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ABSTRACT

Existing analyses of the expressive capacity of Transformer models have required
excessively deep layers for data memorization, leading to a discrepancy with the
Transformers actually used in practice. This is primarily due to the interpretation
of the softmax function as an approximation of the hardmax function. By clari-
fying the connection between the softmax function and the Boltzmann operator,
we prove that a single layer of self-attention with low-rank weight matrices pos-
sesses the capability to perfectly capture the context of an entire input sequence.
As a consequence, we show that one-layer and single-head Transformers have a
memorization capacity for finite samples, and that Transformers consisting of one
self-attention layer with two feed-forward neural networks are universal approxi-
mators for continuous permutation equivariant functions on a compact domain.

1 INTRODUCTION

The Transformer model has been ubiquitously used in deep learning since its proposal by Vaswani
et al. (2017). Its widespread application spans several domains, not only revolutionizing Natural
Language Processing (NLP) through models like BERT (Devlin et al., 2019; Liu et al., 2019) and
GPT (Brown et al., 2020; Radford et al., a;b) but also making significant advancements in image
and graph processing as an alternative to conventional models like convolutional neural networks
(CNNs) and graph neural networks (GNNs) (Dosovitskiy et al., 2022; Ying et al., 2022).

One of the key reasons behind the success of the Transformer model is its ability to represent a wide
range of functions. Various studies investigated this aspect, including the universal approximation
theorem for Transformer models and its memorization capacity Yun et al. (2019); Kim et al. (2023);
Mahdavi et al. (2023); Edelman et al. (2022); Gurevych et al. (2021); Takakura & Suzuki (2023);
Likhosherstov et al. (2023).

The main challenge in proving universal approximation theorems for Transformer models lies in the
fact that the Transformer needs to account for the context of the entire input sequence. Unlike feed-
forward neural networks where each input is processed independently, the self-attention mechanism
in Transformer models must take into account the dependencies between all elements in each input
sequence. In constructive proofs (Edelman et al., 2022; Yun et al., 2019; Kim et al., 2023; Mahdavi
et al., 2023; Gurevych et al., 2021; Takakura & Suzuki, 2023), these dependencies are often aggre-
gated into a token-wise quantity, which we call a “context id” here, by a self-attention mechanism,
and then feed-forward neural networks map each context id to the desired output.

The drawback of existing analyses is that they require excessively deep layers (Yun et al., 2019;
Kim et al., 2023) or quite a lot of attention heads (Gurevych et al., 2021; Takakura & Suzuki, 2023;
Likhosherstov et al., 2023) for data memorization, which leads to a discrepancy with Transformers
being deployed in practice. This discrepancy primarily arises from the interpretation of the softmax
function as an approximation of the hardmax function. Consequently, to compute the “context id”
within the self-attention mechanism, the number of required self-attention parameters scales linearly
with the length of an input sequence.
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In this work, we address this gap by closely examining the softmax function itself. First, we show
that it is impossible to output the “context id” using just one layer of self-attention with the hardmax
function. At the same time, we demonstrate that just one layer of single-head and softmax-based
self-attention with low-rank weight matrices possesses the capability to perfectly capture the context
of an entire input sequence. This result implies that the Transformer with one self-attention layer
is a universal approximator of continuous permutation equivariant functions by using two feed-
forward neural networks connected before and after the single-head self-attention mechanism with
an arbitrary head size.

Our contributions are summarized as follows.

1. We show that one layer self-attention with the hardmax function is not a contextual map-
ping; that is, one layer hardmax-based Transformer has no memorization capacity.

2. In contrast, we provide a framework for constructing a context mapping with one-layer and
single-head self-attention using the softmax function.

3. We prove that one layer Transformer has a memorization capacity for finite samples, and
Transformers with one-layer and single-head self-attention are universal approximators of
continuous permutation equivariant functions.

1.1 RELATED WORKS

Universal approximation theorems. The history of the universal approximation theorem begins
around 1990 (Cybenko, 1989; Carroll & Dickinson, 1989; Hornik, 1991; Funahashi, 1989). Recent
studies on this topic include analyses of how network width and depth affect the expressive power
(Lu et al., 2017), and analyses for specific architectures (Lin & Jegelka, 2018). There have also been
analyses of the memorization capacity of models (Baum, 1988; Huang & Babri, 1998). The main
focus of the memorization capacity is mainly on the analysis of parameter efficiency for storing
finite samples (Huang, 2003; Vershynin, 2020; Park et al., 2021; Vardi et al., 2022; Yun et al., 2018;
Bubeck et al., 2020; Hardt & Ma, 2016; Rajput et al., 2021; Zhang et al., 2016). Notably, Zhang
et al. (2016) demonstrated that a neural network of the size used in practice can perfectly memorize a
randomly labeled data set. Belkin et al. (2019); Nakkiran et al. (2019) pointed out that the minimum
number of parameters required to memorize a dataset is related to the double descent threshold.

Expressive capacity of Transformer. Ever since Vaswani et al. (2017) first proposed the Trans-
former architecture, there have been various theoretical analyses on its expressive capacity. Yun
et al. (2019) proved for the first time the universal approximation theorem for Transformer models,
showing that a continuous function on a compact domain can be approximated if the number of
Transformer blocks is on the order of the power of n, where n is the length of each input sequence.
Later, Kim et al. (2023) showed that 2n self-attention blocks are sufficient for the memorization of
finite samples. Since the studies of Yun et al. (2019) and Kim et al. (2023) are closely related to
our paper, we discuss the details in more depth in Section 3.2 later. Their results were based on the
assumption that the inputs are separated to some extent, which is an assumption we also make in this
paper. Alternatively, under the assumption that input sequences are linearly independent, Mahdavi
et al. (2023) showed that a one-layer H-head self-attention mechanism can memorize O(Hn) sam-
ples. Relatedly, Edelman et al. (2022) demonstrated that the bounded self-attention head is capable
of expressing a sparse Boolean function while obtaining an upper bound on the covering number
of self-attention. Gurevych et al. (2021) analyzed the theoretical performance of Transformers as a
hierarchical composition model. Later, Takakura & Suzuki (2023) extended their result by utiliz-
ing a sinusoidal positional encoding and multiple heads, and showed that a one-layer Transformer
with an embedding layer is a universal approximator for shift-equivariant γ-smooth functions. Jiang
& Li (2023) recently used the Kolmogorov representation theorem to provide a non-constructive
proof of the existence of a two-layer Transformer that approximates an arbitrary continuous func-
tion on a certain domain. There are variants of universal approximation theorems for Transformers,
such as analyses of sparse Transformers (Yun et al., 2020) and constrained universal approximation
theorems (Kratsios et al., 2021). Likhosherstov et al. (2023) showed that, given parameters, there
exists an input such that self-attention approximates an arbitrary sparse pattern. While Bhojana-
palli et al. (2020) proved that Transformers with a small head size, which is typical for multi-head
self-attention, cannot express certain positive column-stochastic matrices, Aghajanyan et al. (2021)
demonstrated empirically that pre-trained Transformers have a very low intrinsic dimension, and
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Reif et al. (2019) visualized context embeddings in BERT. Luo et al. (2022) showed the existence of
functions that cannot be approximated by Transformers with relative positional encoding. There is
also a series of papers analyzing Transformer’s expressive capabilities from the perspective of formal
languages (Hahn, 2020; Bhattamishra et al., 2020; Yao et al., 2021; Hao et al., 2022; Merrill et al.,
2022; Chiang & Cholak, 2022; Chiang et al., 2023), where a softmax function in a self-attention
mechanism is treated as an averaging or hardmax function. As for a negative result of Transformers’
expressive capacity, Zaheer et al. (2020) demonstrated that there exist some problems which sparse
Transformers must require a superlinear number of layers to solve.

2 PRELIMINARIES

2.1 NOTATION

We use bold lowercase letters to represent vectors and bold uppercase letters to represent matrices.
For any vector v ∈ Ra, we denote by vi the i-the element of v. For any matrix A ∈ Ra×b, we denote
its i-th row by Ai,:, its k-th column by A:,k and the element at its i-th row and k-th column by Ai,k.
For any positive integer m ∈ N+, [m] represents the set {1, . . . ,m}. For any real numbers a < b,
[a, b] represents the interval {x ∈ R | a ≤ x ≤ b}, (−∞, a) represents {x ∈ R | x < a}, and (b,∞)
represents {x ∈ R | x > b}. Let σS [v] and σH [v] for any input vector v be the softmax function and
hardmax function, respectively. Note that when there are multiple indices with maximum values, the
hardmax function is defined such that the sum of the values at these indices equals one. By abuse
of notation, for any input matrix A, σS [A] and σH [A] are defined as column-wise softmax and
column-wise hardmax, respectively. We denote the ReLU activation function by σR. Unlike σS and
σH , σR is always an element-wise operator, regardless of whether the input is a vector or a matrix.
Let ∥ · ∥ be the ℓ2 norm and ∥ · ∥p (1 ≤ p < ∞) be the ℓp norm. We define the distance between two
functions f1, f2 : Rd×n → Rd×n by

dp (f1, f2) :=

(∫
∥f1(X)− f2(X)∥pp dX

)1/p

. (1)

In this paper, n denotes the length of an input sequence, N the number of input sequences, C the
number of output classes, and d the embedding dimension. In addition, i, j are basically used for
the indices of finite samples and k, l for the indices in each input sequence.

