calculations from the RAG context to perform the
update, it is required to do and please carefully do the numerical
calculations.

7. Skip the update and mark it as not included if the claim is not
related to the RAG context.

DECISION CRITERIA:

- "is_included": true if RAG context discusses the same
topic/concept/domain as the claim, false if completely unrelated

- "should update": true only if the claim has incorrect/incomplete
information that RAG context can improve

Respond in JSON format: {{ "is_included": true/false, "should.update":
true/false, "updated_claim": "the updated claim text (only if
should update is true)" }}

YOUR TASK INPUT: CLAIM TO EVALUATE: {claim}
RAG CONTEXT: {textual_context}

Response:

A.2.5 FINAL ANSWER PROMPT

The Final Answer Prompt is used to ask model use selected claims to generate the final answer. The
prompt is given as follows:

You are an expert answering a complex question based on provided
factual claims.

QUESTION: {question}
AVAILABLE CLAIMS: {claims_text}

TASK: Generate a comprehensive and accurate answer to the question
using only the information provided in the claims above.

REQUIREMENTS:
- Use only the factual information from the provided claims
- Synthesize the claims into a coherent, well-structured answer

- If claims conflict, prioritize the most specific and detailed
information

- If the claims don’t fully address the question, acknowledge the
limitations
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- Do not add information beyond what’s provided in the claims

Generate a clear, comprehensive answer:

A.2.6 TEXTUAL CONTEXT TEMPLATE

As described in we use textual context template to translate the simulation result into human-
readable context. It will fill in the placeholder fields with simulation results to complete the text. An
example of climate textual context template is given as follows:

"Query": "If CO2 emissions increase by {{delta_C02}}% and CH4 emissions
increase by {{delta CH4}}), in {{year}} under the {{setting}} scenario,
what would be the average temperature for {{city.name}}? Also, is
{{city name}} located on land or sea?"

"Result": "With a {{delta_C02}}}, increase in C02 and {{delta CH4}}%
increase in CH4, the average temperature for {{cityname}} in {{year}}
under the {{setting}} scenario would be {{greenhouse_temp}}°C. This
location is on {{land sea result}}."

And an example of epidemiology textual context template is given as follows:

"Query": "What is the projected epidemiological landscape for
{{target metric}} in {{target_states}} for an influenza season
initiating around {{starting date}}, assuming a basic reproduction
number (RO) of {{rO_value}}, a {{seasonality level}} influence, and an
initial population immunity level of {{prior_immunity level}}?"

"Result": "Projected Epidemiological Landscape for
{{target metric}}:{{simulation_outlook}}"
A.3 DATASET STATISTICS AND EXAMPLES

We include examples of questions, ground truth answers, and the corresponding groundtruth claim
sets generated on the two benchmark datasets used in our experiments. We also provide statistics of
the two datasets.

A.3.1 EXAMPLE CLIMATE QUESTIONS

Below gives example questions generated in our climate benchmark:

Question: For the city of Chaiwu, what is the total temperature change projected between
its historical average in 1994 and a future scenario in 2041 under ssp585 conditions, where
CO2 emissions increase by 47.31% and CH4 emissions increase by 36.46%? Does this change
represent a warming or cooling trend, and would its magnitude be considered modest (less than
1.0°C) or significant (1.0°C or greater)?

Reference Answer: The total projected temperature change is an increase of 1.08°C, which
indicates a clear warming trend for Chaiwu between the two dates. Based on the provided
thresholds, the magnitude of this change is considered significant. This suggests a notable
shift in the local climate under the specified emissions scenario.

Reference Answer Claims:

 The total projected temperature change is an increase of 1.08°C.
* There is a clear warming trend for Chaiwu between the two dates.

* The magnitude of the temperature change is considered significant based on the provided
thresholds.
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 There is a notable shift in the local climate under the specified emissions scenario.

Question: For Suresnes in 2050, under the ssp245 scenario with CO2 emissions increasing
by 23.83% and CH4 by 39.2%, what is the projected temperature? Based on this projection,
would the local climate be considered cold (below 5°C), mild (5°C to 15°C), or warm (above
15°C)? Also, confirm if the location is terrestrial.

Reference Answer: The projected temperature for Suresnes is 7.9°C, which is classified as
mild according to the given temperature ranges. The location is confirmed to be terrestrial.
The projected climate does not fall into the cold or warm categories.

Reference Answer Claims:

* The projected temperature for Suresnes is 7.9°C.
* The projected temperature of 7.9°C for Suresnes is classified as mild.
* The projected climate for Suresnes does not fall into the cold category.

» The projected climate for Suresnes does not fall into the warm category.

