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ABSTRACT

We propose Make-A-Video – an approach for directly translating the tremendous
recent progress in Text-to-Image (T2I) generation to Text-to-Video (T2V). Our
intuition is simple: learn what the world looks like and how it is described from
paired text-image data, and learn how the world moves from unsupervised video
footage. Make-A-Video has three advantages: (1) it accelerates training of the
T2V model (it does not need to learn visual and multimodal representations from
scratch), (2) it does not require paired text-video data, and (3) the generated
videos inherit the vastness (diversity in aesthetic, fantastical depictions, etc.)
of today’s image generation models. We design a simple yet effective way to
build on T2I models with novel and effective spatial-temporal modules. First, we
decompose the full temporal U-Net and attention tensors and approximate them
in space and time. Second, we design a spatial temporal pipeline to generate
high resolution and frame rate videos with a video decoder, interpolation model
and two super resolution models that can enable various applications besides
T2V. In all aspects, spatial and temporal resolution, faithfulness to text, and
quality, Make-A-Video sets the new state-of-the-art in text-to-video generation,
as determined by both qualitative and quantitative measures.

1 INTRODUCTION

The Internet has fueled collecting billions of (alt-text, image) pairs from HTML pages (Schuhmann
et al., 2022), enabling the recent breakthroughs in Text-to-Image (T2I) modeling. However, repli-
cating this success for videos is limited since a similarly sized (text, video) dataset cannot be easily
collected. It would be wasteful to train Text-to-Video (T2V) models from scratch when there already
exist models that can generate images. Moreover, unsupervised learning enables networks to learn
from orders of magnitude more data. This large quantity of data is important to learn representa-
tions of more subtle, less common concepts in the world. Unsupervised learning has long had great
success in advancing the field of natural language processing (NLP) (Liu et al., 2019a; Brown et al.,
2020). Models pre-trained this way yield considerably higher performance than when solely trained
in a supervised manner.

Inspired by these motivations, we propose Make-A-Video. Make-A-Video leverages T2I models
to learn the correspondence between text and the visual world, and uses unsupervised learning on
unlabeled (unpaired) video data, to learn realistic motion. Together, Make-A-Video generates videos
from text without leveraging paired text-video data.

Clearly, text describing images does not capture the entirety of phenomena observed in videos. That
said, one can often infer actions and events from static images (e.g. a woman drinking coffee, or an
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(a) A dog wearing a superhero outfit with red cape flying through the sky. 

(b) There is a table by a window with sunlight streaming through illuminating a pile of books. 

(c) Robot dancing in times square.

(d) Unicorns running along a beach, highly detailed.

Figure 1: T2V generation examples. Our model can generate high-quality videos with coherent
motion for a diverse set of visual concepts. In example (a), there are large and realistic motion for
the dog. In example (b), the books are almost static but the scene changes with the camera motion.
Video samples are available at make-a-video.github.io

elephant kicking a football) as done in image-based action recognition systems (Girish et al., 2020).
Moreover, even without text descriptions, unsupervised videos are sufficient to learn how different
entities in the world move and interact (e.g. the motion of waves at the beach, or of an elephant’s
trunk). As a result, a model that has only seen text describing images is surprisingly effective at
generating short videos, as demonstrated by our temporal diffusion-based method. Make-A-Video
sets the new state-of-the-art in T2V generation.

Using function-preserving transformations, we extend the spatial layers at the model initialization
stage, to include temporal information. The extended spatial-temporal network includes new at-
tention modules that learn temporal world dynamics from a collection of videos. This procedure
significantly accelerates the T2V training process by instantaneously transferring the knowledge
from a previously trained T2I network to a new T2V one. To enhance the visual quality, we train
spatial super-resolution models as well as frame interpolation models. This increases the resolution
of the generated videos, as well as enables a higher (controllable) frame rate.

Our main contributions are:

• We present Make-A-Video – an effective method that extends a diffusion-based T2I model
to T2V through a spatiotemporally factorized diffusion model.

• We leverage joint text-image priors to bypass the need for paired text-video data, which in
turn allows us to potentially scale to larger quantities of video data.

• We present super-resolution strategies in space and time that, for the first time, generate
high-definition, high frame-rate videos given a user-provided textual input.

• We evaluate Make-A-Video against existing T2V systems and present: (a) State-of-the-art
results in quantitative as well as qualitative measures, and (b) A more thorough evaluation
than existing literature in T2V. We also collect a test set of 300 prompts for zero-shot T2V
human evaluation which we plan to release.
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2 PREVIOUS WORK

