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Abstract

Unstructured data in Electronic Health Records001
(EHRs) often contains critical information—002
complementary to imaging—that could inform003
radiologists’ diagnoses. But the large volume004
of notes often associated with patients together005
with time constraints renders manually identify-006
ing relevant evidence practically infeasible. In007
this work we propose and evaluate a zero-shot008
strategy for using LLMs as a mechanism to ef-009
ficiently retrieve and summarize unstructured010
evidence in patient EHR relevant to a given011
query. Our method entails tasking an LLM to012
infer whether a patient has, or is at risk of, a013
particular condition on the basis of associated014
notes; if so, we ask the model to summarize the015
supporting evidence. Under expert evaluation,016
we find that this LLM-based approach provides017
outputs consistently preferred to a pre-LLM in-018
formation retrieval baseline. Manual evaluation019
is expensive, so we also propose and validate a020
method using an LLM to evaluate (other) LLM021
outputs for this task, allowing us to scale up022
our own evaluation. Our findings indicate the023
promise of LLMs as interfaces to EHR, but024
also highlight the key outstanding challenge:025
“hallucinations”. In this setting, however, we026
show that model confidence in outputs strongly027
correlates with faithful summaries, offering a028
practical means to limit confabulations.029

1 Introduction030

We consider using LLMs as interfaces to unstruc-031

tured data (notes) in patient Electronic Health032

Records (EHRs), ultimately to aid radiologists per-033

forming imaging diagnosis. The motivation is that034

unstructured evidence within EHR may support (or035

render less likely) particular diagnostic hypothe-036

ses radiologists come to based on imaging, but037

time constraints—combined with the often lengthy038

records associated with individual patients—make039

manually finding and drawing upon such evidence040

practically infeasible. Consequently, radiologists041

often perform diagnosis with comparatively little 042

knowledge of patient history. 043

LLMs offer a flexible mechanism to interface 044

with unstructured EHR data, e.g., recent work has 045

shown that LLMs can capably perform zero-shot in- 046

formation extraction from clinical notes (Agrawal 047

et al., 2022; McInerney et al., 2023). In this work 048

we propose and evaluate an approach using 049

LLMs to extract evidence from EHR notes to 050

aid diagnosis. We envision a clinician providing 051

an initial suspected diagnosis as a query; the LLM 052

should then confirm whether there is unstructured 053

(textual) evidence in the patient record that might 054

support this diagnosis, and—if so—summarize this 055

for the clinician (Figure 1). 056

LLMs provide an attractive mechanism to per- 057

mit such interactions given their established dexter- 058

ity working with unstructured text and flexibility. 059

Critically, they permit general question answering 060

(e.g., “Is this patient at risk of Atrial fibrillation?”) 061

and can summarize supporting evidence. But with 062

this flexibility comes challenges: Skillful as they 063

are, LLMs are prone to “hallucinating” content 064

(Azamfirei et al., 2023; Zhang et al., 2023), which 065

is particularly concerning in healthcare. 066

We conduct an empirical evaluation with prac- 067

ticing radiologists to assess potential benefits and 068

risks of using LLMs as diagnostic aids.1 The re- 069

sults indicate that LLMs are more capable than a 070

representative “traditional” (pre-LLM) information 071

retrieval system at surfacing and summarizing evi- 072

dence relevant to a given diagnosis. However, man- 073

ual evaluation by domain experts does not scale. 074

Therefore, we propose and assess an automated 075

evaluation approach using LLMs: Given a piece 076

of evidence, we enlist an evaluator LLM to: (i) ex- 077

tract the conditions stated as risk factors (or signs) 078

in this snippet; (ii) confirm the presence of each 079

1This work was conducted with an institutional IRB ap-
proval; we redact details here for anonymity.
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(A) Is the patient at risk for 
intracranial hemorrhage?

(B) Does the patient have 
intracranial hemorrhage?

LLM

The patient is …

…

Had undergone an 
operation … 

…

EHR

(A) Yes.

(B) Yes.
  

(A) Why is the patient at risk 
for intracranial hemorrhage?

(B) Extract signs of 
intracranial hemorrhage.

