Under review as a conference paper at ICLR 2026

TAMING THE FRAGILITY OF KV CACHE EVICTION
IN LLM INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models have revolutionized natural language processing, yet their
deployment remains hampered by the substantial memory and runtime overhead
of the transformer’s Key-Value cache. To mitigate this, recent methods employ a
scoring-aggregation framework to evict unimportant cache entries, based on the
"stability assumption"—that a fixed subset of entries remains consistently important
during generation. However, prior work has largely focused on refining importance
indicators for scoring, while defaulting to mean aggregation due to a faithful trust in
the stability assumption. In this work, we argue that this underlying assumption is
inherently fragile, making mean aggregation highly vulnerable in extreme cases. To
counter this, we propose a simple yet elegant defensive aggregation strategy: a two-
step, linear-time approach that controls worst-case risk, thereby defending against
extreme cases with negligible computational overhead. Embodying this strategy,
we propose a novel cache eviction method, DefensiveKV and its extension, Layer-
DefensiveKV, which incorporates layer-wise budget allocation. Across seven task
domains (18 datasets), our methods reduce generation quality loss by 2.3x and 4.3x
respectively, versus the strongest baseline under a 20% cache size. These results
set new performance benchmarks and pioneer a promising direction for optimizing
cache eviction against underlying fragility through worst-case risk management.

1 INTRODUCTION

Transformer-based Large Language Models (LLMs) have enabled a wide range of applications (Y1
et al.| 2024; |Gul [2023)). Due to their autoregressive nature, LLMs maintain a Key-Value (KV) cache
to store intermediate representations of previously tokens, which supports efficient computation of
future generation. However, as the input sequence length increases, the KV cache grows linearly,
leading to substantial overhead. For example, a 70B-parameter model with a batch size of 8 and a
sequence length of 128k may require up to 330GB of memory just for caching. This poses significant
challenges regarding storage expenses and I/O bottlenecks for LLM deployment (N VIDIAL 2024)).

Early solutions like StreaminglL.LM (Xiao et al., 2023) reduce cache size by keeping only recent cache
entries, but this sacrifices long-range context. More recent solutions (Zhang et al.,[2024b; Liu et al.,
2024c; |Li et al., [2024; [Feng et al., |2025) on selective cache eviction operate under a key underlying
assumption that a fixed subset of cache entries remain consistently important and contributes to
future generation. Thus, by retaining the selected subset, the full KV cache can be approximated with
a much smaller memory footprint. Building on this, existing methods typically follow a two-step
scoring-aggregation framework: In the scoring step, different historical token queries are used to
observe multiple importance scores for each past KV cache entry. In the aggregation step, these
multiple observed scores for each cache entry are aggregated—typically by averaging—to estimate
its expected significance and guide the eviction strategy.

Following this two-step framework, previous research has primarily focused on improving the scoring
step by exploring various importance indicators. Early studies often relied solely on naive attention
weights (Zhang et al,[2024bj [Liu et al.| [2024c} Oren et al.l [2024). SnapKV (Li et al.| [2024)) improved
by introducing a pooling mechanism, while more recent work like CriticalKV (Feng et al., [2025)
employed the norm of projected value states to offer a more principled measure of importance.
However, the second step—aggregating these importance scores—remains largely underexplored.
Most existing methods default to a simple averaging strategy. While this may seem reasonable,

Under review as a conference paper at ICLR 2026

o
S

o
o

Cache Importance

Single Historical Token (2nd, worst-case value 0.42)

Single Historical Token (16th, worst-case value 0.47)
Single Historical Token (32nd, worst-case value 0.43)
0.49 —~ Mean Aggregation (worst-case value 0.45)

—O— Defensive Aggregation (worst-case value 0.65)

[100 200 300 400 500
eration Ste|

Figure 1: Defensive aggregation demonstrates robustness against fragile stability assumption (Llama-
3.1-8B, 50% cache size, layer 14, summary task). Appendixmprovides additional visualizations.

Multi Doc. QA Multi Doc. QA
,,,,,,Tmo% s ,,,,fm&.x

// i ~

Multi Doc. QA
& M

= =
) &
/8 /g
| & | §
/ = / 5
/ @ VAl
) S S \
Vot Vg —
e $¢ 78 §¢
SnapKV(20.1%) -@- StreamingLLM(-40.7%) SnapKV(-27.8%) -@- StreamingLLM(-47.6%) SnapKV(-24.6%) -@- StreamingLLM(-37.8%)
Duo(-27.3%) -@ CakeKV(-16.2%) Duo(-46.4%) -@ CakeKV(-27.3%) Duo(N/A) -@ CakeKV(-27.9%)
-® AdaKV(-16.8%) CriticalKV(-9.6%) -@ AdaKV(-25.4%) CriticalKV(-13.4%) -@ AdaKV(-22.9%) CriticalKV(-8.6%)
DefensiveKV(-4.6%) —&— Layer-DefensiveKV(-2.1%) DefensiveKV(-4.4%) —&— Layer-DefensiveKV(-1.4%) DefensiveKV(-2.7%) —A— Layer-DefensiveKV(-1.7%)
(a) Llama-3.1-8B, 20% Cache (b) Mistral-7B, 20% Cache (c) Qwen-32B, 20% Cache

Figure 2: DefensiveKV and Layer-DefensiveKV achieve significantly lower losses of generation
quality compared to all baselines across various domains and models.

averaging is only effective if the underlying assumption holds that importance are stable-when it does,
averaging helps reduce observation noise and capture the consistent significance of cache entries.

There raises a critical question: if the stability assumption proves unreliable, is averaging still the
best aggregation strategy, or might better alternatives exist?

In this work, we show that even when the assumption generally holds, it remains inherently fragile,
as importance scores can shift abruptly during generation. As demonstrated in Figure[T] performing
cache compression based on the observed importance score of a single historical token often yields
promising results, with most steps retaining over 0.8 correlation with full-cache importance. However,
in certain intervals (e.g., steps 150-230), the stability assumption breaks down—consequently, results
based on single historical token fail, leading to sharp drops, with some outliers falling as low as 0.5.
In these cases, the current standard practice of mean aggregation, simply averaging these single token
predictions, inevitably results in similar outlier performance.

This reflects a classic pitfall, a flaw directly analogous to a foundational lesson from finance:
strategies that optimize only for the average case (expected returns) are fundamentally flawed
because they ignore the risk of rare but extreme negative cases (worst-case risks).

Inspired by this insight, we abandon average-case optimization in favor of a worst-case risk man-
agement framework for KV cache eviction, which we term defensive aggregation. Our strategy is
actualized through an elegant two-step process: worst-case estimation and adaptive prior-risk correc-
tion. Remarkably, this approach requires only two linear-time operations, matching the computational
efficiency of standard mean aggregation. As shown in Figure[T} Defensive Aggregation demonstrates
clear superiority, boosting the worst-case retained importance to 0.65—a substantial improvement
over both mean aggregation (0.45) and single-token baselines (0.42, 0.47, 0.43).

Building on the defensive aggregation strategy, we introduce DefensiveKYV, a general cache eviction
method, which we further develop into Layer-DefensiveKV by leveraging a popular layer-wise
budget allocation strategy. Figure 2] summarizes that these two methods significantly outperform
prior approaches across seven task domains, evaluated on 18 datasets from the LongBench and
Needle-in-a-Haystack benchmarks. With a 20% cache budget, DefensiveKV and Layer-DefensiveKV
incur generation quality losses of only 4.8% and 2.6%, respectively, representing 2.3x and 4.3x
reductions versus the best baseline, CriticalKV (11.1%).

Under review as a conference paper at ICLR 2026

2 RELATED WORKS

KV cache eviction is crucial for efficient long-sequence inference in LLMs. Early methods like
StreamingLLM (Xiao et al.,|2023)) retained only recent cache entries, often losing valuable infor-
mation. Subsequent H20 (Zhang et al., 2024b) and Scissorhands (Liu et al., [2024c) introduced
importance-based eviction, assuming "cache importance stability"—that a small set of entries re-
mains consistently important. These methods typically observe importance multi times with several
historical tokens and aggregate these, often by averaging, to decide on eviction Ren & Zhu|(2024);
Oren et al.|(2024). While research has advanced importance observation— SnapKV (Li et al.| [2024)
with pooling, and CriticalKV (Feng et al., [2025)) with projected value norms—the foundational
stability assumption has rarely been rigorously examined. This paper revisits and reveals the fragility
of this assumption, further showing prevalent mean aggregation’s vulnerability. Consequently, we
are the first to underscore the necessity of risk-control defensive aggregation strategies to against
fragile assumption. This pioneers a new research direction, entirely orthogonal to prior work focused
on optimizing importance indicators. For demonstration, we build our DefensiveKV method upon
CriticalKV, the current SOTA importance indicator.

Additionally, our contributions is also orthogonal to various KV cache budget allocation strategies,
including intra-layer (e.g., AdaKV (Feng et al.| 2024)), inter-layer (e.g., PyramidKV (Zhang et al.|
20244), LightTransfer (Zhang et al.,|2025), CAKE (Qin et al.,|2025)), and also offline training-based
allocation (e.g., HeadKV (Fu et al.,|2024), DuoAttention (Xiao et al.,|2025))). These strategies focus
on optimizing budget allocation for cache eviction methods, and are thus inherently orthogonal to
our investigation. Direct comparison is not essential for validating our contributions. However, to
demonstrate our principles’ adaptability, we introduce Layer-DefensiveKYV, a variant using layer-wise
budget allocation for enhancement. Broader related methods like quantization, channel pruning, and
sparse attention are discussed in Appendix [C} Furthermore, we provide a case study in Appendix [E|on
integrating our DefensiveKV with quantization, showing minimal loss even at 10% cache footprint.

3 METHODS

3.1 PRELIMINARY

LLM generation consists of two stages, prefilling and decoding. During prefilling, the KV states for
all input tokens are computed and cached as: K = HWy, V = HWy,, where H € R™*4 denotes
the hidden states for n tokens, and W, Wy, € R4*% are learned matrices. In decoding, the LLM
takes the most recent token, computes its query vector q; = H;—_; .Wg, and retrieves information
from the cached KV entries using attention to produce the output o; and predict the next token:

0; = A;VWo where A; = softmax (quT/\/dh)

To reduce the memory overhead of maintaining the full KV cache, cache eviction methods have been
developed. These methods largely operate under a stability assumption: a fixed subset of KV cache
entries, denoted as (k , V), retains consistent importance throughout generation. Based on this
assumption, the objective of cache eviction is to identify this crucial subset (K, V) using historical
queries (i.e., tokens from earlier generation process), and use it to replace the full KV cache (K, V)
in subsequent steps. This process typically follows a two-step scoring-aggregation framework, where
the importance of each KV entry is first estimated (or scored) and then aggregated:

1. Scoring. Given m historical tokens, represented as queries Q = [q1, . . ., ¢m], €ach of the n
KV cache entries K, V' € R™*% is scored. This results in an importance matrix I € R™*",
where each element I ; measures the relevance of the i-th KV cache entry (k;, v;) for the
Jj-th historical query ¢;. In practice, the attention weight A; ; serves as a direct measure of
importance I; ;, given the attention mechanism’s inherent weighted-sum formulation.