2.2 TRANSFORMER BLOCK

Transformer was first introduced in Vaswani et al. (2017). Here we follow the definitions adopted
in Kim et al. (2023): the Transformer block is composed of the self-attention mechanism and the
feed-forward neural network, each accompanied by a skip connection. Given an input sequence
Z ∈ Rd×n, composed of n tokens each with an embedding dimension of size d, a dot-product
self-attention mechanism with h heads outputs the following values:

F (SA)
S (Z) = Z +

h∑
i=1

W
(O)
i

(
W

(V )
i Z

)
σS

[(
W

(K)
i Z

)⊤ (
W

(Q)
i Z

)]
∈ Rd×n, (2)

where W
(V )
i , W

(K)
i , W

(Q)
i ∈ Rs×d and W

(O)
i ∈ Rd×s are the weight matrices, and s is the

head size. Note that here, as with Yun et al. (2019) and Kim et al. (2023), we adopt the definition
of the self-attention mechanism, which excludes layer normalization from the original definition of
Vaswani et al. (2017) for the sake of simplicity.

In contrast, given an input H ∈ Rd×n, the output of feed-forward neural network with a skip
connection at index k ∈ [n] is

F (FF ) (H):,k = H:,k +W (2)σR

[
W (1)H:,k + b(1)

]
+ b(2) ∈ Rd, (3)

where q is the hidden dimension, W (1) ∈ Rq×d and W (2) ∈ Rd×q are weight matrices, and
b(1) ∈ Rq and b(2) are bias terms.

On the basis of the above definition, the Transformer block is represented as a composition of a
self-attention mechanism and a feed-forward neural network: for any input sequence Z ∈ Rd×n,
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composed of n tokens each with an embedding dimension of size d, the Transformer block F :
Rd×n → Rd×n outputs

F (Z) = F (FF )
(
F (SA)

S (Z)
)
. (4)

From the above definition, we see that the interaction of each token occurs only in the self-attention
mechanism.

3 ATTENTION IS A CONTEXTUAL MAPPING

3.1 PROBLEM SETTING

Let (X(1),Y (1)), . . . , (X(1),Y (1)) ⊂ Rd×n × [C]d×n be an N input-output pairs of sequences,
each of which consists of a sequence X(i) of n tokens with embedding dimension d, and an output
Y (i), where Y

(i)
:,k corresponds to the label of the token X

(i)
:,k at index k. In addition, we define the

i-th vocabulary set for i ∈ [N ] by V(i) =
⋃

k∈[n] X
(i)
:,k ⊂ Rd, and the whole vocabulary set V is

defined by V =
⋃

i∈[N ] V(i) ⊂ Rd.

3.2 BACKGROUND

Yun et al. (2019) proved affirmatively one of the most fundamental questions on the expressive
capacity of Transformer models, namely, whether the universal approximation theorem for Trans-
former models holds. Their proof approach is to quantize the input domain and reduce the universal
approximation theorem to the memorization analysis of finite samples, i.e., the construction of a
model that achieves zero loss for a finite number of training data, which was also analyzed later by
Kim et al. (2023). In the analysis of memorization capacity, assumptions are usually made on the
inputs in order to perform a meaningful analysis beyond the lower bound of Sontag (1997). Here,
as with the assumptions adopted by Yun et al. (2019); Kim et al. (2023), we assume that the input
tokens are separated by a certain distance.

Definition 1 (Tokenwise Separatedness). Let m ∈ N and Z(1), . . . ,Z(N) ∈ Rm×n be input se-
quences. Then, Z(1), . . . ,Z(N) are called tokenwise (rmin, rmax, δ)-separated if the following three
conditions hold.

1. For any i ∈ [N ] and k ∈ [n],
∥∥∥Z(i)

:,k

∥∥∥ > rmin holds.

2. For any i ∈ [N ] and k ∈ [n],
∥∥∥Z(i)

:,k

∥∥∥ < rmax holds.

3. For any i, j ∈ [N ] and k, l ∈ [n] with Z
(i)
:,k ̸= Z

(j)
:,l ,

∥∥∥Z(i)
:,k −Z

(j)
:,l

∥∥∥ > δ holds.

Note that we refer to Z(1), . . . ,Z(N) as tokenwise (rmax, ϵ)-separated instead if the sequences
satisfy conditions 2 and 3.

The achievement of Yun et al. (2019) was not only to prove the universal approximation theorem for
Transformers, but also to clarify the difficulties in the analysis of this kind of expressive capacity of
Transformers and elucidated an approach to establishing the proof. Namely, what makes Transform-
ers’ memorization different from that of feed-forward neural networks is that Transformers need to
capture the context of each input sequence as a whole, rather than simply associating each token
with a label.

Remarkably, Yun et al. (2019); Kim et al. (2023) formulated this concept as a contextual mapping,
which assigns a unique id to a pair of an input sequence and each of their tokens. We define it here
using the notion of (r, δ)-separatedness.

Definition 2 (Contextual Mapping). Let X(1), . . . ,X(N) ∈ Rd×n be input sequences. Then, a map
q : Rd×n → Rd×n is called an (r, δ)-contextual mapping if the following two conditions hold:

1. For any i ∈ [N ] and k ∈ [n],
∥∥∥q (X(i)

)
:,k

∥∥∥ < r holds.
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2. For any i, j ∈ [N ] and k, l ∈ [n] such that V(i) ̸= V(j) or X
(i)
:,k ̸= X

(j)
:,l ,∥∥∥q (X(i)

)
:,k

− q
(
X(j)

)
:,l

∥∥∥ > δ holds.

In particular, q(X(i)) for i ∈ [N ] is called a context id of X(i).

If we have such a contextual mapping, a label sequence can be associated with a unique id for each
input sequence using the existing analysis of memorization in feed-forward neural networks.

Thus, the central question is: how to construct a contextual mapping in Transformer models? The
only place in Transformer models where interaction between tokens can be taken into account is
in the self-attention mechanism; therefore, the self-attention mechanism must be used to construct
a contextual mapping. Yun et al. (2019) first constructed a contextual mapping by using |V|d + 1
self-attention layers1, and later Kim et al. (2023) improved it to 2n self-attention layers. However,
this is still far from the practical implementation of Transformers, and it remains unclear whether a
reasonably-sized Transformer would possess such memorization capacity or if the universal approx-
imation theorem would hold. This leads to the following question.

How many self-attention layers are both necessary and sufficient to construct a contextual
mapping?

We first point out the reason for requiring a significant number of self-attention layers in the con-
struction of contextual mapping in the analyses of Yun et al. (2019); Kim et al. (2023). Their
approach entails interpreting the softmax function in the self-attention mechanism as an approxi-
mation of the hardmax function, which also hinders a detailed analysis of the specific properties of
the softmax function. As evidence of this, we illustrate in Section 3.3 that using a single layer of
self-attention with the hardmax function does not suffice to construct a contextual mapping.

Next, in Section 3.4, we demonstrate that a contextual mapping can be constructed by using only
one self-attention layer with the softmax function. This is somewhat surprising because this implies
the probability of fully capturing the context of each input sequence only through the attention
coefficients computed by the pairwise dot-product of the softmax function and its weighted average.

3.3 SELF-ATTENTION WITH HARDMAX

In previous studies analyzing the memorization capacity of Transformers (Yun et al., 2019; Kim
et al., 2023), the softmax function is taken to be an approximation of the hardmax function. However,
we show here that the attention block with the hardmax function is not a contextual mapping.

First we define the attention block with the hardmax function: for an input sequence Z ∈ Rd×n, the
attention with the hardmax function is calculated as

F (SA)
H (Z) = Z +

h∑
i=1

W
(O)
i

(
W

(V )
i Z

)
σH

[(
W

(K)
i Z

)⊤ (
W

(Q)
i Z

)]
, (5)

where W
(V )
i , W

(K)
i , W

(Q)
i ∈ Rs×d and W

(O)
i ∈ Rd×s are the weight matrices

The following theorem holds for such a model. The proof is in Appendix A.1.

Theorem 1. 1-layer multi-head self-attention F (SA)
H with the hardmax function cannot be a contex-

tual mapping.

Since the self-attention mechanism is the only place in Transformer models where interaction be-
tween tokens happens, this theorem indicates that one-layer Transformers with hardmax attention
do not have a memorization capacity.

3.4 SELF-ATTENTION WITH SOFTMAX

In this subsection, we show that a softmax-based 1-layer attention block with low-rank weight ma-
trices is a contextual mapping for almost all input sequences. This result is consistent with recent

1To be precise, when the continuous input range is quantized into 1/δ pieces for some 0 < δ < 1, they
demonstrated that there exists a contextual mapping composed of δ−d self-attention layers.
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empirical evidence that pre-trained Transformers are low-rank (Aghajanyan et al., 2021; Choroman-
ski et al., 2020; Wang et al., 2020; Lialin et al., 2023), and theoretically supports that the low-rank
self-attention mechanism is sufficient to fully comprehend the contextual information of an input
sequence. It is worth noting that our construction allows for an arbitrary head size. By considering
the case of a head size of 1, this particularly indicates that the self-attention mechanism has the
ability to compress the information of an input sequence through a scalar value.