Text-to-Image Generation. (Reed et al., 2016) is among the first methods to extend uncondi-
tional Generative Adversairal Network (GAN) (Goodfellow et al., 2014) to T2I generation. Later
GAN variants have focused on progressive generation (Zhang et al., 2017; Hong et al., 2018), or
better text-image alignment (Xu et al., 2018; Zhang et al., 2021). The pioneering work of DALL-
E (Ramesh et al., 2021) considers T2I generation as a sequence-to-sequence translation problem us-
ing a discrete variational auto-encoder (VQVAE) and Transformer (Vaswani et al., 2017). Additional
variants (Ding et al., 2022) have been proposed since then. For example, Make-A-Scene (Gafni
et al., 2022) explores controllable T2I generation using semantic maps. Parti (Yu et al., 2022a)
aims for more diverse content generation through an encoder-decoder architecture and an improved
image tokenizer (Yu et al., 2021). On the other hand, Denoising Diffusion Probabilistic Models
(DDPMs) (Ho et al., 2020) are successfully leveraged for T2I generation. GLIDE (Nichol et al.,
2021) trained a T2I and an upsampling diffusion model for cascade generation. GLIDE’s proposed
classifier-free guidance has been widely adopted in T2I generation to improve image quality and
text faithfulness. DALLE-2 (Ramesh et al., 2022) leverages the CLIP (Radford et al., 2021) latent
space and a prior model. VQ-diffusion (Gu et al., 2022) and stable diffusion (Rombach et al., 2022)
performs T2I generation in the latent space instead of pixel space to improve efficiency.
Text-to-Video Generation. While there is remarkable progress in T2I generation, the progress of
T2V generation lags behind largely due to two main reasons: the lack of large-scale datasets with
high-quality text-video pairs, and the complexity of modeling higher-dimensional video data. Early
works (Mittal et al., 2017; Pan et al., 2017; Marwah et al., 2017; Li et al., 2018; Gupta et al., 2018;
Liu et al., 2019b) are mainly focused on video generation in simple domains, such as moving digits
or specific human actions. To our knowledge, Sync-DRAW (Mittal et al., 2017) is the first T2V
generation approach that leverages a VAE with recurrent attention. (Pan et al., 2017) and (Li et al.,
2018) extend GANs from image generation to T2V generation.

More recently, GODIVA (Wu et al., 2021a) is the first to use 2D VQVAE and sparse attention for
T2V generation supporting more realistic scenes. NÜWA (Wu et al., 2021b) extends GODIVA, and
presents a unified representation for various generation tasks in a multitask learning scheme. To
further improve the performance of T2V generation, CogVideo (Hong et al., 2022) is built on top of
a frozen CogView-2 (Ding et al., 2022) T2I model by adding additional temporal attention modules.
Video Diffusion Models (VDM) (Ho et al., 2022) uses a space-time factorized U-Net with joint
image and video data training. While both CogVideo and VDM collected 10M private text-video
pairs for training, our work uses solely open-source datasets, making it easier to reproduce.
Leveraging Image Priors for Video Generation. Due to the complexity of modeling videos and the
challenges in high-quality video data collection, it is natural to consider leveraging image priors for
videos to simplifying the learning process. After all, an image is a video with a single frame (Bain
et al., 2021). In unconditional video generation, MoCoGAN-HD (Tian et al., 2021) formulates
video generation as the task of finding a trajectory in the latent space of a pre-trained and fixed image
generation model. In T2V generation, NÜWA (Wu et al., 2021b) combines image and video datasets
in a multitask pre-training stage to improve model generalization for fine-tuning. CogVideo (Hong
et al., 2022) uses a pre-trained and fixed T2I model for T2V generation with only a small number
of trainable parameters to reduce memory usage during training. But the fixed autoencoder and T2I
models can be restrictive for T2V generation. The architecture of VDM (Ho et al., 2022) can enable
joint image and video generation. However, they sample random independent images from random
videos as their source of images, and do not leverage the massive text-image datasets.

Make-A-Video differs from previous works in several aspects. First, our architecture breaks the
dependency on text-video pairs for T2V generation. This is a significant advantage compared to
prior work, that has to be restricted to narrow domains (Mittal et al., 2017; Gupta et al., 2018; Ge
et al., 2022; Hayes et al., 2022), or require large-scale paired text-video data (Hong et al., 2022;
Ho et al., 2022). Second, we fine-tune the T2I model for video generation, gaining the advantage
of adapting the model weights effectively, compared to freezing the weights as in CogVideo (Hong
et al., 2022). Third, motivated from prior work on efficient architectures for video and 3D vision
tasks (Ye et al., 2019; Qiu et al., 2017; Xie et al., 2018), our use of pseudo-3D convolution (Qiu
et al., 2017) and temporal attention layers not only better leverage a T2I architecture, it also allows
for better temporal information fusion compared to VDM (Ho et al., 2022).
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Figure 2: Make-A-Video high-level architecture. Given input text x translated by the prior P into
an image embedding, and a desired frame rate fps, the decoder Dt generates 16 64 × 64 frames,
which are then interpolated to a higher frame rate by ↑F , and increased in resolution to 256 × 256
by SRt

l and 768× 768 by SRh, resulting in a high-spatiotemporal-resolution generated video ŷ.