2. Aggregation. Subsequent aggregation step converts the observed importance matrix I €
R™*™ into a vector S € R™, where each S; represents the importance of the i-th KV cache
entry. Existing works adopt mean aggregation, S; = % Z;nzl 1; ;, to highlight entries with
consistently high importance, in line with the stability assumption.

While subsequent studies have refined the scoring step—SnapKV employs a pooling mechanism,
and CriticalKV utilizes the norm of projected value states v;Wo for more principled scoring—the

Under review as a conference paper at ICLR 2026

Single historical token 16st: mean value=0.92, worst-case value=0.34, outlier count(value<0.5)=89

LR L e 1 o o miie=a o om - = e | rﬂi i ﬁ'ﬁ'l

16| IR PRI ARSI TR L e
8] :- | -H =R = 1 ey 12
]
31 H o 1 7]] 1.0
1 100 200 300 400 500

. . Generation Step
(a) 16st historical token: Vulnerable; importance drops to 0.34 (worst case).

Mean aggregation: mean value=0.92, worst-case value=0.33, outlier count (value<0.5)=65

o
)

0

o

o

C T BEE o o o e Tok - i i s S

Z10 | AT FUTRETRFEN N CRERE | CR T R w o 07§
= T = b ke R ey =)

1 1 €

31 L =9 - 4 I. ! !.q.' 0.6 v

1 100 200 300 400 500 S

®

o

(b) Mean aggregation: Vulnerablg?qerggg]riggce drops to 0.33 (worst case).

Defensive aggregation: mean value=0.93, worst-case value=0.61, outlier count (value<0.5)=0

ot
wn

0

I
>

§ = i — - ;
16 B R T TR T T TR T T W P T O -

layer

o
w

311 100 200 300 400 500

. . Generation Step .
(c) Defensive aggregation: Robust; maintains 0.61 importance (worst case).

Figure 3: Mean vs. Defensive Aggregation: Against Fragility in Importance Stability

aggregation step has received little attention. This is largely because mean aggregation appears to
align closely with underlying importance stability assumption. However, in this work, we show the
fragility of that assumption and reveal the vulnerability of mean aggregation under this premise. This
underscores the necessity of revisiting and improving the aggregation step.

3.2 FRAGILITY OF STABILITY ASSUMPTION AND VULNERABILITY OF MEAN AGGREGATION

We examine this using Llama3.1-8B on the Government Report summarization task. Adopting the
SOTA importance indicator, I;; = A;,; x norm(v;Wo), we observe each cache entry importance
with 32 recent historical tokens g;. We then simulate a 50% cache eviction using two different criteria.
The first criterion uses importance scores from a single historical token observation, while the second
uses scores averaged across all 32 historical tokens (mean aggregation). For each result, we track the
proportion of total importance it retains during subsequent generation, relative to the full cache.

Fragility of the Stability Assumption. Figure[3a|presents the results for the 16th historical token(see
Appendix [J] for results from other tokens). The results reveal a general, yet fragile, stability. On
average, the 50% retained cache subset accounts for 0.92 of the full cache’s total importance during
generation. However, this high average belies the underlying fragility: the retained importance can
drop sharply, as seen in the interval between steps 150 and 320. In these moments of instability, the
worst-case retained importance drops to as low as 0.34. Additionally, outliers—where the retained
50% of the cache captures less than half of the total importance (value < 0.5)—are frequent, occurring
in 89 instances in this trial alone.

Vulnerability of Mean Aggregation. Current eviction methods commonly employ mean aggregation
over multiple importance observations. The rationale is to obtain an expected importance to guide
eviction. However, by failing to account for worst cases, this strategy becomes vulnerable precisely
under the fragile assumption, leading to outlier performance similar to that of using a single, unreliable
token. As shown in Figure[3b] significant drops persist at the same problematic steps observed in
Figure [3a] reaching a worst-case importance value of 0.33 and resulting in 65 outlier instances. This
outcome is predictable. The observation score based on single historical token is inherently blind to
the fragility of stability assumption; thus it cannot hedge against the worst-case risk. While simple
averaging acts as a form of "reconciliation” among these individual observations to produce a moderate
result, it does not incorporate any mechanism to control for this underlying risk. Consequently, it
cannot aggregate a prediction to consistently outperform every single-token observation. When most
single token-based observations fail, the mean-aggregated result is inevitably dragged down with
them, thus offering no meaningful improvement and producing similarly damaging outliers.

This underscores a critical point: rather than focusing solely on designing more accurate importance
indicators, it is equally—if not more—important to develop new aggregation methods explicitly
designed for worst-case risk control, which can provide reliable estimates even when most single-
token observations fail.

4

Under review as a conference paper at ICLR 2026

Table 1: Defensive aggregation consistently improves the worst-case values across all task types.

Task type Single-Doc. QA Multi-Doc. QA Summary Few-shot Synthetic Code
Dataset NrtvQA HotpotQA GovReport ~ TREC PCount Lce
Mean aggregation 0.44 0.39 0.28 0.47 0.47 0.30
Defensive aggregation 0.62 0.60 0.52 0.61 0.61 0.50

Algorithm 1 Defensive Aggregation

1: Input: Importance scores I € R"jxn, where [; is the importance of entry ¢ based on historical token j
2: Output: Aggregated risk scores R € R™

3: Ry =maxi<j<mlji, Vi=1,...,n > Worst-case Risk Estimation
4: R; = max (}5%, R) where R = % > R, Vi=1,...,n > Adaptive Prior-Risk Correction
5: return R

3.3 DEFENSIVE AGGREGATION VIA WORST-CASE RISK CONTROL

Consider a cache entry may exhibits high importance in only a few single-token observations while
remaining low in most others duo to fragile stability. Mean aggregation would not recognize this as
important and would erroneously evict it. When this entry becomes crucial again in future generation,
the prior eviction results in substantial importance loss. Thus, relying on mean aggregation fails
to guard against these extreme cases. To address this, we introduce a novel defensive aggregation,
a novel strategy that eschews simple averaging in favor of a worst-case risk control perspective as
shown in Algorithm

Worst-case Risk Estimation. From a risk-control perspective, the penalty for evicting a KV cache
entry is equivalent to the importance score it would have possessed at future moment. The "worst-case
risk", R, is therefore the peak importance score an entry could attain over the entire future generation
process. If we denote the future generated sequence as L, then R} = max;cy, I;;. As this future
maximum is unknowable at eviction time, we instead approximate it as the maximum importance
score observed across all j historical tokens, e.g. R; = maxi<j<m Ij;, Vi=1,... ,n. This O(n)
procedure matches mean aggregation’s runtime yet yields significantly better empirical performance,
as it better captures the potential worst-case risk if the entry were removed.

Adaptive Prior-Risk Correction. Although the above estimator takes the maximum over observed
history, it could still underestimate worst-case risk because eviction methods typically restrict the
observation window (e.g., 32 tokens) to limit overhead. |*| Such restricted observations could miss rare
but critical risks. Inspired by Laplace smoothing in Bayesian estimation, we introduce an adaptive
prior—risk correction. For each head, define a head-level prior risk R = % >, R, ie., the average
observed worst-case risk across entries for that head. If the observed risk R; falls below prior risk

R, we treat the shortfall as under-observation and substitute the prior: R; = max (]:Zi, R)

Thereby, heads with higher overall risk receive larger priors, reducing reliance on limited historical
observations. The effectiveness of correction and its adaptive design is validated in Section 4.4]

By defending against risks of the fragile stability assumption, our defensive aggregation substantially
improves worst-case performance compared to mean aggregation. As shown in Figure[3c] it boosts the
worst-case retained importance from 0.33 to 0.61 and completely eliminates the 65 outlier instances
produced by mean aggregation. Table [I] further confirms this advantage is consistent across six
datasets with different task types. Therefore, this simple two-operation method provides a crucial
defense against the fragility of the importance stability assumption.

3.4 IMPLEMENTING DEFENSIVEKYV EVICTION METHOD WITH DEFENSIVE AGGREGATION

Building upon our proposed defensive aggregation strategy, we introduce two novel cache eviction
methods: DefensiveKV and Layer-DefensiveKV.

"For Grouped-Query Attention, a cache entry’s worst-case risk estimate is the maximum importance score
observed over historical tokens across all heads sharing its KV group.

Explicitly computing attention weights for all tokens is infeasible with FlashAttention optimization, and
even storing all attention weights is prohibitively expensive (e.g., ~64 GB for a 32k context in Llama-3.1-8B).

Under review as a conference paper at ICLR 2026

Algorithm 2 (Layer)-DefensiveKV

1: Input: Cache Entries K, V/, Parameter Wo, queries of m recent historical tokens Q = [g1, ..., Gm]

2: Output: Retained KV Cache K,V

3: Append the KV cache of recent historical tokens K [—m :,:], V[—m :,:] to K, V.

4: A « softmax(QK™ //d)

5: A e R™*" « Pooling(A, dim = —1) > Refined with pooling by SnapKV (Li et al.,2024)
6: R € R" «+ Defensive Aggregation Algorithm] (A) > Our modification
7: R; + R; x norm(v;Wo) Vou; € Vi =1,...,n> Refined with norm by CriticalKV (Feng et al.,[2025)
8: if without layer-wise budget allocation then > Leading to DefensiveKV
9: Select the cache entries with top worst-case risk R independently in each layer and append to K , 14
10: else > Leading to Layer-DefensiveKV
11: R; < R;i/ Y ,norm(v;Wo) Yv; € Vii=1,...,n
12: Select the cache entries with top worst-case risk R jointly across all layers and append to K , 1%
13: end if

14: return R, 14

DefensiveKYV serves as the foundational variant. It directly integrates defensive aggregation into
the traditional cache eviction workflow by replacing the conventional mean aggregation. Despite its
simplicity, this modification alone leads to substantial performance improvements.

Layer-DefensiveKYV further refines this by incorporating a layer-wise budget allocation, inspired
by existing strategies (Feng et al., [2024;|Zhang et al.,[2024a). It performs a joint selection of risky
entries across layers, enabling more budget to be allocated to layers with more risky cache entries.

As shown in Algorithm 2] the overall process of DefensiveKV adheres to the established practices:
preserving the KV cache entries of several recent historical tokens (Line 3) and then utilizing the query
states of these tokens for importance measurement. The importance calculation begins with basic
attention weights (Line 4) and incorporates further refinements—specifically pooling mechanisms
from SnapKV (Line 5), and projected value norm scaling from CriticalKV (Line 7)

The key innovation in DefensiveKV is the strategic replacement of conventional mean aggregation
with our defensive aggregation (Line 6). This simple modification, requiring minimal changes, reduces
over 2x in generation quality loss. The extension to Layer-DefensiveKV is also straightforward. It
incorporates two additional refinements: first, projected value norms are normalized layer-wise to
address their variance across layers (Line 11); second, risky entries are selected jointly across all
layers (Line 12). This leads to an even more impressive gain, with over 4x reduction in quality loss.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Models. We evaluate our approach on three open-source LLMs: Llama-3.1-8B-Instruct (lla, [2024;
Touvron et al.| | 2023) and Qwen2.5-32B-Instruct (Team) 2024), supporting context lengths of up to
128K, and Mistral-7B-Instruct-v0.3 (Jiang et al., [2023)), supporting up to 32K.