Question: For the city of Baldwin in 2072 under the ssp245 scenario, compare two distinct
emission modification strategies: one where CO2 emissions increase by 13.4% and CH4 emis-
sions increase by 6.09%, and another where SO2 emissions decrease by 13.28% and Black
Carbon emissions are modified by -11.75% at [(-73.6075, 40.6511)]. Which strategy results
in a warmer local climate? What is the temperature difference between the two scenarios? Is
this difference considered negligible (less than 0.2°C), modest (0.2°C to 1.0°C), or significant
(over 1.0°C)?

Reference Answer: The scenario involving an increase in greenhouse gas emissions results
in a warmer local climate compared to the aerosol modification scenario. The temperature
difference between the two strategies is 0.26°C, which is considered a modest divergence based
on the given thresholds. This indicates that the specified greenhouse gas increases have a more
pronounced warming impact than the aerosol changes in this particular forecast.

Reference Answer Claims:

* An increase in greenhouse gas emissions results in a warmer local climate compared to
aerosol modification.

* The temperature difference between the greenhouse gas emissions scenario and the aerosol
modification scenario is 0.26°C.

* The 0.26°C temperature difference is considered a modest divergence based on the given
thresholds.

* Greenhouse gas increases have a more pronounced warming impact than aerosol changes in
this forecast.

Question: For Chongzuo, compare the historical average temperature in 1992 with the projec-
tion for 2083 under the ssp245 scenario, assuming a 29.37% increase in CO2 and a 48.75%
increase in CH4 emissions. What is the total temperature change? Based on this change, does
this represent a minor (less than 1°C), significant (1°C to 2°C), or severe (over 2°C) warming
trend?

Reference Answer: The total projected temperature change is an increase of 1.18°C, which
indicates a distinct warming trend for Chongzuo. Based on the provided thresholds, this level

19




Under review as a conference paper at ICLR 2026

of temperature rise is classified as significant. This suggests a considerable shift in the local
climate between the historical and future periods under this emissions scenario.

Reference Answer Claims:

* The total projected temperature change is an increase of 1.18°C for Chongzuo.

L]

The 1.18°C temperature increase indicates a distinct warming trend for Chongzuo.
 This level of temperature rise is classified as significant based on the provided thresholds.

» The temperature increase suggests a considerable shift in the local climate between historical
and future periods under this emissions scenario.

Question: For Correia Pinto in the year 2072 under the ssp585 scenario, compare two potential
interventions: an aerosol modification with a 6.24% change in SO2 and -19.46% change in BC
at points [(-50.4, -27.5833)], versus a greenhouse gas intervention with a 44.57% change in
CO2 and 8.5% change in CH4. Which intervention leads to a warmer local climate? What is
the temperature difference between them? Would this difference be considered negligible (less
than 0.2°C), modest (0.2°C to 1.0°C), or significant (over 1.0°C)?

Reference Answer: The greenhouse gas intervention results in a warmer local climate com-
pared to the aerosol modification. The temperature difference between the two scenarios is
0.61°C, which is considered a modest impact based on the provided thresholds. This indi-
cates that the choice between these two strategies has a noticeable effect on the projected local
temperature.

Reference Answer Claims:

* The greenhouse gas intervention results in a warmer local climate compared to the aerosol
modification.

» The temperature difference between the greenhouse gas intervention and aerosol modifica-
tion scenarios is 0.61°C.

* The temperature difference of 0.61°C is considered a modest impact based on the provided
thresholds.

» The choice between greenhouse gas intervention and aerosol modification strategies has a
noticeable effect on the projected local temperature.

A.3.2 EXAMPLE EPIDEMIOLOGY QUESTIONS

Below gives example questions generated in our epidemiology benchmark:

Question: For an upcoming influenza season in North Carolina and Massachusetts commenc-
ing around October 4th, 2022, what is the comprehensive epidemiological forecast for hospital
prevalence, assuming a high RO of 2.6, moderate seasonality, and a low 10% prior immunity?
Please assess the expected trajectory, including the outbreak’s peak severity, and timing.

Reference Answer: The forecast indicates an extremely severe and rapidly evolving outbreak.
The season is projected to begin with an explosive growth phase. The peak magnitude of hos-
pitalizations is expected to be exceptionally high, reaching a median value of around 11,941.
This severe peak is anticipated to materialize very quickly, arriving just 5.4 weeks after the
season’s onset. This trajectory points to a fast-moving, high-burden wave that will develop
with remarkable speed.

Reference Answer Claims:
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» The forecast indicates an extremely severe and rapidly evolving outbreak.
» The season is projected to begin with an explosive growth phase.

