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ABSTRACT

Modern generative adversarial networks (GANs) generate extremely realistic im-
ages and are generally believed to capture the true data distribution. In this work,
we evaluate modern GANS as density models and ask whether they can be used
for tasks such as outlier detection and generative classification. We find that the
performance of state-of-the-art GANs is very poor on these tasks and is often
close to (or worse than) random. For instance, a modern GAN that generates re-
markably realistic samples when trained on CIFAR10, consistently assigns higher
likelihood to flat images than to images from the training set.

To try and understand the source of this poor performance, we show that the likeli-
hood that a GAN assigns to an input image is dominated by the quality of the GAN
reconstruction when only the latent variable is optimized. Surprisingly, GANs of-
ten fail to reconstruct images from the training set in this scenario, while they
are highly effective at reconstructing images outside the distribution. Taken to-
gether, our results indicate that modern GANs do not truly learn the underlying
distribution, despite the impressive quality of the generated samples.

1 INTRODUCTION

Modern Generative Adversarial Networks (GANs, Goodfellow et al., 2020) have achieved extremely
impressive results in image generation and manipulation (e.g. Brock et al., 2018; Karras et al.,
2020b; 2021; Sauer et al., 2022; Pan et al., 2023). For many datasets of high-resolution images,
naive observers find it difficult to determine whether a given image is real or a fake image generated
by a modern GAN. The high perceptual quality of the generated images can also be measured nu-
merically using metrics such as FID scores and the progress over the last decade of the success of
GANs using this metric has been impressive. This progress would seem to suggest that the density
model learned by GANs pθ(x) has been gradually approaching the true input distribution pdata(x).

But as has been pointed out repeatedly in the past (e.g. (Theis et al., 2015)), high-quality samples do
not guarantee that the generator has learned a distribution that matches the true distribtion. A trivial
example is a generative model that randomly samples a point from the training data: such a model
would give excellent FID scores but will give zero probability to any example outside of the training
set.

In this paper we wish to measure the extent to which modern GANs capture the true density of the
data. Traditionally, generative models have been evaluated using both sample quality and additional
tasks. Consider, for example, the Helmholtz machine, one of the first deep generative models of im-
ages. Published approximately 30 years ago, the authors demonstrated the success of a model trained
on handwritten digits by: (1) showing samples from the model, (2) evaluating the log likelihood on
held out data, and (3) training separate models for different classes and classifying new examples
based on the class that gives the highest likelihood (Hinton et al., 1995; Frey et al., 1995). The mo-
tivation for the last task is the fact that the Bayes-optimal classifier is one that returns the category
which maximizes the conditional density (Duda et al., 1973). Thus, we would expect a classifier that
uses pθ(x) as the density to achieve near optimal accuracy if pθ(x) ≈ pdata(x). Conversely, subpar
accuracy serves as clear evidence that pθ(x) ̸= pdata(x). Indeed, Hinton et al. showed that the same
model that generated realistic samples on handwritten digits also gave classification accuracies that
were higher than a state-of-the-art classifier trained on the same data. We wish to determine whether
a similar behavior holds in the case of modern GANs.
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Figure 1: Modern GANs are typically bad at reconstructing training images when only the z is op-
timized but can copy images completely outside the original training distribution. This is illustrated
with ReACGAN (Kang et al., 2021) on ImageNet (with a reported FID of 15.65 Kang et al. 2022).
The top row shows images generated by the GAN, from the training set, from SVHN (rescaled to
128×128) and images of a single color (flat). The second row shows ReACGAN’s z-reconstruction
of the images. Notice how the GAN can’t reconstruct training images (optimization only z), whether
conditioned on the correct label or on a different label, and the perceptual quality in both cases is
equally bad. On the other, ReACGAN can reconstruct some images from SVHN and all flat images,
even though they were never observed during training.

When we use these additional tasks to measure the success of modern GANs, we find that the density
models they learn are remarkably poor. Their performance is worse than chance on outlier detection
and worse than simple baselines on classification (e.g. ≈ 30% accuracy on CIFAR10). This is
despite the fact that the same GANs generate highly realistic samples for these datasets. In order to
explain these failures, we show that the likelihood that a GAN assigns to a new image is dominated
by what we call the “z-reconstruction error”: the ability of a GAN to reconstruct an image when all
parameters are fixed and we optimize over the latent variable z.

