
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TAMING THE FRAGILITY OF KV CACHE EVICTION
IN LLM INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models have revolutionized natural language processing, yet their
deployment remains hampered by the substantial memory and runtime overhead
of the transformer’s Key-Value cache. To mitigate this, recent methods employ a
scoring-aggregation framework to evict unimportant cache entries, based on the
"stability assumption"—that a fixed subset of entries remains consistently important
during generation. However, prior work has largely focused on refining importance
indicators for scoring, while defaulting to mean aggregation due to a faithful trust in
the stability assumption. In this work, we argue that this underlying assumption is
inherently fragile, making mean aggregation highly vulnerable in extreme cases. To
counter this, we propose a simple yet elegant defensive aggregation strategy: a two-
step, linear-time approach that controls worst-case risk, thereby defending against
extreme cases with negligible computational overhead. Embodying this strategy,
we propose a novel cache eviction method, DefensiveKV and its extension, Layer-
DefensiveKV, which incorporates layer-wise budget allocation. Across seven task
domains (18 datasets), our methods reduce generation quality loss by 2.3× and 4.3×
respectively, versus the strongest baseline under a 20% cache size. These results
set new performance benchmarks and pioneer a promising direction for optimizing
cache eviction against underlying fragility through worst-case risk management.

1 INTRODUCTION

Transformer-based Large Language Models (LLMs) have enabled a wide range of applications (Yi
et al., 2024; Gu, 2023). Due to their autoregressive nature, LLMs maintain a Key-Value (KV) cache
to store intermediate representations of previously tokens, which supports efficient computation of
future generation. However, as the input sequence length increases, the KV cache grows linearly,
leading to substantial overhead. For example, a 70B-parameter model with a batch size of 8 and a
sequence length of 128k may require up to 330GB of memory just for caching. This poses significant
challenges regarding storage expenses and I/O bottlenecks for LLM deployment (NVIDIA, 2024).

Early solutions like StreamingLLM (Xiao et al., 2023) reduce cache size by keeping only recent cache
entries, but this sacrifices long-range context. More recent solutions (Zhang et al., 2024b; Liu et al.,
2024c; Li et al., 2024; Feng et al., 2025) on selective cache eviction operate under a key underlying
assumption that a fixed subset of cache entries remain consistently important and contributes to
future generation. Thus, by retaining the selected subset, the full KV cache can be approximated with
a much smaller memory footprint. Building on this, existing methods typically follow a two-step
scoring-aggregation framework: In the scoring step, different historical token queries are used to
observe multiple importance scores for each past KV cache entry. In the aggregation step, these
multiple observed scores for each cache entry are aggregated—typically by averaging—to estimate
its expected significance and guide the eviction strategy.

Following this two-step framework, previous research has primarily focused on improving the scoring
step by exploring various importance indicators. Early studies often relied solely on naive attention
weights (Zhang et al., 2024b; Liu et al., 2024c; Oren et al., 2024). SnapKV (Li et al., 2024) improved
by introducing a pooling mechanism, while more recent work like CriticalKV (Feng et al., 2025)
employed the norm of projected value states to offer a more principled measure of importance.
However, the second step—aggregating these importance scores—remains largely underexplored.
Most existing methods default to a simple averaging strategy. While this may seem reasonable,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500
Generation Step

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ca
ch

e
Im

po
rta

nc
e

Single Historical Token (2nd, worst-case value 0.42)
Single Historical Token (16th, worst-case value 0.47)
Single Historical Token (32nd, worst-case value 0.43)
Mean Aggregation (worst-case value 0.45)
Defensive Aggregation (worst-case value 0.65)

Figure 1: Defensive aggregation demonstrates robustness against fragile stability assumption (Llama-
3.1-8B, 50% cache size, layer 14, summary task). Appendix I provides additional visualizations.

50%

75%

100%

SnapKV(-20.1%)
Duo(-27.3%)
AdaKV(-16.8%)
DefensiveKV(-4.6%)

StreamingLLM(-40.7%)
CakeKV(-16.2%)
CriticalKV(-9.6%)
Layer-DefensiveKV(-2.1%)

Multi Doc. QA

Single Doc. QA

Su
m

m
ar

y

Few ShotSynthetic

C
ode

Nee
dle

 in
 a

Hay
sta

ck

(a) Llama-3.1-8B, 20% Cache

50%

75%

100%

SnapKV(-27.8%)
Duo(-46.4%)
AdaKV(-25.4%)
DefensiveKV(-4.4%)

StreamingLLM(-47.6%)
CakeKV(-27.3%)
CriticalKV(-13.4%)
Layer-DefensiveKV(-1.4%)

Multi Doc. QA

Single Doc. QA

Su
m

m
ar

y

Few ShotSynthetic

C
ode

Nee
dle

 in
 a

Hay
sta

ck

(b) Mistral-7B, 20% Cache

50%

75%

100%

SnapKV(-24.6%)
Duo(N/A)
AdaKV(-22.9%)
DefensiveKV(-2.7%)

StreamingLLM(-37.8%)
CakeKV(-27.9%)
CriticalKV(-8.6%)
Layer-DefensiveKV(-1.7%)

Multi Doc. QA

Single Doc. QA

Su
m

m
ar

y

Few ShotSynthetic

C
ode

Nee
dle

 in
 a

Hay
sta

ck

(c) Qwen-32B, 20% Cache

Figure 2: DefensiveKV and Layer-DefensiveKV achieve significantly lower losses of generation
quality compared to all baselines across various domains and models.

averaging is only effective if the underlying assumption holds that importance are stable-when it does,
averaging helps reduce observation noise and capture the consistent significance of cache entries.

There raises a critical question: if the stability assumption proves unreliable, is averaging still the
best aggregation strategy, or might better alternatives exist?

In this work, we show that even when the assumption generally holds, it remains inherently fragile,
as importance scores can shift abruptly during generation. As demonstrated in Figure 1, performing
cache compression based on the observed importance score of a single historical token often yields
promising results, with most steps retaining over 0.8 correlation with full-cache importance. However,
in certain intervals (e.g., steps 150–230), the stability assumption breaks down—consequently, results
based on single historical token fail, leading to sharp drops, with some outliers falling as low as 0.5.
In these cases, the current standard practice of mean aggregation, simply averaging these single token
predictions, inevitably results in similar outlier performance.

This reflects a classic pitfall, a flaw directly analogous to a foundational lesson from finance:
strategies that optimize only for the average case (expected returns) are fundamentally flawed
because they ignore the risk of rare but extreme negative cases (worst-case risks).

Inspired by this insight, we abandon average-case optimization in favor of a worst-case risk man-
agement framework for KV cache eviction, which we term defensive aggregation. Our strategy is
actualized through an elegant two-step process: worst-case estimation and adaptive prior-risk correc-
tion. Remarkably, this approach requires only two linear-time operations, matching the computational
efficiency of standard mean aggregation. As shown in Figure 1, Defensive Aggregation demonstrates
clear superiority, boosting the worst-case retained importance to 0.65—a substantial improvement
over both mean aggregation (0.45) and single-token baselines (0.42, 0.47, 0.43).

Building on the defensive aggregation strategy, we introduce DefensiveKV, a general cache eviction
method, which we further develop into Layer-DefensiveKV by leveraging a popular layer-wise
budget allocation strategy. Figure 2 summarizes that these two methods significantly outperform
prior approaches across seven task domains, evaluated on 18 datasets from the LongBench and
Needle-in-a-Haystack benchmarks. With a 20% cache budget, DefensiveKV and Layer-DefensiveKV
incur generation quality losses of only 4.8% and 2.6%, respectively, representing 2.3× and 4.3×
reductions versus the best baseline, CriticalKV (11.1%).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORKS

KV cache eviction is crucial for efficient long-sequence inference in LLMs. Early methods like
StreamingLLM (Xiao et al., 2023) retained only recent cache entries, often losing valuable infor-
mation. Subsequent H2O (Zhang et al., 2024b) and Scissorhands (Liu et al., 2024c) introduced
importance-based eviction, assuming "cache importance stability"—that a small set of entries re-
mains consistently important. These methods typically observe importance multi times with several
historical tokens and aggregate these, often by averaging, to decide on eviction Ren & Zhu (2024);
Oren et al. (2024). While research has advanced importance observation— SnapKV (Li et al., 2024)
with pooling, and CriticalKV (Feng et al., 2025) with projected value norms—the foundational
stability assumption has rarely been rigorously examined. This paper revisits and reveals the fragility
of this assumption, further showing prevalent mean aggregation’s vulnerability. Consequently, we
are the first to underscore the necessity of risk-control defensive aggregation strategies to against
fragile assumption. This pioneers a new research direction, entirely orthogonal to prior work focused
on optimizing importance indicators. For demonstration, we build our DefensiveKV method upon
CriticalKV, the current SOTA importance indicator.

Additionally, our contributions is also orthogonal to various KV cache budget allocation strategies,
including intra-layer (e.g., AdaKV (Feng et al., 2024)), inter-layer (e.g., PyramidKV (Zhang et al.,
2024a), LightTransfer (Zhang et al., 2025), CAKE (Qin et al., 2025)), and also offline training-based
allocation (e.g., HeadKV (Fu et al., 2024), DuoAttention (Xiao et al., 2025)). These strategies focus
on optimizing budget allocation for cache eviction methods, and are thus inherently orthogonal to
our investigation. Direct comparison is not essential for validating our contributions. However, to
demonstrate our principles’ adaptability, we introduce Layer-DefensiveKV, a variant using layer-wise
budget allocation for enhancement. Broader related methods like quantization, channel pruning, and
sparse attention are discussed in Appendix C. Furthermore, we provide a case study in Appendix E on
integrating our DefensiveKV with quantization, showing minimal loss even at 10% cache footprint.

3 METHODS

3.1 PRELIMINARY

LLM generation consists of two stages, prefilling and decoding. During prefilling, the KV states for
all input tokens are computed and cached as: K = HWK , V = HWV , where H ∈ Rn×d denotes
the hidden states for n tokens, and WK ,WV ∈ Rd×dh are learned matrices. In decoding, the LLM
takes the most recent token, computes its query vector qj = Hj=−1,:WQ, and retrieves information
from the cached KV entries using attention to produce the output oj and predict the next token:

oj = AjVWO where Aj = softmax
(
qjK

⊤/
√
dh

)
To reduce the memory overhead of maintaining the full KV cache, cache eviction methods have been
developed. These methods largely operate under a stability assumption: a fixed subset of KV cache
entries, denoted as (K̂, V̂), retains consistent importance throughout generation. Based on this
assumption, the objective of cache eviction is to identify this crucial subset (K̂, V̂) using historical
queries (i.e., tokens from earlier generation process), and use it to replace the full KV cache (K,V)
in subsequent steps. This process typically follows a two-step scoring-aggregation framework, where
the importance of each KV entry is first estimated (or scored) and then aggregated:

1. Scoring. Given m historical tokens, represented as queries Q = [q1, . . . , qm], each of the n
KV cache entries K,V ∈ Rn×dh is scored. This results in an importance matrix I ∈ Rm×n,
where each element Ij,i measures the relevance of the i-th KV cache entry (ki, vi) for the
j-th historical query qj . In practice, the attention weight Aj,i serves as a direct measure of
importance Ij,i, given the attention mechanism’s inherent weighted-sum formulation.