Baselines. We compare our method against six baselines. StreamingL. LM (Xiao et al., [2023) is an
early sliding window approach. SnapKV (Li et al.|[2024)), AdaKV (Feng et al.,[2024), and CAKE (Qin
et al., |2025) use attention weight-coupled pooling for importance indicators; CAKE also employs
a cascaded architecture for layer-wise budget allocation. The SOTA CriticalKV (Feng et al., |[2025)
introduces a more accurate importance indicator. DuoAttention (Xiao et al., 2024b), a training-based
method, is included with official configurations for Llama-3.1-8B and Mistral-7B-v0.3, but marked
N/A for Qwen2.5-32B due to unavailable configurations and high training costs. All methods use a
historical window size of 32 and are accelerated with FlashAttention-2(Dao et al., |2022; Dao), [2023)).

Settings. Following the settings in (NVIDIA| 2024; Feng et al., [2025)), the context is compressed
independently before question is introduced. This better simulates practical scenarios (e.g., multi-turn
QA or prefixed contexts) where multiple questions often pertain to the same context, or the question

3 Although our method is based on current SOTA practice, defensive aggregation is widely applicable to other
eviction methods. Appendix[gincludes a case study applying it to another baseline method for demonstration.

Under review as a conference paper at ICLR 2026

=@~ StreamingLLM =@= AdakKV -@- CAKE -l- DefensiveKV
SnapKV CriticalKV Duo =@ Layer-DefensiveKV
100% 1 100% :ﬁﬁiﬁ —t—t 100% | Full Caste——t——q___]
- / e s
2 ,/:x ! R o J/
o 95% / 7 o 95%- 22 / o 95% o /
E= Vs B o’ = d /
© y s] - ! © }' ¢
'3 % e 4 7 II (4 J J
£ 90% | 4 5 £ 90% | P / £ 90% | ¥4 va
o ” ’ 5} A ! o s ’
7] /1 s (7] & ! 2] / ’
47, , 4 ! / 't
85%1 ¢’ ; 85%1{ ¢ ! 8s%] %
/ ,J d //
/ ’ /
4 / /7
80% L — ‘ ‘ : 80% L ‘ ‘ ‘ : 80% ‘ ‘ ‘ ‘
20% 40% 60% 80% 100% 20% 40% 60% 80% 100% 20% 40% 60% 80% 100%
Cache Budget Cache Budget Cache Budget
(a) Meta-Llama-3.1-8B-Instruct (b) Mistral-7B-Instruct-v0.3 (c) Qwen2.5-32B-Instruct
Figure 4: Overview of averaged generation quality across 16 datasets on LongBench.
Multi Doc, QA Multi Doc. QA Multi Doc, QA
_— 0% /,.Aa&,\ /,/—mn(g(.l
S S %
& &4 %n
/ / \“e
/ [v
[[
\ \
\ \
\ \ /
2\ A /&
% 2, §
% % §
% % 4
Few Shot Few Shot Few Shot
SnapKV(-18.4%) -@- StreamingLLM(-30.8%) SnapKV(-8.4%) -® StreamingLLM(-21.6%) SnapKV(-2.9%) -@ StreamingLLM(-14.2%)
Duo(-19.8%) -@ CakeKV(-14.8%) Duo(-1.8%) -@ CakeKV(-6.1%) Duo(-0.4%) -@ CakeKV(-2.7%)
-@ AdaKV(-16.2%) CriticalKV(-10.6%) -® AdaKV(-7.1%) CriticalKV(-3.1%) -@ AdaKV(-1.9%) CriticalKV(-0.5%)
DefensiveKV(-5.1%) —A— Layer-DefensiveKV(-2.3%) DefensiveKV(+0.2%) —A— Layer-DefensiveKV(+0.9%) DefensiveKV(+0.6%) —A— Layer-DefensiveKV(+0.9%)
(a) 20% Cache Size (b) 40% Cache Size (c) 60% Cache Size

Figure 5: Analysis of the six task domains on LongBench for Meta-Llama-3.1-8B-Instruct.

is unavailable during context compression. Thus this setup is more challenging and better reflects the
real-world performance of cache eviction methods. (Feng et al.| [2025)

4.2 LONGBENCH EVALUATION

LongBench (Bai et al.,|2024)) serves as a comprehensive benchmark, featuring 16 datasets structured
into six task domains: single-document QA, multi-document QA, summary, few-shot learning, syn-
thetic tasks, and code completion. Detailed information for each dataset can be found in Appendix

Overall Analysis. Figure dillustrates our methods’ significant advantages in average quality loss
across 16 datasets. As cache size drops from 100% to 40%, all baselines degrade noticeably, while
our DefensiveKV and Layer-DefensiveKV remain nearly lossless. For instance, with a 40% cache on
Llama-3.1-8B (Figure @, CriticalKV (best baseline) loses 3.1% quality, whereas our Defensive KV
shows no degradation, surpassing even the training-based DuoAttention (2.2% drop, despite offline
training costs). At a smaller 20% cache, CriticalKV’s loss is 10.6%, while DefensiveKV limits it to
5.1%(over 2x reduction). Our Layer-DefensiveKV further cuts this loss to 2.3%(over 4x reduction).
Similar advantages hold for other models. For instance, on Mistral-7B with 20% cache, DefensiveKV
and Layer-DefensiveKV achieve 4.0% and 1.3% loss, respectively, far below CriticalKV’s 9.7%.

Task Analysis. Figure [3] displays Llama-3.1-8B average scores by task domain (Appendix [A]
for more models). DefensiveKV and Layer-DefensiveKV consistently excel. While simpler task
domains (Code, Synthetic) show high performance for most methods, challenging ones (Doc QA,
Summarization) reveal significant baseline degradation under reduced cache. Our methods maintain
their advantages. For instance, in Single-doc QA (20% cache), CriticalKV (strongest baseline) drops
to 74.8% of full-cache quality; DefensiveKV achieves 89.6%, and Layer-DefensiveKV reaches 96.7%.
Table [2| further reports detailed 20% cache scores (other results in Appendix [H). On Llama-3.1-8B
(20% cache), DefensiveKV beats CriticalKV on 13/16 datasets; Layer-DefensiveKV wins on 15/16.
Such a significant performance advantage, rarely observed between other baselines, highlights the
effectiveness of our “worst-case risk” perspective to against underlying fragility across diverse tasks.

Under review as a conference paper at ICLR 2026

Table 2: Detailed scores of 16 datasets on LongBench.

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code
Q> © ® e > N
Method Q> & By R oL Ao X o DN C A SV o o Avg.
ST @t T ot T (o o T T o T I oo e e @t
Llama-3.1-8B-Instruct, 20% Cache Size
Full Cache 29.55 44.68 55.82 57.59 48.89 3261 3440 2551 2683 73.00 9236 4327 738 99.50 63.44 52.36 49.20
DuoAttention 2328 21.22 34.03 42.89 28.14 20.57 2532 1948 2312 56.00 86.54 40.67 7.50 7850 65.9459.19 39.52
StreamingLLM 22,05 19.83 23.87 39.44 20.97 1546 27.76 20.63 2227 53.50 89.97 40.04 400 29.50 65.61 60.66 34.72
SnapKV 25.64 2823 29.71 46.17 29.64 2207 27.09 2151 2246 48.50 92.21 44.08 508 79.50 67.17 54.36 40.21
CAKE 2629 30.54 33.28 46.03 32.08 2473 2777 2216 2291 51.50 91.86 43.56 6.50 9250 65.46 52.50 41.85
AdaKV 27.07 28.69 32.85 49.64 30.89 21.57 2670 21.85 22.67 55.50 91.30 43.89 730 80.50 66.44 55.43 41.39
CriticalKV 29.81 32.58 34.96 52.34 36.24 2637 2835 2352 2324 56.50 90.80 43.37 8.89 93.00 67.0554.99 43.88
DefensiveKV 29.97 4046 46.23 52.20 3840 28.06 29.96 23.89 24.11 68.00 91.58 43.17 8.28 100.00 67.17 55.40 46.68

Layer-DefensiveKV 30.10 4291 52.94 55.03 44.07 27.00 3099 2495 2442 69.00 91.30 43.54 8.38 100.00 67.60 56.00 48.01
Mistral-7B-Instruct-v0.3, 20% Cache Size

Full Cache 27.02 38.19 50.22 50.75 37.41 2792 3445 2576 2637 76.00 89.01 46.89 6.50 97.00 66.04 60.47 47.50
DuoAttention 1191 13.58 29.88 31.73 2243 9.18 2396 1725 22.67 49.50 86.08 43.08 2.67 18.00 59.89 56.23 31.13
StreamingLLM 18.30 1638 26.26 38.78 25.99 1506 28.00 20.73 21.32 30.50 80.88 40.57 3.00 28.00 32.6246.9129.58
SnapKV 2191 23.69 30.59 43.71 2828 19.81 2791 21.15 2215 55.00 89.41 46.67 5.00 8250 64.3059.97 40.13
CAKE 23.08 2542 3531 44.10 28.96 18.59 2827 21.18 2261 60.00 90.36 46.40 4.00 77.00 64.50 59.21 40.56
AdaKV 2400 2629 31.15 4526 27.99 20.65 2737 21.67 2238 59.00 89.87 46.27 4.50 88.00 65.0559.50 41.18
CriticalKV 24.14 2956 3891 4542 32.08 2126 2859 2271 2311 65.50 90.13 46.65 4.11 90.00 65.42 58.43 42.88
DefensiveKV 21.05 34.67 50.05 48.76 32.27 2609 3195 2339 24.05 72.50 90.11 46.80 353 96.50 65.78 61.93 45.59

Layer-DefensiveKV 27.31 39.41 49.70 49.89 37.82 24.16 3313 25.08 2549 74.50 89.61 46.25 3.06 97.00 66.99 61.21 46.91
Qwen2.5-32B-Instruct, 20% Cache Size

Full Cache 30.88 46.13 52.87 63.59 59.75 38.78 3259 2435 2495 72.00 88.26 47.05 12.50 100.00 49.64 34.24 48.60
DuoAttention N/A N/A N/A N/A NA N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A NA NA

StreamingLLM 20.74 17.68 25.04 39.53 33.19 17.38 27.83 19.04 21.67 61.00 82.01 42.80 10.67 29.00 56.20 30.14 33.37
SnapKV 2452 2458 28.80 52.54 42.07 29.74 2825 1945 2135 58.00 87.74 48.21 9.00 76.35 53.19 35.58 39.96
CAKE 2225 2649 31.33 49.20 4248 28.11 27.86 1892 22.02 58.00 87.77 47.22 11.00 8125 51.82 35.25 40.06
AdaKV 2549 2251 29.13 54.11 41.24 2998 28.01 1933 21.81 61.50 83.09 48.02 9.00 74.00 55.84 35.17 40.20
CriticalKV 29.65 2593 32.51 5892 48.60 3454 2977 2086 2223 65.00 83.44 48.65 10.50 94.75 53.95 35.14 43.72
DefensiveKV 3111 32.11 45.66 62.55 57.68 40.55 3030 22.06 2298 71.00 88.96 48.05 9.50 99.75 54.29 36.98 47.10