LLM

The patient is …

…

Had undergone an 
operation … 

…

EHR

{
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ep
 2
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(A) The patient underwent surgery 
and is on anticoagulation

(B) Acute posterior fossa 
hemorrhage into the third and 
fourth ventricles

{
Figure 1: Proposed prompting strategy to identify and summarize evidence relevant to a given query diagnosis using
LLMs. We first ask if the patient has (or is at risk of) a condition, then elicit a summary of supporting evidence if so.

condition in the note independently; and then (iii)080

validate whether each such condition is a risk fac-081

tor (or sign) of the query diagnosis. We find that082

this automated assessment strategy meaningfully083

correlates with expert evaluations, and therefore084

use it to increase the scale of our evaluation.085

Our work shows the potential of LLMs as in-086

terfaces to EHRs, but also highlights challenges087

inherent to their use. How can we know that a gen-088

erated summary of supporting evidence faithfully089

reflects an underlying patient record? We high-090

light troubling examples where the LLM fabricates091

plausible patient history that would support a condi-092

tion of interest. At best this frustrates the provider093

(who must read through the record carefully to as-094

certain if there is in fact such evidence), and at095

worst it is dangerous. However, we find that model096

confidence in generations strongly correlates with097

accuracy in this domain, which mitigates this issue.098

Our contributions are as follows. (1) We intro-099

duce an approach in which we task an LLM to infer100

patient risk of a given condition, and to produce a101

conditional summary of supporting evidence if so.102

We enlist experts to manually evaluate outputs from103

two LLMs (Flan-T5 XXL; Chung et al. 2022 and104

Mistral-Instruct; Jiang et al. 2023a) and find they105

both outperform a representative baseline evidence106

retrieval approach. (2) We introduce a method to107

automate evaluation of retrieved evidence via an108

LLM, and show this enjoys good correlation with109

expert annotations. Larger scale evaluation using110

this approach confirms the advantage of LLMs over111

traditional methods. (3) We highlight examples112

that illustrate the issue of hallucinated content in113

this context, and report results indicating that LLM114

confidence may be sufficient to avoid this.115

2 Retrieving and summarizing evidence 116

with LLMs 117

For a given query (≡ condition), we attempt to re- 118

trieve two distinct types of evidence from patient 119

history: (A) Snippets that indicate a patient may 120

be at risk of developing the condition in the future, 121

and; (B) Those that suggest the patient currently 122

has the condition. For example, a patient on antico- 123

agulants after a recent posterior fossa surgery may 124

be at risk of an intracranial hemorrhage (but not 125

experiencing one currently). By contrast, observ- 126

ing acute posterior fossa hemorrhage indicates the 127

patient most likely has intracranial hemorrhage. 128

Extracting evidence for risk informs clinicians 129

about occurrences in the patient’s history (e.g., pro- 130

cedures, diagnoses) that make them more vulnera- 131

ble to the condition. Extracting evidence for signs 132

of a condition serves two purposes. Those that oc- 133

cur in the patient’s immediate history indicate the 134

patient likely has the condition; those that occur 135

earlier indicate the patient (may) have a history of 136

the condition, which is also important. 137

We consider openly available “medium-scale” 138

models, including Flan-T5 XXL (Chung et al., 139

2022) and Mistral-Instruct (Jiang et al., 2023a) as 140

representative LLMs (11.3B and 7B parameters, 141

respectively). While larger and proprietary models 142

may offer superior results, we wanted to use an 143

accessible LLM to ensure reproducibility. More- 144

over, protections for patient privacy mandated by 145

the Health Insurance Portability and Accountabil- 146

ity Act (HIPAA), and our institutional policy on 147

use of LLM restrict us to using models that can 148

be deployed “in-house”, precluding hosted variants 149

(e.g., those provided by OpenAI). 150
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Zero-shot sequential prompting We adopt a se-151