3 METHOD

Make-A-Video consists of three main components: (i) A base T2I model trained on text-image pairs
(Sec. 3.1), (ii) spatiotemporal convolution and attention layers that extend the networks’ building
blocks to the temporal dimension (Sec. 3.2), and (iii) spatiotemporal networks that consist of both
spatiotemporal layers, as well as another crucial element needed for T2V generation - a frame inter-
polation network for high frame rate generation (Sec. 3.3).

Make-A-Video’s final T2V inference scheme (depicted in Fig. 2) can be formulated as:

ŷt = SRh ◦ SRt
l ◦ ↑F ◦Dt ◦P ◦(x̂,Cx(x)), (1)

where ŷt is the generated video, SRh,SRl are the spatial and spatiotemporal super-resolution net-
works (Sec. 3.2), ↑F is a frame interpolation network (Sec. 3.3), Dt is the spatiotemporal decoder
(Sec. 3.2), P is the prior (Sec. 3.1), x̂ is the BPE-encoded text, Cx is the CLIP text encoder (Rad-
ford et al., 2021), and x is the input text. The three main components are described in detail in the
following sections.

3.1 TEXT-TO-IMAGE MODEL

Prior to the addition of the temporal components, we train the backbone of our method: a T2I model
trained on text-image pairs, sharing the core components with the work of (Ramesh et al., 2022).

We use the following networks to produce high-resolution images from text: (i) A prior network P,
that during inference generates image embeddings ye given text embeddings xe and BPE encoded
text tokens x̂, (ii) a decoder network D that generates a low-resolution 64 × 64 RGB image ŷl,
conditioned on the image embeddings ye, and (iii) two super-resolution networks SRl,SRh that
increase the generated image ŷl resolution to 256× 256 and 768× 768 pixels respectively, resulting
in the final1 generated image ŷ.

3.2 SPATIOTEMPORAL LAYERS

In order to expand the two-dimensional (2D) conditional network into the temporal dimension, we
modify the two key building blocks that now require not just spatial but also temporal dimensions in
order to generate videos: (i) Convolutional layers (Sec. 3.2.1), and (ii) attention layers (Sec. 3.2.2),
discussed in the following two subsections. Other layers, such as fully-connected layers, do not
require specific handling when adding an additional dimension, as they are agnostic to structured
spatial and temporal information. Temporal modifications are made in most U-Net-based diffusion
networks: the spatiotemporal decoder Dt now generating 16 RGB frames, each of size 64× 64, the

1We then downsample to 512 using bicubic interpolation for a cleaner aesthetic. Maintaining a clean aes-
thetic for high definition videos is part of future work.
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Figure 3: The architecture and initialization scheme of the Pseudo-3D convolutional and at-
tention layers, enabling the seamless transition of a pre-trained Text-to-Image model to the
temporal dimension. (left) Each spatial 2D conv layer is followed by a temporal 1D conv layer.
The temporal conv layer is initialized with an identity function. (right) Temporal attention layers are
applied following the spatial attention layers by initializing the temporal projection to zero, resulting
in an identity function of the temporal attention blocks.

newly added frame interpolation network ↑F , increasing the effective frame rate by interpolating
between the 16 generated frames (as depicted in Fig. 2), and the super-resolution networks SRt

l .

Note that super resolution involves hallucinating information. In order to not have flickering ar-
tifacts, the hallucination must be consistent across frames. As a result, our SRt

l module operates
across spatial and temporal dimensions. In qualitative inspection we found this to significantly out-
perform per-frame super resolution. It is challenging to extend SRh to the temporal dimension due
to memory and compute constraints, as well as a scarcity of high resolution video data. So SRh

operates only along the spatial dimensions. But to encourage consistent detail hallucination across
frames, we use the same noise initialization for each frame.

3.2.1 PSEUDO-3D CONVOLUTIONAL LAYERS

Motivated by separable convolutions (Chollet, 2017), we stack a 1D convolution following each
2D convolutional (conv) layer, as shown in Fig. 3. This facilitates information sharing between
the spatial and temporal axes, without succumbing to the heavy computational load of 3D conv
layers. In addition, it creates a concrete partition between the pre-trained 2D conv layers and the
newly initialized 1D conv layers, allowing us to train the temporal convolutions from scratch, while
retaining the previously learned spatial knowledge in the spatial convolutions’ weights.

Given an input tensor h ∈ RB×C×F×H×W , where B, C, F , H , W are the batch, channels, frames,
height, and width dimensions respectively, the Pseudo-3D convolutional layer is defined as:

ConvP3D(h) := Conv1D(Conv2D(h) ◦ T ) ◦ T, (2)

where the transpose operator ◦T swaps between the spatial and temporal dimensions. For smooth
initialization, while the Conv2D layer is initialized from the pre-trained T2I model, the Conv1D
layer is initialized as the identity function, enabling a seamless transition from training spatial-only
layers, to spatiotemporal layers. Note that at initialization, the network will generate K different
images (due to random noise), each faithful to the input text but lacking temporal coherence.