2. Aggregation. Subsequent aggregation step converts the observed importance matrix I ∈
Rm×n into a vector S ∈ Rn, where each Si represents the importance of the i-th KV cache
entry. Existing works adopt mean aggregation, Si =

1
m

∑m
j=1 Ij,i, to highlight entries with

consistently high importance, in line with the stability assumption.

While subsequent studies have refined the scoring step—SnapKV employs a pooling mechanism,
and CriticalKV utilizes the norm of projected value states viWO for more principled scoring—the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

1 100 200 300 400 500
Generation Step

0

16

31

La
ye

r

Single historical token 16st: mean value=0.92, worst-case value=0.34, outlier count(value<0.5)=89

(a) 16st historical token: Vulnerable; importance drops to 0.34 (worst case).

1 100 200 300 400 500
Generation Step

0

16

31

la
ye

r

Mean aggregation: mean value=0.92, worst-case value=0.33, outlier count (value<0.5)=65

(b) Mean aggregation: Vulnerable; importance drops to 0.33 (worst case).

1 100 200 300 400 500
Generation Step

0

16

31

la
ye

r

Defensive aggregation: mean value=0.93, worst-case value=0.61, outlier count (value<0.5)=0

(c) Defensive aggregation: Robust; maintains 0.61 importance (worst case).

1 100 200 300 400 500
Generation Step

0

16

31

la
ye

r

Mean Aggregation: Mean value=0.92, Min value=0.33, Outlier count(value<0.5)=65

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ca
ch

e
Im

po
rta

nc
e

Figure 3: Mean vs. Defensive Aggregation: Against Fragility in Importance Stability

aggregation step has received little attention. This is largely because mean aggregation appears to
align closely with underlying importance stability assumption. However, in this work, we show the
fragility of that assumption and reveal the vulnerability of mean aggregation under this premise. This
underscores the necessity of revisiting and improving the aggregation step.

3.2 FRAGILITY OF STABILITY ASSUMPTION AND VULNERABILITY OF MEAN AGGREGATION

We examine this using Llama3.1-8B on the Government Report summarization task. Adopting the
SOTA importance indicator, Ij,i = Aj,i × norm(viWO), we observe each cache entry importance
with 32 recent historical tokens qj . We then simulate a 50% cache eviction using two different criteria.
The first criterion uses importance scores from a single historical token observation, while the second
uses scores averaged across all 32 historical tokens (mean aggregation). For each result, we track the
proportion of total importance it retains during subsequent generation, relative to the full cache.

Fragility of the Stability Assumption. Figure 3a presents the results for the 16th historical token(see
Appendix J for results from other tokens). The results reveal a general, yet fragile, stability. On
average, the 50% retained cache subset accounts for 0.92 of the full cache’s total importance during
generation. However, this high average belies the underlying fragility: the retained importance can
drop sharply, as seen in the interval between steps 150 and 320. In these moments of instability, the
worst-case retained importance drops to as low as 0.34. Additionally, outliers—where the retained
50% of the cache captures less than half of the total importance (value < 0.5)—are frequent, occurring
in 89 instances in this trial alone.

Vulnerability of Mean Aggregation. Current eviction methods commonly employ mean aggregation
over multiple importance observations. The rationale is to obtain an expected importance to guide
eviction. However, by failing to account for worst cases, this strategy becomes vulnerable precisely
under the fragile assumption, leading to outlier performance similar to that of using a single, unreliable
token. As shown in Figure 3b, significant drops persist at the same problematic steps observed in
Figure 3a, reaching a worst-case importance value of 0.33 and resulting in 65 outlier instances. This
outcome is predictable. The observation score based on single historical token is inherently blind to
the fragility of stability assumption; thus it cannot hedge against the worst-case risk. While simple
averaging acts as a form of "reconciliation" among these individual observations to produce a moderate
result, it does not incorporate any mechanism to control for this underlying risk. Consequently, it
cannot aggregate a prediction to consistently outperform every single-token observation. When most
single token-based observations fail, the mean-aggregated result is inevitably dragged down with
them, thus offering no meaningful improvement and producing similarly damaging outliers.

This underscores a critical point: rather than focusing solely on designing more accurate importance
indicators, it is equally—if not more—important to develop new aggregation methods explicitly
designed for worst-case risk control, which can provide reliable estimates even when most single-
token observations fail.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Defensive aggregation consistently improves the worst-case values across all task types.
Task type Single-Doc. QA Multi-Doc. QA Summary Few-shot Synthetic Code
Dataset NrtvQA HotpotQA GovReport TREC PCount Lcc

Mean aggregation 0.44 0.39 0.28 0.47 0.47 0.30
Defensive aggregation 0.62 0.60 0.52 0.61 0.61 0.50

Algorithm 1 Defensive Aggregation

1: Input: Importance scores I ∈ Rm×n, where Ij,i is the importance of entry i based on historical token j

2: Output: Aggregated risk scores R̃ ∈ Rn

3: R̃i = max1≤j≤m Ij,i , ∀i = 1, . . . , n ▷ Worst-case Risk Estimation

4: Ri = max
(
R̃i, R̄

)
where R̄ = 1

n

∑n
i=1 R̃i, ∀i = 1, . . . , n ▷ Adaptive Prior-Risk Correction

5: return R

3.3 DEFENSIVE AGGREGATION VIA WORST-CASE RISK CONTROL

Consider a cache entry may exhibits high importance in only a few single-token observations while
remaining low in most others duo to fragile stability. Mean aggregation would not recognize this as
important and would erroneously evict it. When this entry becomes crucial again in future generation,
the prior eviction results in substantial importance loss. Thus, relying on mean aggregation fails
to guard against these extreme cases. To address this, we introduce a novel defensive aggregation,
a novel strategy that eschews simple averaging in favor of a worst-case risk control perspective as
shown in Algorithm 1.

Worst-case Risk Estimation. From a risk-control perspective, the penalty for evicting a KV cache
entry is equivalent to the importance score it would have possessed at future moment. The "worst-case
risk", R∗

i , is therefore the peak importance score an entry could attain over the entire future generation
process. If we denote the future generated sequence as L, then R∗

i = maxt∈L It,i. As this future
maximum is unknowable at eviction time, we instead approximate it as the maximum importance
score observed across all j historical tokens, e.g. R̃i = max1≤j≤m Ij,i , ∀i = 1, . . . , n. 1. This O(n)
procedure matches mean aggregation’s runtime yet yields significantly better empirical performance,
as it better captures the potential worst-case risk if the entry were removed.

Adaptive Prior-Risk Correction. Although the above estimator takes the maximum over observed
history, it could still underestimate worst-case risk because eviction methods typically restrict the
observation window (e.g., 32 tokens) to limit overhead. 2 Such restricted observations could miss rare
but critical risks. Inspired by Laplace smoothing in Bayesian estimation, we introduce an adaptive
prior–risk correction. For each head, define a head-level prior risk R̄ = 1

n

∑n
i=1 R̃i, i.e., the average

observed worst-case risk across entries for that head. If the observed risk Ri falls below prior risk
R̄, we treat the shortfall as under-observation and substitute the prior: Ri = max

(
R̃i, R̄

)
.

Thereby, heads with higher overall risk receive larger priors, reducing reliance on limited historical
observations. The effectiveness of correction and its adaptive design is validated in Section 4.4.

By defending against risks of the fragile stability assumption, our defensive aggregation substantially
improves worst-case performance compared to mean aggregation. As shown in Figure 3c, it boosts the
worst-case retained importance from 0.33 to 0.61 and completely eliminates the 65 outlier instances
produced by mean aggregation. Table 1 further confirms this advantage is consistent across six
datasets with different task types. Therefore, this simple two-operation method provides a crucial
defense against the fragility of the importance stability assumption.

3.4 IMPLEMENTING DEFENSIVEKV EVICTION METHOD WITH DEFENSIVE AGGREGATION

Building upon our proposed defensive aggregation strategy, we introduce two novel cache eviction
methods: DefensiveKV and Layer-DefensiveKV.

1For Grouped-Query Attention, a cache entry’s worst-case risk estimate is the maximum importance score
observed over historical tokens across all heads sharing its KV group.

2Explicitly computing attention weights for all tokens is infeasible with FlashAttention optimization, and
even storing all attention weights is prohibitively expensive (e.g., ≈64 GB for a 32k context in Llama-3.1-8B).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 2 (Layer)-DefensiveKV

1: Input: Cache Entries K,V , Parameter WO , queries of m recent historical tokens Q = [q1, ..., qm]

2: Output: Retained KV Cache K̂, V̂

3: Append the KV cache of recent historical tokens K[−m :, :], V [−m :, :] to K̂, V̂ .
4: A← softmax(QKT /

√
d)

5: A ∈ Rm×n ← Pooling(A, dim = −1) ▷ Refined with pooling by SnapKV (Li et al., 2024)
6: R ∈ Rn ← Defensive Aggregation Algorithm 1 (A) ▷ Our modification
7: Ri ← Ri × norm(viWO) ∀vi ∈ V, i = 1, . . . , n ▷ Refined with norm by CriticalKV (Feng et al., 2025)
8: if without layer-wise budget allocation then ▷ Leading to DefensiveKV
9: Select the cache entries with top worst-case risk R independently in each layer and append to K̂, V̂

10: else ▷ Leading to Layer-DefensiveKV
11: Ri ← Ri/

∑
i norm(viWO) ∀vi ∈ V, i = 1, . . . , n

12: Select the cache entries with top worst-case risk R jointly across all layers and append to K̂, V̂
13: end if
14: return K̂, V̂

DefensiveKV serves as the foundational variant. It directly integrates defensive aggregation into
the traditional cache eviction workflow by replacing the conventional mean aggregation. Despite its
simplicity, this modification alone leads to substantial performance improvements.

Layer-DefensiveKV further refines this by incorporating a layer-wise budget allocation, inspired
by existing strategies (Feng et al., 2024; Zhang et al., 2024a). It performs a joint selection of risky
entries across layers, enabling more budget to be allocated to layers with more risky cache entries.

As shown in Algorithm 2, the overall process of DefensiveKV adheres to the established practices:
preserving the KV cache entries of several recent historical tokens (Line 3) and then utilizing the query
states of these tokens for importance measurement. The importance calculation begins with basic
attention weights (Line 4) and incorporates further refinements—specifically pooling mechanisms
from SnapKV (Line 5), and projected value norm scaling from CriticalKV (Line 7) 3.

The key innovation in DefensiveKV is the strategic replacement of conventional mean aggregation
with our defensive aggregation (Line 6). This simple modification, requiring minimal changes, reduces
over 2× in generation quality loss. The extension to Layer-DefensiveKV is also straightforward. It
incorporates two additional refinements: first, projected value norms are normalized layer-wise to
address their variance across layers (Line 11); second, risky entries are selected jointly across all
layers (Line 12). This leads to an even more impressive gain, with over 4× reduction in quality loss.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Models. We evaluate our approach on three open-source LLMs: Llama-3.1-8B-Instruct (lla, 2024;
Touvron et al., 2023) and Qwen2.5-32B-Instruct (Team, 2024), supporting context lengths of up to
128K, and Mistral-7B-Instruct-v0.3 (Jiang et al., 2023), supporting up to 32K.

