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Abstract

A mainstream type of current self-supervised learning methods pursues a general-
purpose representation that can be well transferred to downstream tasks, typically
by optimizing on a given pretext task such as instance discrimination. In this work,
we argue that existing pretext tasks inevitably introduce biases into the learned
representation, which in turn leads to biased transfer performance on various
downstream tasks. To cope with this issue, we propose Maximum Entropy Cod-
ing (MEC), a more principled objective that explicitly optimizes on the structure
of the representation, so that the learned representation is less biased and thus gen-
eralizes better to unseen downstream tasks. Inspired by the principle of maximum
entropy in information theory, we hypothesize that a generalizable representation
should be the one that admits the maximum entropy among all plausible represen-
tations. To make the objective end-to-end trainable, we propose to leverage the
minimal coding length in lossy data coding as a computationally tractable surrogate
for the entropy, and further derive a scalable reformulation of the objective that
allows fast computation. Extensive experiments demonstrate that MEC learns a
more generalizable representation than previous methods based on specific pretext
tasks. It achieves state-of-the-art performance consistently on various downstream
tasks, including not only ImageNet linear probe, but also semi-supervised classifi-
cation, object detection, instance segmentation, and object tracking. Interestingly,
we show that existing batch-wise and feature-wise self-supervised objectives could
be seen equivalent to low-order approximations of MEC. Code and pre-trained
models are available at https://github.com/xin1iu20/MEC.

1 Introduction

Self-supervised learning (SSL) aims to learn rich and meaningful representations without relying
on human annotations. Pursuing general-purpose representations, SSL models are typically used as
pre-trained weights for providing a good initialization to downstream tasks. In this sense, SSL [12,
31, 10, 29, 15, 14, 86, 30] has seen great progress in computer vision, and can achieve competitive or
even better performance on various downstream tasks compared to its supervised counterparts.

At the core of current SSL methods is the design of pretext tasks. A pretext task is a (usually
hand-crafted) learning objective in which the supervision signals could be mined from the data itself,
with the aim of applying the learned representation to other downstream tasks. Early attempts of
pretext tasks typically discard a certain property of the input data and then force the model to predict
the discarded property. For instance, one can convert an RGB image to a gray-scale one, and train the
model to predict the original color [87, 88]; or apply random rotation to image patches and ask the
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Figure 1: Comparison of transfer learning performance on five image-based tasks (top row) and five
video-based tasks (bottom row). Along each axis we plot the performance ranking of the represen-
tation on a specific downstream task, so a polygon with a larger area means better generalization
capacity on various downstream tasks, across the board.

model to predict the rotation angles [27]. In both cases, to fulfill the pretext task, the model must
learn a meaningful representation that can describe object texture, shape or even category, therefore
the learned representation transfers well to downstream tasks related to these features.

Despite successes of existing pretext tasks, we find that they inevitably introduce biases into the
learned representation, which conflicts with the original aim of “general-purpose”. For example,
representations trained with the most prevalent image-level task, instance discrimination [20, 80], are
found biased to image-level tasks such as image classification, while by contrast degenerate in patch-
or pixel-level tasks like object detection and semantic segmentation [81]. Even being transferred
to image-level tasks, such representations still suffer from domain gaps in cases of different data
distributions [26], e.g., classification on unseen categories other than ImageNet objects.

In this work, we are curious of what makes for generalizable representations, and pursue an explicit
optimization with a criterion that directly measures the structure of representations, with the aim
of minimizing the biases brought by the pretext task. To this end, we propose Maximum Entropy
Coding (MEC). Inspired by the principle of maximum entropy in information theory, the basic
hypothesis in MEC is that a generalizable representation should be the one that admit the maximum
entropy among all plausible representations. Accordingly, optimizing towards maximum entropy
leads to representations with good generalization capacity. The main challenge confronting us is
that it is difficult, and computationally expensive, if possible, to estimate the distribution of a given
representation (usually a finite set of high-dimensional vectors), so in turn it is difficult to estimate
the entropy. To cope with this issue, we replace the optimization objective from the originally defined
entropy to a computationally tractable surrogate, i.e., the necessary number of bits needed to encode
the representations via lossy data coding [16]. The log-determinant term costs the most computation
in the coding length function. By leveraging Taylor expansion of matrix, we further approximate
this term with polynomial functions, leading to significant speed up and thus makes large-scale
pre-training possible.