Take for instance the z-reconstruction results with ReACGAN (Kang et al., 2021) on ImageNet
shown in Figure 1. The GAN is able to generate realistic samples, but is unable to reconstruct
training images when only z is optimized. Furthermore, the quality of the z-reconstruction when
supplying the correct labels to the GAN or the wrong labels is equally bad, as shown in the left
two columns of the training set for the correct labels and the right two columns for the wrong
labels. Because the GAN frequently assigns similar likelihood to images in the correct class and
the incorrect class, its performance on classification is very bad. Moreover, ReACGAN is able to
z-reconstruct images made up of only a single color or from SVHN much better than images from
the training set, even though they were never observed in training. This directly impedes the GAN
in outlier detection, as it gives higher likelihood to flat images (outside the training distribution) than
to test images. In our experiments, we observe that a range of state-of-the-art GANs on different
datasets imitate these flaws, explaining why they perform so poorly on the tasks of classification and
outlier detection.

The behavior described above defies what would usually be expected of good density models. If
anything, images from the training set should be inside the support of the model while those from
completely different distributions should be outside, which is apparently not the case for many
modern GANs. All together, our results indicate that modern GANs in fact capture a fundamentally
different distribution from that of the training data.

2 METHODS

GANs transform samples from a low dimensional latent space, Z , into the (typically larger) dimen-
sion of the data X , effectively describing a manifold. This corresponds to a generative model of the
form x = Gθ(z) where z is sampled from a base distribution p(z) which, together with the mapping
function Gθ, determine the density of high dimensional samples x ∈ X .

As defined, this distribution will give zero density to any sample not on the manifold. However, for
many GANs almost all training points are not on the manifold, as shown in Figure 2. If almost all
points of interest are not part of the manifold, then the performance of the GAN on any inference
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Figure 2: Euclidean distance of reconstructions of generated and train images under different GAN-
dataset pairs (when only z is optimized). In all examples, the reconstructions errors of training
images are noticeably larger than the same for images generated by the GAN, implying that most
training images are not inside the GAN manifold.

task will be essentially the same as random chance. It is therefore necessary to relax this definition
of the density captured by GANs for successful inference.

Many authors augment the above density with an observation model: x = Gθ(z) + η where η is
observation noise and is usually assumed to be Gaussian with variance 1

γ (Wu et al., 2016). The
probability of x can now be rewritten as:

pγ (x) =

∫
p (z) pγ (x|Gθ (z)) dz (1)

where pγ (x|Gθ (z)) is the observation model. We will call this new probability the relaxed likeli-
hood and will slightly generalize by assuming that the observation model takes the following form:

pγ (x|Gθ (z)) ∝ exp [−γ · d (x, Gθ (z))] (2)

where d (·, ·) is a (possibly asymmetrical) distance function. In the case of a Gaussian observation
model, the distance function is the ℓ2 norm.

Using such an observation model, the relaxed likelihood is consistent with that of the GAN at the
limit γ → ∞ but has full support as long as γ is finite, unlike the distribution implied by the noiseless
GAN. In our experiments, we will investigate the quality of the density models implied by GANs
when γ is finite.

2.1 ANNEALED IMPORTANCE SAMPLING

Calculating the relaxed log-likelihood involves solving the integral in Equation 1. Unfortunately,
analytically solving this integral is intractable for the GANs that we study. Instead, approximate
methods such as Markov chain Monte Carlo (MCMC) must be used in order to calculate the log-
likelihood. In particular, Wu et al. showed that annealed importance sampling (AIS, Neal 2001) can
be used to accurately approximate the log-likelihood of GANs. Broadly speaking, AIS is an MCMC
approach that uses multiple intermediate distributions in order to estimate normalizing constants.

Let f(z) be a target un-normalized distribution. An AIS chain is defined by an initial distribution
Q0(z) = q0(z)/Z0 whose normalization coefficient is known, together with T intermediate distribu-
tions Q1(z), · · · , QT (Z) such that QT (z) = qT (z)/ZT = f(z)/ZT . Each step of the chain further
requires an MCMC transition operator Tt which keeps Qt(z) invariant, such as the Mahalanobis-
Adjusted Langevin algorithm (MALA) or Hamiltonian Monte-Carlo (HMC).