* The peak magnitude of hospitalizations is expected to reach a median value of around
11,941.

» The severe peak is anticipated to materialize 5.4 weeks after the season’s onset.
* The trajectory points to a fast-moving, high-burden wave.

Question: For an influenza season in North Carolina, Missouri, Arizona, and Vermont be-
ginning around October 7th, 2022, what is the comprehensive epidemiological forecast for
hospital prevalence, assuming a high basic reproduction number (R0) of 2.2, moderate season-
ality, and a low 10% population-wide prior immunity? Please analyze the outbreak’s expected
trajectory, considering its peak severity, and timing.

Reference Answer: The forecast points to a severe and rapidly escalating influenza season.
The outbreak is projected to begin with an extremely rapid growth phase. The peak magnitude
of hospitalizations is expected to be very high, reaching a median of approximately 2234 cases.
This significant peak is anticipated to arrive approximately 7.3 weeks after the season’s start.
Collectively, these indicators suggest a major and sustained wave of influenza.

Reference Answer Claims:

* The influenza season is forecasted to be severe and rapidly escalating.

» The peak magnitude of hospitalizations is expected to reach a median of approximately 2234
cases.

» The peak of hospitalizations is anticipated to arrive approximately 7.3 weeks after the sea-
son’s start.

* Indicators suggest a major and sustained wave of influenza.

Question: For an influenza season in Colorado, North Carolina, Vermont, and South Carolina
beginning around September 23, 2022, what is the comprehensive epidemiological forecast for
hospital prevalence, assuming a high basic reproduction number (R0) of 2.6, no seasonality,
and a low population-wide prior immunity of 10%? Please analyze the projected trajectory,
considering the outbreak’s peak severity, and timing.

Reference Answer: The forecast points to an extremely severe and explosive outbreak sce-
nario. The season is projected to begin with an unprecedentedly rapid growth phase. The peak
magnitude of hospitalizations is expected to be exceptionally high, reaching a median value
of approximately 4,308 concurrent cases. This severe peak is forecast to arrive very quickly,
materializing just 4.1 weeks after the season’s onset. Taken together, these indicators suggest
arapid, overwhelming wave of infections that escalates to a severe peak in just over a month.

Reference Answer Claims:

* The peak magnitude of hospitalizations is expected to reach a median value of approximately
4,308 concurrent cases.

» The severe peak of hospitalizations is forecast to materialize 4.1 weeks after the season’s
onset.

» The outbreak is expected to begin with an unprecedentedly rapid growth phase.
* The indicators suggest a rapid, overwhelming wave of infections.
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Question: What is the comprehensive epidemiological forecast for hospital prevalence in
Iowa, Florida, and Michigan, for an influenza season starting around September 22nd, 20227
This scenario assumes a high RO of 2.2, moderate seasonality, and a low 10% prior immunity
in the population. Please consider severity of the outbreak, and its timing.

Reference Answer: The epidemiological forecast indicates an exceptionally severe and
rapidly developing influenza season. The outbreak is expected to begin with an explosive
growth phase. This rapid escalation is projected to culminate in a very high peak of hospi-
talizations, with a median magnitude of approximately 3115 concurrent cases. The peak of
this intense wave is forecast to arrive relatively quickly, about 7.1 weeks after the season’s on-
set. This trajectory suggests a severe, front-loaded epidemic wave with a significant and swift
1mmpact.

Reference Answer Claims:

* The influenza season is expected to be exceptionally severe and rapidly developing.
* The outbreak is expected to begin with an explosive growth phase.

* The peak of hospitalizations is projected to have a median magnitude of approximately 3115
concurrent cases.

* The peak of the influenza wave is forecast to arrive about 7.1 weeks after the season’s onset.

» The epidemic wave is expected to be severe and front-loaded with a significant and swift
impact.

Question: For an upcoming influenza season in South Dakota, Massachusetts, Illinois, and
Wyoming, what is the comprehensive epidemiological forecast for hospital prevalence given a
start date of September 26, 2022, a high RO of 2.4, strong seasonality, and an initial population
immunity level of 20%? Please assess the expected trajectory, considering the peak’s severity,
and its timing.

Reference Answer: The epidemiological forecast for this scenario indicates a severe and sus-
tained influenza wave. The season is expected to begin with a rapid growth phase. The peak
magnitude of hospitalizations is projected to be very high, reaching a median value of approx-
imately 999 cases. This severe peak is anticipated to materialize late in the season, occurring
about 11 weeks after the start date. Overall, this trajectory points to a challenging season
characterized by a rapid initial spread and a high, delayed peak.