Baselines. We compare our method against six baselines. StreamingLLM (Xiao et al., 2023) is an
early sliding window approach. SnapKV (Li et al., 2024), AdaKV (Feng et al., 2024), and CAKE (Qin
et al., 2025) use attention weight-coupled pooling for importance indicators; CAKE also employs
a cascaded architecture for layer-wise budget allocation. The SOTA CriticalKV (Feng et al., 2025)
introduces a more accurate importance indicator. DuoAttention (Xiao et al., 2024b), a training-based
method, is included with official configurations for Llama-3.1-8B and Mistral-7B-v0.3, but marked
N/A for Qwen2.5-32B due to unavailable configurations and high training costs. All methods use a
historical window size of 32 and are accelerated with FlashAttention-2(Dao et al., 2022; Dao, 2023).

Settings. Following the settings in (NVIDIA, 2024; Feng et al., 2025), the context is compressed
independently before question is introduced. This better simulates practical scenarios (e.g., multi-turn
QA or prefixed contexts) where multiple questions often pertain to the same context, or the question

3Although our method is based on current SOTA practice, defensive aggregation is widely applicable to other
eviction methods. Appendix G includes a case study applying it to another baseline method for demonstration.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

20% 40% 60% 80% 100%
Cache Budget

80%

85%

90%

95%

100%
Sc

or
e

R
at

io
Full Cache

(a) Meta-Llama-3.1-8B-Instruct

20% 40% 60% 80% 100%
Cache Budget

80%

85%

90%

95%

100%

Sc
or

e
R

at
io

Full Cache

(b) Mistral-7B-Instruct-v0.3

20% 40% 60% 80% 100%
Cache Budget

80%

85%

90%

95%

100%

Sc
or

e
R

at
io

Full Cache

(c) Qwen2.5-32B-Instruct
Figure 4: Overview of averaged generation quality across 16 datasets on LongBench.

50%

75%

100%

SnapKV(-18.4%)
Duo(-19.8%)
AdaKV(-16.2%)
DefensiveKV(-5.1%)

StreamingLLM(-30.8%)
CakeKV(-14.8%)
CriticalKV(-10.6%)
Layer-DefensiveKV(-2.3%)

Multi Doc. QA

Single Doc. Q
A

Su
m

m
ar

y

Few Shot

Synthetic

Co
de

(a) 20% Cache Size

50%

75%

100%

SnapKV(-8.4%)
Duo(-1.8%)
AdaKV(-7.1%)
DefensiveKV(+0.2%)

StreamingLLM(-21.6%)
CakeKV(-6.1%)
CriticalKV(-3.1%)
Layer-DefensiveKV(+0.9%)

Multi Doc. QA

Single Doc. Q
A

Su
m

m
ar

y
Few Shot

Synthetic

Co
de

(b) 40% Cache Size

50%

75%

100%

SnapKV(-2.9%)
Duo(-0.4%)
AdaKV(-1.9%)
DefensiveKV(+0.6%)

StreamingLLM(-14.2%)
CakeKV(-2.7%)
CriticalKV(-0.5%)
Layer-DefensiveKV(+0.9%)

Multi Doc. QA

Single Doc. Q
A

Su
m

m
ar

y

Few Shot

Synthetic

Co
de

(c) 60% Cache Size
Figure 5: Analysis of the six task domains on LongBench for Meta-Llama-3.1-8B-Instruct.

is unavailable during context compression. Thus this setup is more challenging and better reflects the
real-world performance of cache eviction methods. (Feng et al., 2025)

4.2 LONGBENCH EVALUATION

LongBench (Bai et al., 2024) serves as a comprehensive benchmark, featuring 16 datasets structured
into six task domains: single-document QA, multi-document QA, summary, few-shot learning, syn-
thetic tasks, and code completion. Detailed information for each dataset can be found in Appendix K

Overall Analysis. Figure 4 illustrates our methods’ significant advantages in average quality loss
across 16 datasets. As cache size drops from 100% to 40%, all baselines degrade noticeably, while
our DefensiveKV and Layer-DefensiveKV remain nearly lossless. For instance, with a 40% cache on
Llama-3.1-8B (Figure 4a), CriticalKV (best baseline) loses 3.1% quality, whereas our DefensiveKV
shows no degradation, surpassing even the training-based DuoAttention (2.2% drop, despite offline
training costs). At a smaller 20% cache, CriticalKV’s loss is 10.6%, while DefensiveKV limits it to
5.1%(over 2x reduction). Our Layer-DefensiveKV further cuts this loss to 2.3%(over 4x reduction).
Similar advantages hold for other models. For instance, on Mistral-7B with 20% cache, DefensiveKV
and Layer-DefensiveKV achieve 4.0% and 1.3% loss, respectively, far below CriticalKV’s 9.7%.

Task Analysis. Figure 5 displays Llama-3.1-8B average scores by task domain (Appendix A
for more models). DefensiveKV and Layer-DefensiveKV consistently excel. While simpler task
domains (Code, Synthetic) show high performance for most methods, challenging ones (Doc QA,
Summarization) reveal significant baseline degradation under reduced cache. Our methods maintain
their advantages. For instance, in Single-doc QA (20% cache), CriticalKV (strongest baseline) drops
to 74.8% of full-cache quality; DefensiveKV achieves 89.6%, and Layer-DefensiveKV reaches 96.7%.
Table 2 further reports detailed 20% cache scores (other results in Appendix H). On Llama-3.1-8B
(20% cache), DefensiveKV beats CriticalKV on 13/16 datasets; Layer-DefensiveKV wins on 15/16.
Such a significant performance advantage, rarely observed between other baselines, highlights the
effectiveness of our “worst-case risk” perspective to against underlying fragility across diverse tasks.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Detailed scores of 16 datasets on LongBench.

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.
NrtvQA

Qasper
MF-en

Hotpot
2WikiQA

Musique

GovRep
QMSum

MultiN
ews

TREC
TriviaQA

SAMSum

PCount
PR-en

Lcc RB-P

Llama-3.1-8B-Instruct, 20% Cache Size

Full Cache 29.55 44.68 55.82 57.59 48.89 32.61 34.40 25.51 26.83 73.00 92.36 43.27 7.38 99.50 63.44 52.36 49.20

DuoAttention 23.28 21.22 34.03 42.89 28.14 20.57 25.32 19.48 23.12 56.00 86.54 40.67 7.50 78.50 65.94 59.19 39.52
StreamingLLM 22.05 19.83 23.87 39.44 20.97 15.46 27.76 20.63 22.27 53.50 89.97 40.04 4.00 29.50 65.61 60.66 34.72
SnapKV 25.64 28.23 29.71 46.17 29.64 22.07 27.09 21.51 22.46 48.50 92.21 44.08 5.08 79.50 67.17 54.36 40.21
CAKE 26.29 30.54 33.28 46.03 32.08 24.73 27.77 22.16 22.91 51.50 91.86 43.56 6.50 92.50 65.46 52.50 41.85
AdaKV 27.07 28.69 32.85 49.64 30.89 21.57 26.70 21.85 22.67 55.50 91.30 43.89 7.30 80.50 66.44 55.43 41.39
CriticalKV 29.81 32.58 34.96 52.34 36.24 26.37 28.35 23.52 23.24 56.50 90.80 43.37 8.89 93.00 67.05 54.99 43.88
DefensiveKV 29.97 40.46 46.23 52.20 38.40 28.06 29.96 23.89 24.11 68.00 91.58 43.17 8.28 100.00 67.17 55.40 46.68
Layer-DefensiveKV 30.10 42.91 52.94 55.03 44.07 27.00 30.99 24.95 24.42 69.00 91.30 43.54 8.38 100.00 67.60 56.00 48.01

Mistral-7B-Instruct-v0.3, 20% Cache Size

Full Cache 27.02 38.19 50.22 50.75 37.41 27.92 34.45 25.76 26.37 76.00 89.01 46.89 6.50 97.00 66.04 60.47 47.50

DuoAttention 11.91 13.58 29.88 31.73 22.43 9.18 23.96 17.25 22.67 49.50 86.08 43.08 2.67 18.00 59.89 56.23 31.13
StreamingLLM 18.30 16.38 26.26 38.78 25.99 15.06 28.00 20.73 21.32 30.50 80.88 40.57 3.00 28.00 32.62 46.91 29.58
SnapKV 21.91 23.69 30.59 43.71 28.28 19.81 27.91 21.15 22.15 55.00 89.41 46.67 5.00 82.50 64.30 59.97 40.13
CAKE 23.08 25.42 35.31 44.10 28.96 18.59 28.27 21.18 22.61 60.00 90.36 46.40 4.00 77.00 64.50 59.21 40.56
AdaKV 24.00 26.29 31.15 45.26 27.99 20.65 27.37 21.67 22.38 59.00 89.87 46.27 4.50 88.00 65.05 59.50 41.18
CriticalKV 24.14 29.56 38.91 45.42 32.08 21.26 28.59 22.71 23.11 65.50 90.13 46.65 4.11 90.00 65.42 58.43 42.88
DefensiveKV 21.05 34.67 50.05 48.76 32.27 26.09 31.95 23.39 24.05 72.50 90.11 46.80 3.53 96.50 65.78 61.93 45.59
Layer-DefensiveKV 27.31 39.41 49.70 49.89 37.82 24.16 33.13 25.08 25.49 74.50 89.61 46.25 3.06 97.00 66.99 61.21 46.91

Qwen2.5-32B-Instruct, 20% Cache Size

Full Cache 30.88 46.13 52.87 63.59 59.75 38.78 32.59 24.35 24.95 72.00 88.26 47.05 12.50 100.00 49.64 34.24 48.60

DuoAttention N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
StreamingLLM 20.74 17.68 25.04 39.53 33.19 17.38 27.83 19.04 21.67 61.00 82.01 42.80 10.67 29.00 56.20 30.14 33.37
SnapKV 24.52 24.58 28.80 52.54 42.07 29.74 28.25 19.45 21.35 58.00 87.74 48.21 9.00 76.35 53.19 35.58 39.96
CAKE 22.25 26.49 31.33 49.20 42.48 28.11 27.86 18.92 22.02 58.00 87.77 47.22 11.00 81.25 51.82 35.25 40.06
AdaKV 25.49 22.51 29.13 54.11 41.24 29.98 28.01 19.33 21.81 61.50 88.09 48.02 9.00 74.00 55.84 35.17 40.20
CriticalKV 29.65 25.93 32.51 58.92 48.60 34.54 29.77 20.86 22.23 65.00 88.44 48.65 10.50 94.75 53.95 35.14 43.72
DefensiveKV 31.11 32.11 45.66 62.55 57.68 40.55 30.30 22.06 22.98 71.00 88.96 48.05 9.50 99.75 54.29 36.98 47.10
Layer-DefensiveKV 31.38 35.65 49.25 64.24 58.86 40.25 30.86 23.07 23.10 75.00 88.92 47.47 10.00 99.88 52.21 35.62 47.86

4.3 NEEDLE-IN-A-HAYSTACK EVALUATION

In the Needle-in-a-Haystack test, the key sentence is placed in a long context to evaluate retrieval
ability. Following Ruler (Hsieh et al., 2024), we test two representative cases with a 32K context
length: (1) Single-retrieval: one needle is randomly inserted for retrieval. (2) Multi-retrieval: four
needles are randomly inserted and all need to be retrieved. Further details, along with evaluations on
more "needle-in-a-haystack-style" tasks from Ruler, are provided in Appendix F.