Beginning with a sample from the initial distribution z0 ∼ Q0(z) and setting w0 = 1, AIS iteratively
carries out the following steps:

wt = wt−1 ·
qt(zt−1)

qt−1(zt−1)
zt ∼ Tt (z|zt−1) (3)

The importance weights wT aggregated during the sampling procedure are an unbiased estimate of
the ratio of normalizing coefficients, such that E [wT ] = ZT /Z0.

Given an input image x, the relaxed likelihood can be calculated through AIS by setting f(z) =
p(z)pγ (x|Gθ(z)) as the target distribution, such that pγ (x) is the corresponding normalization
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constant ZT . We follow Wu et al. and use the following intermediate distributions:

qt (z) = p (z) · pγ (x| Gθ(z))
βt (4)

where βt > βt−1, β0 = 0 and βT = 1.

In practice, we would like to estimate the likelihood in log-space to avoid numerical difficulties
such as underflows, i.e. to calculate log pγ (x). Calculating the log of the importance weights as
described above is straightforward, however Grosse et al. have shown that doing so results in a
stochastic lower bound of the log-likelihood. As the number of intermediate steps T increases, this
stochastic lower bound becomes tighter and converges to the true log-likelihood.

2.2 INFERENCE

We will use two tasks as a manner of testing whether GANs have learned the distribution underlying
the training data: (1) generative classification and (2) outlier detection (OD).

Generative Classification In generative classification, it is assumed that different parametric dis-
tributions were learned for each class c ∈ C. The optimal classification estimator in this setting is to
return the class with the highest conditional likelihood pθ(x|c).
Some of the GANs that we investigate use parameter sharing in the models for different classes. For
example, in StyleGAN-XL, a single GAN is learned for all classes, but the output of the GAN is
conditioned on a one-hot vector that encodes the desired class. In such cases, we define the density
that a model gives to a particular class as

pγ (x|c) =
∫

p (z) pγ (x|Gθ (z, c)) dz (5)

Outlier Detection The simplest approach towards outlier detection assumes that outliers arise
from some basic distribution (e.g. uniform), while inliers are generated from the learned distribu-
tion (Barnett, 1978; Barnett et al., 1994; Bishop, 1994; Zong et al., 2018). This setting corresponds
to labeling any point with log-likelihood less than some predefined threshold τ as an outlier. This
definition gives rise to the estimator ôθ(x) = 1[pθ(x) < τ ] which returns 1 when x is assumed to
be an outlier. We will use the area under the ROC curve (AUC) to evaluate the performance of the
different models on OD.

3 EXPERIMENTS

AIS In all of the following experiments, we used AIS with an HMC transition kernel and 500
intermediate distributions and 8 chains. For more details and analysis of accuracy, see Appendix A.2.

Relaxed Log-Likelihood For all experiments, a Gaussian observation model was used (see Ap-
pendix B.2 for other observation models). γ was set as the inverse variance of the distance between
training samples and the GAN’s reconstruction of those images, corresponding to maximizing the
relaxed log-likelihood with respect to the training images under a Gaussian distribution.

Datasets The datasets considered are CIFAR10 Krizhevsky et al. (2009), AFHQ (Choi et al., 2020)
and ImageNet (Russakovsky et al., 2015).

Because of the large computation cost of calculating the likelihood for each sample, we show results
only for a small subset of the test data: 400 samples on CIFAR10/AFHQ, and 200 for ImageNet.
Additionally, the results on ImageNet are for a subset of the dataset containing only 10 classes,
which we call ImageNet10 (exact details in Appendix A). In the OD task, we use images of one
color (which we call ”flat”), SVHN and images from classes other than those being conditioned as
the outliers.

Models In our experiments, we consider the following pre-trained GANs: StyleGAN-XL (Sauer
et al., 2022), BigGAN-DiffAug (Zhao et al., 2020), StyleGAN2-ADA (Karras et al., 2020a),
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Figure 3: Generative classification accuracy of the different GANs (in gray) compared to our simple
baselines (orange and red). All of the GANs are on par, or worse than, generative classification
using simple baselines. Additionally, the classification accuracy of ViT-H (Dosovitskiy et al., 2020)
on CIFAR10 (in green) shows how far the GANs are from current state-of-the-art classifiers.
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Figure 4: Left: Outlier detection performance on CIFAR10 (truck class) of the different GANs,
compared with the baselines. Right: histograms of the log-likelihoods assigned by StyleGAN-XL
(center) and a diagonal Gaussian (right) to different partitions of the data. Note that StyleGAN-
XL gives flat (orange), SVHN (green) and images from the wrong class (automobile, red) higher
likelihood than even the training images (black). On the other hand, the diagonal Gaussian is at least
able to differentiate between flat images and test images.