Layer-DefensiveKV 31.38 35.65 49.25 64.24 58.86 40.25 30.86 23.07 23.10 75.00 88.92 4747 10.00 99.88 52.21 35.62 47.86

4.3 NEEDLE-IN-A-HAYSTACK EVALUATION

In the Needle-in-a-Haystack test, the key sentence is placed in a long context to evaluate retrieval
ability. Following Ruler (Hsieh et al.,[2024), we test two representative cases with a 32K context
length: (1) Single-retrieval: one needle is randomly inserted for retrieval. (2) Multi-retrieval: four
needles are randomly inserted and all need to be retrieved. Further details, along with evaluations on
more "needle-in-a-haystack-style" tasks from Ruler, are provided in Appendix [F}

As shown in Figure[6] our DefensiveKV and Layer-DefensiveKV achieve significantly higher scores
across all settings. For instance, on long-context models like Llama-3.1-8B and Qwen2.5-32B (both
supporting 128K context length), our methods maintain near-lossless, with scores 194 and 193 for
Llama-3.1-8B at mere 10% cache size. In contrast, even the strongest baseline, CriticalKV, drops to
140 under the same conditions, while others fall below 100—demonstrating a substantial gap. On
weaker long-context ability model, i.e., Mistral-7B (maximum context length 32K), all baselines
suffer severe performance degradation. At a 10% cache size, most baselines score below 6, and
CriticalKV only reaches 28. However, our DefensiveKV and Layer-DefensiveKV achieve scores of
139 and 161, over 5x and 5.8x improvements, respectively.

4.4 ABLATION STUDIES

To analyze the roles of the two key operations in our defensive aggregation—worst-case risk esti-
mation and adaptive prior-risk correction—we conduct ablation studies based on our DefensiveKV
method. First, we only remove adaptive prior-risk correction (denoted as Abl2). Then, we further
ablate the worst-case risk estimation by replacing with common mean aggregation (denoted as Abl1).
As shown in Figure[7] using only worst-case risk estimation (Abl2) already significantly outperforms
that are with mean aggregation. For example, on Llama-3.1-8B, Abl2 improves the score from
103 (Abll) to 179. Adding our adaptive prior-risk correction provides further gains, with our full
DefensiveKV method reaching a score of 194. These results confirm that both operations contribute
meaningfully to the overall performance.

To validate the adaptive design of our prior-risk correction, we ablated it against fixed correction
thresholds (1E-3, 1E-4, 1E-5). The results in Figure [8|show that fixed thresholds are ineffective. Most
fail to outperform the no-correction baseline score of 179 (Abl2), with the 1E-4 case providing only
a marginal gain to 182. Our adaptive correction, however, reaches a score of 194, confirming that
tailoring the correction to each head’s risk profile is crucial. Additionally, the hyperparameter-free

Under review as a conference paper at ICLR 2026

2
200 Full Cache 94 193 191128 108 152 7105338 33 102132 132 196 1es 200 200 Zop 208 |0
[0 sSingle-Needle 159 1
150
0 1601 0 Multi-Needle 140 140 5
9120 113
o 9 .o agn agn Ll = Bl Ll RO g
0 79
80 69 s W
s sl 0B >
o = -]
200] _ Full Cache 90 193 196 196 197 195 197 197 196 |2
=3 Single-Needle 161 151 a
0 1601) Multi-Needle L3¢ 138 o 9
9 120 112 102 4
0 80 | | L u || 77 :<.u
| a8 = aa
0 L w7 . = ﬁ 10 10 16 H 20 17 H r_—li H 8
= s st H S = = BH H =
Full Cache 98 19, 196 199 19 199 200 19 194 199 199 200
200 - - 2 196 So8. = i 2 i 194 L 2
© 160{ =0 Single-Needle 157 H
© 120| == Multi-Needle 128 113 126 3
o - = = = / =
| 81 = b
“ 8o 63 e 63 [*)]
a0 =
a0 18 22 ﬁ ﬂ H ﬁ W
olNa = 25 95 N/A Fl 12 N/A N/A g
&0 I I IO A TP P &l o ol ol ol oo ol &l o o ool ol oo e e & 0 Pl o Pl o ol el
207040 (4040 (40 (49 149 (oS 2929029297 7 2 807 40" 1 a0°C 49" 507 507 60" S ORI LR
900“‘\“‘)@?*40"*»6“*\\\(?\@‘\4e‘p{dds 000‘\‘\“9@?‘\\(}*:6“ ‘a*\.‘qe“s\qe‘\\ 0\)06“‘“939“:‘(."*t6"p‘&\‘\{d°$-de‘p‘ o\)"“(\“91‘)@1‘}*t61$‘\‘&\¢‘“é(~"\“e 3
CANPAS W a5 o Al O WY o 2 RPCOPCY 2 0 NP
@5 e P e I e It e
e C et ¢
VY VoY Y VoY
Figure 6: Evaluations on the needle-in-a-haystack tasks.
!) = DefensiveKV (Batch 1) DefensivekV (Batch 2)
Abl1 (Mean Agg.) Abl2 ase Risk Est.) Ours Agg.) Meta-Llama-3.1-8B-Instruct, Needle-in-a-haystack 32K = CriticalKV (Batch 1) CriticalKV (Batch 2)
= Single-Needle =1 Multi-Needle
198 =1 Single-Needle £ Multi-Needle 1 Full Cache (Batch 1) 2 Full Cache (Batch 2)

194
200
179
200

o
i

Decoding

179 182 179 £
[3 160 139 1 60| Prefilling
O 1201103
S 100 1 106 40 ’
0
W .
P |)
= B oLl oy oco MM mi gl
16 32 64128 16 32 64128 16 3264128 16 32 64128

@ 02 2 AYPPAYPPAY O o o

‘\\3‘&\’:“;\\\5«‘ \ex‘%ote,.d’iy \:‘f“«: we A2 et “._.z; od “_.«1 od 1EB ours Length (K) Length (K)
A \ < " "

POVt o P"\‘W\qb 65 pO ot oo € [(3

o
3

=)
i
S

Score
R
S

Latency (s)
o
o
&

TTFT (s)

»
S

Figure 7: Ablation 10% cache. Figure 8: Adaptive Correction Figure 9: Efficiency(FlashAttn2)

nature of our adaptive design ensures consistently strong performance across two additional models
(shown as Abl2 vs. ours in Figure[7).

4.5 EFFICIENCY TEST

We compare DefensiveKV and CriticalKV, which differ only in their aggregation mechanisms, to
demonstrate that defensive aggregation introduces negligible computational overhead. Our experi-
ments, conducted on an 80GB A100 GPU with Llama-3.1-8B (20% cache), show in Figure@that
DefensiveKV and CriticalKV have nearly identical time-to-first-token (TTFT) and decoding latency.
All KV cache eviction occurs during the prefilling stage and is included in TTFT, confirming that
DefensiveKV adds negligible overhead. Additionally, cache eviction significantly reduces decoding
latency versus Full Cache: e.g., for batch size 1 and a 128K context length, latency drops from 0.081s
(Full Cache) to 0.028s with eviction-based methods (a 2.9x speedup). Furthermore, cache eviction
allows larger batch sizes; for example, eviction methods can handle batch size of 2, while Full Cache
results in out-of-memory errors, leading to a 4.2x decoding throughput boost. See Appendix [D|for
memory usage details.

5 CONCLUSION

This work challenges the fragile stability assumption underlying existing KV cache eviction methods.
We show that widely used mean aggregation strategies are highly vulnerable under the fragile stability,
resulting in poor worst-case performance. To address this, we propose “defensive aggregation”, a
novel strategy explicitly designed from a “worst-case risk” perspective with negligible computational
overhead. Based on this, we investigate DefensiveKV and its layer-aware variant, Layer-DefensiveKV,
both of which achieve significant improvements over state-of-the-art methods across comprehensive
evaluations. Our work pioneers a new research direction by emphasizing the “worst-case risk”-aware
aggregation to mitigate the often-overlooked fragility in cache eviction—a critical yet underexplored
component of efficient LLM inference. We hope these contributions pave the way for more effective
cache eviction methods, which are essential for advancing LLM inference.

Under review as a conference paper at ICLR 2026

REFERENCES

Llama-3-8b-instruct-gradient-1048k, 2024. URL https://huggingface.co/gradientai/
Llama-3-8B-Instruct-Gradient-1048k.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508, 2023.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual,
multitask benchmark for long context understanding, 2024. URL https://arxiv.org/abs/
2308.14508.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,

35:16344-16359, 2022.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan, Noah A Smith, and Matt Gardner. A dataset
of information-seeking questions and answers anchored in research papers. arXiv preprint
arXiv:2105.03011, 2021.

Alexander R Fabbri, Irene Li, Tianwei She, Suyi Li, and Dragomir R Radev. Multi-news: A large-
scale multi-document summarization dataset and abstractive hierarchical model. arXiv preprint
arXiv:1906.01749, 2019.

Hugging Face. Unlocking longer generation with key-value cache quantization. Hugging Face Blog,
2024a. URL https://huggingface.co/blog/kv-cache—quantizationl

Hugging Face. Quanto: a pytorch quantization backend for optimum. Hugging Face Blog, 2024b.
URLhttps://huggingface.co/blog/quanto-introduction.

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S. Kevin Zhou. Ada-kv: Optimizing kv cache
eviction by adaptive budget allocation for efficient llm inference, 2024. URL https://arxiv.
org/abs/2407.11550.

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S Kevin Zhou. Identify critical kv cache in llm
inference from an output perturbation perspective, 2025. URL |https://arxiv.org/abs/
2502.03805.

Yu Fu, Zefan Cai, Abedelkadir Asi, Wayne Xiong, Yue Dong, and Wen Xiao. Not all heads matter:
A head-level kv cache compression method with integrated retrieval and reasoning. arXiv preprint
arXiv:2410.19258, 2024.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. Samsum corpus: A human-
annotated dialogue dataset for abstractive summarization. arXiv preprint arXiv:1911.12237,
2019.

Qiuhan Gu. Llm-based code generation method for golang compiler testing. In Proceedings of the
31st ACM Joint European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pp. 2201-2203, 2023.

Daya Guo, Canwen Xu, Nan Duan, Jian Yin, and Julian McAuley. Longcoder: A long-range pre-
trained language model for code completion, 2023. URL https://arxiv.org/abs/2306,
14893.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-
hop QA dataset for comprehensive evaluation of reasoning steps. In Donia Scott, Nuria Bel,
and Chengqing Zong (eds.), Proceedings of the 28th International Conference on Computa-
tional Linguistics, pp. 6609—6625, Barcelona, Spain (Online), December 2020. International
Committee on Computational Linguistics. doi: 10.18653/v1/2020.coling-main.580. URL
https://aclanthology.org/2020.coling-main.580.