quential prompting approach to find and summa-152

rize evidence relevant to a query. We first ask the153

LLM whether a given note indicates that the corre-154

sponding patient is at risk for or has a given query155

diagnosis—prompting the LLM for a binary deci-156

sion about this. If the answer is ‘Yes’, we prompt157

the model to provide support for this response (see158

Appendix A.1 for prompts).159

Single prompt It might seem more intuitive to160

simply ask the model to answer ‘Yes’ or ‘No’ and161

explain its reasoning in a single prompt. However,162

we found that this strategy yielded many false pos-163

itives for both Flan-T5 and Mistral-Instruct. To164

quantify this, we randomly sampled 40 notes and165

used a single prompt to find evidence for conditions166

that the patient did not have. The single prompt167

produced ‘No’ for only 7.5% (Flan-T5) and 27.9%168

(Mistral-Instruct) of the notes. By contrast, sequen-169

tial prompting yielded ‘No’ all 40 times for both170

models. We provide more details in §A.2. We also171

experimented with a single few-shot prompt to ex-172

tract evidence (§A.3), but preliminary results were173

not promising so we did not pursue this further.174

A retrieval baseline (CBERT) As a point of175

comparison for unsupervised evidence extraction176

(with pre-LLM methods), we use a simple ranking177

approach using neural embeddings.2 Specifically,178

given a query [DIAGNOSIS], we retrieve associ-179

ated [RISK FACTORS] using GPT-3.5 and generate180

an embedding erf of the sentence: ‘Risk factors181

of [DIAGNOSIS] include [RISK FACTORS]’ using182

ClinicalBERT (Alsentzer et al., 2019).3183

Table 6 shows examples of risk factors provided184

by GPT-3.5. The intuition is to generate n-grams185

that are likely to indicate risk of the corresponding186

diagnosis so that we can match these against notes187

in EHR. Then, for a patient and [DIAGNOSIS],188

we retrieve the top 20 sentences in the patient189

notes most similar to erf. One downside of such a190

retrieval-based approach is the need to pre-specify191

the number of evidence snippets to retrieve (here,192

we arbitrarily set this to 20). By contrast, the LLM193

approach implicitly and dynamically adjusts this194

threshold. We refer to this baseline as CBERT.195

2Other baselines (e.g., BM25, TF-IDF) are possible, but
the expensive expert time required for annotations limited our
ability to evaluate additional baselines.

3Note that this does not entail passing any sensitive data to
OpenAI; we send only a condition name.

Diagnosis Notes Evidence
Flan- Mistral-

T5 Instruct
MIMIC-III

intracranial hemorrhage* 95 29 26
stroke 16 4 2
small vessel disease 16 8 2
pneumocephalus 12 12 11
sinusitis 49 14 3
Total 188 67 44

LAMC
small vessel disease 13 8 2
chemoradiation necrosis 18 10 20
demyelination 21 12 9
brain tumor 21 20 17
intracranial hypotension 20 20 5
craniopharyngioma 20 18 10
cerebral infarction 14 14 20
sinusitis 17 15 8
Total 144 117 91

Table 1: Evaluation dataset statistics. *intracranial
hemorrhage is the only diagnosis with more than one
patient (it has 4).

3 Data 196

For evaluation, we worked with radiologists (spe- 197

cializing in neuroimaging) from a Large Academic 198

Medical Center (LAMC) in a major city. For exper- 199

iments, we used a private dataset from this hospital, 200

and also data from the publicly available MIMIC- 201

III v1.4 (Johnson et al., 2016) corpus, to ensure 202

robust and (partially) reproducible findings. 203

LAMC comprises patients admitted to the Emer- 204

gency Room (ER) of a LAMC in a major metro 205

area between 2010 and 2015 along with clinical 206

notes, including: cardiology, endoscopy, operative, 207

pathology, pulmonary, radiology reports, and dis- 208

charge summaries. We sampled patients who un- 209

derwent brain imaging within 48 hours of their ER 210

visit because they are likely to have undetermined 211

diagnoses. We are interested in scenarios where 212

patients are associated with a large volume of EHR 213

data, so we included patients with ≥10 EHR notes. 214

MIMIC-III is a publicly available database of dei- 215

dentified EHR from patients admitted to the Inten- 216

sive Care Unit (ICU) of the Beth Israel Deaconess 217

Medical Center between 2001 and 2012. As above, 218

we sampled patients who underwent brain imaging 219

within 48 hours of their ER or Urgent Care visit, 220

whose EHR included ≥ 10 notes. 221

We sampled individual patient data, but eval- 222

uated models with respect to diagnoses. For ex- 223

ample, if a patient report mentioned ‘stroke’ and 224

‘sinusitis’, radiologists evaluated the surfaced ev- 225

idence for these conditions independently. To re- 226

duce annotation effort, we discarded diagnoses 227
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MIMIC,
ER