BigGAN-ICR (Zhao et al., 2021), ReACGAN (Kang et al., 2021) (the last 2 we use the imple-
mentations available from Kang et al. 2022). The results for CIFAR10 and ImageNet10 use class-
conditional GANs, while those on AFHQ use GANs trained separately on each class. These GANs
were chosen as they all perform extremely well under the standard evaluation protocols - for in-
stance, StyleGAN-XL has an FID of 1.52 on ImageNet and an FID of 3.35 on CIFAR10.

Baselines We will compare the GANs to two simple baselines: (1) a diagonal Gaussian and (2) a
kernel density estimator (KDE) with an isotropic Gaussian kernel and variance around 0.05. Both
of the baselines are fitted to the training data (or a subset of it), carrying out inference in exactly the
same manner as the GANs.

3.1 RESULTS

Figure 3 shows the classification accuracy of various GANs on different datasets. Notably, the
classification accuracy of the GANs is very low, typically lower or on par with our simple baselines.
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Figure 5: The log-likelihood of samples plotted in ascending order for different dataset-GAN pairs.
The full log-likelihood (dashed line) is the sum of two terms: a reconstruction term (in blue) and a
KL term (in orange). In all of the cases we investigated, the KL term remains more or less constant,
while the reconstruction term varies between samples. These results imply that the log-likelihood is
mostly dependent on the reconstruction quality of the samples.
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Figure 6: The negative z-reconstruction error scattered against the log-likelihoods (divided by the
dimension of the data) found using AIS for various dataset-GAN pairs. The errorbars represent ±1
standard deviation of the importance weights found using AIS. The dashed red line in the linear fit
of the z-reconstruction error to the likelihood. The reconstruction error is highly correlated with
the log-likelihood, typically around 0.9, hinting that it serves as a good stand-in for the true relaxed
log-likelihood. Correlations for all pairs of data sets and GANs available in Appendix B.3.

Figure 4 (left) shows the results of OD on CIFAR10. The performance of the GANs on these tasks
is very low - much lower even than randomly selecting outliers. Figure 4 (center) shows why this is
the case: the likelihood assigned to flat and SVHN images is higher than to the test and train images.
This means that any threshold chosen will assign more test images as outliers than the actual outliers.
Worse, most of the training images will also be considered outliers!

The results shown in Figure 4 are only conditional on a single class - the CIFAR10 “trucks” class;
more results can be seen in Appendix B. Furthermore, the performance of the GANs on ImageNet10,
AFHQCat and AFHQDog also fall below the baselines and is available in Appendix B.

4 ANALYSIS

The results above indicate that modern GANs are not effective density estimators. But why is this
the case?

The relaxed log-likelihood can be rewritten as follows:

log pγ (x) = Ez|x [log pγ (x| Gθ(z))]−DKL (pγ (z|x) || p(z)) (6)

The first term is related to how well the model can reconstruct the given image and is easier to
analyze while the second term is the divergence between the model’s prior and posterior.
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Figure 7: Histograms of the log z-reconstruction error (lower is better) of different GANs-dataset
pairs on different partitions of the data. Notice how flat and SVHN images consistently achieve
lower reconstruction error, even lower than training images, explaining why GANs struggle with
outlier detection. Moreover, the reconstruction of training and test images are almost identical to
the reconstruction error when the GAN is provided with the wrong label, leading to poor accuracy
in generative classification.
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Figure 8: Best reconstructions for various dataset-GAN pairs. The top rows are results for BigGAN-
DiffAug trained on CIFAR10 (FID 3.35, zoom in to see details), the middle rows are StyleGAN-XL
on ImageNet10 (FID 1.52), and the bottom rows are StyleGAN2-ADA on AFHQCat (FID 3.55).
For each GAN, the top row consists of original images and the bottom is the GAN’s reconstruction.
All of these GANs are able to z-reconstruct flat images remarkably well, even though such images
weren’t seen during training, which is the reason they under-perform on OD. On the other hand, the
reconstruction of training and testing images is quite poor with all GANs. Moreover, in most cases
the reconstruction of training images is equally bad whether the labels supplied to the GAN are the
true labels or incorrect labels, explaining why they struggle in the task of generative classification.