3.2.2 PSEUDO-3D ATTENTION LAYERS

A crucial component of T2I networks is the attention layer, where in addition to self-attending to ex-
tracted features, text information is injected to several network hierarchies, alongside other relevant
information, such as the diffusion time-step. While using 3D convolutional layers is computationally
heavy, adding the temporal dimension to attention layers is outright infeasible in terms of memory
consumption. Inspired by the work of (Ho et al., 2022), we extend our dimension decomposition
strategy to attention layers as well. Following each (pre-trained) spatial attention layer, we stack a
temporal attention layer, which as with the convolutional layers, approximates a full spatiotemporal
attention layer. Specifically, given an input tensor h, we define flatten as a matrix operator that
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flattens the spatial dimension into h′ ∈ RB×C×F×HW . unflatten is defined as the inverse matrix
operator. The Pseudo-3D attention layer therefore is therefore defined as:

ATTNP3D(h) = unflatten(ATTN1D(ATTN2D(flatten(h)) ◦ T ) ◦ T ). (3)

Similarly to ConvP3D, to allow for smooth spatiotemporal initialization, the ATTN2D layer is ini-
tialized from the pre-trained T2I model and the ATTN1D layer is initialized as the identity function.

Factorized space-time attention layers have also been used in VDM (Ho et al., 2022) and
CogVideo (Hong et al., 2022). CogVideo has added temporal layers to each (frozen) spatial layers
whereas we train them jointly. In order to force their network to train for images and videos inter-
changeably, VDM has extended their 2D U-Net to 3D through unflattened 1x3x3 convolution filters,
such that the subsequent spatial attention remains 2D, and added 1D temporal attention through rel-
ative position embeddings. In contrast, we apply an additional 3x1x1 convolution projection (after
each 1x3x3) such that the temporal information will also be passed through each convolution layer.

Frame rate conditioning. In addition to the T2I conditionings, similar to CogVideo (Hong et al.,
2022), we add an additional conditioning parameter fps, representing the number of frames-per-
second in a generated video. Conditioning on a varying number of frames-per-second, enables an
additional augmentation method to tackle the limited volume of available videos at training time,
and provides additional control on the generated video at inference time.

Objectives. We optimize the model by minimizing the hybrid loss following Nichol & Dhariwal
(2021); Ramesh et al. (2022) to train the video decoder. Specifically, the loss consists of two terms:
a simple loss that learns to predict the added noise and a loss Lvlb that adds a constraint on the
estimated variational lower bound (VLB). The Lvlb term is applied the same way as in Nichol &
Dhariwal (2021). Thus, we only write the loss term that predicts the added noise as:

Ldecoder = ECy(y0),ϵ,fps,t

[
∥ϵt − ϵθ(zt, Cy(y0), fps, t)∥22

]
(4)

where y is an input video and y0 represents the first frame of this video. Cy(y0) denotes the
extracted CLIP image embedding of the first frame. zt is the noisy input added to y at time step t
that is uniformly sampled from 1 to T during training. fps is the frame rate embedding as described
above. ϵt is the added noise that is to be estimated by the network represented as ϵθ.

3.3 FRAME INTERPOLATION NETWORK

In addition to the spatiotemporal modifications discussed in Sec. 3.2, we train a new masked frame
interpolation and extrapolation network ↑F , capable of increasing the number of frames of the gen-
erated video either by frame interpolation for a smoother generated video, or by pre/post frame
extrapolation for extending the video length. In order to increase the frame rate within memory and
compute constraints, we fine-tune a spatiotemporal decoder Dt on the task of masked frame inter-
polation, by zero-padding the masked input frames, enabling video upsampling. When fine-tuning
on masked frame interpolation, we add an additional 4 channels to the input of the U-Net: 3 chan-
nels for the RGB masked video input and an additional binary channel indicating which frames are
masked. We fine-tune with variable frame-skips and fps conditioning to enable multiple temporal
upsample rates at inference time. The training objective is the same as Eq. 4 except that we add the
additional condition of the unmasked frames. We denote ↑F as the operator that expands the given
video tensor through masked frame interpolation. For all of our experiments we applied ↑F with
frame skip 5 to upsample a 16 frame video to 76 frames ((16-1)×5+1). Note that we can use the
same architecture for video extrapolation or image animation by masking frames at the beginning or
end of a video.

3.4 TRAINING

The different components of Make-A-Video described above are trained independently. The only
component that receives text as input is the prior P. We train it on paired text-image data and do not
fine-tune it on videos. The decoder and two super-resolution components are first trained on images
alone (no aligned text). Recall that the decoder receives CLIP image embedding as input, and the
super-resolution components receive downsampled images as input during training. After training
on images, we add and initialize the new temporal layers and fine-tune them over unlabeled video
data. 16 frames are sampled from the original video with random fps ranging from 1 to 30. We
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Table 1: T2V generation evaluation on MSR-VTT. Zero-Shot means no training is conducted on
MSR-VTT. Samples/Input means how many samples are generated (and then ranked) for each input.