Theorem 2. Let X(1), . . . ,X(N) ∈ Rd×n be input sequences with no duplicate word token in each
sequence, that is,

X
(i)
:,k ̸= X

(i)
:,l (6)

for any i ∈ [N ] and k, l ∈ [n]. Also assume that X(1), . . . ,X(N) are tokenwise (rmin, rmax, ϵ)-
separated. Then, there exist weight matrices W (O) ∈ Rd×s and W (V ),W (K),W (Q) ∈ Rs×d such
that the ranks of W (V ),W (K) and W (Q) are all 1, and 1-layer single head attention with softmax,
i.e., F (SA)

S with h = 1 is an (r, δ)-contextual mapping for the input sequences X(1), . . . ,X(N) ∈
Rd×n with r and δ defined by

r = rmax +
ϵ

4
, (7)

δ =
2(log n)2ϵ2rmin

r2max(|V|+ 1)4(2 log n+ 3)πd
exp

(
− (|V|+ 1)

4 (2 log n+ 3)πdr2max

4ϵrmin

)
. (8)

Here we provide a simple proof sketch. The full proof can be found in Appendix A.2.

Proof Overview. For simplicity, we here assume s = 1. If we have a unique id, i.e., sequence id,
corresponding to each input sequence X(i) for i ∈ [N ], a context id can be constructed from a suit-
able linear combination of the sequence id and the value of each token. Since this linear combination
can be calculated by the output projection matrix W (O) and skip connection, the problem is how to
configure weight parameters W (V ),W (K),W (Q) ∈ R1×d so that each row of the values’ softmax
weighted average, (

W (V )X(i)
)
σS

[(
W (K)X(i)

)⊤ (
W (Q)X(i)

)]
∈ R1×n, (9)

outputs the unique sequence id of X(i).

Actually, an even weaker condition is sufficient for an attention block to be a contextual mapping:
there is no need to have just one unique sequence id for each input sequence. In fact, it is possible
to construct a contextual mapping, provided that for each token v ∈ V , input sequences in which
the token appears can be identified by some v-dependent sequence ids. This condition can be ex-
pressed in a mathematical form as follows: what we have to show is to construct weight matrices
W (V ),W (K),W (Q) ∈ R1×d with some ϵ > 0 such that∣∣∣∣(W (V )X(i)

)
σS

[(
W (K)X(i)

)⊤ (
W (Q)X

(i)
:,k

)]
−
(
W (V )X(j)

)
σS

[(
W (K)X(j)

)⊤ (
W (Q)X

(j)
:,l

)]∣∣∣∣ > ϵ (10)

holds for any distinct i, j ∈ [N ] and any k, l ∈ [n] such that X(i)
:,k = X

(j)
:,l and V(i) ̸= V(j).

For simplicity, we choose W (V ) = W (K) = W (Q) = w⊤ 2 such that the linear operator w ∈ Rd

projects each token to a scalar value while approximately preserving the distance between each pair
of tokens: for any pair of tokens va,vb ∈ V ,

c∥va − vb∥ ≤
∣∣w⊤va −w⊤vb

∣∣ ≤ ∥va − vb∥ (11)

2In our actual proof, there exist unit vectors v,v′ ∈ Rd such that W (V ),W (K) and W (Q) may be defined
by W (V ) = u′′v⊤,W (K) = u′v⊤ and W (Q) = uv′⊤ for arbitrary vectors u,u′,u′′ ∈ Rs satisfying
certain constraints.
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with some constant 0 < c < 1. Then, by using the assumption t = X
(i)
:,k = X

(j)
:,l for some token

t ∈ Rd, we have∣∣w⊤t
∣∣ · ∣∣∣∣(w⊤X(i)

)
σS

[(
w⊤X(i)

)⊤ (
w⊤t

)]
−
(
w⊤X(j)

)
σS

[(
w⊤X(j)

)⊤ (
w⊤t

)]∣∣∣∣
≥
∣∣∣∣(a(i)

)⊤
σS

[
a(i)

]
−
(
a(j)

)⊤
σS

[
a(j)

]∣∣∣∣ , (12)

where we denote a(i) =
(
w⊤X(i)

)⊤ (
w⊤t

)
∈ Rn and a(j) =

(
w⊤X(j)

)⊤ (
w⊤t

)
∈ Rn. There-

fore, in order to prove that a self-attention block serves as a contextual mapping, we only have to
focus on the separability of the function

boltz : Rn → R,a 7→ a⊤σS [a], (13)

which is known as the Boltzmann operator (Littman, 1996; Asadi & Littman, 2017).

The following lemma shows that the Boltzmann operator is a mapping that projects input sequences
to scalar values while preserving some distance, and is central to our proof that the self-attention
function is a contextual mapping.

Lemma 1. Let a(1), . . . ,a(m) ∈ Rn be tokenwise (r, δ)-separated vectors with no duplicate element
in each vector and

δ > 2 log n+ 3. (14)
Then, the outputs of the Boltzmann operator are (r, δ′)-separated, that is,∣∣∣boltz(a(i))

∣∣∣ ≤ r (15)∣∣∣boltz(a(i))− boltz(a(j))
∣∣∣ > δ′ = (log n)2e−2r (16)

hold for each i, j ∈ [m] with a(i) ̸= a(j).

Taking into account the above arguments, this separability of the Boltzmann operator allows us to
construct one self-attention layer to be a contextual mapping.

Remark 1 (Masked self-attention). In practice, attention matrices are often masked to avoid directing
attention to undesired tokens. This is performed, for example, for autoregressive text generation or
padding of inputs with different lengths. It is relatively straightforward to extend Theorem 2 to
masked self-attention mechanisms. See Appendix C for more details.

4 APPLICATIONS OF CONTEXTUAL MAPPING

4.1 MEMORIZATION CAPACITY OF ONE-LAYER TRANSFORMER

As a first application of Theorem 2, we prove that a 1-layer Transformer can completely memorize
finite samples, each of which has no duplicate token. This result emphasizes that in contrast to the
proof of Kim et al. (2023), which requires 2n self-attention layers for Transformer memorization,
one layer of self-attention is actually sufficient. In addition, it is worth noting that the hardmax-
based Transformers do not have a memorization capacity, which is implied straightforwardly from
Theorem 1.
Corollary 1 (Memorization capacity of one-layer Transformer). Let ϵ > 0, rmax > rmin > 0 and
(X(1),Y (1)), . . . , (X(N),Y (N)) ⊂ Rd×n × [C]d×n be sequences of input-output-pairs such that
X(1), . . . ,X(N) are tokenwise (rmin, rmax, ϵ)-separated input sequences with no duplicate token in
each sentence and consistently labeled, that is, Y (i)

:,k = Y
(j)
:,l holds for any i, j ∈ [N ] and k, l ∈ [n]

such that V(i) = V(j) and X
(i)
:,k = X

(j)
:,l .

Then, there exist 4(s+ d) + d(2nN + d) weight parameters such that for any i ∈ [N ]

F
(
X(i)

)
= F (FF )

(
F (SA)

S

(
X(i)

))
= Y (i) (17)

holds.
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Remark 2 (Parameter efficiency). To achieve the memorization with a one-layer Transformer, the
one-hidden-layer feed-forward block has to map each context id to the corresponding label. Since
the possible number of context ids is at most nN in the worst case, the linear dependency on nN of
the number of parameters in Corollary 1 is optimal up to logarithmic factors (Bartlett et al., 2019). It
is worth mentioning that this linear dependency can be relaxed to the milder requirement Õ

(√
nN
)

by allowing for deeper layers in the feed-forward block (Vardi et al., 2022), under the assumption
that the size |V| of the vocabulary set is independent of n and N .

In addition, it is straightforward to show that a 1-layer Transformer with trainable positional encod-
ings has a memorization capacity for arbitrary input sequences possibly with duplicate tokens.
Corollary 2 (Memorization capacity of one-layer Transformer with positional encodings). Let ϵ >
0, rmax > rmin > 0 and (X(1),Y (1)), . . . , (X(N),Y (N)) ⊂ Rd×n×[C]d×n be sequences of input-
output-pairs such that X(1), . . . ,X(N) are tokenwise (rmin, rmax, ϵ)-separated input sequences and
are consistently labeled, that is, Y (i) = Y (j) holds for any i, j ∈ [N ] such that X(i) = X(j).

Then, there exist 4(s + d) + d(2nN + d) weight parameters and positional encodings E ∈ Rd×n

such that for any i ∈ [N ],

F
(
X(i) +E

)
= F (FF )

(
F (SA)

S

(
X(i) +E

))
= Y (i) (18)

holds.

4.2 TRANSFORMERS WITH ONE SELF-ATTENTION LAYER ARE UNIVERSAL APPROXIMATORS

As a further application of Theorem 2 we here provide a proof that Transformer with one self-
attention layer is a universal approximator. More precisely, let FPE be the set of all permutation
equivariant continuous functions that take values on a compact domain in Rd×n, and let T2 be the
set of all two layer Transformers with one-layer and single-head self-attention, that is,

T2 =
{
F (FF )

2 ◦ F (SA)
S ◦ F (FF )

1 : Rn×d → Rn×d
}
, (19)

where F (FF )
1 ,F (FF )

2 and F (SA)
S are feed-forward neural network layers and a single-head self-

attention layer with the softmax function, respectively. Then the following proposition holds (see
the definition (1)).
Proposition 1 (Transformers with one layer self-attention are universal approximators). Let 1 ≤
p < ∞. Then, for any f ∈ FPE and ϵ > 0, there exists a Transformer g ∈ T2 with one-layer and
single-head self-attention such that dp(f, g) < ϵ. holds.