We can look at the relative importance of these terms on the log-likelihood in order to gain a bet-
ter understanding of the behavior empirically observed in the previous section. In Figure 5, the
reconstruction and KL terms are plotted next to the log-likelihood. Notice how the difference in
log-likelihood between different samples is mostly determined by the reconstruction term, while the
KL term is almost constant.
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4.1 ANALYSIS THROUGH Z-RECONSTRUCTION QUALITY

As shown above, the relaxed log-likelihood is largely dependent on the reconstruction term from
equation 6. However, it is computationally costly to calculate this error and doesn’t enable further
interpretation of the failure modes. Instead, we can look at the mode of the posterior, centered
around the GAN’s best reconstruction of the input image x.

Let ẑ be the latent code corresponding with an output that is closest to the input image:

ẑ = argmin
z

d (x, Gθ(z)) (7)

We will call −d (x, Gθ(ẑ)) the negative z-reconstruction error of the GAN1. We emphasize that this
reconstruction error is the error when all parameters of the GAN are held fixed, and we only optimize
over the latent code z. This is in contrast to many modern GAN inversion methods (e.g. (Sauer et al.,
2022)) in which different parameters of the model may be changed during the inversion to better fit
the input.

In practice, this z-reconstruction error is highly correlated with the relaxed log-likelihood in the
settings we have examined, as shown in Figure 6. As such, analyzing the quality with which a GAN
can copy images is a good proxy for investigating how likelihood is assigned by the GAN to the
images.

4.2 Z-RECONSTRUCTION PERSPECTIVE OF GAN FAILURE

Figures 8 and 7 show the z-reconstruction error of different GANs visually and quantitatively, re-
spectively. These results hint at the reasons behind the poor performance of GANs on both classifi-
cation and OD.

Failure on Classification The process of generative classification involves calculating the like-
lihood of the image under all possible classes, returning the class whose likelihood is maximal.
However, as can be seen in Figure 7, the z-reconstruction errors of all of the GANs when supplied
with the wrong label (in purple) or with the correct label (in blue and orange) are all concentrated in
the same area. In other words, the likelihood given by the GAN to a test image is approximately the
same for all classes, hurting the classification accuracy of the GAN.

Failure on OD Figures 8 and 7 both illustrate how the quality of the z-reconstructions of flat
and SVHN images is overwhelmingly better than even that of the training images. This can be
understood from a geometric stand point: the GAN manifold passes closer to flat images than to
images from the train set. Therefore, the intuitive definition of outliers as points far from the GAN
manifold estimates most training/test points as outliers.

5 RELATED WORKS

This work follows a line of works (e.g. Nalisnick et al. 2018; Fetaya et al. 2019; Kirichenko et al.
2020) that show that many modern generative models do not truly capture the underlying data dis-
tribution. As far as we know, GANs have not been analyzed in this manner, despite their ability
to generate images perceptually similar to natural images, as there is no direct access to the model
likelihood.

There is a vast literature regarding inference using GANs and evaluating their performance (e.g.
Heusel et al. 2017; Sajjadi et al. 2018; Ravuri & Vinyals 2019; Webster et al. 2019; Naeem et al.
2020; Borji 2022; Ravuri et al. 2023). In this space of works, ours is most similar to that of Ravuri
& Vinyals 2019 in the sense that both methods use performance on classification as a means of
ascertaining whether GANs have learned the correct distribution or not. A key difference between
the approaches is that Ravuri & Vinyals 2019 suggested training a separate, discriminative classifier
on data generated by the GAN, whereas we utilize purely generative classification and OD as a
means to understand whether the GANs have learned the correct distribution.

1See Appendix A.3 for more information on the GAN inversion method

8



Under review as a conference paper at ICLR 2024

Utilizing the fact that GANs are generative models for classification, regression and OD performance
is not new (e.g. Schlegl et al. 2017; Donahue & Simonyan 2019; Kang et al. 2021; Nitzan et al.
2022). However, all such methods consider use an additional component such as an additional
encoder which is not part of the generative process of the GAN. In contrast, we argue that if GANs
accurately capture the data distribution, their generator alone should be enough to achieve near-
optimal performance.