In contrast to previous SSL methods that mainly evaluate on ImageNet classification, we experiment
on a wide variety of vision tasks to show the good generalization capacity of MEC. The considered
tasks span across not only image-level recognition on various data distributions, but also patch- or
pixel-level tasks like object detection, instance segmentation, and object tracking. We show MEC
generalizes well consistently across all tasks considered, while representations learned with previous
pretext tasks usually perform well on closely related downstream tasks but degenerate on less related
ones (see Figure 1). Besides empirical results, we find interesting equivalence between low-order
approximations of MEC and existing batch-wise (e.g., SimSiam [14]) or feature-wise objectives (e.g.,
Barlow Twins [86]), which provides a new perspective for a unified understanding of prevalent SSL
methods. In summary, the main contributions of our work are as follows:

* To learn representations generalizable to various downstream tasks, we introduce the principle of
maximum entropy into self-supervised learning.
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Figure 2: lustration of our MEC and its relation to batch-wise and feature-wise objectives.

* We propose Maximum Entropy Coding (MEC), which explicitly optimizes on representations
based on the principle of maximum entropy, and leverages the minimal coding length in lossy
data coding as a computationally tractable surrogate for the entropy.

* We reformulate the log-determinant term in coding length function into a scalable form, which
makes large-scale pre-training possible, and unifies existing batch-wise and feature-wise objec-
tives as low-order approximations of our method.

* We show MEC representation generalizes well on a wide variety of image- and video-based
downstream tasks, achieving state-of-the-arts on most tasks considered.

2 Method

In this section, we start with illustrating the maximum entropy principle, and then introduce a
computationally tractable surrogate of the information entropy for high-dimensional vectors. We then
present a scalable reformulation of the proposed surrogate, which makes large-scale training possible.
And we further incorporate the view consistency prior for maximum entropy coding. Finally, we
demonstrate how the proposed method can unify existing batch-wise and feature-wise SSL objectives.
Please refer to Appendix E for more details about the proofs in this section.

2.1 Maximum Entropy Coding

The maximum entropy principle. The main purpose of this work is to improve the generalization
capacity of self-supervised learning representations across unseen downstream tasks and data dis-
tributions, and reduce the biases brought by specifically designed pretext tasks as much as possible.
This naturally raises a question, i.e., what makes for a generalizable representation? To answer this
question, we are particularly inspired by the maximum entropy principle in information theory, which
states that the probability distribution that best represents the current state of knowledge about a
system is the one with largest entropy, given a testable information (such as accuracy) and in this way
no additional bias or assumptions is introduced [38, 39, 59]. We therefore hypothesis that a general-
izable representation is the one that has the maximum entropy among all plausible representations.
Intuitively, if we are able to express the entropy in a closed form, the maximum entropy principle
then can serve as an optimization objective and supervise the representation learning.

Minimal coding length as a surrogate for entropy. Entropy is originally defined on probability

distributions [63], i.e., H(z) £ — [ p(2)log p(z)dz, for continuous random variables. However,

it is very difficult to estimate the true distributions p(z) of a representation [6, 54], from a finite
set of high dimensional vectors Z = [z!,22,...,2™] € R%*™. A handy fact is that entropy is
conceptually equivalent to the minimal number of bits required to encode the data losslessly, so the
minimal lossless coding length could be used to represent the entropy. However, lossless coding of
continuous random variables is infeasible in our case since it often requires an infinite number of bits,
breaking the numerical stability. Instead, we exploit the coding length in lossy data coding [16] as a
computationally tractable surrogate for the entropy of continuous random variables. Given a set of
samples Z, the minimal number of bits needed to encode Z subject to a distortion € is given by the
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Figure 4: Effects of the distortion measure ¢ on maximum entropy coding (MEC). (a): Encoding
the representations is akin to packing e-balls into the representation space. (b): T-SNE [71] visu-
alization of the representations learned with large € (left plot, €2 = 0.12) and small € (right plot,
€% = 0.01). (c): Linear and kNN accuracy and the spectral norm w.r: the degree of distortion e.

following coding length function [47, 72]:
d d
L2 <m+> log det (Im + QZTZ) , )
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where I,,, denotes the identity matrix with dimension m, and € is the upper bound of the expected
decoding error between z € Z and the decoded Z, i.e., E[||z — Z]|2] < e.