To the best of our knowledge, this is the first universal approximation theorem for two-layer Trans-
formers with a self-attention of realistic size. Takakura & Suzuki (2023) showed that a one-layer
Transformer with an embedding layer is capable of approximating shift-equivariant γ-smooth func-
tions. However, their construction requires a high number of self-attention heads and a large head
size to flatten an input sequence into outputs of self-attention. Jiang & Li (2023) used the Kol-
mogorov representation theorem to give a non-constructive proof of the universal approximation
theorem of two-layer Transformers with positional encoding for continuous functions on a compact
domain. Acknowledging the contributions of prior studies, we would like to emphasize the novelty
of our results again, that is, Transformers using a single-head self-attention are universal approx-
imators for continuous permutation equivariant functions on an arbitrary compact domain, thanks
to Theorem 2. Our result can be readily extended for continuous but not necessarily permutation
equivariant functions on a compact domain by using positional encoding, and at the same time is
significant from the perspective of geometric deep learning.

5 EXPERIMENTS

As shown in Theorem 2, a self-attention mechanism with rank 1 weight matrices already has enough
expressive capacity to become a contextual mapping. In particular, its proof leads us to consider the
following simplified form of a self-attention mechanism: for any input sequence Z ∈ Rd×n,

F (R1)
S (Z) = Z +W (O)

(
v⊤
1 Z
)
σS

[(
v⊤
1 Z
)⊤ (

v⊤
2 Z
)]

∈ Rd×n, (20)
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where v1,v2 ∈ Rd and W (O) ∈ Rd×1 are weight matrices. This architecture corresponds to
a common self-attention with the head size s = 1, and value and query matrices having the same
weight vector v1. In this section, we test whether Transformers with self-attention layers replaced by
equation 20, which we call rank-1 Transformers, actually have the theoretically predicted expressive
capacity by using a real-world dataset.

We train rank-1 Transformers on a token classification task with the CoNLL-2003 (Tjong Kim Sang
& De Meulder, 2003) dataset. The batch size is 32 and the training are conducted over 400 epochs.

We train three different depths of rank-1 transformers on the dataset and do not use layer normaliza-
tion to match the situation with our theoretical analysis.
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Figure 1: Training accuracy of rank-1 Transformers for the CoNLL-2003 dataset. 1-layer (solid line), 3-layer
(dashed line) and 6-layer (dotted line) rank-1 Transformers are trained over 400 epochs (X-axis).
For the 1-layer rank-1 Transformer, we observed that it reached an accuracy of 0.9872 at 800 epochs
after further training.

Figure 1 shows training accuracies of 1-layer, 3-layer and 6-layer rank-1 Transformers on each task
over 400 epochs. It can be seen that the 1-layer rank-1 Transformer is already able to memorise
the CoNLL-2003 dataset almost perfectly. On the other hand, while the accuracy curve for the 1-
layer rank-1 Transformer shows that the accuracy is still increasing steadily at 400 epochs, reaching
0.9872 at 800 epochs, its rate of increase is much slower than for the 3-layer and 6-layer Transform-
ers.

From this observation, we conjecture that while theoretically 1-layer Transformers already have a
memorisation capacity for finite samples, the advantage of deepening layers lies in speeding up the
learning of such tasks. Since our analysis is on the expressive capabilities of Transformers, we leave
this hypothesis on the optimisation aspect of Transformers as a future work.

6 CONCLUSIONS

We demonstrated that a contextual mapping can be implemented in one-layer and single-head self-
attention with low-rank matrices, by clarifying the connection between a self-attention mechanism
and the Boltzmann operator. This particularly indicates that one-layer Transformers have a mem-
orization capacity for finite samples, and that Transformers with one-layer and single-head self-
attention are universal approximators for continuous permutation equivariant functions on a com-
pact domain. Our proof of the universal approximation theorem requires one feed-forward neural
network layer before the self-attention layer to quantize continuous inputs. We leave it as future
work to clarify whether the one-layer Transformers without such a quantization layer are universal
approximators or not. We also expect that our analysis of the softmax function will have an impact
on the evaluation of Transformer’s expressive capability from the perspective of formal languages.
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NOTATION TABLE

Numbers and Arrays
a A scalar
a A vector
A A matrix
n The length of an input sequence
N The number of input sequences
C The number of output classes
d Embedding dimension

X(i) i-th input sequence, consisting of n tokens of embedding dimension d

Sets
R Set of real numbers
N+ Set of positive integers
[m] Set of all integers from 1 to m

[a, b] Closed interval from a to b

V(i) i-th vocabulary set
Indexing
ai Element i of vector a, with indexing starting at 1
Ai,j Element i, j of matrix A

A:,i Column i of matrix A

Ai,: Row i of matrix A

Functions
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∥x∥ ℓ2 norm of x
∥x∥p ℓp norm of x
1condition is 1 if the condition is true, 0 otherwise

dp(f1, f2)
(∫

∥f1(X)− f2(X)∥pp dX
)1/p

σS Softmax function
σH Hardmax function
σR ReLU activation function

F (SA)
H Hardmax-based self-attention mechanism with a skip-connection

F (SA)
S Softmax-based self-attention mechanism with a skip-connection

F (FF ) Feed-forward neural network with a skip-connection
boltz Boltzmann opeartor

A PROOF OF MAIN RESULTS

First, we introduce the Boltzmann operator, which frequently appears in our proofs.
Definition 3. (Boltzmann operator) The Boltzmann operator is defined by

boltz : Rm → R, a 7→ a⊤σS [a]. (21)

By abuse of notation, we use the same notation boltz for various dimension m ∈ N+.

A.1 PROOF OF THEOREM 1

Proof. Let v ∈ Rd be an arbitrary nonzero vector, and consider the situation that all input tokens
can be written as

V = {α1v, α2v, α3v, α4v} ⊂ Rd (22)
for some scalars α1 < α2 < α3 < α4. Then, the attention matrix inside the hardmax function at
head i can be expressed as(

W
(K)
i va⊤

)⊤ (
W

(Q)
i va⊤

)
= a

(
W

(K)
i v

)⊤ (
W

(Q)
i v

)
a⊤ (23)

with input coefficients a ∈ {α1, α2, α3, α4}n ⊂ Rn. In particular, when we focus on a certain
index, at which the token is, e.g., α2v, the above expression can further be written as(

W
(K)
i va⊤

)⊤ (
W

(Q)
i α2v

)
= a

(
W

(K)
i v

)⊤ (
W

(Q)
i v

)
α2

=
(
W

(K)
i v

)⊤ (
W

(Q)
i v

)
α2︸ ︷︷ ︸

∈R

·a (24)

The right-hand side is a vector a multiplied by some scalar. So it is evident that the maximum value
of the vector on the right-hand side is achieved only at the indices where the values of the input
sequence va⊤ are α1 or α4. This implies that a self-attention with the hardmax function invariably
gets distracted by the indices where α1 or α4 are present, thereby overlooking information from
other tokens in the input sequence. As a result, no matter how many heads there are, one-layer
self-attention with the hardmax function cannot distinguish input sequences, e.g., (α1v, α2v, α4v)
and (α1v, α3v, α4v).

A.2 PROOF OF THEOREM 2

Proof of Theorem 2. Recall that a softmax-based self-attention function F (SA)
S : Rd×n → Rd×n

with h = 1 is defined as

F (SA)
S (Z) = Z +W (O)

(
W (V )Z

)
σS

[(
W (K)Z

)⊤ (
W (Q)Z

)]
, (25)
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where W (O) ∈ Rd×s and W (V ),W (K),W (Q) ∈ Rs×d are weight matrices.

We construct a softmax-based self-attention function F (SA)
S with the property that∥∥∥∥W (O)

(
W (V )X(i)

)
σS

[(
W (K)X(i)

)⊤ (
W (Q)X

(i)
:,k

)]∥∥∥∥ <
ϵ

4
(26)

holds for any input sequence X(i) with i ∈ [N ] and index k ∈ [n]. When this property is fulfilled,
it is easy to show that∥∥∥∥F (SA)

S

(
X(i)

)
:,k

∥∥∥∥ ≤
∥∥∥X(i)

:,k

∥∥∥+ ∥∥∥∥W (O)
(
W (V )X(i)

)
σS

[(
W (K)X(i)

)⊤ (
W (Q)X

(i)
:,k

)]∥∥∥∥
< rmax +

ϵ

4
(27)

holds for any i ∈ [N ] and k ∈ [n], and also∥∥∥∥F (SA)
S

(
X(i)

)
:,k

−F (SA)
S

(
X(j)

)
:,l

∥∥∥∥
≥
∥∥∥X(i)

:,k −X
(j)
:,l

∥∥∥− ∥∥∥∥W (O)
(
W (V )X(i)

)
σS

[(
W (K)X(i)

)⊤ (
W (Q)X

(i)
:,k

)]∥∥∥∥
−
∥∥∥∥W (O)

(
W (V )X(j)

)
σS

[(
W (K)X(j)

)⊤ (
W (Q)X

(j)
:,l

)]∥∥∥∥
> ϵ− ϵ

4
− ϵ

4
=

ϵ

2
(28)

for any i, j ∈ [N ] and k, l ∈ [n] such that X(i)
:,k ̸= X

(j)
:,l . So all that remains to prove is to construct a

self-attention function F (SA) that has the properties described above and can also distinguish input
tokens X(i)

:,k = X
(j)
:,l such that V(i) ̸= V(j).

Let δ = 2 log n+ 3 and fix any vectors u,u′ ∈ Rs with

∣∣u⊤u′∣∣ = (|V|+ 1)
4 πd

8

δ

ϵrmin
. (29)

Then, according to Lemma 3 with δ = 2 log n + 3, we see that there exists a unit vector v ∈ Rd

such that ∣∣∣∣(W (K)va

)⊤ (
W (Q)vc

)
−
(
W (K)vb

)⊤ (
W (Q)vc

)∣∣∣∣ > δ, (30)

1

(|V|+ 1)
2

√
8

πd
∥vc∥ ≤

∣∣v⊤vc

∣∣ ≤ ∥vc∥ (31)

for any va,vb,vc ∈ V with va ̸= vb, where W (K) = uv⊤ ∈ Rs×d and W (Q) = u′v⊤ ∈ Rs×d.