2001-2012

Include admissions with brain 
imaging within 48 hrs of ER 

visit

BWH, 
ER

2010-2015

Exclude admissions <10 past 
notes

Extract diagnoses from 10 
imaging reports each

Exclude instances >20 
evidence snippets

Sample 8 instances from each

N=12,430

N=3,128

N=15

N=14

N=21

N=18

N=1,555

N=349

N=8 N=8

admissions admissions

admissionsadmissions

instances

instances

instances

instances

instances

instances

Figure 2: Data sampling flow-chart for our manual eval-
uation. An instance is a unique (patient, diagnosis) pair.
In §5, we perform larger-scale evaluation, automatically.

with ≥20 pieces of evidence and sampled 8 in-228

stances from each source to create our final evalua-229

tion dataset. Figure 2 shows a schematic of our data230

sampling procedure. Table 1 reports statistics about231

the set of examples used for manual evaluation.232

For expert evaluation, one of the collaborating233

radiologists identified all diagnoses discussed in234

the Findings and Impressions sections of the ra-235

diology reports of 10 patients from each dataset236

(excluding MIMIC-III patients used in the pilot).4237

For each diagnosis, we retrieved supporting evi-238

dence from all patient notes using the zero-shot239

prompting strategy from §2. Three collaborating240

radiologists then manually assessed each retrieved241

piece of evidence.242

Because the relevance of an evidence snippet243

inherently depends on the context, we ask radiolo-244

gists to ground their assessments by assuming the245

following hypothetical setting: “You are a radiolo-246

gist reviewing a scan of a patient in the ER. Based247

on the scan, you are concerned that the patient has248

the diagnosis stated below. Assess the relevance of249

the retrieved evidence to support your inference.”250

(see Figure 6 for a screenshot of the interface). For251

each piece of evidence surfaced by a model, radiol-252

ogists answered two questions.253

Is the evidence present in the note? LLMs can254

“hallucinate” evidence. Therefore, we first ask ra-255

diologists to confirm whether all of the model gen-256

erated evidence is in fact supported by the note257

on the basis of which it was produced. To aid258

the radiologists in finding the corresponding sen-259

4While this is a relatively small number of patients, we
emphasize that manual evaluation is expensive: Radiologists
on our team spent ∼16 hours manually assessing outputs.

tences, we compute ClinicalBERT (Alsentzer et al., 260

2019) embeddings of sentences in the notes and 261

highlight those with a cosine similarity of ≥ 0.9 262

with the ClinicalBERT embedding of the generated 263

evidence. This heuristic approach realizes high pre- 264

cision but low recall. Therefore, if a highlighted 265

sentence is incongruous with generated evidence, 266

we ask radiologists to read through the entire note 267

to try and manually identify support. 268

Note that the (non-generative) retrieval method 269

to which we compare as a baseline is extractive, and 270

so incapable of confabulating content; we neverthe- 271

less ask this question with regards to the baseline 272

for consistency and to ensure blinding. 273

Is the evidence relevant? If generated evidence is 274

supported by the note, we ask radiologists whether 275

it is relevant to the query diagnosis. A piece of 276

evidence can contain multiple reasons summarized 277

from across the note. We collect assessments on 278

the following scale (see Table 2 for examples). 279

Not Useful None of the evidence is useful; it is 280

irrelevant to the query condition. 281

Weak Correlation Evidence produced has a plau- 282

sible but weak correlation with the query condition. 283

Partially Useful Out of the multiple risks or signs 284

in the evidence, only some are relevant. 285

Useful The evidence is relevant and may inform 286

one’s diagnostic assessment. 287

Very Useful The evidence is clearly relevant and 288

would likely inform diagnosis. 289

4 Results 290

To first assess agreement between radiologists, we 291

had each of them annotate evidence surfaced by 292

Flan-T5 for one patient (selected at random from 293

the LAMC dataset). For this patient, the model 294

generated 10 pieces of (potentially) relevant evi- 295

dence for the query chemoradiation necrosis. On 296

this shared set, the inter-annotator agreement score 297

(average pairwise Cohen’s κ) for relevance assess- 298

ments between the three radiologists was 0.68. 299

Figure 3 shows results. Radiologists found 300

evidence generated by Mistral-Instruct to be the 301

most useful (MIMIC-47.7%, LAMC-59.0%), fol- 302

lowed by Flan-T5 (MIMIC-41.5%, LAMC-48.4%) 303

and then CBERT (MIMIC-34.4%, LAMC-39.7%). 304

Flan-T5 and CBERT generated more weak cor- 305

relations than Mistral-Instruct. Both generative 306

models hallucinated evidence. We observed that 307

unlike Mistral-Instruct, Flan-T5 did not summarize 308
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0 20 40 60 80 100