6 LIMITATIONS

The main limitation of this work is that calculating the AIS log-likelihood and reconstructing images
using GANs are both computationally expensive tasks. As such, it is hard to evaluate large quantities
of data. Fortunately, the sample sizes do not necessarily need to be huge in order to expose existing
problems in models, as shown in this work.

Furthermore, while bad performance on inference tasks is evidence that a model doesn’t represent
the true distribution, it does not directly translate into the distance between said distributions. That
is, increasing the accuracy of generative classification (for instance) doesn’t guarantee better density
estimation. Concretely, while our baselines had better accuracy they were definitely worse genera-
tive models than the GANs in most other aspects. However, we should still expect that generative
models better at classification while still performing well under other evaluations will be better gen-
erative models than those that don’t.

Finally, our (and previous works’) definition of the likelihood adds a degree of freedom not originally
present in the trained generative model in the form of the observation model. The behavior of GANs
with different observation models could vary wildly and will influence performance on tasks outside
of image generation. However, we believe that using the simple Gaussian observation is sufficient
for most purposes. Specifically, we should expect GANs to reconstruct training images well and
images from different distributions badly, which is captured by the Gaussian observation model.
Moreover, if the relaxation of the likelihood isn’t used, GANs would not be able to perform well in
any task, as argued before.

7 DISCUSSION

An ideal density estimator maximizes the likelihood of the training distribution while minimizing
the likelihood at every other portion of space. This kind of ideal behavior should result in low
density for distributions completely different from the training distribution and high likelihood on
held-out data (as long as they are from the same distribution as the training data). Said differently,
in order for GANs to perform as good density models, we should hope that they will be able to give
high likelihood to images from the training and test datasets, but not flat images or images of digits.
Moreover, a GAN trained on one class of CIFAR10 or ImageNet should not give high likelihood to
images in another class.

As we have shown, modern GANs on a range of datasets do not allocate their likelihood in this
ideal manner. Leveraging the fact that the z-reconstruction ability of the GAN captures most of
the variance in the log-likelihood of the GAN enables us to better understand why GANs fail. In
particular, it seems that the GAN manifold passes far from the training distribution, contrary to
what is typically believed. This hints that during training GANs optimize a different objective
than ensuring that the manifold passes close to training points and warrants further exploration. In
summary our results suggest that modern GANs learn a distribution that is very different from the
distribution of the data.

8 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, all information on how the log-likelihood was calculated,
how z-reconstructions were found and which data we used is available in the appendix. Furthermore,
the AIS code we used will be made available in the Supplementary Material and, later on, publicly.
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Figure 9: The estimated log-likelihood as a function of AIS steps, for different GANs on CIFAR10
on random test samples. The log-likelihood of most samples converges after 500 steps.
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A IMPLEMENTATION DETAILS

A.1 IMAGENET10

Because of the computational cost of calculating the log-likelihood for each image, we used a small
subset of ImageNet. In our experiments, we used 10 classes, which is why we called the subset
ImageNet10. These classes are: warplane, sports car, heron, tabby cat, llama, vending machine,
bullfrog, coffee mug, speedboat, and tractor.

A.2 AIS DETAILS

We follow the implementation of AIS from Wu et al. (publicly available in GitHub), reimplemented
in PyTorch. When possible, we used the same settings as Wu et al.:

• The transition operator we used was HMC with 10 leapfrog steps and a Metropolis-
Hastings (MH) adjustment. During sampling, the learning rate is initialized to 5 · 10−2

and adjusted according to a moving average of the MH rejection rate

• During sampling, the intermediate distributions we used were:

Qt(z) ∝ p(z) · pγ (x| Gθ(z))
βt (8)

βt was annealed according to a sigmoidal schedule

• In all experiments we use 8 chains in order to calculate the importance weights

Choice of Number of Steps The bound on the log-likelihood approximated by AIS becomes tight
and accurate only as the number of intermediate distribution and number of chains grows, respec-
tively. However, AIS with many chains and intermediate distributions is incredibly computationally
costly. Due to these considerations we use a relatively small number of intermediate distributions,
while still ensuring accurate enough results.