Method Zero-Shot Samples/Input Resolution FID (↓) CLIPSIM (↑)
GODIVA No 30 128× 128 − 0.2402
NÜWA No − 336× 336 47.68 0.2439
CogVideo (Chinese) Yes 1 480× 480 24.78 0.2614
CogVideo (English) Yes 1 480× 480 23.59 0.2631

Make-A-Video (ours) Yes 1 256× 256 13.17 0.3049

use the beta function for sampling and while training the decoder, start from higher FPS ranges (less
motion) and then transition to lower FPS ranges (more motion). The masked-frame-interpolation
component is fine-tuned from the temporal decoder.

4 EXPERIMENTS

4.1 DATASETS AND SETTINGS

Datasets. To train the image models, we use a 2.3B subset of the dataset from (Schuhmann et al.)
where the text is English. We filter out sample pairs with NSFW images 2, toxic words in the text,
or images with a watermark probability larger than 0.5. We use WebVid-10M (Bain et al., 2021)
and a 10M subset from HD-VILA-100M (Xue et al., 2022) 3 to train our video generation models.
Note that only the videos (no aligned text) are used. The decoder Dt and the interpolation model
is trained on WebVid-10M. SRt

l is trained on both WebVid-10M and HD-VILA-10M. While prior
work (Hong et al., 2022; Ho et al., 2022) have collected private text-video pairs for T2V generation,
we use only public datasets (and no paired text for videos). We conduct automatic evaluation on
UCF-101 (Soomro et al., 2012) and MSR-VTT (Xu et al., 2016) in a zero-shot setting.

Automatic Metrics. For UCF-101, we write one template sentence for each class (without generat-
ing any video) and fix it for evaluation. We report Frechet Video Distance (FVD) and Inception Score
(IS) on 10K samples following (Ho et al., 2022). We generate samples that follow the same class
distribution as the training set. For MSR-VTT, we report Frechet Inception Distance (FID) (Parmar
et al., 2022) and CLIPSIM (average CLIP similarity between video frames and text) (Wu et al.,
2021a), where all 59, 794 captions from the test set are used, following (Wu et al., 2021b).

Human Evaluation Set and Metrics. We collect an evaluation set from Amazon Mechanical Turk
(AMT) that consists of 300 prompts. We asked annotators what they would be interested in gener-
ating if there were a T2V system. We filtered out prompts that were incomplete (e.g., “jump into
water”), too abstract (e.g., “climate change”), or offensive. We then identified 5 categories (animals,
fantasy, people, nature and scenes, food and beverage) and selected prompts for these categories.
These prompts were selected without generating any videos for them, and were kept fixed. In addi-
tion, we also used the DrawBench prompts from Imagen (Saharia et al., 2022) for human evaluation.
We evaluate video quality and text-video faithfulness. For video quality, we show two videos in ran-
dom order and ask annotators which one is of higher quality. For faithfulness, we additionally show
the text and ask annotators which video has a better correspondence with the text (we suggest them
to ignore quality issues). In addition, we also conducted human evaluation to compare video motion
realism of our interpolation model and FILM (Reda et al., 2022). For each comparison, we use the
majority vote from 5 different annotators as the final result.

4.2 QUANTITATIVE RESULTS

Automatic Evaluation on MSR-VTT. In addition to GODIVA and NÜWA that report on MSR-
VTT, we also perform inference on the officially released CogVideo model with both Chinese and
English inputs for comparison.For CogVideo and Make-A-Video, we only generate one sample for
each prompt in a zero-shot setting. We only generate videos that are at 16 × 256 × 256 as the
evaluation models do not expect higher resolutions and frame rate. The results are shown in Table 1.

2We used this model: https://github.com/GantMan/nsfw model
3These 100M clips are sourced from 3.1M videos. We randomly downloaded 3 clips per video to form our

HD-VILA-10M subset.
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Table 2: Video generation evaluation on UCF-101 for both zero-shot and fine-tuning settings.
Method Pretrain Class Resolution IS (↑) FVD (↓)

Zero-Shot Setting

CogVideo (Chinese) No Yes 480× 480 23.55 751.34
CogVideo (English) No Yes 480× 480 25.27 701.59
Make-A-Video (ours) No Yes 256× 256 33.00 367.23

Finetuning Setting

TGANv2(Saito et al., 2020) No No 128× 128 26.60± 0.47 -
DIGAN(Yu et al., 2022b) No No 32.70± 0.35 577± 22
MoCoGAN-HD(Tian et al., 2021) No No 256× 256 33.95± 0.25 700± 24
CogVideo (Hong et al., 2022) Yes Yes 160× 160 50.46 626
VDM (Ho et al., 2022) No No 64× 64 57.80± 1.3 -
TATS-base(Ge et al., 2022) No Yes 128× 128 79.28± 0.38 278± 11

Make-A-Video (ours) Yes Yes 256× 256 82.55 81.25

Table 3: Human evaluation results compared to CogVideo (Hong et al., 2022) on DrawBench and
our test set, and to VDM (Ho et al., 2022) on the 28 examples from their website. The numbers
show the percentage of raters that prefer the results of our Make-A-Video model.