Reference Answer Claims:

» The epidemiological forecast indicates a severe and sustained influenza wave.
» The influenza season is expected to begin with a rapid growth phase.

* The peak magnitude of hospitalizations is projected to reach a median value of approxi-
mately 999 cases.

» The severe peak in hospitalizations is anticipated to occur about 11 weeks after the start date.

* The influenza season is characterized by a rapid initial spread and a high, delayed peak.

A.3.3 DATASET STATISTICS

The statistics of two benchmark datasets are summarized in Table 2] as below:
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Benchmark # Questions Avg. Answer Avg. # Avg. #Quant. Avg. # Qual. Avg. Tool

Length (words)  Claims Claims Claims Param. Count
Climate 200 55.8 3.6 1.1 2.5 6.3
Epidemiology 200 82.3 53 32 2.1 6.0

Table 2: Statistical overview of the generated benchmarks. The table compares metrics on answer
length, the average number of decomposed claims (total, quantitative, and qualitative), and the aver-
age used parameter count of the simulators.

A.4 ADDITIONAL EXPERIMENTAL RESULTS
A.4.1 BASELINE COMPARISON PRECISION AND RECALL

Here we provide additional experimental results, Table [3|shows the precision and recall values cor-
responding to the F1 scores reported in Table

Benchmark Metric Method I GPT-40 I Claude 3.5

| 15%  25%  45% | 15%  25%  45%
Random 0.667 0.6777 0.7043 || 0.7364 0.7402 0.7496

Precision Verbalized 0.6386 0.6569 0.691 0.6871 0.6958 0.722
Uncertainty 0.6901 0.7113 0.7433 || 0.7433 0.7544 0.7926
UE+SBA (Ours) || 0.7025 0.7323 0.7719 || 0.7513 0.7746 0.8238
Random 0.67 0.6811 0.7036 || 0.7283 0.7437 0.7525
Climate Recall Verbalized 0.6558 0.6261 0.8046 || 0.6656 0.7406 0.9075
Uncertainty 0.6881 0.7109 0.7448 || 0.7372 0.7505 0.7926
UE+SBA (Ours) || 0.7014 0.7297 0.7731 0.751 0.779  0.8246
Random 0.6685 0.6794 0.7039 || 0.7323 0.7419 0.7511
F1 Score Verbalized 0.6471 0.6411 0.7435 || 0.6762 0.7175 0.8042
Uncertainty 0.6891 0.7111 0.744 0.7402 0.7524 0.7926
UE+SBA (Ours) 0.702 0.731 0.7725 || 0.7511 0.7768 0.8242
Random 0.591 0.6128 0.658 0.6945 0.7057 0.7353
Precision Verbalized 0.561 0.5891 0.7021 || 0.6806 0.7018 0.7565
: Uncertainty 0.6173 0.647 0.7139 || 0.7138 0.7387 0.7863

UE+SBA (Ours) || 0.6416 0.6952 0.8131 || 0.7233 0.7579 0.82
Random 0.5886 0.6185 0.6582 || 0.6977 0.7026 0.7395
Epidemiology Recall Verbalized 0.5735 0.6589 0.6834 || 0.6866 0.7937 0.7065
Uncertainty 0.6164 0.6484 0.7126 || 0.7027 0.7393 0.7854
UE+SBA (Ours) || 0.6445 0.6962 0.8178 || 0.7229 0.7608 0.8214
Random 0.5898 0.6157 0.6581 || 0.6961 0.7042 0.7374
F1 Score Verbalized 0.5672 0.6221 0.6926 || 0.6836 0.7449 0.7307
Uncertainty 0.6168 0.6477 0.7132 || 0.7082 0.739 0.7859
UE+SBA (Ours) || 0.6431 0.6957 0.8155 || 0.7231 0.7594 0.8207

Table 3: Additional results of claim-level generation methods. The table includes Precision, Recall,
and F1 Score for selection thresholds of 15%, 25%, and 45%, where the threshold is selected by
letting the recall close to the precision

A.4.2 PR CURVES AMONG UE METHODS

The following precision-recall curves compare our UE+SBA method to baseline UE approaches on
the Climate and Epidemiology datasets. At retrieval-augmentation-generation (RAG) rates of 25%
and 45%, our results show that UE + SBA at a rate of 45% reduced half of RAG updates and achieves
performance comparable to an exhaustive strategy that augments all claims.
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Figure 7: Precision-Recall Performance between Uncertainty, UE+SBA method across different six
uncertainty estimation methods on Climate dataset.
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Figure 8: Precision-Recall Performance between Uncertainty, UE+SBA method across different six
uncertainty estimation methods on Epidemiology dataset.
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