10

https://huggingface.co/gradientai/Llama-3-8B-Instruct-Gradient-1048k
https://huggingface.co/gradientai/Llama-3-8B-Instruct-Gradient-1048k
https://arxiv.org/abs/2308.14508
https://arxiv.org/abs/2308.14508
https://huggingface.co/blog/kv-cache-quantization
https://huggingface.co/blog/quanto-introduction
https://arxiv.org/abs/2407.11550
https://arxiv.org/abs/2407.11550
https://arxiv.org/abs/2502.03805
https://arxiv.org/abs/2502.03805
https://arxiv.org/abs/2306.14893
https://arxiv.org/abs/2306.14893
https://aclanthology.org/2020.coling-main.580

Under review as a conference paper at ICLR 2026

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Sophia Shao, Kurt
Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with kv
cache quantization. Advances in Neural Information Processing Systems, 37:1270-1303, 2024.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024.

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng Ji, and Lu Wang. Efficient attentions for long
document summarization. arXiv preprint arXiv:2104.02112, 2021.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Huiqgiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
Han, Amir H Abdi, Dongsheng Li, Chin-Yew Lin, et al. Minference 1.0: Accelerating pre-filling
for long-context 1lms via dynamic sparse attention. arXiv preprint arXiv:2407.02490, 2024.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension, 2017. URL https://arxiv.org/
abs/1705.03551.

Gregory Kamradt. Needle In A Haystack - pressure testing LLMs. Github, 2023. URL https:
//github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/mainl

Tomas Kocisky, Jonathan Schwarz, Phil Blunsom, Chris Dyer, Karl Moritz Hermann, Gabor Melis,
and Edward Grefenstette. The narrativeqa reading comprehension challenge. Transactions of the
Association for Computational Linguistics, 6:317-328, 2018.

Xin Li and Dan Roth. Learning question classifiers. In COLING 2002: The 19th International
Conference on Computational Linguistics, 2002.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before generation.
arXiv preprint arXiv:2404.14469, 2024.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Reza Haffari, and Bohan Zhuang. Minicache: Kv cache
compression in depth dimension for large language models. Advances in Neural Information
Processing Systems, 37:139997-140031, 2024a.

Di Liu, Meng Chen, Baotong Lu, Huiqiang Jiang, Zhenhua Han, Qianxi Zhang, Qi Chen, Chen-
gruidong Zhang, Bailu Ding, Kai Zhang, et al. Retrievalattention: Accelerating long-context llm
inference via vector retrieval. arXiv preprint arXiv:2409.10516, 2024b.

Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-level code
auto-completion systems, 2023. URL https://arxiv.org/abs/2306.03091,

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time. Advances in Neural Information Processing
Systems, 36, 2024c.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024d.

Piotr Nawrot, Robert Li, Renjie Huang, Sebastian Ruder, Kelly Marchisio, and Edoardo M. Ponti. The
sparse frontier: Sparse attention trade-offs in transformer llms, 2025. URL https://arxiv}
org/abs/2504.17768.

NVIDIA. Kvpress, 2024. URL https://github.com/NVIDIA/kvpress.

11

https://arxiv.org/abs/1705.03551
https://arxiv.org/abs/1705.03551
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://arxiv.org/abs/2306.03091
https://arxiv.org/abs/2504.17768
https://arxiv.org/abs/2504.17768
https://github.com/NVIDIA/kvpress

Under review as a conference paper at ICLR 2026

Matanel Oren, Michael Hassid, Nir Yarden, Yossi Adi, and Roy Schwartz. Transformers are multi-
state rnns. arXiv preprint arXiv:2401.06104, 2024.

Ziran Qin, Yuchen Cao, Mingbao Lin, Wen Hu, Shixuan Fan, Ke Cheng, Weiyao Lin, and Jianguo
Li. CAKE: Cascading and adaptive KV cache eviction with layer preferences. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview,
net/forum?id=EQgEMAD4kv.

Siyu Ren and Kenny Q. Zhu. On the efficacy of eviction policy for key-value constrained generative
language model inference, 2024. URL https://arxiv.org/abs/2402.06262.

Hanshi Sun, Zhuoming Chen, Xinyu Yang, Yuandong Tian, and Beidi Chen. Triforce: Lossless
acceleration of long sequence generation with hierarchical speculative decoding. arXiv preprint
arXiv:2404.11912, 2024.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference. arXiv preprint arXiv:2406.10774,
2024.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://gwenlm,
github.io/blog/gqwen2.5/l

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
questions via single-hop question composition. Transactions of the Association for Computational
Linguistics, 10:539-554, 2022.

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan
Liu, and Maosong Sun. Infllm: Training-free long-context extrapolation for llms with an efficient
context memory. arXiv preprint arXiv:2402.04617, 2024a.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian Guo, Shang Yang, Haotian Tang, Yao Fu, and
Song Han. Duoattention: Efficient long-context llm inference with retrieval and streaming heads,
2024b. URL |https://arxiv.org/abs/2410.108109.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, junxian guo, Shang Yang, Haotian Tang, Yao Fu,
and Song Han. Duoattention: Efficient long-context LLLM inference with retrieval and streaming
heads. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=cFu7ze7xUm.

Yuhui Xu, Zhanming Jie, Hanze Dong, Lei Wang, Xudong Lu, Aojun Zhou, Amrita Saha, Caiming
Xiong, and Doyen Sahoo. Think: Thinner key cache by query-driven pruning. arXiv preprint
arXiv:2407.21018, 2024.

Penghui Yang, Cunxiao Du, Fengzhuo Zhang, Haonan Wang, Tianyu Pang, Chao Du, and Bo An.
Longspec: Long-context speculative decoding with efficient drafting and verification, 2025. URL
https://arxiv.org/abs/2502.17421.

Yifei Yang, Zouying Cao, Qiguang Chen, Libo Qin, Dongjie Yang, Hai Zhao, and Zhi Chen. Kvsharer:
Efficient inference via layer-wise dissimilar kv cache sharing. arXiv preprint arXiv:2410.18517,
2024.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Zihao Yi, Jiarui Ouyang, Yuwen Liu, Tianhao Liao, Zhe Xu, and Ying Shen. A survey on recent
advances in llm-based multi-turn dialogue systems. arXiv preprint arXiv:2402.18013, 2024.

12

https://openreview.net/forum?id=EQgEMAD4kv
https://openreview.net/forum?id=EQgEMAD4kv
https://arxiv.org/abs/2402.06262
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2410.10819
https://openreview.net/forum?id=cFu7ze7xUm
https://arxiv.org/abs/2502.17421

Under review as a conference paper at ICLR 2026

Xuan Zhang, Fengzhuo Zhang, Cunxiao Du, Chao Du, Tianyu Pang, Wei Gao, and Min Lin.
Lighttransfer: Your long-context 1lm is secretly a hybrid model with effortless adaptation. In
Workshop on Reasoning and Planning for Large Language Models, 2025.

Yichi Zhang, Bofei Gao, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao Chang, Junjie
Hu, Wen Xiao, et al. Pyramidkv: Dynamic kv cache compression based on pyramidal information
funneling. arXiv preprint arXiv:2406.02069, 2024a.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o0: Heavy-hitter oracle for efficient

generative inference of large language models. Advances in Neural Information Processing
Systems, 36, 2024b.

Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia Mutuma, Rahul Jha, Ahmed Hassan Awadallah,
Asli Celikyilmaz, Yang Liu, Xipeng Qiu, et al. Qmsum: A new benchmark for query-based multi-
domain meeting summarization. arXiv preprint arXiv:2104.05938, 2021.

13

Under review as a conference paper at ICLR 2026

Multi Doc. QA
& fulti Dog, B

- ° @
K

SnapKV(-8.1%) -@ StreamingLLM(-32.8%) SnapKV(-19.5%) -@- StreamingLLM(-39.5%) SnapKV(-10.9%) -@- StreamingLLM(-26.5%)
Duo(-2.1%) -@ CakeKV(-6.2%) Duo(-10.8%) -® CakeKV(-19.2%) Duo(N/A) -@ CakeKV(-15.0%)
-@ AdaKV(-6.2%) CriticalKV(-2.8%) -@ AdaKV(-16.8%) CriticalKV(-3.0%) -® AdaKV(-9.0%) CriticalKV(-3.0%)
- DefensiveKV(+0.1%) —A— Layer-DefensiveKV(+0.7%) —#— DefensiveKV(-0.5%) —A— Layer-DefensiveKV(-0.3%) —— DefensiveKV(+0.7%) —A— Layer-DefensiveKV(+0.3%)
(a) Llama-3.1-8B, 40% Cache (b) Mistral-7B, 40% Cache (c) Qwen-32B, 40% Cache

Multi Doc. QA Multi Doc. QA
S /—w&g s 0%

& _

S
&
Q
<
2!
2\
SJ"I[,' ‘/// ,5\‘“‘
Gti(_ ?e’ﬁ
SnapKV(-2.8%) -@ StreamingLLM(-26.5%) SnapKV(-14.7%) -@- StreamingLLM(-34.0%) SnapKV(-4.1%) -@ StreamingLLM(-18.4%)
Duo(-0.4%) -@ CakeKV(-2.7%) Duo(-0.4%) -@ CakeKV(-12.9%) Duo(N/A) -@ CakeKV(-7.1%)
-@ AdaKV(-1.6%) CriticalKV(-0.4%) -@ AdaKV(-10.0%) CriticalKV(-0.8%) -® AdaKV(-3.1%) CriticalKV(-0.5%)
B DefensiveKV(+0.5%) —A— Layer-DefensiveKV(+0.8%) —B— DefensiveKV(+0.6%) —A— Layer-DefensiveKV(-0.1%) —#— DefensiveKV(+0.9%) —A— Layer-DefensiveKV(+1.0%)
(d) Llama-3.1-8B, 60% Cache (e) Mistral-7B, 60% Cache (f) Qwen-32B, 60% Cache

Figure 10: Summarization of quality losses.
A QUALITY LOSSES OF METHODS WITH 40% AND 60% CACHE SIZE

Figure[T0| further summarizes the quality losses of different methods at 40% and 60% cache sizes.
It can be observed that both DefensiveKV and Layer-DefensiveKV maintain nearly lossless per-
formance, in some cases even surpassing the original uncompressed results. In contrast, all other
methods exhibit notable declines in quality. These results demonstrate the effectiveness of our
approach.

B DETAILED SETTINGS

The fundamental settings for SnapKV, CAKE, AdaKYV, CriticalKV and our methods were kept as
originally defined, with an average-pooling kernel size of 5 and a historical token size of 32 for
observation. For StreamingLLM (Xiao et al/,[2023), we follow standard settings, using 4 sink tokens
and retaining the most recent window’s cache. For DuoAttention 2025), we follow the
publicly released training settings. Following standard practices in prior studies 2024}
[Zhang et al, 20244} [Feng et all,[2024)), we perform cache eviction immediately after the prefilling
phase of each layer.