We note that the computation of log-determinant of high dimensional matrix in Equation (1) is highly
expensive and may cause numerically unstable results for ill-conditioned matrix, which inhibits its ap-
plication to large-scale pre-training (e.g., over 1 million images). Therefore, a scalable and stable refor-

mulation of Equation (1) is required. We first rewrite Equation (1) as L = plog det (Im +XZ2'Z ) ,
where p = ™+ and X\ = -4 Utilizing the identical equation det(exp(A)) = exp(Tr(A)) [35],
we obtain L = Tr (u log (I m+ A2 Tz ) ) where Tr stands for the trace of the matrix. Finally, we
apply Taylor series expansion to expand the logarithm of the matrix and obtain
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be achieved by adjusting the hyperparZameter € (detailed
in Section 2.2). Compared to Equation (1), there are only
matrix multiplication and addition in Equation (2), which
significantly speeds up the computation process and avoids
the numerical unstability. To verify this, in Figure 3, we
make a comparison of running time and relative approx-
imation error between Equation (1) and (2) (using the first n - - .
four terms). The results show that our reformulation can dim

approximate the original coding length function with negli- Figure 3: Comparison of running time
gible error (all errors are well below 0.5%), and accelerate  ,nq relative approximation error be-
the computation considerably (over 50x acceleration for (yeen Equation (1) (origin) and Equa-

all cases), thus making large-scale pre-training possible. o (2) (approx.) for different number
of samples in Z (dim).

time (ms) (log-scale)

2.2 Combining with the View Consistency Prior

It should be noted that the necessary premise of the max-

imum entropy principle is that testable information is given as prior. For example, the testable
information could be the accuracy of a predictive model: the most generalizable model should be
the one with maximum entropy, but it is only when a group of models reaches a given accuracy.
Otherwise, simply optimizing towards maximum entropy will lead to trivial solutions such as uniform
distributions. In Equation (1), the prior is not considered. To introduce a prior, we employ a common
practice in SSL by augmenting Z into two different views Z; and Zs. More specifically, given a



set of images D, an image x is sampled uniformly from D, and two augmented views z; and x5
are obtained from x via a distribution of data augmentations 7. Then they are fed to an encoder f,
consisting of a backbone and a projector network, which produces ¢2-normalized embeddings of z;

and z5. For a batch of m images, we have Z; = [z%, z%, ceey z{”} and similarly for Z3, which are
two observations of the same Z. MEC aims to minimize the following loss:
T (=D \E
Larme = —plog det (Im +AZ] Zz) SIS o (AZ1 Z2) G
k=1

where the same notations in Section 2.1 apply, and n is the order of Taylor expansion. Compared
with Equation (1), the formulation in (3) considers not only maximizing entropy, but also the view
consistency prior mined from the data itself, therefore learning meaningful representations.

As noted in Section 2.1, the convergence condition of Taylor expansion requires ||C||, < 1, where
C =)\7 1TZ o and A = -4, = —L, We show such condition can be strictly satisfied by setting

me? me2 "

€% > 1 because of the inequality ||C|l2 < \/||C|1||C|ls < 1. In practice, we empirically find
that the Taylor expansion converges over a wide range of ¢, (Figure 4(c)) with a linear warm-up.
From the preliminary experiments on CIFAR-10 [41] (detailed in Appendix B), we also find that
the distributions of representations show progressive finer granularity as ¢, decreases (Figure 4(b)).
This can be interpreted by the practical meaning of the distortion ¢4 (Figure 4(a)), i.e., a smaller ¢,
encourages the representation space to be encoded in finer granularity (and hence more uniform). By
contrast, a small e; might break the semantic structures of similar images (i.e., tolerance). Therefore,
a good choice of ¢; is needed to compromise the uniformity and tolerance properties [75, 74] of
representations, which shares the same role as the temperature [80] term in contrastive learning.

An overview of MEC is illustrated in Figure 2 and a PyTorch-like pseudocode is provided in
Appendix A. The algorithm describes the minimalist variant of MEC, which can be further improved
by integrating momentum encoder and asymmetric networks (detailed in experiments).

2.3 A Unified View of Batch-wise and Feature-wise SSL. Objectives

Current SSL methods based on Siamese networks can be roughly divided into two categories: batch-
wise methods [12, 31, 13, 15, 14, 10] and feature-wise methods [86, 5, 24, 36]. The former aims to
minimize the distance between augmented views of the same sample while maximizing the distance
between different samples, which can be viewed as decorrelating the different features in a batch.
The latter, in contrast, tries to decorrelate the different vector components in the representation. The
relationship between them has not been fully understood. Our work builds bridges between these two
types of methods through the following derivation:

Larpe = —plog det (Im n AZIZ2) — —plog det (Id YZ,Z) ) )

batch-wise feature-wise

which can be proved since Z I Zy e R™*™and Z, Z ; € R4 have the same nonzero eigenvalues.
In Figure 2, under the framework of MEC, we show the equivalence between batch-wise and feature-
wise methods using two examples, SimSiam [14] and Barlow Twins [86]. By taking Taylor expansion
(Equation (2)) of the left side of Equation (4) and before the trace operation, the diagonal elements of
the leading term (i.e., uAZ 1TZ o) measure the similarity between the views of the same images in a
batch, and the objective of SimSiam [14] is equivalent to maximizing the trace of this term. Similarly,
the leading term of the right side expansion models the correlation between dimensions of the feature,
and the objective of Barlow Twins [86] is equivalent to the second-order expansion of L;gc. With
the above derivation, our method naturally subsumes the two different kinds of objectives as its
low-order expansions, and we show in experiments that better downstream task performance can be
achieved with higher-order approximations. We further show in Appendix E that our MEC can also
bridge other self-supervised objectives. And we hope the direct tying of a family of objectives to a
very grounded mathematical concept can inspire more new methods.

3 Experiments

We perform self-supervised pre-training using the proposed MEC on the training set of the Ima-
geNet ILSVRC-2012 dataset [17]. After pre-training, we conduct extensive experiments to examine



Table 1: Linear evaluation. All methods are  Table 2: Semi-supervised classification. We
based on standard ResNet-50 [33] pre-trained  finetune the pre-trained model using 1% and
with two 224 x 224 views on ImageNet train- 10% training samples of ImageNet follow-
ing dataset. We perform pre-training with four  ing [12, 29], and the top-1 and top-5 accuracy

different length of epochs following [14]. on ImageNet val dataset are reported.
Method Pre-training epochs Method 1% 10%

100 200 400 800 Top 1 Top 5 Top 1 Top 5
SimCLR[I12] 665 683  69.8  70.4 Supervised 25.4 48.4 56.4 80.4
MoCov2[I3] 674 699 710 722 SimCLR[12] 483 75.5 65.6 87.8
BYOL [29] 665 706 732 743 BYOL [29] 532 78.4 68.8 89.0
SWAV [10] 665 691 707 718 Barlow [86] 55.0 79.2 69.7 89.3
SimSiam [14] 681 700 708 713 DINO [11] 522 782 68.2 89.1
Barlow [86] 673 702 718 730 VICReg [5] 54.8 79.4 69.5 89.5
MEC 706 719 735 745 MEC 55.9 79.6 70.3 89.7

Table 3: Transfer learning on object detection and instance segmentation tasks. We fine-tune
the pre-trained model end-to-end on target datasets and tasks, following the standard protocol
described in [13, 14, 29, 86]. We use Faster R-CNN [61] for VOC detection tasks and Mask R-CNN
[32] (1 x schedule) for COCO detection and instance segmentation tasks. All Faster/Mask R-CNN
models are with the C4-backbone [79]. Bold entries are within 0.2 below the best.

VOC 07 detection VOC 07+12 detection COCO detection COCO instance seg.
Pre-train APy AP AP;s  APsy AP AP;s APy AP AP;s  APIRF APTER ApIEK
Scratch 359 168 130 602 338 331 440 264 278 469 293 308

Supervised 74.4 424 42.7 81.3 535 58.8 58.2 38.2 412 54.7 333 352

SimCLR [12] 759 46.8 50.1 81.8 55.5 61.4 57.7 379 40.9 54.6 333 353
MoCo v2[13] 77.1 48.5 52.5 82.5 574 64.0 58.9 39.3 425 55.8 34.4 36.5
BYOL [29] 71.1 47.0 49.9 81.4 553 61.1 57.8 379 40.9 54.3 332 35.0

SwWAV [10] 75.5 46.5 49.6 82.6 56.1 62.7 58.6 38.4 41.3 55.2 33.8 359
Barlow [86] 75.7 472 50.3 82.6 56.8 63.4 59.0 39.2 42.5 56.0 34.3 36.5
SimSiam [14]  77.3 48.5 52.5 82.4 57.0 63.7 59.3 39.2 42.1 56.0 34.4 36.7

MEC 77.4 48.3 52.3 82.8 57.5 64.5 59.8 39.8 43.2 56.3 34.7 36.8

the learned representations on various tasks. The tasks considered include four image-level tasks:
ImageNet linear probing, ImageNet semi-supervised classification, object detection, and instance seg-
mentation; and five video-based tasks: single object tracking (SOT) [78], video object segmentation
(VOS) [56], multi-object detection (MOT) [48], multi-object detection and segmentation (MOTS) [73]
and pose tracking (PoseTrack) [1]. An overview comparison with existing SSL representations across
different tasks is presented in Section 3.1. Moreover, in Section 3.4, we present extensive ablations
studies to demonstrate the behaviors and properties of the proposed method. All the implementation
details of the aforementioned experiments are deferred to Appendix C.