As shown in Figure 6, our DefensiveKV and Layer-DefensiveKV achieve significantly higher scores
across all settings. For instance, on long-context models like Llama-3.1-8B and Qwen2.5-32B (both
supporting 128K context length), our methods maintain near-lossless, with scores 194 and 193 for
Llama-3.1-8B at mere 10% cache size. In contrast, even the strongest baseline, CriticalKV, drops to
140 under the same conditions, while others fall below 100—demonstrating a substantial gap. On
weaker long-context ability model, i.e., Mistral-7B (maximum context length 32K), all baselines
suffer severe performance degradation. At a 10% cache size, most baselines score below 6, and
CriticalKV only reaches 28. However, our DefensiveKV and Layer-DefensiveKV achieve scores of
139 and 161, over 5x and 5.8x improvements, respectively.

4.4 ABLATION STUDIES

To analyze the roles of the two key operations in our defensive aggregation—worst-case risk esti-
mation and adaptive prior-risk correction—we conduct ablation studies based on our DefensiveKV
method. First, we only remove adaptive prior-risk correction (denoted as Abl2). Then, we further
ablate the worst-case risk estimation by replacing with common mean aggregation (denoted as Abl1).
As shown in Figure 7, using only worst-case risk estimation (Abl2) already significantly outperforms
that are with mean aggregation. For example, on Llama-3.1-8B, Abl2 improves the score from
103 (Abl1) to 179. Adding our adaptive prior-risk correction provides further gains, with our full
DefensiveKV method reaching a score of 194. These results confirm that both operations contribute
meaningfully to the overall performance.

To validate the adaptive design of our prior-risk correction, we ablated it against fixed correction
thresholds (1E-3, 1E-4, 1E-5). The results in Figure 8 show that fixed thresholds are ineffective. Most
fail to outperform the no-correction baseline score of 179 (Abl2), with the 1E-4 case providing only
a marginal gain to 182. Our adaptive correction, however, reaches a score of 194, confirming that
tailoring the correction to each head’s risk profile is crucial. Additionally, the hyperparameter-free

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0

40

80

120

160

200

Sc
or

e

5
18

69
99 88

140

194 193

55
40

140 150 159

193 196 198 192

79

187 186 198 198 198 199 199

113

196 195 200 200 200 200Full Cache

Single-Needle
Multi-Needle

M
eta-Llam

a-3.1-8B

0

40

80

120

160

200

Sc
or

e

6 17 5 5 6
28

139
161

6
39

10 10 16

138

190 193

151

77

20 17
48

196 196 197 195

112

41 44

102

197 197 196Full Cache

Single-Needle
Multi-Needle

M
istral-7B-v0.3

Duo 10%

Stre
aming 10%

SnapKV 10%

CAKE 10%

AdaKV 10%

Criti
calKV 10%

DefensiveKV 10%

Layer-D
efensiveKV 10%

Duo 20%

Stre
aming 20%

SnapKV 20%

CAKE 20%

AdaKV 20%

Criti
calKV 20%

DefensiveKV 20%

Layer-D
efensiveKV 20%

Duo 40%

Stre
aming 40%

SnapKV 40%

CAKE 40%

AdaKV 40%

Criti
calKV 40%

DefensiveKV 40%

Layer-D
efensiveKV 40%

Duo 60%

Stre
aming 60%

SnapKV 60%

CAKE 60%

AdaKV 60%

Criti
calKV 60%

DefensiveKV 60%

Layer-D
efensiveKV 60%

0
40
80

120
160
200

Sc
or

e

N/A
18 12 5 22

157
198 194

N/A

40
63

12

81

196 199 199

N/A

79

128

63

158
199 200 199

N/A

113

171

126

194 199 199 200Full Cache

Single-Needle
Multi-Needle

Q
w

en2.5-32B

Figure 6: Evaluations on the needle-in-a-haystack tasks.

Abl1-lla
ma

Abl2-lla
ma

Ours-l
lama

Abl1-mistr
al

Abl2-mistr
al

Ours-m
istr

al

Abl1-qwen

Abl2-qwen

Ours-q
wen

0

40

80

120

160

200

Sc
or

e

103

179194

12 16

139

42

100

198

Abl1 (Mean Agg.) Abl2 (Worst-case Risk Est.) Ours (Defensive Agg.)
Single-Needle Multi-Needle

Figure 7: Ablation 10% cache.

Abl2
Fixed 1E-3

Fixed 1E-4
Fixed 1E-5 Ours

0

40

80

120

160

200

Sc
or

e

179

106

182 179 194

Meta-Llama-3.1-8B-Instruct, Needle-in-a-haystack 32K
Single-Needle Multi-Needle

Figure 8: Adaptive Correction

DefensiveKV (Batch 1)
CriticalKV (Batch 1)
Full Cache (Batch 1)

DefensiveKV (Batch 2)
CriticalKV (Batch 2)
Full Cache (Batch 2)

16 32 64128 16 32 64128
Length (K)

0

20

40

60

TT
FT

 (
s)

O
O

MPrefilling

16 32 64128 16 32 64128
Length (K)

0.00

0.05

0.10

0.15

La
te

nc
y

(s
)

O
O

MDecoding

Figure 9: Efficiency(FlashAttn2)

nature of our adaptive design ensures consistently strong performance across two additional models
(shown as Abl2 vs. ours in Figure 7).

4.5 EFFICIENCY TEST

We compare DefensiveKV and CriticalKV, which differ only in their aggregation mechanisms, to
demonstrate that defensive aggregation introduces negligible computational overhead. Our experi-
ments, conducted on an 80GB A100 GPU with Llama-3.1-8B (20% cache), show in Figure 9 that
DefensiveKV and CriticalKV have nearly identical time-to-first-token (TTFT) and decoding latency.
All KV cache eviction occurs during the prefilling stage and is included in TTFT, confirming that
DefensiveKV adds negligible overhead. Additionally, cache eviction significantly reduces decoding
latency versus Full Cache: e.g., for batch size 1 and a 128K context length, latency drops from 0.081s
(Full Cache) to 0.028s with eviction-based methods (a 2.9x speedup). Furthermore, cache eviction
allows larger batch sizes; for example, eviction methods can handle batch size of 2, while Full Cache
results in out-of-memory errors, leading to a 4.2× decoding throughput boost. See Appendix D for
memory usage details.

5 CONCLUSION

This work challenges the fragile stability assumption underlying existing KV cache eviction methods.
We show that widely used mean aggregation strategies are highly vulnerable under the fragile stability,
resulting in poor worst-case performance. To address this, we propose “defensive aggregation”, a
novel strategy explicitly designed from a “worst-case risk” perspective with negligible computational
overhead. Based on this, we investigate DefensiveKV and its layer-aware variant, Layer-DefensiveKV,
both of which achieve significant improvements over state-of-the-art methods across comprehensive
evaluations. Our work pioneers a new research direction by emphasizing the “worst-case risk”-aware
aggregation to mitigate the often-overlooked fragility in cache eviction—a critical yet underexplored
component of efficient LLM inference. We hope these contributions pave the way for more effective
cache eviction methods, which are essential for advancing LLM inference.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Llama-3-8b-instruct-gradient-1048k, 2024. URL https://huggingface.co/gradientai/
Llama-3-8B-Instruct-Gradient-1048k.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508, 2023.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual,
multitask benchmark for long context understanding, 2024. URL https://arxiv.org/abs/
2308.14508.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan, Noah A Smith, and Matt Gardner. A dataset
of information-seeking questions and answers anchored in research papers. arXiv preprint
arXiv:2105.03011, 2021.

Alexander R Fabbri, Irene Li, Tianwei She, Suyi Li, and Dragomir R Radev. Multi-news: A large-
scale multi-document summarization dataset and abstractive hierarchical model. arXiv preprint
arXiv:1906.01749, 2019.

Hugging Face. Unlocking longer generation with key-value cache quantization. Hugging Face Blog,
2024a. URL https://huggingface.co/blog/kv-cache-quantization.

Hugging Face. Quanto: a pytorch quantization backend for optimum. Hugging Face Blog, 2024b.
URL https://huggingface.co/blog/quanto-introduction.

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S. Kevin Zhou. Ada-kv: Optimizing kv cache
eviction by adaptive budget allocation for efficient llm inference, 2024. URL https://arxiv.
org/abs/2407.11550.

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S Kevin Zhou. Identify critical kv cache in llm
inference from an output perturbation perspective, 2025. URL https://arxiv.org/abs/
2502.03805.

Yu Fu, Zefan Cai, Abedelkadir Asi, Wayne Xiong, Yue Dong, and Wen Xiao. Not all heads matter:
A head-level kv cache compression method with integrated retrieval and reasoning. arXiv preprint
arXiv:2410.19258, 2024.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. Samsum corpus: A human-
annotated dialogue dataset for abstractive summarization. arXiv preprint arXiv:1911.12237,
2019.

Qiuhan Gu. Llm-based code generation method for golang compiler testing. In Proceedings of the
31st ACM Joint European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pp. 2201–2203, 2023.

Daya Guo, Canwen Xu, Nan Duan, Jian Yin, and Julian McAuley. Longcoder: A long-range pre-
trained language model for code completion, 2023. URL https://arxiv.org/abs/2306.
14893.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-
hop QA dataset for comprehensive evaluation of reasoning steps. In Donia Scott, Nuria Bel,
and Chengqing Zong (eds.), Proceedings of the 28th International Conference on Computa-
tional Linguistics, pp. 6609–6625, Barcelona, Spain (Online), December 2020. International
Committee on Computational Linguistics. doi: 10.18653/v1/2020.coling-main.580. URL
https://aclanthology.org/2020.coling-main.580.

10

https://huggingface.co/gradientai/Llama-3-8B-Instruct-Gradient-1048k
https://huggingface.co/gradientai/Llama-3-8B-Instruct-Gradient-1048k
https://arxiv.org/abs/2308.14508
https://arxiv.org/abs/2308.14508
https://huggingface.co/blog/kv-cache-quantization
https://huggingface.co/blog/quanto-introduction
https://arxiv.org/abs/2407.11550
https://arxiv.org/abs/2407.11550
https://arxiv.org/abs/2502.03805
https://arxiv.org/abs/2502.03805
https://arxiv.org/abs/2306.14893
https://arxiv.org/abs/2306.14893
https://aclanthology.org/2020.coling-main.580

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Sophia Shao, Kurt
Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with kv
cache quantization. Advances in Neural Information Processing Systems, 37:1270–1303, 2024.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024.

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng Ji, and Lu Wang. Efficient attentions for long
document summarization. arXiv preprint arXiv:2104.02112, 2021.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
Han, Amir H Abdi, Dongsheng Li, Chin-Yew Lin, et al. Minference 1.0: Accelerating pre-filling
for long-context llms via dynamic sparse attention. arXiv preprint arXiv:2407.02490, 2024.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension, 2017. URL https://arxiv.org/
abs/1705.03551.