C ADDITIONAL RELATED WORKS

Beyond cache eviction methods, a broader range of related work can reduce KV cache footprint. For
example, Think compresses the KV cache by reducing the number of channels in the
key states. Other approaches, such as MiniCache 2024a)) and KV Sharer 2024),
exploit KV similarity between layers to achieve compression. These techniques are orthogonal to KV
cache eviction methods and can be further combined with them. KV cache quantization
[2024}; [Liu et al} 2024d), which reduces the precision of individual cache entries (e.g., quantizing
16-bit entries to 4-bit or 2-bit), also offers footprint reduction. Because quantization methods typically

14

Under review as a conference paper at ICLR 2026

I DefensiveKV (Batch 1) [CriticalKV (Batch 1) [Full Cache (Batch 1)
DefensiveKV (Batch 2) CriticalKV (Batch 2) 272 Full Cache (Batch 2)

H D (o]
(=] [« (=]

Peak Memory (GB)
[\
o

| i

16k 32k 64k 128k 16k 32k 64k 128k

Figure 11: Peak Memory usage(All with FlashAttention-2).

retain all cache entries, they are fundamentally orthogonal to the cache eviction methods explored in
this paper and can also be applied to further enhance them. Furthermore, recent speculative decoding
methods explore using a reduced KV cache for draft generation in long-sequence generation (Sun
et al.,[2024; |Yang et al.| |2025). Refining cache eviction to enhance speculative decoding is also a
promising research direction.

Sparse attention methods are conceptually related to KV cache eviction (Xiao et al., [2024a; [Tang
et al.l 2024; Jiang et al.l 2024; [Liu et al.l 2024b). The key difference is that KV cache eviction
retains only a subset of the KV cache, while sparse attention methods keep all entries but selectively
utilize only a critical subset during computation (Nawrot et al., [2025)). Consequently, sparse attention
methods do not reduce the memory footprint of the KV cache. The two technique lines are, in fact,
orthogonal. Future research could explore firstly employing KV cache eviction to compress the cache
to a certain proportion (e.g., 40% cache size with minimal loss, as demonstrated in this paper) and
then applying sparse attention for further acceleration. This represents a promising direction for
future research.

D MEMORY USAGE DURING GENERATION

Following the efficiency evaluation in Section [4.5] we also measured peak memory usage during
inference. The memory savings from cache eviction are primarily determined by the compressed
cache size. Our introduced defensive aggregation method does not differ in memory usage from
standard mean aggregation. As shown in Figure[TT] DefensiveKV and CriticalKV exhibit significantly
lower peak memory usage than Full Cache. For example, with a batch size of 1 and a 128K context
length, DefensiveKV and CriticalKV use only 36GB, far less than Full Cache’s 61.5 GB. This allows
them to support larger batch sizes, such as batch size 2, further increasing decoding throughput, while
Full Cache encounters out-of-memory (OOM) errors. This advantage enables DefensiveKV and
CriticalKV to achieve up to a 4.2x speedup in 128K decoding throughput compared to Full Cache.

E INTEGRATION DEFENSIVEKYV WITH KV CACHE QUANTIZATION

We combine DefensiveKV with another orthogonal technique, cache quantization. Specifically, we
adopted the official HuggingFace-provided int4 quantization for the KV cache (Face, [2024a), with
backend support from Quanto (Face, [2024b). As showed in TableE], we first compressed the cache
entries to 40% of their original num, and then further quantized them from bf16 to int4 (ultimately
reducing the cache memory footprint to just 10%). After full integration, the average score only
dropped slightly from 49.21 to 48.55, demonstrating that reducing the cache memory to 10% comes
with less than one-point loss in performance. This highlights the great potential of combining these
orthogonal techniques for practical applications.

15

Under review as a conference paper at ICLR 2026

Table 3: Detailed scores of 13 datasets on Ruler.

> >
}0“‘&“3‘3&‘”&“9‘%\&&

¢ 2 > & e > o>
Method AR A SR R R T S
Llama-3.1-8B-Instruct, 32K Ruler, 20% Cache Size
FullCache 45.2294.13 99.60 99.60 99.40 98.75 99.10 100.00 100.00 100.00 79.80 54.80 99.24 89.97
Strongest Baseline CriticalKV 26.80 88.80 91.60 29.40 19.40 9500 93.60 100.00 99.60 42.40 40.80 40.20 97.76 66.57
DefensiveKV 22.94 90.00 99.80 86.80 97.00 98.65 97.90 100.00 100.00 97.40 68.80 45.80 98.76 84.91
Layer-DefensiveKV 17.86 90.80 99.60 99.40 99.00 98.85 98.45 100.00 100.00 100.00 73.00 47.60 98.56 86.39
Llama-3.1-8B-Instruct, 32K Ruler, 40% Cache Size
FullCache 4522 94.1399.60 99.60 99.40 98.75 99.10 100.00 100.00 100.00 79.80 54.80 99.24 89.97
Strongest Baseline CriticalKV 49.08 91.93 99.60 94.00 54.00 9875 98.90 100.00 100.00 97.40 68.00 47.60 99.32 84.51
DefensiveKV 51.12 92.87 99.60 99.80 98.60 98.65 98.90 100.00 100.00 100.00 78.20 51.80 99.24 89.91
Layer-DefensiveKV 50.24 92.00 99.60 99.80 99.20 9870 99.05 100.00 100.00 100.00 78.00 53.40 99.12 89.93

Table 4: Performance comparison of AdaKV with and without defensive aggregation on LongBench.

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code
o° > &
Meth > 5 o SURUNTC LN R a® o R & _
ethed 0 @t o o0t T e (8 T 0T o T o et e et A
Llama-3.1-8B-Instruct, 20% Cache Size
Full Cache 29.55 44.68 5582 57.59 48.89 3261 3440 2551 2683 73.00 9236 4327 7.38 99.50 63.44 52.36 49.20
AdaKV 27.07 28.69 32.85 49.64 30.89 21.57 2670 21.85 22,67 55.50 91.30 43.89 730 80.50 66.44 55.43 41.39

AdaKV w/. defensive agg. 28.60 37.62 41.08 51.74 36.87 22.83 27.83 23.18 23.51 66.00 91.64 4435 810 92.50 67.97 55.71 44.97

F MORE NEEDLE-IN-A-HAYSTACK-STYLE EVALUATIONS ON RULER
BENCHMARK

In the Needle-in-A-Haystack task, a keyword, referred to as the "needle", is embedded within a
lengthy context known as the "haystack". The objective of this task is to extract the "needle" from the
"haystack", which is composed of essays by Paul Graham (Kamradt, 2023). In our main experiments,
we adopt the respective prompt templates (see Table[I0) used in the Ruler Benchmark (Hsieh et al.]
2024)) (corresponding to NIAH-s2 and NIAH-MV in their formulation) to ensure consistency and
reproducibility

The whole Ruler benchmark (Hsieh et al.,|2024) comprises 13 synthetic, needle-in-a-haystack-style
tasks designed to evaluate the long-context capabilities of models. A single evaluation on the full
32K RULER benchmark requires approximately 9 GPU hours. Consequently, a comprehensive
assessment across all methods, compression rates, and models would demand an estimated 864 GPU
hours, which is computationally prohibitive.

In this section, we further presents a more extensive analysis on the complete Ruler benchmark. We
evaluated our proposed methods and the strongest baseline, CriticalKV, at 20% and 40% cache sizes
using Llama-3.1-8B-Instruct, with the results detailed in Table 3] Both DefensiveKV and Layer-
DefensiveKV demonstrated significant advantages; for instance, at a 20% cache size, they achieved
average scores of 84.91 and 86.39, respectively, substantially outperforming the CriticalK'V baseline’s
score of 66.57. These findings underscore our method’s ability to achieve strong compression
performance with minimal loss in accuracy.

G CASE STUDY: AUGMENTING ADAKYV VIA DEFENSIVE AGGREGATION

In Algorithm [T} DefensiveKV is built on CriticalKV’s SOTA importance scoring. To demonstrate the
generalizability of defensive aggregation, we further integrate it into another cache eviction method,
AdaKV. As shown in the table[d] across all 16 LongBench datasets, defensive aggregation consistently
improved AdaKV’s performance, increasing the average score from 41.39 to 44.97. These results
indicate that defensive aggregation can broadly enhance existing cache eviction methods.

16

Under review as a conference paper at ICLR 2026

Table 5: Performance of DefensiveKV combined with int4 cache quantization on LongBench

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code
S
> " o SORNTe L « S e > R)
Method \M\‘Q Q&’Q‘a o “o\qo y s ﬂ\\w\o, 004% @ RSN o ,‘QS‘/C '«\q\a %Pﬁ% o oo & o N q&’? Avg.
Llama-3.1-8B-Instruct, 20% Cache Size
Full Cache (100% memory) 29.55 44.68 55.82 57.59 48.89 3261 344 2551 2683 73 9236 4327 738 99.5 63.4452.3649.2
DefensiveKV-40% Cache (40% memory) 30.07 46.37 549 575 4597 2885 337 2469 262 715 9178 4369 9.88 100 66.25 55.97 49.21

DefensiveKV-40% Cache-int4 (10% memory) 30.63 44.62 54.44 56.14 429 28.15 3379 2515 2592 70.5 91.28 43.76 7.55 100 65.71 56.23 48.55

Table 6: Detailed scores of 16 datasets on LongBench (40% cache size).

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code
Method Q& e VTSN 3 ™ \(&"‘Q‘% <O . 4\@0}‘ 9‘5“6\ & R Avg.
S R R R s e e i I R R AR
Llama-3.1-8B-Instruct, 40% Cache Size
Full Cache 29.55 44.68 55.82 57.59 48.89 3261 3440 2551 2683 73.00 92.36 43.27 738 99.50 63.44 52.36 49.20
DuoAttention 28.83 4251 5335 5576 4537 30.16 3226 25.07 2551 71.50 88.44 41.12 3.67 99.50 68.81 58.85 48.17
StreamingLLM 2432 28777 2874 4375 30.71 18.55 3026 21.86 24.88 65.50 9224 41.65 292 46.00 66.54 61.42 39.26
SnapKV 27.72 3642 3831 54.92 40.02 2695 30.60 2333 2431 56.00 92.31 4392 7.62 96.50 65.9553.77 44.92
CAKE 3043 37.57 4551 57.13 40.08 2595 3033 2380 24.96 61.00 91.83 43.46 6.70 100.00 65.56 52.66 46.06
AdaKV 2836 37.58 41.35 54.80 4147 29.02 30.18 2372 24.68 63.50 91.73 43.57 727 95.00 64.93 54.7545.74
CriticalKV 30.10 40.14 49.03 5595 46.22 3042 3149 2434 2515 67.50 92.39 43.20 8.08 99.00 64.68 55.08 47.67
DefensiveKV 30.07 46.37 54.90 57.50 4597 2885 3370 24.69 26.20 71.50 91.78 43.69 9.88 100.00 66.25 55.97 49.21

Layer-DefensiveKV 30.94 43.84 55.01 56.36 49.14 29.88 34.09 2571 26.64 72.00 91.49 42.96 8.56 99.50 67.30 57.98 49.46
Mistral-7B-Instruct-v0.3, 40% Cache Size