3.1 Overview Comparison

We evaluate MEC together with multiple previous SSL representations on the four image-based
tasks and the five video-based tasks, plot their performance ranking along a axis for a specific task
and obtain two sets of radar-like charts in Figure 1. Intuitively, it can be seen that the larger a
polygon in a radar chart is, the better the corresponding representation generalize across downstream
tasks. MEC consistently outperforms previous representations on both image- and video-based
tasks considered, suggesting its good generalization capacity to various downstream tasks and data
distributions. Below we detail experiments on each task. And additional experiment results can be
found in Appendix D, including pre-training with different strategies and datasets, transfer learning
on fine-grained classification benchmarks.

3.2 Evaluation on ImageNet

Linear probing. We train a linear classifier on top of frozen representations of the pre-trained model
on the ImageNet training set, and report the top-1 accuracy on the ImageNet validation set, which is a
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Figure 5: Effects of MEC regulation on other SSL objectives on CIFAR-10 [41]. Left plot:
accuracy of a kNN classifier as a monitor of the pre-training process. Right table: linear probing and
kNN classification accuracy of the pre-trained models with v.s. without our MEC regulation.

standard and important protocol in SSL [88, 12, 31, 14, 86]. We evaluate the learned representations
of models with four different pre-training epochs following [14], and make comparisons in Table 1
with state-of-the-art methods, whose results are reported in [14] and better than their original papers.
Even so, our method MEC achieves highest accuracy under all pre-training epochs among those
methods. In particular, with only 200-epoch pre-training, MEC outperforms several 800-epoch
pre-trained methods, including SImCLR [12], SWAV [10] and SimSiam [14], which indicates the pre-
training efficiency of our method. Additionally, by incorporating other pre-training strategies, such
as multi-crop [10, 11], our method can attain even better results, which are detailed in Appendix D.
Furthermore, for a fixed given downstream task (i.e., image classification), MEC also improves
generalization across different data distributions, which can be concluded from the transfer learning
experiments on 11 fine-grained classification datasets in Appendix D.

Semi-supervised classification. We fine-tune the pre-trained model on a small subset of ImageNet
for classification task. Specifically, we adopt the same fixed splits of 1% and 10% of ImageNet
training set as in [12] and report both top-1 and top-5 accuracies in Table 2. The experiment results
show that our method consistently outperforms previous approaches in both 1% and 10% settings.
And we also note that all SSL methods surpass the supervised counterparts by a large margin (e.g.,
over 20% accuracy using 1% labeled data), which emphasizes the importance of leveraging large
amount of unlabeled data.

3.3 Transfer learning

Object detection and instance segmentation. We transfer the pre-trained model by end-to-end
fine-tuning on object detection and instance segmentation tasks, following the common practice of
previous methods [31, 13, 14, 29, 86]. We report the results in Table 3. Similar to the observations
in semi-supervised classification, the SSL methods outperform or are on par with the supervised
counterparts in all tasks. Our method achieves better performance than previous approaches in most
of the tasks and metrics considered. In particular, MEC is significantly better than the supervised
baseline (+1.6 AP), SimCLR (+1.9 AP), and previous best method MoCo v2 (+0.5 AP) on COCO
detection task. These results validate that the model pre-trained by MEC can generalize very well
across different image-based tasks and datasets.

Video-based tasks. To further evaluate whether MEC’s representation generalizes beyond image-
based tasks, we transfer the pre-trained model to a series of video tasks based on a recently proposed
evaluation platform named UniTrack [76]. In contrast to above evaluation processes, UniTrack does
not require any additional training and hence provides a more direct comparison between different
representations. We report the results in Table 4 and compare different methods using radar plots in
Figure 1. As noted in UniTrack, there is no significant correlation between linear probe accuracy and
tracking performance. However, our method achieves strong performance across linear probing and
all five video tracking tasks. Specifically, MEC achieves the highest rank on four our of five tasks, and
ranks among the top 2 methods on seven metrics out of all nine metrics. These results substantiate
that the learned representations of MEC are more general-purpose and versatile. We attribute this
important property of MEC to the principle of maximum entropy, the basis of our method, which
enables the model to make best use of data for unseen downstream tasks during pre-training.