Gregory Kamradt. Needle In A Haystack - pressure testing LLMs. Github, 2023. URL https:
//github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main.

Tomáš Kočiskỳ, Jonathan Schwarz, Phil Blunsom, Chris Dyer, Karl Moritz Hermann, Gábor Melis,
and Edward Grefenstette. The narrativeqa reading comprehension challenge. Transactions of the
Association for Computational Linguistics, 6:317–328, 2018.

Xin Li and Dan Roth. Learning question classifiers. In COLING 2002: The 19th International
Conference on Computational Linguistics, 2002.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before generation.
arXiv preprint arXiv:2404.14469, 2024.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Reza Haffari, and Bohan Zhuang. Minicache: Kv cache
compression in depth dimension for large language models. Advances in Neural Information
Processing Systems, 37:139997–140031, 2024a.

Di Liu, Meng Chen, Baotong Lu, Huiqiang Jiang, Zhenhua Han, Qianxi Zhang, Qi Chen, Chen-
gruidong Zhang, Bailu Ding, Kai Zhang, et al. Retrievalattention: Accelerating long-context llm
inference via vector retrieval. arXiv preprint arXiv:2409.10516, 2024b.

Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-level code
auto-completion systems, 2023. URL https://arxiv.org/abs/2306.03091.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time. Advances in Neural Information Processing
Systems, 36, 2024c.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024d.

Piotr Nawrot, Robert Li, Renjie Huang, Sebastian Ruder, Kelly Marchisio, and Edoardo M. Ponti. The
sparse frontier: Sparse attention trade-offs in transformer llms, 2025. URL https://arxiv.
org/abs/2504.17768.

NVIDIA. Kvpress, 2024. URL https://github.com/NVIDIA/kvpress.

11

https://arxiv.org/abs/1705.03551
https://arxiv.org/abs/1705.03551
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://arxiv.org/abs/2306.03091
https://arxiv.org/abs/2504.17768
https://arxiv.org/abs/2504.17768
https://github.com/NVIDIA/kvpress

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Matanel Oren, Michael Hassid, Nir Yarden, Yossi Adi, and Roy Schwartz. Transformers are multi-
state rnns. arXiv preprint arXiv:2401.06104, 2024.

Ziran Qin, Yuchen Cao, Mingbao Lin, Wen Hu, Shixuan Fan, Ke Cheng, Weiyao Lin, and Jianguo
Li. CAKE: Cascading and adaptive KV cache eviction with layer preferences. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=EQgEMAD4kv.

Siyu Ren and Kenny Q. Zhu. On the efficacy of eviction policy for key-value constrained generative
language model inference, 2024. URL https://arxiv.org/abs/2402.06262.

Hanshi Sun, Zhuoming Chen, Xinyu Yang, Yuandong Tian, and Beidi Chen. Triforce: Lossless
acceleration of long sequence generation with hierarchical speculative decoding. arXiv preprint
arXiv:2404.11912, 2024.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference. arXiv preprint arXiv:2406.10774,
2024.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
questions via single-hop question composition. Transactions of the Association for Computational
Linguistics, 10:539–554, 2022.

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan
Liu, and Maosong Sun. Infllm: Training-free long-context extrapolation for llms with an efficient
context memory. arXiv preprint arXiv:2402.04617, 2024a.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian Guo, Shang Yang, Haotian Tang, Yao Fu, and
Song Han. Duoattention: Efficient long-context llm inference with retrieval and streaming heads,
2024b. URL https://arxiv.org/abs/2410.10819.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, junxian guo, Shang Yang, Haotian Tang, Yao Fu,
and Song Han. Duoattention: Efficient long-context LLM inference with retrieval and streaming
heads. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=cFu7ze7xUm.

Yuhui Xu, Zhanming Jie, Hanze Dong, Lei Wang, Xudong Lu, Aojun Zhou, Amrita Saha, Caiming
Xiong, and Doyen Sahoo. Think: Thinner key cache by query-driven pruning. arXiv preprint
arXiv:2407.21018, 2024.

Penghui Yang, Cunxiao Du, Fengzhuo Zhang, Haonan Wang, Tianyu Pang, Chao Du, and Bo An.
Longspec: Long-context speculative decoding with efficient drafting and verification, 2025. URL
https://arxiv.org/abs/2502.17421.

Yifei Yang, Zouying Cao, Qiguang Chen, Libo Qin, Dongjie Yang, Hai Zhao, and Zhi Chen. Kvsharer:
Efficient inference via layer-wise dissimilar kv cache sharing. arXiv preprint arXiv:2410.18517,
2024.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Zihao Yi, Jiarui Ouyang, Yuwen Liu, Tianhao Liao, Zhe Xu, and Ying Shen. A survey on recent
advances in llm-based multi-turn dialogue systems. arXiv preprint arXiv:2402.18013, 2024.

12

https://openreview.net/forum?id=EQgEMAD4kv
https://openreview.net/forum?id=EQgEMAD4kv
https://arxiv.org/abs/2402.06262
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2410.10819
https://openreview.net/forum?id=cFu7ze7xUm
https://arxiv.org/abs/2502.17421

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xuan Zhang, Fengzhuo Zhang, Cunxiao Du, Chao Du, Tianyu Pang, Wei Gao, and Min Lin.
Lighttransfer: Your long-context llm is secretly a hybrid model with effortless adaptation. In
Workshop on Reasoning and Planning for Large Language Models, 2025.

Yichi Zhang, Bofei Gao, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao Chang, Junjie
Hu, Wen Xiao, et al. Pyramidkv: Dynamic kv cache compression based on pyramidal information
funneling. arXiv preprint arXiv:2406.02069, 2024a.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing
Systems, 36, 2024b.

Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia Mutuma, Rahul Jha, Ahmed Hassan Awadallah,
Asli Celikyilmaz, Yang Liu, Xipeng Qiu, et al. Qmsum: A new benchmark for query-based multi-
domain meeting summarization. arXiv preprint arXiv:2104.05938, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

50%

75%

100%

SnapKV(-8.1%)
Duo(-2.1%)
AdaKV(-6.2%)
DefensiveKV(+0.1%)

StreamingLLM(-32.8%)
CakeKV(-6.2%)
CriticalKV(-2.8%)
Layer-DefensiveKV(+0.7%)

Multi Doc. QA

Single Doc. QA

Su
m

m
ar

y

Few ShotSynthetic

C
ode

Nee
dle

 in
 a

Hay
sta

ck

(a) Llama-3.1-8B, 40% Cache

50%

75%

100%

SnapKV(-19.5%)
Duo(-10.8%)
AdaKV(-16.8%)
DefensiveKV(-0.5%)

StreamingLLM(-39.5%)
CakeKV(-19.2%)
CriticalKV(-3.0%)
Layer-DefensiveKV(-0.3%)

Multi Doc. QA

Single Doc. QA

Su
m

m
ar

y

Few ShotSynthetic

C
ode

Nee
dle

 in
 a

Hay
sta

ck

(b) Mistral-7B, 40% Cache

50%

75%

100%

SnapKV(-10.9%)
Duo(N/A)
AdaKV(-9.0%)
DefensiveKV(+0.7%)

StreamingLLM(-26.5%)
CakeKV(-15.0%)
CriticalKV(-3.0%)
Layer-DefensiveKV(+0.3%)

Multi Doc. QA

Single Doc. QA

Su
m

m
ar

y

Few ShotSynthetic

C
ode

Nee
dle

 in
 a

Hay
sta

ck

(c) Qwen-32B, 40% Cache

50%

75%

100%

SnapKV(-2.8%)
Duo(-0.4%)
AdaKV(-1.6%)
DefensiveKV(+0.5%)

StreamingLLM(-26.5%)
CakeKV(-2.7%)
CriticalKV(-0.4%)
Layer-DefensiveKV(+0.8%)

Multi Doc. QA

Single Doc. QA

Su
m

m
ar

y

Few ShotSynthetic

C
ode

Nee
dle

 in
 a

Hay
sta

ck

(d) Llama-3.1-8B, 60% Cache

50%

75%

100%

SnapKV(-14.7%)
Duo(-0.4%)
AdaKV(-10.0%)
DefensiveKV(+0.6%)

StreamingLLM(-34.0%)
CakeKV(-12.9%)
CriticalKV(-0.8%)
Layer-DefensiveKV(-0.1%)

Multi Doc. QA

Single Doc. QA

Su
m

m
ar

y

Few ShotSynthetic

C
ode

Nee
dle

 in
 a

Hay
sta

ck

(e) Mistral-7B, 60% Cache

50%

75%

100%

SnapKV(-4.1%)
Duo(N/A)
AdaKV(-3.1%)
DefensiveKV(+0.9%)

StreamingLLM(-18.4%)
CakeKV(-7.1%)
CriticalKV(-0.5%)
Layer-DefensiveKV(+1.0%)

Multi Doc. QA

Single Doc. QA

Su
m

m
ar

y

Few ShotSynthetic

C
ode

Nee
dle

 in
 a

Hay
sta

ck

(f) Qwen-32B, 60% Cache
Figure 10: Summarization of quality losses.

A QUALITY LOSSES OF METHODS WITH 40% AND 60% CACHE SIZE

Figure 10 further summarizes the quality losses of different methods at 40% and 60% cache sizes.
It can be observed that both DefensiveKV and Layer-DefensiveKV maintain nearly lossless per-
formance, in some cases even surpassing the original uncompressed results. In contrast, all other
methods exhibit notable declines in quality. These results demonstrate the effectiveness of our
approach.

B DETAILED SETTINGS

The fundamental settings for SnapKV, CAKE, AdaKV, CriticalKV and our methods were kept as
originally defined, with an average-pooling kernel size of 5 and a historical token size of 32 for
observation. For StreamingLLM (Xiao et al., 2023), we follow standard settings, using 4 sink tokens
and retaining the most recent window’s cache. For DuoAttention (Xiao et al., 2025), we follow the
publicly released training settings. Following standard practices in prior studies (Li et al., 2024;
Zhang et al., 2024a; Feng et al., 2024), we perform cache eviction immediately after the prefilling
phase of each layer.

C ADDITIONAL RELATED WORKS

Beyond cache eviction methods, a broader range of related work can reduce KV cache footprint. For
example, Think (Xu et al., 2024) compresses the KV cache by reducing the number of channels in the
key states. Other approaches, such as MiniCache (Liu et al., 2024a) and KVSharer (Yang et al., 2024),
exploit KV similarity between layers to achieve compression. These techniques are orthogonal to KV
cache eviction methods and can be further combined with them. KV cache quantization (Hooper et al.,
2024; Liu et al., 2024d), which reduces the precision of individual cache entries (e.g., quantizing
16-bit entries to 4-bit or 2-bit), also offers footprint reduction. Because quantization methods typically

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

DefensiveKV (Batch 1)
DefensiveKV (Batch 2)

CriticalKV (Batch 1)
CriticalKV (Batch 2)

Full Cache (Batch 1)
Full Cache (Batch 2)

16k 32k 64k 128k 16k 32k 64k 128k
0

20

40

60

80

Pe
ak

 M
em

or
y

(G
B

) O
O

M
Figure 11: Peak Memory usage(All with FlashAttention-2).

retain all cache entries, they are fundamentally orthogonal to the cache eviction methods explored in
this paper and can also be applied to further enhance them. Furthermore, recent speculative decoding
methods explore using a reduced KV cache for draft generation in long-sequence generation (Sun
et al., 2024; Yang et al., 2025). Refining cache eviction to enhance speculative decoding is also a
promising research direction.