Full Cache 27.02 38.19 5022 50.75 37.41 2792 3445 2576 2637 76.00 89.01 46.89 6.50 97.00 66.04 60.47 47.50
DuoAttention 20.37 2696 49.69 48.92 34.96 20.16 29.14 21.74 2486 73.50 87.39 44.06 3.00 93.00 63.9558.16 43.74
StreamingLLM 19.71 2485 29.54 42.10 34.34 18.53 31.03 21.60 24.05 40.00 83.25 41.22 3.50 4550 34.40 46.59 33.76
SnapKV 2532 30.09 39.68 49.16 33.66 22.38 30.60 2239 2422 65.00 89.37 47.17 5.00 9450 65.60 60.66 44.05
CAKE 25.02 31.82 4530 48.42 3194 2173 31.70 23.15 2477 68.50 89.22 46.34 4.00 9250 64.99 60.21 44.35
AdaKV 2476 31.86 41.79 49.59 32.95 20.20 3051 2294 2442 68.00 83.96 47.29 550 9650 65.54 59.99 44.42
CriticalKV 2697 3432 47.50 48.00 38.07 24.64 3151 2479 2514 72.50 89.37 47.86 453 9550 65.59 59.68 46.00
DefensiveKV 2545 39.24 51.42 50.13 34.89 26.36 3443 2542 26.17 75.50 89.21 46.59 5.05 98.00 66.54 61.65 47.25

Layer-DefensiveKV 26.29 40.49 50.92 48.85 36.34 26.02 3433 2528 26.62 76.00 89.36 46.71 3.86 97.00 66.65 62.12 47.30
Qwen2.5-32B-Instruct, 40% Cache Size

Full Cache 30.88 46.13 52.87 63.59 59.75 38.78 3259 2435 2495 72.00 88.26 47.05 12.50 100.00 49.64 34.24 48.60
DuoAttention N/A N/A N/A NA NA N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A NA NA
StreamingLLM 2395 2549 28.48 49.89 44.66 2415 3032 20.60 24.12 68.00 87.08 45.90 11.62 46.00 57.38 28.36 38.50
SnapKV 27.18 3399 38.19 61.11 53.18 3801 2995 20.84 2295 66.00 89.16 47.02 12.00 9775 52.19 34.75 45.27
CAKE 28.13 35.18 39.22 60.17 56.22 36.25 3033 21.03 2388 66.00 838.74 46.68 10.50 98.75 52.20 35.14 45.53
AdaKV 27.16 31.83 37.07 60.81 53.92 37.66 29.84 20.79 23.07 68.50 88.93 47.40 12.00 97.00 53.05 34.56 45.22
CriticalKV 31.65 3523 4270 59.24 59.26 40.10 31.25 22,67 24.02 71.00 88.80 4691 11.00 99.75 51.76 35.70 46.94
DefensiveKV 3097 43.88 51.15 65.16 63.66 4220 32.82 2350 24.67 74.00 88.88 47.50 10.00 99.88 53.50 34.24 49.13

Layer-DefensiveKV 31.61 44.02 51.86 64.35 61.10 40.88 31.94 24.26 24.62 74.50 88.75 46.76 12.00 100.00 50.88 34.64 48.89

H DETAILED SCORES OF LONGBENCH

We provide detailed scores on individual datasets for 40%, 60% and 80% cache sizes in Tables |§|,
[7]and, [8] Our DefensiveKV and Layer-DefensiveKV methods maintain nearly lossless generation
quality across these settings, while other baselines fail to achieve this level of performance.

I THE EFFECTIVENESS OF DEFENSIVE AGGREGATION STRATEGY

To complement Figure[T]in the main text, Figure[T2] provides additional visualizations demonstrating
that defensive aggregation offers greater robustness than mean aggregation under a 50% cache size.
The results reveal that this fragility is prevalent across numerous layers. Both "Single Historical
token" and "Mean aggregation" methods exhibit high sensitivity to this fragility, leading to poor worst-
case performance. In contrast, defensive aggregation effectively mitigates this issue, consistently
maintaining higher worst-case values.

J FURTHER ELABORATION OF THE FRAGILE STABILITY ASSUMPTION

Complementing Figure [3] in the main text, Figure [T3] provides a more detailed illustration. It
demonstrates how measurements from single historical tokens, which guide cache eviction, experience
significant degradation at certain generation steps. The outlier cases occurs regardless of which
specific historical token is used. Consequently, the failure of such averaging approaches is an expected
outcome.

17

Under review as a conference paper at ICLR 2026

Table 7: Detailed scores of 16 datasets on LongBench (60% cache size).

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code
Method O e N;\QP' R \g\\“\ﬂs < ol \\\%““\ RPN Q Avg.
A N S N S L S S SR LRV
Llama-3.1-8B-Instruct, 60% Cache Size
Full Cache 29.55 44.68 55.82 57.59 48.89 32.61 3440 2551 2683 73.00 9236 4327 7.38 99.50 63.44 52.36 49.20
DuoAttention 2877 43.00 5441 5590 46.18 28.61 3386 25.10 26.80 72.00 91.16 43.37 10.50 99.50 66.23 56.03 48.84
StreamingLLM 2521 39.92 33.53 49.72 39.98 22.62 3151 2312 2591 69.50 92.27 4275 3.08 57.50 66.27 61.75 42.79
SnapKV 2892 4035 48.00 56.79 48.60 30.12 32.54 2420 2558 64.50 91.64 44.53 8.85 99.00 65.03 53.81 47.65
CAKE 29.99 41.87 53.09 5539 42.83 32.17 3212 2487 2561 66.50 92.50 4337 796 99.50 64.1152.62 47.78
AdaKV 30.10 43.61 5120 56.37 49.70 30.18 32.37 2438 2554 66.50 91.48 43.87 8.02 99.50 6391 54.73 48.22
CriticalKV 30.31 43.54 52.82 57.30 49.09 3178 3348 25.18 26.00 72.50 91.80 43.95 747 99.50 64.05 54.92 48.98
DefensiveKV 30.88 43.20 55.17 55.85 50.17 31.84 3479 2529 26.84 73.00 92.14 4328 9.05 99.50 63.88 56.02 49.43
Layer-DefensiveKV 29.95 44.11 56.78 57.11 47.47 3258 34.81 25.11 26.80 72.00 91.83 43.14 11.10 99.50 64.21 55.81 49.52
Mistral-7B-Instruct-v0.3, 60% Cache Size
Full Cache 27.02 3819 5022 50.75 37.41 27.92 3445 2576 2637 76.00 89.01 46.89 650 97.00 66.04 60.47 47.50
DuoAttention 28.86 36.56 50.54 53.32 39.19 2922 3391 2516 26.77 76.00 87.57 4540 500 9500 64.7558.91 47.26
StreamingLLM 2148 3055 3540 46.84 36.62 22.89 3220 2270 25.06 4450 8226 41.87 3.00 57.00 34.4247.38 36.51
SnapKV 2544 3377 4563 52.52 3430 2594 32.61 2459 2537 68.00 89.41 47.12 500 9550 66.2259.47 45.68
CAKE 27.17 36.69 48.77 5091 3821 23.16 3353 2373 26.06 75.00 88.46 46.93 5.56 95.00 66.23 60.76 46.64
AdaKV 2547 34.87 4721 48.61 3564 2597 3238 2424 2554 70.50 8891 47.00 5.06 96.00 65.8560.20 45.84
CriticalKV 26.06 3746 50.28 5041 37.11 2680 3328 25.56 25.90 7550 88.81 4754 635 97.00 65.30 59.61 47.06
DefensiveKV 2782 39.13 51.50 50.78 3839 27.37 3429 2541 26.78 76.00 89.21 46.89 4.60 98.00 66.27 61.39 47.74
Layer-DefensiveKV 25.59 38.95 51.99 50.81 37.09 2535 34.50 25.68 26.78 77.50 89.04 4696 4.00 97.00 67.00 61.50 47.48
Qwen2.5-32B-Instruct, 60% Cache Size
Full Cache 30.88 46.13 52.87 63.59 59.75 38.78 3259 2435 2495 72.00 8826 47.05 12.50 100.00 49.64 34.24 48.60
DuoAttention N/A N/A NA NA NA N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A NA
StreamingLLM 26.06 3449 33.06 57.33 46.75 30.57 3039 2193 24.83 7250 87.01 46.97 10.62 57.50 58.09 29.86 41.75
SnapKV 30.42 3855 45.71 62.38 59.78 3836 3177 23.19 2437 69.00 88.64 47.32 12.00 100.00 52.09 34.65 47.39
CAKE 30.07 41.66 4596 6445 5980 36.18 31.64 22.70 24.80 68.00 89.11 47.06 10.50 100.00 52.56 35.24 47.48
AdaKV 29.58 38.02 45.63 61.46 57.33 3791 3143 2240 2413 71.00 88.86 46.64 11.50 100.00 52.54 33.95 47.02
CriticalKV 33.01 4197 48.07 6235 62.58 3979 3245 23.69 24.59 72.00 88.83 46.95 12.00 99.88 52.03 34.02 48.39
DefensiveKV 32.10 46.38 51.50 64.50 63.07 39.13 3277 2441 2496 73.50 88.69 47.07 11.00 99.88 53.35 33.72 49.13
Layer-DefensiveKV 31.28 46.18 51.97 6324 63.20 39.80 32.56 24.37 24.96 73.00 88.65 46.73 13.50 100.00 52.74 34.06 49.14

Table 8: Detailed scores of 16 datasets on LongBench (80% cache size).

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Q> © o > N
Method > s B & Ao 2N AN X C S o o Avg.
R R e INC P\ R R
Llama-3.1-8B-Instruct, 80% Cache Size
Full Cache 29.55 4468 55.82 57.59 48.89 32.61 3440 2551 2683 73.00 9236 43.27 738 99.50 63.44 52.36 49.20
DuoAttention 30.04 4449 5577 57.51 48.96 31.78 3451 2529 2693 73.00 91.35 43.28 8.08 100.00 63.19 55.85 49.38
StreamingLLM 28.57 4396 37.87 52.57 44.06 2650 32.88 2423 26.58 70.50 90.52 4333 4.03 83.50 65.34 60.57 45.94
SnapKV 29.87 44.58 5236 57.31 4833 30.85 33.79 2439 2644 68.50 91.47 43.71 833 99.50 64.66 53.47 48.60
CAKE 29.53 4376 56.26 57.28 47.81 30.71 3326 2514 26.59 72.50 92.75 42.82 9.60 99.50 63.7551.87 48.95
AdaKV 29.93 44.89 57.17 56.55 48.34 32.59 3413 25.14 2636 73.00 91.80 43.54 8.66 99.50 64.12 53.3249.31
CriticalKV 29.73 44.66 55.66 58.19 48.52 3224 3470 2527 26.56 73.50 92.30 43.75 8.09 99.50 63.90 54.04 49.41
DefensiveKV 29.63 4449 56.70 57.41 49.49 31.08 3497 2523 2725 73.00 92.03 43.06 8.07 99.50 63.90 54.53 49.40
Layer-DefensiveKV 29.63 44.88 56.52 58.18 48.10 32.85 3476 2498 27.20 72.50 91.78 42.98 8.62 99.50 63.27 52.44 49.26
Mistral-7B-Instruct-v0.3, 80% Cache Size
Full Cache 27.02 3819 50.22 50.75 37.41 2792 3445 2576 2637 76.00 89.01 46.89 6.50 97.00 66.04 60.47 47.50
DuoAttention 26.07 36.33 50.03 51.37 36.30 2679 3395 2590 26.61 76.00 88.91 47.11 450 97.50 65.53 60.53 47.09
StreamingLLM 23.78 3571 38.09 50.73 37.79 24.82 3351 2431 2585 50.00 83.38 42.98 2.65 82.00 34.2245.5139.71
SnapKV 2642 36.01 49.00 50.06 36.40 28.56 34.08 2454 25.89 73.50 88.91 46.86 6.00 96.00 66.28 60.67 46.82
CAKE 26.62 3822 50.20 50.29 36.40 2478 3428 2563 26.02 76.00 88.91 46.41 4.56 95.00 66.70 60.29 46.89
AdaKV 26.77 3452 48.73 50.25 36.59 28.57 3345 2490 2620 76.50 88.91 47.26 6.50 96.50 66.06 61.37 47.07
CriticalKV 27.34 36.72 49.04 51.26 36.94 27.13 3385 2532 25.88 76.50 88.91 47.28 6.05 97.50 65.78 59.56 47.19
DefensiveKV 27.79 3829 5034 50.86 37.84 27.63 3424 2587 2625 75.50 89.21 47.29 6.00 97.00 66.14 60.95 47.58
Layer-DefensiveKV 27.06 38.23 51.56 50.76 36.48 2832 34,54 2537 2644 76.00 89.04 47.21 550 98.00 66.10 61.13 47.61
Qwen2.5-32B-Instruct, 80% Cache Size