Table 4: Transfer learning on five video tracking tasks. All methods use the same ResNet-50
backbone [33] and are evaluated based on UniTrack [76]. For each cell, we report the results obtained
from features at [layer3 / layer4], and the best performance between the two is bolded. We then
use the best of the two to rank the top 2 models (underlined) in each column.

Pre-train SOT [78] VOS [56] MOT [48] MOTS [73] PoseTrack [1]
AUCxcorr T AUCper +  J-meant IDF11 HOTA?T IDF11 HOTAT IDFI1 IDs)

Rand. Init. 10.3/9.0 28.0/20.0 29.3/339 8.4/8.9 8.4/8.5 20.8/23.1 25917287 40.2/38.5 88792 /90963
Supervised 58.6/495  62.0/539  623/579 75.6/732  63.3/61.8  684/694  702/710  737/733  6969/7103
InsDis [80] 47.6/47.3 61.8/51.1 62.6/60.1 66.7/73.9 5797619 68.4/68.0 69.6/70.3 72411739 7106 /7015
MoCo vl [31] 50.9/47.9 62.2/53.7 61.5/57.9 69.2/74.1 59.4/61.9 70.6/69.3 71.6/70.9 72.8/73.9 6872 /7092
SimCLR [12] 47.3/51.9 61.3/50.7 60.5/56.5 66.9/75.6 57.7163.2 65.8/67.6 67.7/69.5 72311735 7084 /7367
MoCo v2 [13] 53.7/472 61.5/53.3 61.2/54.0 72.0/74.9 61.2/62.8 67.5/67.3 69.6/ 69.6 73.0/73.7 6932 /7702
Infomin [68] 48.5/46.8 61.2/519 58.4/51.1 66.7/73.4 57.6/61.9 66.7/66.3 68.5/68.8 72.5/74.0 7066 / 7901
BarLow [86] 44.5/55.5 60.5/60.1 61.7/57.8 63.7/74.5 5547624 68.7/67.4 69.5/69.8 723/74.3 7131 /7456
BYOL [29] 48.3/55.5 58.9/56.8 58.8/54.3 65.3/74.9 56.8/62.9 70.1/66.8 70.8/69.3 72.4/73.8 7213 /8032
SwAV [10] 49.2/524 61.5/59.4 59.4/57.0 65.6/74.4 56.9/62.3 68.8/67.0 69.9 /69.5 72.7173.6 7025 /7377
PixPro [82] 40.5/49.2 57.4/49.3 56.4/52.2 61.7/67.7 54.3/58.6 64.2/66.2 65.1/67.6 724711731 7163 /6953
DetCo [81] 55.0/47.1 59.0/53.2 62.3/56.1 75.3/72.9 62.8/61.6 67.8/66.8 70.0/69.4 73.9/73.3 7357 / 8009
MEC 56.8/54.7 62.3/60.6 62.0/57.5 72.7175.0 61.2/63.3 70.7/ 66.5 72.0/69.0 73.1/74.1 6665 /7752

Table 5: MEC ablation experiments with ResNet-50 on ImageNet. We report the results of linear
probing. The default settings of these experiments are marked in gray .

(a) Smaller epochs. (b) Smaller batch sizes. (c) The distortion €.
epochs 30 50 70 100 batch 128 256 512 1024 53 0.02 0.06 025 1.0
acc. 62.1 675 692 70.6 acc. 69.5 70.1 704 70.6 acc. 70.5 706 702 69.5

(d) The momentum coefficient. (e) The order of expansion. (f) The projector network.
m 0 09 099 099 0.999 order 1 2 3 4 5 proj asym. sym. 4096 8192
acc. 69.0 70.1 704 70.6 702 acc. 70.0 703 70.5 70.6 70.6 acc. 70.6 70.1 707 712

3.4 Ablation studies

Batch size and training epoch. The computation and memory resources required for training
self-supervised models are demanding. Previous methods often need a large batch size (e.g., 4096
in SimCLR [12]) and long training time (e.g., 1000 epochs in Barlow Twins [86]) to work well.
We hence test the efficiency of our method by pre-training the model with smaller training epochs
(Table 5a) and batch sizes (Table 5b). The results show that our method can effectively avoid those
prohibitive requirements. In particular, Our 50-epoch pre-trained model has already outperformed
those 100-epoch pre-trained models of other methods (e.g., SImCLR [12], BYOL [29], Barlow
Twins [86]). Moreover, MEC is more robust to different batch sizes, and even a batch size of 128
performs well (with 1.1% accuracy drop). These results are noticeably different from those methods
based on the pretext task of instance discrimination, where a large number of negative samples is
required (e.g., over 4% accuracy drop of SimCLR with a batch size of 128). This behavior also
liberates MEC from those complex designs, such as memory queue [13] and online clustering [10].