Sparse attention methods are conceptually related to KV cache eviction (Xiao et al., 2024a; Tang
et al., 2024; Jiang et al., 2024; Liu et al., 2024b). The key difference is that KV cache eviction
retains only a subset of the KV cache, while sparse attention methods keep all entries but selectively
utilize only a critical subset during computation (Nawrot et al., 2025). Consequently, sparse attention
methods do not reduce the memory footprint of the KV cache. The two technique lines are, in fact,
orthogonal. Future research could explore firstly employing KV cache eviction to compress the cache
to a certain proportion (e.g., 40% cache size with minimal loss, as demonstrated in this paper) and
then applying sparse attention for further acceleration. This represents a promising direction for
future research.

D MEMORY USAGE DURING GENERATION

Following the efficiency evaluation in Section 4.5, we also measured peak memory usage during
inference. The memory savings from cache eviction are primarily determined by the compressed
cache size. Our introduced defensive aggregation method does not differ in memory usage from
standard mean aggregation. As shown in Figure 11, DefensiveKV and CriticalKV exhibit significantly
lower peak memory usage than Full Cache. For example, with a batch size of 1 and a 128K context
length, DefensiveKV and CriticalKV use only 36GB, far less than Full Cache’s 61.5 GB. This allows
them to support larger batch sizes, such as batch size 2, further increasing decoding throughput, while
Full Cache encounters out-of-memory (OOM) errors. This advantage enables DefensiveKV and
CriticalKV to achieve up to a 4.2x speedup in 128K decoding throughput compared to Full Cache.

E INTEGRATION DEFENSIVEKV WITH KV CACHE QUANTIZATION

We combine DefensiveKV with another orthogonal technique, cache quantization. Specifically, we
adopted the official HuggingFace-provided int4 quantization for the KV cache (Face, 2024a), with
backend support from Quanto (Face, 2024b). As showed in Table 5, we first compressed the cache
entries to 40% of their original num, and then further quantized them from bf16 to int4 (ultimately
reducing the cache memory footprint to just 10%). After full integration, the average score only
dropped slightly from 49.21 to 48.55, demonstrating that reducing the cache memory to 10% comes
with less than one-point loss in performance. This highlights the great potential of combining these
orthogonal techniques for practical applications.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 3: Detailed scores of 13 datasets on Ruler.

Method cw
e

fw
e

niah_mk1

niah_mk2

niah_mk3

niah_mq

niah_mv

niah_s1

niah_s2

niah_s3

qa_1
qa_2

vt Avg.

Llama-3.1-8B-Instruct, 32K Ruler, 20% Cache Size

FullCache 45.22 94.13 99.60 99.60 99.40 98.75 99.10 100.00 100.00 100.00 79.80 54.80 99.24 89.97

Strongest Baseline CriticalKV 26.80 88.80 91.60 29.40 19.40 95.00 93.60 100.00 99.60 42.40 40.80 40.20 97.76 66.57
DefensiveKV 22.94 90.00 99.80 86.80 97.00 98.65 97.90 100.00 100.00 97.40 68.80 45.80 98.76 84.91
Layer-DefensiveKV 17.86 90.80 99.60 99.40 99.00 98.85 98.45 100.00 100.00 100.00 73.00 47.60 98.56 86.39

Llama-3.1-8B-Instruct, 32K Ruler, 40% Cache Size

FullCache 45.22 94.13 99.60 99.60 99.40 98.75 99.10 100.00 100.00 100.00 79.80 54.80 99.24 89.97

Strongest Baseline CriticalKV 49.08 91.93 99.60 94.00 54.00 98.75 98.90 100.00 100.00 97.40 68.00 47.60 99.32 84.51
DefensiveKV 51.12 92.87 99.60 99.80 98.60 98.65 98.90 100.00 100.00 100.00 78.20 51.80 99.24 89.91
Layer-DefensiveKV 50.24 92.00 99.60 99.80 99.20 98.70 99.05 100.00 100.00 100.00 78.00 53.40 99.12 89.93

Table 4: Performance comparison of AdaKV with and without defensive aggregation on LongBench.

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.
NrtvQA

Qasper
MF-en

Hotpot
2WikiQA

Musique

GovRep
QMSum

MultiN
ews

TREC
TriviaQA

SAMSum

PCount
PR-en

Lcc RB-P

Llama-3.1-8B-Instruct, 20% Cache Size

Full Cache 29.55 44.68 55.82 57.59 48.89 32.61 34.40 25.51 26.83 73.00 92.36 43.27 7.38 99.50 63.44 52.36 49.20

AdaKV 27.07 28.69 32.85 49.64 30.89 21.57 26.70 21.85 22.67 55.50 91.30 43.89 7.30 80.50 66.44 55.43 41.39
AdaKV w/. defensive agg. 28.60 37.62 41.08 51.74 36.87 22.83 27.83 23.18 23.51 66.00 91.64 44.35 8.10 92.50 67.97 55.71 44.97

F MORE NEEDLE-IN-A-HAYSTACK-STYLE EVALUATIONS ON RULER
BENCHMARK

In the Needle-in-A-Haystack task, a keyword, referred to as the "needle", is embedded within a
lengthy context known as the "haystack". The objective of this task is to extract the "needle" from the
"haystack", which is composed of essays by Paul Graham (Kamradt, 2023). In our main experiments,
we adopt the respective prompt templates (see Table 10) used in the Ruler Benchmark (Hsieh et al.,
2024) (corresponding to NIAH-s2 and NIAH-MV in their formulation) to ensure consistency and
reproducibility

The whole Ruler benchmark (Hsieh et al., 2024) comprises 13 synthetic, needle-in-a-haystack-style
tasks designed to evaluate the long-context capabilities of models. A single evaluation on the full
32K RULER benchmark requires approximately 9 GPU hours. Consequently, a comprehensive
assessment across all methods, compression rates, and models would demand an estimated 864 GPU
hours, which is computationally prohibitive.

In this section, we further presents a more extensive analysis on the complete Ruler benchmark. We
evaluated our proposed methods and the strongest baseline, CriticalKV, at 20% and 40% cache sizes
using Llama-3.1-8B-Instruct, with the results detailed in Table 3. Both DefensiveKV and Layer-
DefensiveKV demonstrated significant advantages; for instance, at a 20% cache size, they achieved
average scores of 84.91 and 86.39, respectively, substantially outperforming the CriticalKV baseline’s
score of 66.57. These findings underscore our method’s ability to achieve strong compression
performance with minimal loss in accuracy.

G CASE STUDY: AUGMENTING ADAKV VIA DEFENSIVE AGGREGATION

In Algorithm 1, DefensiveKV is built on CriticalKV’s SOTA importance scoring. To demonstrate the
generalizability of defensive aggregation, we further integrate it into another cache eviction method,
AdaKV. As shown in the table 4, across all 16 LongBench datasets, defensive aggregation consistently
improved AdaKV’s performance, increasing the average score from 41.39 to 44.97. These results
indicate that defensive aggregation can broadly enhance existing cache eviction methods.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 5: Performance of DefensiveKV combined with int4 cache quantization on LongBench

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.
NrtvQA

Qasper
MF-en

Hotpot
2WikiQA

Musique

GovRep
QMSum

MultiN
ews

TREC
TriviaQA

SAMSum

PCount
PR-en

Lcc RB-P

Llama-3.1-8B-Instruct, 20% Cache Size

Full Cache (100% memory) 29.55 44.68 55.82 57.59 48.89 32.61 34.4 25.51 26.83 73 92.36 43.27 7.38 99.5 63.44 52.36 49.2

DefensiveKV-40% Cache (40% memory) 30.07 46.37 54.9 57.5 45.97 28.85 33.7 24.69 26.2 71.5 91.78 43.69 9.88 100 66.25 55.97 49.21
DefensiveKV-40% Cache-int4 (10% memory) 30.63 44.62 54.44 56.14 42.9 28.15 33.79 25.15 25.92 70.5 91.28 43.76 7.55 100 65.71 56.23 48.55

Table 6: Detailed scores of 16 datasets on LongBench (40% cache size).

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.
NrtvQA

Qasper
MF-en

Hotpot
2WikiQA

Musique

GovRep
QMSum

MultiN
ews

TREC
TriviaQA

SAMSum

PCount
PR-en

Lcc RB-P

Llama-3.1-8B-Instruct, 40% Cache Size

Full Cache 29.55 44.68 55.82 57.59 48.89 32.61 34.40 25.51 26.83 73.00 92.36 43.27 7.38 99.50 63.44 52.36 49.20

DuoAttention 28.83 42.51 53.35 55.76 45.37 30.16 32.26 25.07 25.51 71.50 88.44 41.12 3.67 99.50 68.81 58.85 48.17
StreamingLLM 24.32 28.77 28.74 43.75 30.71 18.55 30.26 21.86 24.88 65.50 92.24 41.65 2.92 46.00 66.54 61.42 39.26
SnapKV 27.72 36.42 38.31 54.92 40.02 26.95 30.60 23.33 24.31 56.00 92.31 43.92 7.62 96.50 65.95 53.77 44.92
CAKE 30.43 37.57 45.51 57.13 40.08 25.95 30.33 23.80 24.96 61.00 91.83 43.46 6.70 100.00 65.56 52.66 46.06
AdaKV 28.36 37.58 41.35 54.80 41.47 29.02 30.18 23.72 24.68 63.50 91.73 43.57 7.27 95.00 64.93 54.75 45.74
CriticalKV 30.10 40.14 49.03 55.95 46.22 30.42 31.49 24.34 25.15 67.50 92.39 43.20 8.08 99.00 64.68 55.08 47.67
DefensiveKV 30.07 46.37 54.90 57.50 45.97 28.85 33.70 24.69 26.20 71.50 91.78 43.69 9.88 100.00 66.25 55.97 49.21
Layer-DefensiveKV 30.94 43.84 55.01 56.36 49.14 29.88 34.09 25.71 26.64 72.00 91.49 42.96 8.56 99.50 67.30 57.98 49.46

Mistral-7B-Instruct-v0.3, 40% Cache Size

Full Cache 27.02 38.19 50.22 50.75 37.41 27.92 34.45 25.76 26.37 76.00 89.01 46.89 6.50 97.00 66.04 60.47 47.50

DuoAttention 20.37 26.96 49.69 48.92 34.96 20.16 29.14 21.74 24.86 73.50 87.39 44.06 3.00 93.00 63.95 58.16 43.74
StreamingLLM 19.71 24.85 29.54 42.10 34.34 18.53 31.03 21.60 24.05 40.00 83.25 41.22 3.50 45.50 34.40 46.59 33.76
SnapKV 25.32 30.09 39.68 49.16 33.66 22.38 30.60 22.39 24.22 65.00 89.37 47.17 5.00 94.50 65.60 60.66 44.05
CAKE 25.02 31.82 45.30 48.42 31.94 21.73 31.70 23.15 24.77 68.50 89.22 46.34 4.00 92.50 64.99 60.21 44.35
AdaKV 24.76 31.86 41.79 49.59 32.95 20.20 30.51 22.94 24.42 68.00 88.96 47.29 5.50 96.50 65.54 59.99 44.42
CriticalKV 26.97 34.32 47.50 48.00 38.07 24.64 31.51 24.79 25.14 72.50 89.37 47.86 4.53 95.50 65.59 59.68 46.00
DefensiveKV 25.45 39.24 51.42 50.13 34.89 26.36 34.43 25.42 26.17 75.50 89.21 46.59 5.05 98.00 66.54 61.65 47.25
Layer-DefensiveKV 26.29 40.49 50.92 48.85 36.34 26.02 34.33 25.28 26.62 76.00 89.36 46.71 3.86 97.00 66.65 62.12 47.30