Comparison Benchmark Quality Faithfulness
Make-A-Video (ours) vs. VDM VDM prompts (28) 84.38 78.13
Make-A-Video (ours) vs. CogVideo (Chinese) DrawBench (200) 76.88 73.37
Make-A-Video (ours) vs. CogVideo (English) DrawBench (200) 74.48 68.75
Make-A-Video (ours) vs. CogVideo (Chinese) Our Eval. Set (300) 73.44 75.74
Make-A-Video (ours) vs. CogVideo (English) Our Eval. Set (300) 77.15 71.19

Make-A-Video’s zero-shot performance is much better than GODIVA and NÜWA which are trained
on MSR-VTT. We also outperform CogVideo in both Chinese and English settings. Thus, Make-A-
Video has significantly better generalization capabilities than prior work.

Automatic Evaluation on UCF-101. UCF-101 is a popular benchmark to evaluate video generation
and has been recently used in T2V models. CogVideo performed finetuning of their pretrained
model for class-conditional video generation. VDM (Ho et al., 2022) performed unconditional video
generation and trained from scratch on UCF-101. We argue that both settings are not ideal and is
not a direct evaluation of the T2V generation capabilities. Moreover, the FVD evaluation model
expects the videos to be 0.5 second (16 frames), which is too short to be used for video generation in
practice. Nevertheless, in order to compare to prior work, we conducted evaluation on UCF-101 in
both zero-shot and finetuning settings. As shown in Table 2, Make-A-Video’s zero-shot performance
is already competitive than other approaches that are trained on UCF-101, and is much better than
CogVideo, which indicates that Make-A-Video can generalize better even to such a specific domain.
Our finetuning setting achieves state-of-the-art results with a significant reduction in FVD, which
suggests that Make-A-Video can generate more coherent videos than prior work.

Human Evaluation. We compare to CogVideo (the only public zero-shot T2V generation model) on
DrawBench and our test set. We also evaluate on the 28 videos shown on the webpage of VDM (Ho
et al., 2022) (which may be biased towards showcasing the model’s strengths). Since this is a very
small test set, we randomly generate 8 videos for each input and perform evaluation 8 times and
report the average results. We generate videos at 76 × 256 × 256 resolution for human evalua-
tion. For VDM, it is worth noting that we have achieved significantly better results The results
are shown in Table 3. Make-A-Video achieves much better performance in both video quality and
text-video faithfulness in all benchmarks and comparisons. For CogVideo, the results are similar on
DrawBench and our evaluation set. Additional experiments combining components of CogVideo &
Make-A-Video in order to measure the efficacy of different components are presented in Sec. 6.1.
without any cherry-picking. We also evaluate our frame interpolation network in comparison to
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FILM (Reda et al., 2022). We first generate low frame rate videos (1 FPS) from text prompts in
DrawBench and our evaluation set, then use each method to upsample to 4 FPS. Raters choose our
method for more realistic motion 62% of the time on our evaluation set and 54% of the time on
DrawBench. We observe that our method excels when there are large differences between frames
where having real-world knowledge of how objects move is crucial.

4.3 QUALITATIVE RESULTS

Examples of Make-A-Video’s generations are shown in Figure 1. In this section, we will show
T2V generation comparison to CogVideo (Hong et al., 2022) and VDM (Ho et al., 2022), and video
interpolation comparison to FILM (Reda et al., 2022). In addition, our models can be used for
a variety of other tasks such as image animation, video variation, etc. Due to space constraint,
we only show a single example of each. Figure 4 (a) shows the comparison of Make-A-Video
to CogVideo and VDM. Make-A-Video can generate richer content with motion consistency and
text correspondence. Figure 4 (b) shows an example of image animation where we condition the
masked frame interpolation and extrapolation network ↑F on the image and CLIP image embedding
to extrapolate the rest of the video. This allows a user to generate a video using their own image
– giving them the opportunity to personalize and directly control the generated video. Figure 4
(c) shows a comparison of our approach to FILM (Reda et al., 2022) on the task of interpolation
between two images. We achieve this by using the interpolation model that takes the two images as
the beginning and end frames and masks 14 frames in between for generation. Our model generates
more semantically meaningful interpolation while FILM seems to primarily smoothly transition
between frames without semantic real-world understanding of what is moving. Figure 4 (d) shows
an example for video variation. We take the average CLIP embedding of all frames from a video
as the condition to generate a semantically similar video. More video generation examples and
applications can be found here: make-a-video.github.io.

5 DISCUSSION

Learning from the world around us is one of the greatest strengths of human intelligence. Just as we
quickly learn to recognize people, places, things, and actions through observation, generative sys-
tems will be more creative and useful if they can mimic the way humans learn. Learning world dy-
namics from orders of magnitude more videos using unsupervised learning helps researchers break
away from the reliance on labeled data. The presented work has shown how labeled images com-
bined effectively with unlabeled video footage can achieve that.

As a next step we plan to address several of the technical limitations. As discussed earlier, our
approach can not learn associations between text and phenomenon that can only be inferred in
videos. How to incorporate these (e.g., generating a video of a person waving their hand left-to-right
or right-to-left), along with generating longer videos, with multiple scenes and events, depicting
more detailed stories, is left for future work.