Furthermore, we configure W (O) ∈ Rd×s and W (V ) ∈ Rs×d to be W (V ) = u′′v⊤ for any nonzero
vector u′′ ∈ Rs such that ∥∥∥W (O)u′′

∥∥∥ =
ϵ

4rmax
(32)

holds. This can be accomplished, e.g., W (O) = u′′′u′′⊤ for any vector u′′′ ∈ Rd which satisfies
∥u′′′∥ = ϵ/(4rmax ∥u′′∥2). In this case, the value of the self-attention without a skip-connection is
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upper-bounded by∥∥∥∥W (O)
(
W (V )X(i)

)
σS

[(
W (K)X(i)

)⊤ (
W (Q)X

(i)
:,k

)]∥∥∥∥
=

∥∥∥∥∥
n∑

k′=1

skk′W (O)
(
W (V )X(i)

)
:,k′

∥∥∥∥∥ with skk′ = σS

[(
W (K)X(i)

)⊤ (
W (Q)X

(i)
:,k

)]
k′

≤
n∑

k′=1

skk′

∥∥∥∥W (O)
(
W (V )X(i)

)
:,k′

∥∥∥∥
≤ max

k′∈[n]

∥∥∥∥W (O)
(
W (V )X(i)

)
:,k′

∥∥∥∥ (from
n∑

k′=1

skk′ = 1)

= max
k′∈[n]

∥∥∥W (O)u′′v⊤X
(i)
:,k′

∥∥∥
=
∥∥∥W (O)u′′

∥∥∥ · max
k′∈[n]

∣∣∣v⊤X
(i)
:,k′

∣∣∣
≤ ϵ

4rmax
· max
k′∈[n]

∥∥∥X(i)
:,k′

∥∥∥ (from equation 31 and equation 32) (33)

<
ϵ

4
, (34)

which means that equation 27 and equation 28 are satisfied with the weight matrices defined above.

Now, we see that the weight matrices W (O),W (V ),W (K),W (Q) configured above can distinguish
the most subtle pattern of input tokens, i.e. X(i)

:,k = X
(j)
:,l with V(i) ̸= V(j).

Pick up any i, j ∈ [N ] and k, l ∈ [n] such that X(i)
:,k = X

(j)
:,l and V(i) ̸= V(j). In addition, we define

a(i),a(j) by

a(i) =
(
W (K)X(i)

)⊤ (
W (Q)X

(i)
:,k

)
∈ Rn, (35)

a(j) =
(
W (K)X(j)

)⊤ (
W (Q)X

(j)
:,l

)
∈ Rn. (36)

Then, equation 30 and equation 31 imply that a(i) and a(j) are tokenwise (r, δ)-separated, where r
is defined by

r = (|V|+ 1)
4 πd

8

δr2max

ϵrmin
, (37)

because for any k′ ∈ [n], we have∣∣∣a(i)k′

∣∣∣ = ∣∣∣∣(W (K)X
(i)
:,k′

)⊤ (
W (Q)X

(i)
:,k

)∣∣∣∣
=

∣∣∣∣(v⊤X
(i)
:,k′

)⊤∣∣∣∣ · ∣∣u⊤u′⊤∣∣ · ∣∣∣(v⊤X
(i)
:,k

)∣∣∣
≤ (|V|+ 1)

4 πd

8

δ

ϵrmin
r2max (from equation 29 and equation 31), (38)

and the same upper-bound also holds for a(j).

Since V(i) ̸= V(j) and there exists no duplicate token in X(i) and X(j) respectively, it follows from
Lemma 1 that ∣∣∣boltz(a(i))− boltz(a(j))

∣∣∣ > δ′ = (log n)2e−2r, (39)

that is, ∣∣∣∣(a(i)
)⊤

σS

[
a(i)

]
−
(
a(j)

)⊤
σS

[
a(j)

]∣∣∣∣ > δ′. (40)
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Since X
(i)
:,k = X

(j)
:,l by assumption, equation 40 are further expanded as

δ′ <

∣∣∣∣(a(i)
)⊤

σS

[
a(i)

]
−
(
a(j)

)⊤
σS

[
a(j)

]∣∣∣∣
=

∣∣∣∣(X(i)
:,k

)⊤ (
W (Q)

)⊤
W (K)

(
X(i)σS

[
a(i)

]
−X(j)σS

[
a(j)

])∣∣∣∣
=

∣∣∣∣(X(i)
:,k

)⊤
vu′⊤uv⊤

(
X(i)σS

[
a(i)

]
−X(j)σS

[
a(j)

])∣∣∣∣
=
∣∣∣v⊤X

(i)
:,k

∣∣∣ · ∣∣u⊤u′∣∣ · ∣∣∣(v⊤X(i)
)
σS

[
a(i)

]
−
(
v⊤X(j)

)
σS

[
a(j)

]∣∣∣
≤ rmax · (|V|+ 1)

4 πd

8

δ

ϵrmin
·
∣∣∣(v⊤X(i)

)
σS

[
a(i)

]
−
(
v⊤X(j)

)
σS

[
a(j)

]∣∣∣ , (41)

where the last inequality follows from equation 29 and equation 31.

Therefore, the gap between the outputs of th self-attention function for X(i) and X(j) are lower-
bounded as follows:∥∥∥∥F (SA)

S

(
X(i)

)
:,k

−F (SA)
S

(
X(j)

)
:,l

∥∥∥∥
=
∥∥∥W (O)

(
W (V )X(i)

)
σS

[
a(i)

]
−W (O)

(
W (V )X(j)

)
σS

[
a(j)

]∥∥∥ (∵ X
(i)
:,k = X

(j)
:,l )

=
∥∥∥W (O)u′′

∥∥∥ · ∣∣∣(v⊤X(i)
)
σS

[
a(i)

]
−
(
v⊤X(j)

)
σS

[
a(j)

]∣∣∣
>

ϵ

4rmax
· δ′

(|V|+ 1)4
8ϵrmin

πdδrmax
, (42)

where δ and δ′ are defined respectively as

δ = 2 log n+ 3, (43)

δ′ = (log n)2e−2r with r = (|V|+ 1)
4 πd

8

δr2max

ϵrmin
. (44)

By plugging δ and δ′, the above inequality is simplified as∥∥∥∥F (SA)
S

(
X(i)

)
:,k

−F (SA)
S

(
X(j)

)
:,l

∥∥∥∥
>

2(log n)2ϵ2rmin

r2max(|V|+ 1)4(2 log n+ 3)πd
exp

(
− (|V|+ 1)

4 (2 log n+ 3)πdr2max

4ϵrmin

)
. (45)

A.3 PROOF OF COROLLARY 1

Proof. According to Theorem 2, we can construct such self-attention to be contextual mapping, that
is, there exist weight matrices W (O) ∈ Rd×s and W (V ),W (K),W (Q) ∈ Rs×d such that F (SA)

S

with h = 1 is a (r, δ)-contextual mapping for the input sequences X(1), . . . ,X(N) with r and δ
defined by

r = rmax +
ϵ

4
, (46)

δ =
ϵrmin log n

r2max(|V|+ 1)4(2 log n+ 3)πd

· exp
(
− (|V|+ 1)

4 (2 log n+ 3)πdr2max

4ϵrmin

)
. (47)

So what remains to do is to associate each context id with the corresponding output label using
a feed-forward neural network F (FF ). Construction of such a network is a typical memorization
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task of a one-hidden-layer feed-forward neural network. Here we adopt the implementation from
Zhang et al. (2016). In this case, since the possible number of context ids is upper-bounded by
nN , the required parameters for the FF layer with output dimension d is at most d × (2nN + d)
(Zhang et al., 2016). As for the self-attention layer, rank-1 weight matrices W (O) ∈ Rd×s and
W (V ),W (K),W (Q) ∈ Rs×d all require s + d parameters each. Thus, the number of parameters
of the self-attention layer is 4(s + d). In conclusion, the total number of parameters for one-layer
Transformers to memorize the dataset is at most 4(s+ d) + d(2nN + d).

A.4 PROOF OF COROLLARY 2

Proof. First, we define the positional encoding matrix E ∈ Rd×n as follows:

E =

 2rmax 4rmax . . . 2nrmax

...
...

. . .
...

2rmax 4rmax . . . 2nrmax

 . (48)

Then, X(1)+E, . . . ,X(N)+E are tokenwise (rmax, (2n+1)rmax, ϵ)-separated, and each sentence
has no duplicate token.

From Theorem 2, there exist weight matrices W (O) ∈ Rd×s and W V ,WK ,WQ ∈ Rs×d such that
F (SA)

S with h = 1 is a (r, δ)-contextual mapping for the input sequences X(1)+E, . . . ,X(N)+E
with r and δ defined by

r = (2n+ 1)rmax +
ϵ

4
, (49)

δ =
2(log n)2ϵ2

(2n+ 1)2rmax(nN + 1)4(2 log n+ 3)πd

· exp
(
−(2n+ 1)2 (nN + 1)

4 (2 log n+ 3)πdrmax

4ϵ

)
, (50)

because the size of the vocabulary set of X(1)+E, . . . ,X(N)+E is at most nN . Hence, hereafter
we do the same thing as in the proof of Corollary 1, that is, implementing a feed-forward neural
network F (FF ) which associates each context id with the corresponding label. The total number
of parameters required to implement this construction can be evaluated in the same manner as in
Corollary 1.