Qwen2.5-32B-Instruct, 40% Cache Size

Full Cache 30.88 46.13 52.87 63.59 59.75 38.78 32.59 24.35 24.95 72.00 88.26 47.05 12.50 100.00 49.64 34.24 48.60

DuoAttention N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
StreamingLLM 23.95 25.49 28.48 49.89 44.66 24.15 30.32 20.60 24.12 68.00 87.08 45.90 11.62 46.00 57.38 28.36 38.50
SnapKV 27.18 33.99 38.19 61.11 53.18 38.01 29.95 20.84 22.95 66.00 89.16 47.02 12.00 97.75 52.19 34.75 45.27
CAKE 28.13 35.18 39.22 60.17 56.22 36.25 30.33 21.03 23.88 66.00 88.74 46.68 10.50 98.75 52.20 35.14 45.53
AdaKV 27.16 31.83 37.07 60.81 53.92 37.66 29.84 20.79 23.07 68.50 88.93 47.40 12.00 97.00 53.05 34.56 45.22
CriticalKV 31.65 35.23 42.70 59.24 59.26 40.10 31.25 22.67 24.02 71.00 88.80 46.91 11.00 99.75 51.76 35.70 46.94
DefensiveKV 30.97 43.88 51.15 65.16 63.66 42.20 32.82 23.50 24.67 74.00 88.88 47.50 10.00 99.88 53.50 34.24 49.13
Layer-DefensiveKV 31.61 44.02 51.86 64.35 61.10 40.88 31.94 24.26 24.62 74.50 88.75 46.76 12.00 100.00 50.88 34.64 48.89

H DETAILED SCORES OF LONGBENCH

We provide detailed scores on individual datasets for 40%, 60% and 80% cache sizes in Tables 6,
7 and, 8. Our DefensiveKV and Layer-DefensiveKV methods maintain nearly lossless generation
quality across these settings, while other baselines fail to achieve this level of performance.

I THE EFFECTIVENESS OF DEFENSIVE AGGREGATION STRATEGY

To complement Figure 1 in the main text, Figure 12 provides additional visualizations demonstrating
that defensive aggregation offers greater robustness than mean aggregation under a 50% cache size.
The results reveal that this fragility is prevalent across numerous layers. Both "Single Historical
token" and "Mean aggregation" methods exhibit high sensitivity to this fragility, leading to poor worst-
case performance. In contrast, defensive aggregation effectively mitigates this issue, consistently
maintaining higher worst-case values.

J FURTHER ELABORATION OF THE FRAGILE STABILITY ASSUMPTION

Complementing Figure 3 in the main text, Figure 13 provides a more detailed illustration. It
demonstrates how measurements from single historical tokens, which guide cache eviction, experience
significant degradation at certain generation steps. The outlier cases occurs regardless of which
specific historical token is used. Consequently, the failure of such averaging approaches is an expected
outcome.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 7: Detailed scores of 16 datasets on LongBench (60% cache size).

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.
NrtvQA

Qasper
MF-en

Hotpot
2WikiQA

Musique

GovRep
QMSum

MultiN
ews

TREC
TriviaQA

SAMSum

PCount
PR-en

Lcc RB-P

Llama-3.1-8B-Instruct, 60% Cache Size

Full Cache 29.55 44.68 55.82 57.59 48.89 32.61 34.40 25.51 26.83 73.00 92.36 43.27 7.38 99.50 63.44 52.36 49.20

DuoAttention 28.77 43.00 54.41 55.90 46.18 28.61 33.86 25.10 26.80 72.00 91.16 43.37 10.50 99.50 66.23 56.03 48.84
StreamingLLM 25.21 39.92 33.53 49.72 39.98 22.62 31.51 23.12 25.91 69.50 92.27 42.75 3.08 57.50 66.27 61.75 42.79
SnapKV 28.92 40.35 48.00 56.79 48.60 30.12 32.54 24.20 25.58 64.50 91.64 44.53 8.85 99.00 65.03 53.81 47.65
CAKE 29.99 41.87 53.09 55.39 42.83 32.17 32.12 24.87 25.61 66.50 92.50 43.37 7.96 99.50 64.11 52.62 47.78
AdaKV 30.10 43.61 51.20 56.37 49.70 30.18 32.37 24.38 25.54 66.50 91.48 43.87 8.02 99.50 63.91 54.73 48.22
CriticalKV 30.31 43.54 52.82 57.30 49.09 31.78 33.48 25.18 26.00 72.50 91.80 43.95 7.47 99.50 64.05 54.92 48.98
DefensiveKV 30.88 43.20 55.17 55.85 50.17 31.84 34.79 25.29 26.84 73.00 92.14 43.28 9.05 99.50 63.88 56.02 49.43
Layer-DefensiveKV 29.95 44.11 56.78 57.11 47.47 32.58 34.81 25.11 26.80 72.00 91.83 43.14 11.10 99.50 64.21 55.81 49.52

Mistral-7B-Instruct-v0.3, 60% Cache Size

Full Cache 27.02 38.19 50.22 50.75 37.41 27.92 34.45 25.76 26.37 76.00 89.01 46.89 6.50 97.00 66.04 60.47 47.50

DuoAttention 28.86 36.56 50.54 53.32 39.19 29.22 33.91 25.16 26.77 76.00 87.57 45.40 5.00 95.00 64.75 58.91 47.26
StreamingLLM 21.48 30.55 35.40 46.84 36.62 22.89 32.20 22.70 25.06 44.50 82.26 41.87 3.00 57.00 34.42 47.38 36.51
SnapKV 25.44 33.77 45.63 52.52 34.30 25.94 32.61 24.59 25.37 68.00 89.41 47.12 5.00 95.50 66.22 59.47 45.68
CAKE 27.17 36.69 48.77 50.91 38.21 23.16 33.53 23.73 26.06 75.00 88.46 46.93 5.56 95.00 66.23 60.76 46.64
AdaKV 25.47 34.87 47.21 48.61 35.64 25.97 32.38 24.24 25.54 70.50 88.91 47.00 5.06 96.00 65.85 60.20 45.84
CriticalKV 26.06 37.46 50.28 50.41 37.11 26.80 33.28 25.56 25.90 75.50 88.81 47.54 6.35 97.00 65.30 59.61 47.06
DefensiveKV 27.82 39.13 51.50 50.78 38.39 27.37 34.29 25.41 26.78 76.00 89.21 46.89 4.60 98.00 66.27 61.39 47.74
Layer-DefensiveKV 25.59 38.95 51.99 50.81 37.09 25.35 34.50 25.68 26.78 77.50 89.04 46.96 4.00 97.00 67.00 61.50 47.48

Qwen2.5-32B-Instruct, 60% Cache Size

Full Cache 30.88 46.13 52.87 63.59 59.75 38.78 32.59 24.35 24.95 72.00 88.26 47.05 12.50 100.00 49.64 34.24 48.60

DuoAttention N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
StreamingLLM 26.06 34.49 33.06 57.33 46.75 30.57 30.39 21.93 24.83 72.50 87.01 46.97 10.62 57.50 58.09 29.86 41.75
SnapKV 30.42 38.55 45.71 62.38 59.78 38.36 31.77 23.19 24.37 69.00 88.64 47.32 12.00 100.00 52.09 34.65 47.39
CAKE 30.07 41.66 45.96 64.45 59.80 36.18 31.64 22.70 24.80 68.00 89.11 47.06 10.50 100.00 52.56 35.24 47.48
AdaKV 29.58 38.02 45.63 61.46 57.33 37.91 31.43 22.40 24.13 71.00 88.86 46.64 11.50 100.00 52.54 33.95 47.02
CriticalKV 33.01 41.97 48.07 62.35 62.58 39.79 32.45 23.69 24.59 72.00 88.83 46.95 12.00 99.88 52.03 34.02 48.39
DefensiveKV 32.10 46.38 51.50 64.50 63.07 39.13 32.77 24.41 24.96 73.50 88.69 47.07 11.00 99.88 53.35 33.72 49.13
Layer-DefensiveKV 31.28 46.18 51.97 63.24 63.20 39.80 32.56 24.37 24.96 73.00 88.65 46.73 13.50 100.00 52.74 34.06 49.14

Table 8: Detailed scores of 16 datasets on LongBench (80% cache size).

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.
NrtvQA

Qasper
MF-en

Hotpot
2WikiQA

Musique

GovRep
QMSum

MultiN
ews

TREC
TriviaQA

SAMSum

PCount
PR-en

Lcc RB-P

Llama-3.1-8B-Instruct, 80% Cache Size

Full Cache 29.55 44.68 55.82 57.59 48.89 32.61 34.40 25.51 26.83 73.00 92.36 43.27 7.38 99.50 63.44 52.36 49.20

DuoAttention 30.04 44.49 55.77 57.51 48.96 31.78 34.51 25.29 26.93 73.00 91.35 43.28 8.08 100.00 63.19 55.85 49.38
StreamingLLM 28.57 43.96 37.87 52.57 44.06 26.50 32.88 24.23 26.58 70.50 90.52 43.33 4.03 83.50 65.34 60.57 45.94
SnapKV 29.87 44.58 52.36 57.31 48.33 30.85 33.79 24.39 26.44 68.50 91.47 43.71 8.33 99.50 64.66 53.47 48.60
CAKE 29.53 43.76 56.26 57.28 47.81 30.71 33.26 25.14 26.59 72.50 92.75 42.82 9.60 99.50 63.75 51.87 48.95
AdaKV 29.93 44.89 57.17 56.55 48.34 32.59 34.13 25.14 26.36 73.00 91.80 43.54 8.66 99.50 64.12 53.32 49.31
CriticalKV 29.73 44.66 55.66 58.19 48.52 32.24 34.70 25.27 26.56 73.50 92.30 43.75 8.09 99.50 63.90 54.04 49.41
DefensiveKV 29.63 44.49 56.70 57.41 49.49 31.08 34.97 25.23 27.25 73.00 92.03 43.06 8.07 99.50 63.90 54.53 49.40
Layer-DefensiveKV 29.63 44.88 56.52 58.18 48.10 32.85 34.76 24.98 27.20 72.50 91.78 42.98 8.62 99.50 63.27 52.44 49.26

Mistral-7B-Instruct-v0.3, 80% Cache Size

Full Cache 27.02 38.19 50.22 50.75 37.41 27.92 34.45 25.76 26.37 76.00 89.01 46.89 6.50 97.00 66.04 60.47 47.50