Also, the lack of standard benchmarks in the field of large-scale generative models makes it difficult
for works to compare with each other and measure progress over time. To address this issue, we
went beyond what was done in most existing works, with extensive human evaluation, including
a comparison to examples shared by authors of existing approaches (or generated using models
when publicly released). We hope the community will continue making progress towards better
benchmarks for generative models.

As with all large-scale models trained on data from the web, our models have learnt and likely
exaggerated social biases, including harmful ones. Our T2I generation model was trained on data
that removed NSFW content and toxic words. All our data (image as well as videos) is publicly
available, adding a layer of transparency to our models, and making it possible for the community
to reproduce our work.
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6 APPENDIX

6.1 DISENTANGLING EFFICACY OF THE T2I AND I2V COMPONENTS

We evaluate two additional baselines to disentangle the contributions of two components of Make-
A-Video – Text-to-Image (T2I) and Image-to-Video (I2V). We do so by using Make-A-Video’s T2I
with CogVideo’s I2V, and analogously CogVideo’s T2I with Make-A-Video’s I2V.

Note that Make-A-Video does not have two explicit T2I and I2V modules. That is, it does not gen-
erate an image first and then use it’s CLIP embedding to generate the 16 video frames. It generates
the 16 video frames directly from the image CLIP embedding which is predicted using the prior.
As a result, in order to evaluate an ablation like this, we first generate a frame with CogVideo’s T2I
module, extract the image CLIP embedding from it, and use that to generate the 16 video frames.

We perform our ablation in a zero-shot setting on the MSR-VTT dataset where we generate 5K
samples using each of the approaches. We condition CogVideo on English because English prompts
performed better in our MSR-VTT evaluation (see Tab. 1).

Please see Tab. 4 for the results of this ablation study. We report FID and CLIPSIM metrics com-
puted on static frames generated by the approaches. In addition, to evaluate temporal quality, we
perform human evaluation on 200 videos out of the generated 5K. Each video was rated by 5 human
evaluators, and we take the majority vote as the final result. We report the percentage of raters that
prefer the results of our Make-A-Video model over the two baselines.

We see that Make-A-Video is favored across all metrics when compared to two of its CogVideo vari-
ants. Human evaluators preferred generations that used Make-A-Video’s spatial-temporal mecha-
nism (I2V) over CogVideo’s about 2 out of 3 times. Similarly, evaluators preferred generations
using Make-A-Video’s T2I module over CogVideo’s 3 out of 4 times. We also report CogVideo
performance (CogVideo T2I and I2V) as reference.

Table 4: Evaluating the contribution of the T2I and I2V components in zero-shot generation on
MSR-VTT. We report FID and CLIPSIM scores computed on static frames. Quality shows the
percentage of human raters that prefer the results of our Make-A-Video model over the baselines.

Method FID (↓) CLIPSIM (↑) Quality (↑)
CogVideo (English) 20.01 0.201 60%
CogVideo T2I + Make-A-Video I2V 18.42 0.251 74%
Make-A-Video T2I + CogVideo I2V 14.09 0.302 66%
Make-A-Video (ours) 13.96 0.305 –

6.2 ABLATION STUDY

We perform an ablation study on several architecture and training choices. First, we ablate our
architecture design. Specifically the contribution of temporal convolutional layers (Sec. 3.2.1) and
temporal attention layers (Sec. 3.2.2). Second, we demonstrate the effectiveness of initializing our
Text-to-Video model with pre-trained Text-to-Image model weights.

We perform our ablation in a zero-shot setting on the MSR-VTT dataset where we generated videos
for 6K sentences. We report the automatic CLIPSIM metric to evaluate text faithfullness. In addi-
tion, to evaluate temporal quality, we generate videos for our human evaluation set of 300 prompts
and ask raters to select which model’s generation is higher quality. Each pair of videos was rated by
5 human evaluators, and we take the majority vote as the final result. We report the percentage of
raters that prefer the results of our Make-A-Video model over the two baselines. Please see Tab. 5
for the results of this ablation study.

In our architecture design ablation we trained two variants: (i) Make-A-Video architecture without
temporal attention layers with the spatial attention layers kept as is - “No Attn”, (ii) Make-A-Video
architecture without temporal convolutional layers with the spatial convolutional layers kept as is -
“No Conv”, and, (iii) our complete Make-A-Video architecture - “Full”. All models were trained
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Table 5: Ablation study on architecture and training design choices. Results are reported on zero-
shot generation on MSR-VTT. We report CLIPSIM scores computed on static frames. Quality shows
the percentage of human raters that prefer the results of our Make-A-Video model over the baselines.

Method CLIPSIM (↑) Quality (↑)
From Scratch 0.246 63.31%
No Conv 0.256 52.04%
No Attn 0.257 55.25%
Full 0.258 –

Table 6: Human evaluation comparing the effects of different components. Results are evaluated on
the human evaluation set with 300 prompts. Quality shows the percentage of the human raters who
prefer the results of setting B in each comparison.