A.5 PROOF OF PROPOSITION 1

Proof. We show the propositioin by the same steps as in Yun et al. (2019). Namely,

1. First, given a permutation equivariant continuous function f ∈ FPE defined on a compact
set, it follows from typical analysis that f can be approximated by a step function with arbi-
trary precision in terms of p-norm. Therefore, to show a universal approximation theorem,
it is sufficient to show that such a step function can be approximated by a Transformer with
one self-attention layer.

2. Second, we use a first feed-forward neural network layer F (FF )
1 to quantize the input do-

main, reducing the problem to memorization of finite samples.

3. Then, by a similar analysis as in Corollary 1, it can be shown that a combination of the
self-attention layer F (SA) and F (FF )

2 can memorize the step function almost everywhere,
in the sense that quantized input domains corresponding to sentences with duplicate tokens
are negligibly small.

We hereafter provide rough proofs of the three steps outlined above, because there are multiple ways
to construct a model that satisfies the above requirements, and we do not pursue the efficiency of
feed-forward neural networks in this paper.

First, without loss of generality, we ignore skip-connections in F (FF )
1 and F (FF )

2 .
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1. Since f is a continuous function on a compact set, f has maximum and minimum values
on the domain. By scaling with F (FF )

1 and F (FF )
2 , f is assumed to be normalized without

loss of generality: for any Z ∈ Rd×n \ [0, 1]d×n

f(Z) = 0, (51)

and for any Z ∈ [−1, 1]d ×n

−1 ≤ f(Z) ≤ 1. (52)

Let D ∈ N be the granularity of a grid

GD = {1/D, 2/D, . . . , 1}d×n ⊂ Rd×n (53)

such that a piece-wise constant approximation

f(Z) =
∑

L∈GD

f (L)1Z∈L+[−1/D,0)d×n (54)

satisfies

dp(f, f) < ϵ/3. (55)

Such a D always exists because of uniform continuity of f .

2. We use F (FF )
1 to quantize the input domain into GD.

For any small δ > 0, the following δ-approximated step function can be constructed with
one-hidden-layer feed-forward neural network: for any z ∈ R

σR [z/δ]− σR [z/δ − 1]

D
=


0 z < 0

z/δD 0 ≤ z < δ

1/D δ ≤ z

. (56)

By shifting and stacking this step function, we have an approximated multiple-step function
D−1∑
t=0

σR [z/δ − t/δD]− σR [z/δ − 1− t/δD]

D

≈ quantD(z) =


0 z < 0

1/D 0 ≤ z < 1/D
...

...
1 1− 1/D ≤ z

, (57)

and subtracting the last step function from it,
D∑
t=1

σR [z/δ − t/δD]− σR [z/δ − 1− t/δD]

D
− (σR [z/δ − 1/δ]− σR [z/δ − 1− 1/δ])

(58)

approximately quantize [0, 1] into {1/D, . . . , 1}, while it projects R \ [0, 1] to 0.

These operations can be realized by one-hidden-layer neural network, and it is straight-
forward to approximate its extension quantD to dimension d × n, which we denote
quantd×n

D : Rd×n → Rd×n.

In addition to that, we also add a penalty term, with which we identify whether an input
sequence is in [0, 1]d×n or not. This is defined by

σR [(z − 1)/δ]− σR [(z − 1)/δ − 1]− σR [−z/δ]− σR [−z/δ − 1]

≈ penalty(z) =


−1 z ≤ 0

0 0 < z ≤ 1

−1 1 < z

, (59)
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which can also be implemented by one-hidden-layer feed-forward neural network.

Combining these components together, the first feed-forward neural network layer F (FF )
1

approximates the following function:

F (FF )

1 (Z) = quantd×n
D (Z) +

d∑
t=1

n∑
k=1

penalty(Zt,k) (60)

Note that this function quantizes inputs in [0, 1]d×n with granularity D, while every element
of the output is non-positive for inputs outside [0, 1]d×n. In particular, the norm of the
output is upper-bounded by

max
Z∈Rd×n

∥∥∥F (FF )
1 (Z):,k

∥∥∥ = dn ·
√
d (61)

for any k ∈ [n].

3. Let G̃D ⊂ GD be a sub-grid

G̃D = {L ∈ GD | ∀k, l ∈ [n], L:,k ̸= L:,l} , (62)

and consider memorization of G̃D with its labels given by f(L) for each L ∈ G̃D. Note
that the label sets are consistent because f is a permutation equivariant function. Then,
Theorem 2 allows us to construct a self-attention F (SA) to be a contextual mapping for such
input sequences, because G̃D can be regarded as tokenwise (1/D,

√
d, 1/D)-separated

input sequences, each of which has no duplicate token by definition. The idea is that when
the granularity D of GD is sufficiently large, the number of cells with duplicate tokens,
that is, |GD \ G̃D| is negligible compared to the total number |GD| of cells, and thus the
memorization of G̃D suffices for universal approximation theorem.

From the way the self-attention F (SA) is constructed, we have∥∥∥F (SA)
S (Z):,k −Z:,k

∥∥∥ <
1

4
√
dD

max
k′∈[n]

∥Z:,k′∥ (63)

for any k ∈ [n] and Z ∈ Rd×n. This follows from the fact that X(i) in equation 33 may
actually be replaced with any input sequence Z, because v in equation 33 is a unit vector.
In particular, combining this upper-bound with equation 61, we have∥∥∥F (SA)

S ◦ F (FF )
1 (Z:,k)−F (FF ) (Z:,k)

∥∥∥ <
dn

4D
. (64)

Thus, if we take large enough D, every element of the output for Z ∈ Rd×n \ [0, 1]d×n is
upper-bounded by

F (SA)
S ◦ F (FF )

1 (Z)t,k <
1

4D
(∀t ∈ [d], k ∈ [n]), (65)

while the output for Z ∈ [0, 1]d×n is lower-bounded by

F (SA)
S ◦ F (FF )

1 (Z)t,k >
3

4D
(∀t ∈ [d], k ∈ [n]). (66)

Therefore, what remains to show is construct a feed-forward neural network F (FF )
2 which

associates the context id of each L ∈ G̃D ⊂ (3/4D,∞)d×n to its corresponding label,
while it outputs 0 for any input matrix Z ∈ (−∞, 1/4D)d×n. This can be accomplished
by usual bump-functions. Precisely, construct a bump function of scale R > 0

bumpR(Z) =
f(L)

dn

d∑
t=1

n∑
k=1

(σR [R(Zt,k − Lt,k)− 1]− σR [R(Zt,k − Lt,k)] (67)

+ σR [R(Zt,k − Lt,k) + 1]) (68)
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for each input sequence L ∈ G̃D and add up these functions to implement F (FF )
2 .

For large enough R > 0, F (FF )
2 maps each input sequence L ∈ G̃D to its labels f(L)

and Z ∈ (−∞, 1/4D)d×n to 0. In addition, the value of F (FF )
2 is always bounded:

0 ≤ F (FF )
2 ≤ 1. Thus, by taking sufficiently small δ > 0, we have

dp

(
F (FF )

2 ◦ F (SA)
S ◦ F (FF )

1 ,F (FF )
2 ◦ F (SA)

S ◦ F (FF )

1

)
<

ϵ

3
. (69)

Lastly, there are |GD \ G̃D| = O
(
D−d |GD|

)
input sequences with duplicate tokens, each

corresponding to a cell of area D−d. Thus, by taking sufficiently large D, areas of GD\G̃D

becomes negligible and

dp

(
F (FF )

2 ◦ F (SA)
S ◦ F (FF )

1 , f
)
<

ϵ

3
. (70)

Combining equation 55, equation 69 and equation 70 together, we get the approximation
error of the Transformer:

dp

(
F (FF )

2 ◦ F (SA)
S ◦ F (FF )

1 , f
)
< ϵ. (71)

B TECHNICAL LEMMAS

B.1 PROJECTION OF INPUT TOKENS

We cite Lemma 13 in Park et al. (2021), with which we configure weight matrices of a self-attention
mechanism.
Lemma 2 (Park et al. (2021)). Let d ∈ N. Then, for any finite subset X ⊂ Rd, there exists a unit
vector v ∈ Rd such that

1

|X |2

√
8

πd
∥x− x′∥ ≤

∣∣v⊤ (x− x′)
∣∣ ≤ ∥x− x′∥ (72)

holds for any x,x′ ∈ X .

The following lemma follows immediately from Lemma 2. We use W (K) and W (Q) in the lemma
as low-rank weight matrices.3

Lemma 3. Given (rmin, rmax, ϵ)-separated finite vocabulary V ⊂ Rd with rmin > 0. Then, for any
δ > 0, there exists a unit vector v ∈ Rd such that for any vectors u,u′ ∈ Rs with∣∣u⊤u′∣∣ = (|V|+ 1)

4 πd

8

δ

ϵrmin
, (73)

we have ∣∣∣∣(W (K)va

)⊤ (
W (Q)vc

)
−
(
W (K)vb

)⊤ (
W (Q)vc

)∣∣∣∣ > δ, (74)

1

(|V|+ 1)
2

√
8

πd
∥vc∥ ≤

∣∣v⊤vc

∣∣ ≤ ∥vc∥ (75)

for any va,vb,vc ∈ V with va ̸= vb, where W (K) = uv⊤ ∈ Rs×d and W (Q) = u′v⊤ ∈ Rs×d.