Siamese networks play a critical role in discriminative SSL, and different methods often rely on
different architectures to prevent mode collapse. We investigate the effects of different designs
of Siamese networks by varying the momentum coefficient (Table 5d) and the projector network
(Table 5f). Compared to other methods [13, 14, 29, 86], MEC still works well when the Siamese
networks are direct weight-sharing (m=0) and symmetric (sym.). In contrast, BYOL [29] requires the
momentum encoder to prevent collapse (0.3% accuracy without it), and asymmetric architectures are
essential for SimSiam [14] to work. These results demonstrate that the objective of MEC naturally
avoids representational collapse without relying on special design of Siamese networks. We also
observe that the performance can be further improved with a larger projector network, consistent with
the conclusions in previous methods [86, 5].

Taylor series approximation. The computation of log-determinant of a high-dimensional matrix can
be significantly accelerated by exploiting Taylor series approximation. And we study two important
hyper-parameters of the process, i.e., the order of Taylor expansion (Table 5e) and the distortion



Table 6: Comparison of SSL methods with different architectures. (ConvNets v.s. Transformer)
All methods are pre-trained with two 224 x224 crops on ImageNet training set, and we report the
results of linear probing on ImageNet validation set.

model MEC iBOT[90] MAE([30] DINO[ll]] MoCov3[l5] SimCLR[I2] BYOL[29] SwAV [10]
R-50, 800-ep 74.5 - - - 73.8 70.4 743 71.8
ViT-S,300-cp  73.4 732 68.2 70.9 725 69.0 71.0 67.1
ViT-B,300-ep  76.5 75.6 69.3 72.6 76.5 73.9 73.9 71.6

measure €4 (Table 5¢). We find that the accuracy increases with higher order of expansion, since
it produces more accurate approximation. Besides the linear probing, we find the COCO detection
performance can be improved by a large margin (+1.5 AP) when the order is increased from 1 to 4.
We also note that the extra two orders (from 2 to 4) benefit less than lifting from the first order to the
fourth order approximation. It is reasonable since the relative approximation error of second-order
expansion is already quite decent, lower than 0.5% (Figure 6), almost the same as fourth-order
expansion (Figure 3). As for the distortion hyper-parameter, on one hand, it should be large enough
so that the Taylor expansion is convergent, and we empirically observe this condition is satisfied
over a wide range of degree of distortion. On the other hand, a good choice of ¢, is also needed to
improve the representation quality, because it compromises the uniformity and tolerance properties
of representations as depicted in Figure 4 and discussed in Section 2.2.

Generalization across different backbones and objectives. Given the recent progress in Vision
Transformers (ViTs) [21], it is worthwhile to examine the generalization ability of our method on both
ViTs and ConvNets, though previous methods usually focus on only one architecture. To this end, we
make a straightforward extension by replacing the ConvNet encoder with a ViT encoder, following
the practice of [15]. The comparisons are made in Table 5 with previous methods based on Siamese
networks [12, 29, 10, 11, 31], and also recently proposed masked auto-encoding methods [30,
90] tailored for Transformers. And the results show that MEC performs equally well with both
architectures. Furthermore, since MEC is designed for optimizing the representation quality, it should
be complementary to other methods that focus on pretext tasks. To validate this hypothesis, we
apply MEC as a regulation term on the representations of a contrastive method, SimCLR [12], and a
non-contrastive method, SimSiam [14]. The results in Figure 5 demonstrate that MEC improves both
linear and kNN accuracy by a large margin (e.g., 2.3% linear probing accuracy for SimCLR) with
negligible computation overhead (~1.05 xrunning time).