Comparison Setting A Setting B Quality (↑)
1 16× 64× 64 16× 256× 256 92.48%
2 16× 256× 256 76× 256× 256 68.30%
3 16× 256× 256 16× 768× 768 60.13%
4 16× 256× 256 (static SR) 16× 256× 256 54.25%
5 16× 768× 768 (random noise) 16× 768× 768 50.98%

for 100K iterations. As can be seen, both the temporal convolutional layers and temporal attention
layers are important to improve video quality and text faithfulness.

In addition to architecture design ablation, we justify our decision to initialize the T2V model with
the weights of a pre-trained T2I model. We begin by reporting CLIPSIM and subjective quality
evaluation metrics on a T2V model trained from scratch 100K iterations - “From Scratch”. As can
be seen in Tab. 5, the model initialized with a pre-trained T2I weights (“Full”) outperforms the model
trained from scratch when trained the same number of iterations. In addition, the model initialized
with pre-trained T2I weights achieves the CLIPSIM score of the model trained from scratch after
just 50K iterations, demonstrating the acceleration achieved by initializing with the weights of a T2I
model.

6.3 EFFECTS OF DIFFERENT COMPONENTS

Our framework consists of several components that are independently trained and sequentially ap-
plied during inference. These models include: 1) a decoder that generates a video of 16 × 64 × 64
from the image embedding generated from a prior model; 2) an interpolation model that improves the
frame rate and generates a video of 76×64×64; 3) a temporal super-resolution model that improves
the video resolution by considering temporal information and generates a video of 76×256×256; 4)
a second super-resolution model that is applied independently on each frame with the same sampled
frame noise and generates the final video of 76× 768× 768.

We study the contributions of each of these components through human evaluation. The results are
shown in Table 6. We have the following observations. First, improving the resolution from 64 to
256 helps boost the video quality significantly (Comparison 1). Second, increasing the frame rate
from 4 fps (16 frames) to 19 fps (76 frames) also help to increase the quality quite a bit (Comparison
2). Third, further increasing the resolution from 256 to 768 can still boost the quality (Comparison
3). These three comparisons have demonstrated the effectiveness of our interpolation model, and
two super-resolution models in improving the quality of the generated videos.

Furthermore, we also compare our temporal super-resolution model with a static super-resolution
model. The latter is applied independently on each frame without considering temporal information.
As shown in Table 6 (Comparison 4), the temporal super-resolution model shows better video quality
compared to the static super-resolution model. This justifies our use of a temporal super-resolution
model at the 256 resolution level. Another comparison we have done is to validate the effect of a
fixed frame noise for the second super-resolution model. As shown in the last row of 6, using fixed
noise has a slightly better result compared to using random noise for each frame.
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(a) T2V Generation: comparison between VDM (top), CogVideo (mid), and Ours (bottom) for input “Busy freeway at night”. 

(b) Image Animation: leftmost shows the input image, and we animated it to be a video.

(c) Image Interpolation: given two images (leftmost and rightmost), we interpolate frames. Comparing FILM (left) and Ours (right).

(d) Video Variation: we can generate a new video (bottom) as a variant to the original video (top).

Figure 4: Qualitative results for various comparisons and applications.
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Table 7: Hyperparameters for the models
P D ; Dt ↑F SRl ; SRt

l SRh

Diffusion steps 1000 1000 1000 1000 1000
Noise schedule cosine cosine cosine cosine linear
Objective xstart ϵ ϵ xstart xstart

Sampling steps 64 100 50 50 50
Sampling variance method analytic DDPM DDPM DDIM DDIM
Crop fraction - - - 1

2
1
3

Model size 1.3B 2.2B ; 3.1B 3.1B 1B ; 1.4B 730M
Channels - 512 512 320 320
Depth - 3 3 3 3
Channels multiple 64 1, 2, 3, 4 1, 2, 3, 4 1, 1, 2, 2, 4, 4 1, 2, 3, 4
Heads channels - 64 64 - -
Attention resolution - 32, 16, 8 32, 16, 8 - -
Text encoder context 128 - - - -
Text encoder width 2048 - - - -
Text encoder depth 24 - - - -
Text encoder heads 32 - - - -
Dropout - 0.1 0.1 0.1 0.1
Weight decay 6.0e− 2 - - - -
Batch size 4096 2048 ; 512 512 1024 ; 256 1024
Iterations 3M 2M ; 200K 100K 700K ; 150K 700K
Learning rate 1.1e− 4 6.0e− 5 6.0e− 5 1.2e− 4 ; 6.0e− 5 1.2e− 4
Adam β2 0.96 0.999 0.999 0.999 0.999
Adam ϵ 1.0e− 6 1.0e− 8 1.0e− 8 1.0e− 8 1.0e− 8
EMA decay 0.9999 0.9999 0.9999 0.9999 0.9999
Model Parameters (B) 1.3 3.1 3.1 1.4 0.7
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