Proof. By applying Lemma 2 to V ∪ {0}, we know that there exists a unit vector v ∈ Rd such that
for any va,vb ∈ V ∪ {0} such that va ̸= vb, we have

1

(|V|+ 1)
2

√
8

πd
∥va − vb∥ ≤

∣∣v⊤ (va − vb)
∣∣ ≤ ∥va − vb∥ . (76)

3It is easy to show that different unit vectors v,v′ ∈ Rd may be used for W (K) and W (Q), respectively,
that is, W (K) = uv⊤ and W (Q) = u′v′⊤, as long as v and v′ satisfy equation 72.

22



Published as a conference paper at ICLR 2024

In particular, this means that for any vc ∈ V
1

(|V|+ 1)
2

√
8

πd
∥vc∥ ≤

∣∣v⊤vc

∣∣ ≤ ∥vc∥ (77)

holds. Thus, pick up arbitrary vectors u,u′ ∈ Rs with∣∣u⊤u′∣∣ = (|V|+ 1)
4 πd

8

δ

ϵrmin
, (78)

and by setting W (K) = uv⊤ ∈ Rs×d and W (Q) = u′v⊤ ∈ Rs×d, we have∣∣∣∣(W (K)va

)⊤ (
W (Q)vc

)
−
(
W (K)vb

)⊤ (
W (Q)vc

)∣∣∣∣
=

∣∣∣∣(va − vb)
⊤
(
W (K)

)⊤ (
W (Q)vc

)∣∣∣∣
=
∣∣∣(va − vb)

⊤
v
∣∣∣ · ∣∣u⊤u′∣∣ · ∣∣v⊤vc

∣∣
≥ 1

(|V|+ 1)
2

√
8

πd
∥va − vb∥ · (|V|+ 1)

4 πd

8

δ

ϵrmin
· 1

(|V|+ 1)
2

√
8

πd
∥vc∥

> δ, (79)
where the last inequality follows from (rmin, rmax, ϵ)-separatedness of V .

B.2 PROPERTIES OF BOLTZMANN OPERATOR

For any vector a = (a1, . . . , an) ∈ Rn, let denote p = (p1, . . . , pn) = σS [a]. In addition, we
define the Boltzmann operator, partition function, and entropy as follows.

boltz(a) =

n∑
i=1

aipi, (80)

L(a) = log

(
n∑

i=1

eai

)
, (81)

S(p) = −
n∑

i=1

pi log pi. (82)

The following lemma shows that the Boltzmann operator is monotonically decreasing when the
maximum and the rest of the arguments are far enough apart.
Lemma 4 (Monotonicity). Let n ∈ N+, i ∈ [n] and a = (a1, . . . , an) ∈ Rn. Then, the derivative
of the Boltzmann operator boltz(a) = a⊤σS [a] with respect ai is

∂

∂ai
boltz(a) = pi(1 + log pi + S(p)). (83)

In particular, the Boltzmann operator is monotonically decreasing with respect to ai whenever
ai < max

j∈[n]
aj − log n− 1 (84)

holds.

Proof. Since

L(a)− S(p) = log

 n∑
j=1

eaj

+

n∑
k=1

pk log pk

=

n∑
k=1

pk log

pk

n∑
j=1

eaj


=

n∑
k=1

pk log e
ak =

n∑
k=1

pkak = boltz(a), (85)
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we have
∂

∂ai
boltz(a) =

∂

∂ai
L(a)− ∂

∂ai
S(p). (86)

Notice that
∂pi
∂aj

=
∂

∂aj

eai∑n
k=1 e

ak

=

∂
∂aj

eai ·
∑n

k=1 e
ak − eai · ∂

∂aj

∑n
k=1 e

ak

(
∑n

k=1 e
ak)

2

=
δije

aj ·
∑n

k=1 e
ak − eai · eaj

(
∑n

k=1 e
ak)

2 = pj(δij − pi) (87)

holds for any i, j ∈ [n]. Here δij is the Kronecker delta, that is,

δij =

{
0 if i ̸= j,

1 if i = j.
(88)

Thus,
∂L(a)
∂ai

=
eai∑n
j=1 e

aj
= pi, (89)

∂S(p)
∂ai

=

n∑
j=1

∂S(p)
∂pj

· ∂pj
∂ai

=

n∑
j=1

∂

∂pj

(
−

n∑
k=1

pk log pk

)
· pi(δji − pj)

=

n∑
j=1

(− log pj − 1) · pi(δji − pj)

= −pi

n∑
j=1

[δji(log pj + 1)− pj log pj − pj ]

= −pi (log pi + 1 + S(p)− 1)

= −pi(log pi + S(p)). (90)
Plugging equation 89 and equation 90 into equation 86, we have

∂

∂ai
boltz(a) =

∂

∂ai
L(a)− ∂

∂ai
S(p)

= pi + pi(log pi + S(p))
= pi(1 + log pi + S(p)). (91)

In particular, the derivative of the Boltzmann operator at index i is negative when
1 + S(p) + log pi < 0 ⇔ 1 + S(p) + (ai − L(a)) < 0

⇔ ai < L(a)− S(p)− 1. (92)
Since maxj∈[n] aj ≤ L(a)(p.72, Boyd & Vandenberghe (2004)) and S(p) ≤ log n, we have
∂

∂ai
boltz(a) < 0 whenever

ai < max
j∈[n]

aj − log n− 1 (93)

holds.

Lemma 5 (Concavity). Let n ∈ N+, i ∈ [n] and a = (a1, . . . , an) ∈ Rn. Then, the Boltzmann
operator boltz(a) is concave with respect to ai, that is,

∂2

∂a2i
boltz(a) < 0 (94)

holds in a domain where a satisfies
ai < max

j∈[n]
aj − log n− 3. (95)

24



Published as a conference paper at ICLR 2024

Proof. According to Lemma 4, we have
∂

∂ai
boltz(a) = pi(1 + log pi + S(p)). (96)

Thus,
∂2

∂a2i
boltz(a) =

∂

∂ai
[pi(1 + log pi + S(p))]

=
∂pi
∂ai

· (1 + log pi + S(p)) + pi ·
∂

∂ai
(1 + log pi + S(p))

= pi(1− pi) · (1 + log pi + S(p)) + pi ·
[
pi(1− pi)

pi
− pi(log pi + S(p))

]
= pi [(1− 2pi)(log pi + S(p) + 1) + 1] , (97)

where we used equation 87 and equation 90.

Hereafter, we show that the right-hand side of the above equality is negative under the assumption
that equation 95 holds. First, the fact that maxj∈[n] aj ≤ L(a)(p.72, Boyd & Vandenberghe (2004))
and S(p) ≤ log n implies

ai < max
j∈[n]

aj − log n− 3 < L(a)− S(p)− 3. (98)

It follows from ai − L(a) = log pi that
ai < max

j∈[n]
aj − log n− 3 ⇒ log pi < −S(p)− 3. (99)

Next, since the entropy S(p) is always non-negative, we have log pi < −3 under equation 95. By
using an inequality e−x ≤ 1

1+x for x > −1, this implies

pi < e−3 ≤ 1

1 + 3
=

1

4
. (100)

Thus, as long as equation 95 holds, we have

(1− 2pi)(log pi + S(p) + 1) + 1 <

(
1− 2 · 1

4

)
· (−2) + 1 = 0, (101)

which in turn implies ∂2

∂a2
i
boltz(a) < 0.

Lemma 6. Let n ≥ 2 and a = (a1, . . . , an−1, an), b = (b1, . . . bn−1, bn) ∈ Rn be sequences such
that the first n− 1 elements of a and b match, that is, ai = bi for all i ∈ [n− 1]. In addition, if

max
i∈[n−1]

ai − δ > an > bn (102)

with δ > log n+ 3, the difference boltz(a)− boltz(b) is lower-bounded by

boltz(b)− boltz(a) > (an − bn)(δ + an − bn − log n− 1) · ebn∑n
i=1 e

bi
. (103)

Proof. According to the monotonicity (Lemma 4) and concavity (Lemma 5) of the Boltzmann op-
erator, we have

boltz(b1, . . . , bn−1, x) + (an − x) · ∂

∂x
boltz(b1, . . . , bn−1, x) > boltz(b1, . . . , bn−1, an)

(104)
for any x < an. In particular, by setting x = bn and using equation 83, this implies

boltz(b)− boltz(a) > (an − bn) ·

(
− ∂

∂x
boltz(b1, . . . , bn−1, x)

∣∣∣∣
x=bn

)
= (an − bn) · [−pn(1 + log pn + S(p))]

> (an − bn) ·
[
−pn

(
1 + bn −max

i∈[n]
bi + log n

)]
> (an − bn) · pn(δ + an − bn − log n− 1), (105)

where p = (p1, . . . , pn) ∈ Rn is the softmax function of b, i.e., p = σS [b].
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B.3 PROOF OF LEMMA 1

Before moving on to the proof, we first illustrate the proof sketch of Lemma 1 using a simple
example.

Since the Boltzmann operator is permutation invariant, without loss of generality we assume the
elements of a(i) and a(j) are sorted in descending order, e.g., a(i) = (8, 6, 5) and a(j) = (4, 3, 1).
In this case, since the Boltzmann operator boltz can be regarded as an approximation of max, we
have

boltz(a(i)) ≈ 8 > 4 ≈ boltz(a(j)), (106)
and so the Boltzmann operator can readily separate these two inputs.