4 Related Work

Maximum entropy principle states that the probability distribution which best represents the current
state of knowledge is the one with largest entropy, in the context of precisely stated prior data. This
principle originates in Laplace’s "Principle of Insufficient Reason" and is popularized by Jaynes [38,
39]. It has a wide variety of applications in different fields [40], ranging from statistical physics [58,
51], economics [2, 62], to reinforcement learning [77, 49] and supervised learning [57, 64, 22]. To
the best of our knowledge, the usage of this principle has not been explored in the context of SSL.
We notice a closely related work MCR? [85] exploits the same coding length function (Equation (1)),
but the motivation behind is quite different: they do not originate from maximum entropy, but instead
base their method on coding rate reduction. Furthermore, MCR? experiments on classification and
clustering tasks, and is difficult to generalize to modern SSL settings due to the expensive and
unstable computation. In contrast, our method is tailored for SSL and we reformulate the coding
length function into a scalable and stable form for large-scale pre-training. Another closely related
concept in information theory is mutual information, which has been widely used in SSL [34, 53,
68, 67, 69] based on the infomax principle [45]. Our method can also be viewed as an application
of the infomax principle that maximizes the representation information, but without using mutual
information estimators, which might result in worse transfer performance [70].

Pretext tasks are one of the core components in SSL. They refer to a type of tasks that mine a certain
structure of the data, and then force learners to predict such a structure from degenerated input data.
Labels are mined from the data itself, therefore dispensing with the need of human annotations. In
natural language processing, the most commonly used pretext task is masked language modeling
(MLM) [18, 60], where a random portion of the input sequence is masked and the model learns to



predict these masked content. In computer vision, however, there emerge a much wider variety of
pretext tasks [87, 88, 52, 83, 20, 80, 55, 19, 30, 4, 42], since images contain much more information
than languages so that there are much more intrinsic structures to be mined as free learning signals
Solving pretext tasks requires the model to understand the visual concepts present in images and
thus useful representations can be learned. In this work, however, we argue that those handcrafted
pretext tasks, like handcrafted feature engineering methods, might introduce undesired bias into
the representations. So we pursue a straightforward approach to optimize on representations. And
considering that the ultimate goal of self-supervised learning is a general-purpose representation,
we explicitly encourage the generalization ability on downstream tasks and minimize the bias in the
formulation of the pretext task, by introducing the maximum entropy principle.

Siamese representation learning uses two identical neural networks to learn representations by
comparing entities, in supervised manner [8, 65, 7], or recently in self-supervised manner [12, 31, 13,
14,29, 10, 11, 86, 5, 23, 43]. In Siamese SSL, the two branches are weight-sharing [12, 14], or one is
a moving average of the other [31, 29]. One crucial problem that needs to be carefully addressed
in Siamese SSL is mode collapse, where all data is mapped to the same representation. Contrastive
methods, such as SImCLR [12] and MoCo [31], prevent the trivial solution by minimizing the distance
between augmented views of the same images while maximizing the distance between different
images. Clustering-based methods [9, 3, 10] enforces consistency between cluster assignments of
the views from same images, where the cluster centers work as negative prototypes. Non-contrastive
methods [14, 29] remove the use of negative pairs and SimSiam [14] concludes that the stop-gradient
operation is critical to preventing mode collapse. Our work also leverages the basic view consistency
prior inherent in Siamese representation learning, which gives testable information for the application
of maximum entropy principle. Compared to previous work, our method of maximum entropy coding
naturally avoids the low-entropy mode collapse problem and can be easily implemented without
requiring instance discrimination [20, 12], memory queue [80, 31, 13] or online clustering [9, 3, 10].
Furthermore, we find interesting equivalence between low-order approximations of MEC and existing
batch-wise or feature-wise objectives, which provides a new perspective for a unified understanding
of SSL methods.

5 Conclusion

What makes for generalizable representations? In this work, we argue that the best generalizable
representation is supposed to be the one that admits the maximum entropy. Based on this assumption,
we propose MEC, a novel pretext task that aims explicitly to generalize well. MEC pursues a
representation with maximum entropy in all eligible ones that satisfies the view consistency prior
of Siamese representation learning. The minimal coding length in lossy data coding is leveraged
as a computationally tractable surrogate for the entropy; and in order to facilitate large-scale pre-
training, we reformulate the coding length function into a scalable form. With the reformulation, we
further demonstrate that MEC bridges the batch-wise and feature-wise SSL objectives. Extensive
experiments shows MEC generalizes well across various image/video tasks, various data distributions,
and different network architectures. Furthermore, MEC can be readily plugged into existing SSL
methods such as SImCLR and SimSiam, and brings consistent improvements upon these strong
representations. We hope our exploration will inspire the community to rethink the possibility of
optimizing generalization explicitly in self-supervised representation learning.
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(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Please see Appendix C.
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] Please see Appendix H.
(c) Did you include any new assets either in the supplemental or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating?[N/A ]
(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A |
5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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