Each chain used 500 intermediate steps. This number is in stark contrast to the 10,000 iterations
used by Wu et al.. We chose this number by running multiple AIS chains with a differing number
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Figure 10: OD results when averaging over all labels. Here, again, the baseline models outperform
the GANs investigated.

of intermediate steps, plotting the estimated log-likelihood as a function of AIS steps, as shown in
Figure 9. The estimated log-likelihood typically asymptotes very close to the value reached after
500 iterations. The difference between the converged value and the one after 500 steps is much
smaller than the resolution of log-likelihoods we are looking at, so this is a compromise between
accuracy and computational cost.

Further justification for this is due to the comparison between AIS and GAN inversion in terms of
gradient steps. Because of the leapfrog steps, a single iteration of AIS is similar to 10 gradient steps
in GAN inversion. In all of our experiments, ∼1500 iterations were enough to converge during
inversion, well below the 5000 gradient steps used during the AIS procedure.

A.3 RECONSTRUCTION THROUGH GAN INVERSION

There is a vast literature on the best way to reconstruct test images using GANs, also called GAN
inversion. In this work we used a simple, albeit rather costly, approach in order to find the best
possible reconstruction.

We used an optimization approach towards GAN inversion, using ADAM as the optimizer and a
cosine schedule (similar to the scheme used by Sauer et al. in their implementation). To find better
reconstructions, we sampled ∼ 1000 images from the GAN and initialized the optimizer from the
latent code of the image closest to the input image in ℓ2 distance. Furthermore, this process was
repeated ∼ 8 times for each image. Using this GAN inversion scheme, we were always able to
invert images generated by the GAN (and frequently flat images as well).

Finally, note that for all experiments with the StyleGAN variants, the inversion took place in Z
space, as the generative model is defined in terms of this latent space and not the W/W+ spaces.

B MORE RESULTS

B.1 OUTLIER DETECTION RESULTS

OD on ImageNet10 and AFHQ can be seen in Figure 11. As mentioned in the main text, for both of
these datasets GANs underperform, similarly to CIFAR10.

The results shown in the main text and above on conditional GANs showed OD performance when
the GAN is conditioned on a single label. Instead, we can think of the GAN as a mixture model
over all labels, in which case it could be the case that OD on a single class didn’t work simple
due conditioning. The results in Figure 10 show OD performance when viewing the conditional
GANs as mixture models. Here, again, the AUC of the GANs is very poor, even next to the simple
baselines.
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Figure 11: The GANs’ performance on OD in ImageNet10, AFHQCat and AFHQDog, compared
to the performance of the baselines.
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Figure 12: Classification (top) and OD (bottom) performance for various different distance func-
tions. The GANs perform poorly with all distance functions explored.
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BigGAN ReACGAN ICRGAN StyleGAN-XL StyleGAN2-ADA
CIFAR10 0.93 0.86 0.89 0.95 -

ImageNet10 0.92 0.98 - 0.9 -
AFHQCat - - - - 0.77
AFHQDog - - - - 0.9

B.2 DIFFERENT DISTANCE FUNCTIONS

The relaxed likelihood as was defined in Section 2 is dependent on the particular distance function
d (x, Gθ(z)). In the body of the paper we only considered the Euclidean distance, however perfor-
mance could in theory vary greatly if the distance function is changed. Figure 12 explores the use
of the ℓ1 and ℓ∞ norms. While the numbers vary slightly, the overall performance of GANs is still
worse than the simple baselines.

B.3 CORRELATIONS WITH RECONSTRUCTION ERROR

In almost all settings we explored, the negative reconstruction error is highly correlated with the
AIS, as seen in the following table:

During calculation of the correlation between the negative reconstruction error and AIS, the images
with the top 5% variance in importance weights were excluded. Additionally, the images considered
for this calculation were train images, test images, images from SVHN and flat images.

15


	Introduction
	Methods
	Annealed Importance Sampling
	Inference

	Experiments
	Results

	Analysis
	Analysis Through z-Reconstruction Quality
	z-Reconstruction Perspective of GAN Failure

	Related Works
	Limitations
	Discussion
	Reproducibility Statement
	Implementation Details
	ImageNet10
	AIS Details
	Reconstruction through GAN Inversion

	More Results
	Outlier Detection Results
	Different Distance Functions
	Correlations with Reconstruction Error