The subtle case is where the initial tokens of a(i) and a(j) are identical, but the rest of each sequences
differs, like a(i) = (8, 6, 5) and a(j) = (8, 3, 1). However, a closer observation reveals that if
the first coordinate and the second one of the input a ∈ Rn are well-separated, then boltz(a) is
monotonically decreasing for each coordinate k = 2, . . . , n. In the above example, this intuitively
implies

boltz
(
a(j)

)
≥ boltz

(
a(j)

)
with a(j) = (8, 3, 3) (107)

and
boltz

(
a(i)

)
≤ boltz

(
a(i)

)
with a(i) = (8, 6,−∞), (108)

or by abuse of notation, boltz
(
a(i)

)
≤ boltz (8, 6).

Thus, if we can show boltz
(
a(i)

)
< boltz

(
a(j)

)
, then boltz

(
a(i)

)
< boltz

(
a(j)

)
holds and

we know that the Boltzmann operator can also separate this pattern of inputs. Fortunately, this is
indeed the case if each element of the inputs is sufficiently separated, because

boltz
(
a(j)

)
=

8e8 + 3e3 + 3e3

e8 + e3 + e3
=

8e8 + 2 · 3e3

e8 + 2 · e3

≈ 8e8 + (3 + log 2)e3+log 2

e8 + ·e3+log 2
= boltz (8, 3 + log 2) , (109)

and we have boltz (8, 6) < boltz (8, 3 + log 2) by the monotonicity of the Boltzmann operator.

Proof of Lemma 1. We only have to show the case of m = 2, and for notational convenience, a(1)

(resp. a(2)) hereafter is denoted by a (resp. b). Also, since the Boltzmann operator is permutation
invariant, we assume without loss of generality a1 > · · · > an and b1 > · · · > bn (Since there is no
duplicate element in a, ak is strictly greater than al for any k < l. The same holds for b).

First, since the Boltzmann operator can be regarded as weighting averaging, we have

|boltz(a)| ≤ max(|a1|, |an|) < r. (110)

For δ′-separatedness, if a ̸= b, w.l.o.g. we assume that there exists k ∈ {0, . . . , n− 1} such that

(a1, . . . , ak) = (b1, . . . , bk) and ak+1 > bk+1. (111)

Then, Lemma 7 implies that we have

|boltz(a)− boltz(b)| > (log n)2e−(a1−bk+1). (112)

Since a and b are tokenwise (r, δ)-separated, a1 − bk+1 < 2r holds. Thus, the right-hand side of
the above inequality is further lower-bounded by

|boltz(a)− boltz(b)| > (log n)2e−(a1−bk+1) > (log n)2e−2r. (113)

Lemma 7. Let a, b ∈ Rn be tokenwise δ-separated vectors in a decreasing order with no duplicate
element in each vector and δ > 2 log n+ 3, that is,

i > j ⇒ ai − aj , bi − bj > δ, (114)
ai ̸= bj ⇒ |ai − bj | > δ (115)
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for any i, j ∈ [n].

In addition, suppose there exists k ∈ {0, . . . , n− 1} such that

(a1, . . . , ak) = (b1, . . . , bk) and ak+1 > bk+1. (116)

Then, the outputs of the Boltzmann operator are (log n)2e−(a1−bk+1)-separated, that is,

|boltz(a)− boltz(b)| > (log n)2e−(a1−bk+1) (117)

holds.

Proof. We show the lemma by dividing it into the following two cases:

1. k ≥ 1

Let a and b be

a = (a1, a2, . . . , ak, ak+1) ∈ Rk+1 (118)

b = (a1, a2, · · · , ak, bk+1, bk+1, . . . , bk+1) ∈ Rn. (119)

Then, by abuse of notation, Lemma 4 implies that

boltz (a) < a⊤σS [a] = boltz (a) and boltz (b) > boltz
(
b
)
, (120)

and we only have to evaluate the magnitude of the difference boltz
(
b
)
− boltz (a).

Let γk and ξk be

γk =

k∑
l=1

ale
al and ξk =

k∑
l=1

eal . (121)

Then, boltz
(
b
)

can be decomposed into

boltz
(
b
)
=

γk + (n− k)bk+1e
bk+1

ξk + (n− k)ebk+1

=
γk + bk+1e

bk+1+log(n−k)

ξk + ebk+1+log(n−k)

=
γk + (bk+1 + log(n− k)) ebk+1+log(n−k)

ξk + ebk+1+log(n−k)
− log(n− k) · ebk+1+log(n−k)

ξk + ebk+1+log(n−k)

= boltz (a1, . . . , ak, bk+1 + log(n− k))− log(n− k) · ebk+1+log(n−k)

ξk + ebk+1+log(n−k)
.

(122)

Therefore, the difference boltz
(
b
)
− boltz (a) can be written as

boltz
(
b
)
− boltz (a) = boltz (a1, . . . , ak, bk+1 + log(n− k))− boltz (a)

− log(n− k) · ebk+1+log(n−k)

ξk + ebk+1+log(n−k)
. (123)

According to Lemma 6, the first two terms on the right-hand side are evaluated as

boltz (a1, . . . , ak, bk+1 + log(n− k))− boltz (a)

> (ak+1 − bk+1 − log(n− k))(δ + ak+1 − bk+1 − log(n− k)− log(k + 1)− 1)

· ebk+1+log(n−k)

ξk + ebk+1+log(n−k)

> (δ − log n)(2δ − 2 log n− 1) · ebk+1+log(n−k)

ξk + ebk+1+log(n−k)
. (124)
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Since δ > 2 log n+ 3 by assumption, the above inequality is further lower-bounded by

boltz (a1, . . . , ak, bk+1 + log(n− k))− boltz (a)

> (δ − log n)(2δ − 2 log n− 1) · ebk+1+log(n−k)

ξk + ebk+1+log(n−k)

> (log n+ 3)(2 log n+ 5) · ebk+1+log(n−k)

ξk + ebk+1+log(n−k)
. (125)

Plugging the above inequality into equation 123, we see

boltz
(
b
)
− boltz (a) = boltz (a1, . . . , ak, bk+1 + log(n− k))− boltz (a)

− log(n− k) · ebk+1+log(n−k)

ξk + ebk+1+log(n−k)

>
ebk+1+log(n−k)

ξk + ebk+1+log(n−k)
[(log n+ 3)(2 log n+ 5)− log(n− k)]

>
ebk+1+log(n−k)

ξk + ebk+1+log(n−k)
· 2(log n)2. (126)

Lastly, notice that the following inequality follows from δ-separatedness of a and b and the
assumption that a has no duplicate token:

ξk + ebk+1+log(n−k) <

k+1∑
l=1

eal (∵ ak+1 > bk+1 + log(n− k))

< ea1

k+1∑
l=1

e−(l−1)δ

< 2ea1 (∵ δ > log 2). (127)

By using this inequality, equation 126 is lower-bounded by

boltz
(
b
)
− boltz (a) >

ebk+1+log(n−k)

ξk + ebk+1+log(n−k)
· 2(log n)2

>
ebk+1+log(n−k)

2ea1
· 2(log n)2

> (log n)2e−(a1−bk+1), (128)

which implies boltz(b)− boltz(a) > (log n)2e−(a1−bk+1).

2. k = 0

Since the Boltzmann operator can be regarded as weighted averaging, boltz(b) ≤ b1
always holds. Thus, it is enough to evaluate how much greater boltz(a) is than b1.

Let a ∈ Rn be

a = (a1, a1 − δ, . . . , a1 − δ). (129)

Then, boltz(a) > boltz(a) follows from Lemma 4, and its value is

boltz (a) =
a1e

a1 + (n− 1)(a1 − δ)ea1−δ

ea1 + (n− 1)ea1−δ

=
a1 + (n− 1)(a1 − δ)e−δ

1 + (n− 1)e−δ

= a1 −
(n− 1)δe−δ

1 + (n− 1)e−δ
. (130)
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Therefore, the difference boltz (a)− boltz (b) is

boltz (a)− boltz (b) ≥ boltz (a)− b1

> a1 −
(n− 1)δe−δ

1 + (n− 1)e−δ
− (a1 − δ)

= δ − (n− 1)δe−δ

1 + (n− 1)e−δ

=
δ

1 + (n− 1)e−δ

≥ log n, (131)

where the last inequality follows from the assumption δ > 2 log n. Note that the right-hand
side is greater than (log n)2e−(a1−b1), because a1− b1 > log n implies log n · e−(a1−b1) <
1.

C EXTENSION TO MASKED SELF-ATTENTION

Masked self-attention mechanisms are formulated as follows: the Softmax part in equation 2 is
replaced by

σS

[(
W

(K)
l,i Z

)⊤ (
W

(Q)
l,i Z

)
+C

]
∈ Rd×n, (132)

with some masking matrix C ∈ Rn×n whose elements are either 0 or −∞.

Our main result Theorem 2 can be readily extended to the case where attention masking are con-
ducted. The idea is that

boltz(a+ c) = (a+ c)⊤σS [a+ c]

= a⊤σS [a+ c] + c⊤σS [a+ c]

= a⊤σS [a+ c] (133)

holds for any masking vector c ∈ Rn whose elements are either 0 or −∞. Thus, in order to ensure
that the masked attention is a contextual mapping, it is sufficient to verify boltz(a + c) are well-
separated. The caveat is that the Boltzmann operator now has to distinguish inputs consisting of
the same attention a, but different masks c1, c2. However, the separability in this case can also be
proved in the same way as in the proof of Lemma 1.
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