DuoAttention 26.07 36.33 50.03 51.37 36.30 26.79 33.95 25.90 26.61 76.00 88.91 47.11 4.50 97.50 65.53 60.53 47.09
StreamingLLM 23.78 35.71 38.09 50.73 37.79 24.82 33.51 24.31 25.85 50.00 83.38 42.98 2.65 82.00 34.22 45.51 39.71
SnapKV 26.42 36.01 49.00 50.06 36.40 28.56 34.08 24.54 25.89 73.50 88.91 46.86 6.00 96.00 66.28 60.67 46.82
CAKE 26.62 38.22 50.20 50.29 36.40 24.78 34.28 25.63 26.02 76.00 88.91 46.41 4.56 95.00 66.70 60.29 46.89
AdaKV 26.77 34.52 48.73 50.25 36.59 28.57 33.45 24.90 26.20 76.50 88.91 47.26 6.50 96.50 66.06 61.37 47.07
CriticalKV 27.34 36.72 49.04 51.26 36.94 27.13 33.85 25.32 25.88 76.50 88.91 47.28 6.05 97.50 65.78 59.56 47.19
DefensiveKV 27.79 38.29 50.34 50.86 37.84 27.63 34.24 25.87 26.25 75.50 89.21 47.29 6.00 97.00 66.14 60.95 47.58
Layer-DefensiveKV 27.06 38.23 51.56 50.76 36.48 28.32 34.54 25.37 26.44 76.00 89.04 47.21 5.50 98.00 66.10 61.13 47.61

Qwen2.5-32B-Instruct, 80% Cache Size

Full Cache 30.88 46.13 52.87 63.59 59.75 38.78 32.59 24.35 24.95 72.00 88.26 47.05 12.50 100.00 49.64 34.24 48.60

DuoAttention N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
StreamingLLM 27.44 43.24 35.78 59.73 51.76 33.23 31.32 22.84 25.40 74.50 86.83 48.18 11.00 82.00 55.92 32.59 45.11
SnapKV 30.97 42.95 49.08 63.92 59.10 39.73 32.00 23.33 24.75 71.00 88.48 47.48 12.00 100.00 51.02 33.55 48.09
CAKE 30.32 45.68 52.23 63.96 61.16 39.91 32.17 23.67 25.06 70.50 88.77 47.39 11.00 100.00 51.02 34.84 48.60
AdaKV 30.42 42.62 48.92 62.98 60.45 39.19 31.77 23.22 24.82 71.00 88.69 46.87 10.50 100.00 50.18 33.60 47.83
CriticalKV 31.09 45.47 50.40 63.29 61.80 39.95 32.35 23.98 24.86 72.00 88.50 46.92 11.50 100.00 50.56 34.53 48.58
DefensiveKV 31.34 46.43 51.92 63.33 61.45 39.12 32.70 24.30 25.22 72.00 88.39 47.14 11.00 100.00 53.48 33.81 48.85
Layer-DefensiveKV 31.13 46.01 52.46 63.29 60.22 38.90 32.85 24.18 25.03 72.00 88.73 46.56 12.50 100.00 52.55 33.53 48.75

K DETAILS OF 16 DATASETS IN LONGBENCH

As a widely used long-context benchmark (Feng et al., 2024; Li et al., 2024; Zhang et al., 2024a),
LongBench consists of 16 datasets across six task domains: single-document question answering
(QA) (Kočiskỳ et al., 2018; Dasigi et al., 2021), multi-document QA (Yang et al., 2018; Ho et al.,
2020; Trivedi et al., 2022), summarization (Huang et al., 2021; Zhong et al., 2021; Fabbri et al.,
2019), few-shot learning (Joshi et al., 2017; Gliwa et al., 2019; Li & Roth, 2002), synthetic tasks (Bai

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500
Generation Step

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ca
ch

e
Im

po
rta

nc
e

Single Historical Token (2nd, worst-case value 0.31)
Single Historical Token (16th, worst-case value 0.34)
Single Historical Token (32nd, worst-case value 0.32)
Mean Aggregation (worst-case value 0.33)
Defensive Aggregation (worst-case value 0.61)

(a) layer 13

0 100 200 300 400 500
Generation Step

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ca
ch

e
Im

po
rta

nc
e

Single Historical Token (2nd, worst-case value 0.42)
Single Historical Token (16th, worst-case value 0.47)
Single Historical Token (32nd, worst-case value 0.43)
Mean Aggregation (worst-case value 0.45)
Defensive Aggregation (worst-case value 0.65)

(b) layer 14

0 100 200 300 400 500
Generation Step

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ca
ch

e
Im

po
rta

nc
e

Single Historical Token (2nd, worst-case value 0.58)
Single Historical Token (16th, worst-case value 0.63)
Single Historical Token (32nd, worst-case value 0.58)
Mean Aggregation (worst-case value 0.61)
Defensive Aggregation (worst-case value 0.68)

(c) layer 15

0 100 200 300 400 500
Generation Step

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ca
ch

e
Im

po
rta

nc
e

Single Historical Token (2nd, worst-case value 0.62)
Single Historical Token (16th, worst-case value 0.64)
Single Historical Token (32nd, worst-case value 0.62)
Mean Aggregation (worst-case value 0.64)
Defensive Aggregation (worst-case value 0.82)

(d) layer 16

0 100 200 300 400 500
Generation Step

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ca
ch

e
Im

po
rta

nc
e

Single Historical Token (2nd, worst-case value 0.65)
Single Historical Token (16th, worst-case value 0.68)
Single Historical Token (32nd, worst-case value 0.68)
Mean Aggregation (worst-case value 0.71)
Defensive Aggregation (worst-case value 0.79)

(e) layer 17

0 100 200 300 400 500
Generation Step

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ca
ch

e
Im

po
rta

nc
e

Single Historical Token (2nd, worst-case value 0.65)
Single Historical Token (16th, worst-case value 0.68)
Single Historical Token (32nd, worst-case value 0.68)
Mean Aggregation (worst-case value 0.71)
Defensive Aggregation (worst-case value 0.79)

(f) layer 18

Figure 12: Visualization across different layers using Llama-3.1-8B with 50% cache size.

et al., 2023), and code generation (Guo et al., 2023; Liu et al., 2023). The average token length across
all 16 datasets is 6,711. Table 9 provides detailed information on the 16 datasets in LongBench.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

1 100 200 300 400 500
Generation Step

0

16

31

La
ye

r

Single historical token 2nd: mean value=0.90, worst-case value=0.31, outlier count(value<0.5)=134

1 100 200 300 400 500
Generation Step

0

16

31

La
ye

r

Single historical token 6th: mean value=0.92, worst-case value=0.34, outlier count(value<0.5)=35

1 100 200 300 400 500
Generation Step

0

16

31

La
ye

r

Single historical token 10st: mean value=0.91, worst-case value=0.33, outlier count(value<0.5)=107

1 100 200 300 400 500
Generation Step

0

16

31

La
ye

r

Single historical token 14st: mean value=0.93, worst-case value=0.43, outlier count(value<0.5)=15

1 100 200 300 400 500
Generation Step

0

16

31

La
ye

r

Single historical token 18st: mean value=0.93, worst-case value=0.40, outlier count(value<0.5)=21

1 100 200 300 400 500
Generation Step

0

16

31

La
ye

r

Single historical token 22nd: mean value=0.91, worst-case value=0.33, outlier count(value<0.5)=90

1 100 200 300 400 500
Generation Step

0

16

31

La
ye

r

Single historical token 26nd: mean value=0.92, worst-case value=0.32, outlier count(value<0.5)=103

1 100 200 300 400 500
Generation Step

0

16

31

La
ye

r

Single historical token 30rd: mean value=0.90, worst-case value=0.32, outlier count(value<0.5)=117

1 100 200 300 400 500
Generation Step

0

16

31

la
ye

r

Mean Aggregation: Mean value=0.92, Min value=0.33, Outlier count(value<0.5)=65

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ca
ch

e
Im

po
rta

nc
e

Figure 13: Breakdown of the stability assumption across different historical token measurements

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 9: Details of 16 datasets in LongBench.

Task Task Type Eval metric Avg len Language Sample Num

NarrativeQA Single-Doc. QA F1 18,409 EN 200
Qasper Single-Doc. QA F1 3,619 EN 200
MultiFieldQA-en Single-Doc. QA F1 4,559 EN 150
HotpotQA Multi-Doc. QA F1 9,151 EN 200
2WikiMultihopQA Multi-Doc. QA F1 4,887 EN 200
MuSiQue Multi-Doc. QA F1 11,214 EN 200
GovReport Summarization Rouge-L 8,734 EN 200
QMSum Summarization Rouge-L 10,614 EN 200
MultiNews Summarization Rouge-L 2,113 EN 200
TREC Few-shot Learning Accuracy 5,177 EN 200
TriviaQA Few-shot Learning F1 8,209 EN 200
SAMSum Few-shot Learning Rouge-L 6,258 EN 200
PassageCount Synthetic Accuracy 11,141 EN 200
PassageRetrieval-en Synthetic Accuracy 9,289 EN 200
LCC Code Edit Sim 1,235 Python/C#/Java 500
RepoBench-P Code Edit Sim 4,206 Python/Java 500

Table 10: Single retrieval and multi retrieval templates in Needle-in-A-Haystack tests.

Single retrieval

Task Template:
Some special magic numbers are hidden within the following text. Make sure to memorize it. I will
quiz you about the numbers afterwards.
Paul Graham Essays.
...... One of the special magic numbers for {word} is: {number}.
What is the special magic number for {word} mentioned in the provided text?

The special magic number for {word} mentioned in the provided text is

Multi retrieval

Task Template:
Some special magic numbers are hidden within the following text. Make sure to memorize it. I will
quiz you about the numbers afterwards.
Paul Graham Essays.
...... One of the special magic numbers for {word} is: {number-1}.
...... One of the special magic numbers for {word} is: {number-2}.
...... One of the special magic numbers for {word} is: {number-3}.
...... One of the special magic numbers for {word} is: {number-4}.
What are all the special magic numbers for {word} mentioned in the provided text?

The special magic numbers for {word} mentioned in the provided text are

L LIMITATIONS

In this paper, we reveal for the first time the fragility of KV cache eviction and propose a defensive
aggregation strategy for robust optimization. However, our work serves as a starting point and does
not provide an in-depth investigation of broader robust optimization techniques. Future research can
explore these techniques to further improve cache eviction performance.

21

	Introduction
	Related Works
	Methods
	Preliminary
	Fragility of Stability Assumption and Vulnerability of Mean Aggregation
	Defensive Aggregation via Worst-Case Risk Control
	Implementing DefensiveKV Eviction Method with Defensive Aggregation

	Experiments
	Experimental Settings
	LongBench Evaluation
	Needle-in-a-Haystack Evaluation
	Ablation Studies
	Efficiency Test

	Conclusion
	Quality Losses of Methods with 40% and 60% Cache Size
	Detailed Settings
	Additional Related Works
	Memory Usage during Generation
	Integration DefensiveKV with KV Cache Quantization
	More Needle-in-A-Haystack-style Evaluations on Ruler Benchmark
	Case Study: Augmenting AdaKV via Defensive Aggregation
	Detailed scores of Longbench
	The effectiveness of Defensive aggregation strategy
	Further Elaboration of the Fragile Stability Assumption
	Details of 16 Datasets in Longbench
	Limitations