Full Cache 30.88 46.13 52.87 63.59 59.75 38.78 3259 2435 2495 72.00 88.26 47.05 12.50 100.00 49.64 34.24 48.60

DuoAttention N/A N/A N/A NA NA N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A NA
StreamingLLM 2744 4324 3578 59.73 51.76 3323 3132 2284 2540 74.50 86.83 48.18 11.00 82.00 55.92 32.59 45.11
SnapKV 3097 4295 49.08 63.92 59.10 39.73 3200 2333 2475 71.00 88.48 47.48 12.00 100.00 51.02 33.55 48.09
CAKE 3032 45.68 52.23 63.96 61.16 3991 3217 23.67 25.06 70.50 88.77 47.39 11.00 100.00 51.02 34.84 48.60
AdaKV 3042 42.62 4892 6298 60.45 39.19 31.77 2322 2482 71.00 88.69 46.87 10.50 100.00 50.18 33.60 47.83
CriticalKV 31.09 4547 5040 63.29 61.80 39.95 3235 2398 24.86 72.00 88.50 46.92 11.50 100.00 50.56 34.53 48.58
DefensiveKV 31.34 4643 5192 63.33 6145 39.12 3270 2430 25.22 72.00 88.39 47.14 11.00 100.00 53.48 33.81 48.85
Layer-DefensiveKV 31.13 46.01 5246 63.29 60.22 3890 32.85 24.18 2503 72.00 88.73 46.56 12.50 100.00 52.55 33.53 48.75

K DETAILS OF 16 DATASETS IN LONGBENCH

As a widely used long-context benchmark (Feng et al, 2024} [Li et al, 2024} [Zhang et al.| [20244d),
LongBench consists of 16 datasets across six task domains: single-document question answering

(QA) (Kodisky et al, 2018}, [Dasigi et al, 2021)), multi-document QA (Yang et al.,[2018}; [Ho et al.

2020; (Trivedi et al., 2022), summarization

Huang et al, 2021} [Zhong et al., 2021} [Fabbri et al.

2019), few-shot learning (Joshi et al,[2017;|G

iwa et al., 2019} [Li & Roth, 2002), synthetic tasks (Bai|

18 |

|Under review as a conference paper at ICLR 2026

1
09
208
g
2
£
£07
g
E
v 0.6
S
8 single Historical Token (2nd, worst-case value 0.31)
0.5 single Historical Token (16th, worst-case value 0.34)
single Historical Token (32nd, worst-case value 0.32)
0.4 —0~ Mean Aggregation (worst-case value 0.33)
—o— Defensive Aggregation (worst-case value 0.61)
0.
0 100 200 300 400 500
Generation Step.
(a) layer 13
14 T
&
09
408
2
2
o7
g
E
206 i
8 Single Historical Token (2nd, worst-case value 0.42)
0.5 Single Historical Token (16th, worst-case value 0.47)
Single Historical Token (32nd, worst-case value 0.43)
0.47 =0 Mean Aggregation (worst-case value 0.45)
—0- Defensive Aggregation (worst-case value 0.65)
0.
[100 200 300 400 500
Generation Step
(b) layer 1
1
09
g 0.8
to7
2
£
206
S
8 Single Historical Token (2nd, worst-case value 0.58)
05

Single Historical Token (16th, worst-case value 0.63)
Single Historical Token (32nd, worst-case value 0.58)
0.41 =~ Mean Aggregation (worst-case value 0.61)

—o— Defensive Aggregation (worst-case value 0.68)

0.
[160 260 300 450 500
Generation Step
(c) layer 15
10
0.9
o 0.8
g
2
£
Lo7
g
E
v 0.6
S
8 Single Historical Token (2nd, worst-case value 0.62)
0.5 Single Historical Token (16th, worst-case value 0.64)
Single Historical Token (32nd, worst-case value 0.62)
0.41 == Mean Aggregation (worst-case value 0.64)
—o— Defensive Aggregation (worst-case value 0.82)
0.
[160 260 380 460 560
Generation Step
(d) layer 16
1.0
0.9
008
2
£
£o7
g
E
906
8 Single Historical Token (2nd, worst-case value 0.65)
05

Single Historical Token (16th, worst-case value 0.68)
Single Historical Token (32nd, worst-case value 0.68)
0.47 == Mean Aggregation (worst-case value 0.71)

—o— Defensive Aggregation (worst-case value 0.79)

0.
0 100 200 300 400 500
Generation Step
(e) layer 17
10
09
008
o
g
E
206
S
8 Single Historical Token (2nd, worst-case value 0.65)
0.5 Single Historical Token (16th, worst-case value 0.68)
Single Historical Token (32nd, worst-case value 0.68)
0.41 =~ Mean Aggregation (worst-case value 0.71)
—o— Defensive Aggregation (worst-case value 0.79)
0.

0 100 200 300 400 500
Generation Step

(f) layer 18

Figure 12: Visualization across different layers using Llama-3.1-8B with 50% cache size.

2023)), and code generation (Guo et al.l 2023} [Liu et al.| 2023). The average token length across
all 16 datasets is 6,711. TableE]provides detailed information on the 16 datasets in LongBench.

19

Under review as a conference paper at ICLR 2026

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036 | |
1037 300

Generation Step
1038 ingle historical token 6th: mean value=0.92, worst-case value=0.34, outlier count(value<0.5)=35
1039 i .) = - g
1040 N i) ! T
1041 '
1042 200 Generation S3tgg
1043 Single historical token 10st: mean value=0.91, worst-case value=0.33, outlier count(value<0.5)=107

1044
1045
1046
1047 Generation Step
1048 o
1049 .

1050 F16)
1051 31

1 100 200 300 400 500
1052 Generation Step

1053 ingle historical token 18st: mean value=0.93, worst-case value=0.40, outlier count(value<0.5)=21
1054
1055

1056 100 ‘ 200 300
1057 Generation Step

1058 Single historical token 22nd: mean value=0.91, worst-case value=0.33, outlier count(value<0.5)=90
1059
1060

1061 T =%
1062 Generation Step

1063
1064
1065

1066 100 200 300 500
1067 Generation Step

Single historical token 2nd: mean value=0.90, worst-case value=0.31, outlier count(value<0.5)=134

Single historical token 14st: mean value=0.93, worst-case value=0.43, outlier count(value<0.5)=15

L L [l il = o " e T 0.9

e o
< o

4
o

Cache Importance

ot
»

I
IS

4
w

le historical token 26nd: mean value=0.92, worst-case value=0.32, outlier count(value<0.5)=103

Single historical token 30rd: mean value=0.90, worst-case value=0.32, outlier count(value<0.5)=117

1068
1069
1070
1071
1072
1073 Figure 13: Breakdown of the stability assumption across different historical token measurements
1074
1075
1076
1077
1078
1079

Generation Step

20

Under review as a conference paper at ICLR 2026

Table 9: Details of 16 datasets in LongBench.

Task Task Type Eval metric Avglen Language Sample Num
NarrativeQA Single-Doc. QA F1 18,409 EN 200
Qasper Single-Doc. QA F1 3,619 EN 200
MultiFieldQA-en Single-Doc. QA F1 4,559 EN 150
HotpotQA Multi-Doc. QA F1 9,151 EN 200
2WikiMultihopQA Multi-Doc. QA F1 4,887 EN 200
MuSiQue Multi-Doc. QA F1 11,214 EN 200
GovReport Summarization Rouge-L 8,734 EN 200
QMSum Summarization Rouge-L 10,614 EN 200
MultiNews Summarization Rouge-L 2,113 EN 200
TREC Few-shot Learning ~ Accuracy 5,177 EN 200
TriviaQA Few-shot Learning F1 8,209 EN 200
SAMSum Few-shot Learning Rouge-L 6,258 EN 200
PassageCount Synthetic Accuracy 11,141 EN 200
PassageRetrieval-en ~ Synthetic Accuracy 9,289 EN 200
LCC Code Edit Sim 1,235 Python/C#/Java 500
RepoBench-P Code Edit Sim 4,206 Python/Java 500

Table 10: Single retrieval and multi retrieval templates in Needle-in-A-Haystack tests.

Task Template:
Some special magic numbers are hidden within the following text. Make sure to memorize it. I will
quiz you about the numbers afterwards.

Single retrieval One of the special magic numbers for {word} is:

Task Template:
Some special magic numbers are hidden within the following text. Make sure to memorize it. I will
quiz you about the numbers afterwards.

One of the special magic numbers for {word} is
Multi retrieval One of the special magic numbers for {word} is:
One of the special magic numbers for {word} is
One of the special magic numbers for {word} is

L LIMITATIONS

In this paper, we reveal for the first time the fragility of KV cache eviction and propose a defensive
aggregation strategy for robust optimization. However, our work serves as a starting point and does
not provide an in-depth investigation of broader robust optimization techniques. Future research can
explore these techniques to further improve cache eviction performance.

21

	Introduction
	Related Works
	Methods
	Preliminary
	Fragility of Stability Assumption and Vulnerability of Mean Aggregation
	Defensive Aggregation via Worst-Case Risk Control
	Implementing DefensiveKV Eviction Method with Defensive Aggregation

	Experiments
	Experimental Settings
	LongBench Evaluation
	Needle-in-a-Haystack Evaluation
	Ablation Studies
	Efficiency Test

	Conclusion
	Quality Losses of Methods with 40% and 60% Cache Size
	Detailed Settings
	Additional Related Works
	Memory Usage during Generation
	Integration DefensiveKV with KV Cache Quantization
	More Needle-in-A-Haystack-style Evaluations on Ruler Benchmark
	Case Study: Augmenting AdaKV via Defensive Aggregation
	Detailed scores of Longbench
	The effectiveness of Defensive aggregation strategy
	Further Elaboration of the Fragile Stability Assumption
	Details of 16 Datasets in Longbench
	Limitations