CBERT    

Flan-T5    

Mistral-Instruct    

CBERT    

Flan-T5    

Mistral-Instruct    

Very Useful Useful Partially Useful
Weak Correlation Not Useful Hallucinations

Percentage

MIMIC

LAMC

Figure 3: Evidence generated by the LLMs is more
often deemed useful than that retrieved by CBERT. But
on average, 9.4% and 4.9% of evidence by Flan-T5 and
Mistral-Instruct respectively are hallucinated.

multiple reasons from across the note as evidence.309

Hence, none of its evidence was evaluated to be310

Partially Useful. Since CBERT is extractive, there311

is no clear indication of which condition is to be312

evaluated as evidence. For this reason, the evidence313

from CBERT was evaluated overall and Partially314

Useful was not used. The assessment of generated315

evidence implicitly measures precision. We also316

estimate model recall in §C.317

4.1 Hallucinations318

Concerningly, some model hallucinations flagged319

by radiologists constitute plausible risk factors. A320

few illustrative examples:321

Example 1 For a patient with demyelination as322

the query diagnosis, Flan-T5 hallucinated the ev-323

idence ‘axonal degeneration’. Demyelination is324

commonly viewed as the primary factor responsi-325

ble for the deterioration of axons within multiple326

sclerosis lesions. The model also hallucinated signs327

of demyelination as evidence (‘numbness and tin-328

gling in the arms and legs’). There was no evidence329

indicating axonal degeneration or the symptoms.330

Example 2 For a patient with chemoradiation331

necrosis as the query diagnosis, Mistral-Instruct332

hallucinated that ‘the patient had a history of333

chemoradiation necrosis’. A history of chemoradia-334

tion necrosis would be very relevant to its diagnosis,335

but there was no such history in the EHR.336

In other instances, the model hallucinated vague337

evidence, e.g., ‘The patient is taking a lot of med-338

ications that can cause small vessel disease’ for339

small vessel disease as the query diagnosis (a ra-340

diologist went through the note and was unable to341

find mention of any such medication). 342

How certain is the model about such hallucina- 343

tions? We evaluate the degree to which model 344

uncertainty—normalized output likelihoods under 345

the LM—suggests ‘hallucinated’ content (Figure 346

4). Both models considered yield confidence scores 347

that are highly indicative of hallucinations. This 348

is promising, as it suggests we can simply abstain 349

from providing outputs in such cases. 350

4.2 Weakly correlating evidence 351

A factor complicating evaluation is that LLMs of- 352

ten yield evidence which has plausible but weak 353

correlation with a query condition. One could ar- 354

gue that the model was ‘correct’ in retrieving such 355

evidence from an epidemiology perspective, but 356

incorrect (or at least not useful) from an individ- 357

ual patient, clinical perspective. In other words, 358

evidence may be so weakly correlated with a con- 359

dition that it is of small value, even if technically 360

‘correct’. See Tables 2 and 7 for examples. 361

5 Automatic Evaluation 362

Manually evaluating evidence requires a consid- 363

erable amount of scarce (expensive) expert time, 364

meaning it does not scale. This limited our evalua- 365

tion above to a small set of patients. To expand our 366

evaluation we now also consider the use of LLMs 367

as evaluators. Prior work has established that LLM- 368

based evaluation can provide meaningful signal in 369

general (Chiang and Lee, 2023; Min et al., 2023; 370

Chang et al., 2023; Kim et al., 2023), but there has 371

been limited work investigating such evaluation 372

in healthcare; it is important to assess automatic 373

evaluation in this domain due to the high cost of 374

manual annotation. In this section, we first verify 375

the degree to which LLM-based automatic evalu- 376

ations correlate with manual (expert) assessments 377

(§5.1). Finding evidence of meaningful (if noisy) 378

correlation, we then use this automated approach 379

to increase the scale of our evaluation (§5.2). 380

Figure 5 provides an overview of our approach. 381

Given a piece of evidence generated by an LLM to 382

evaluate, we use an evaluator LLM to: (1) Extract 383

the risk factors it contains; (2) Verify the presence 384

of each risk factor in the note; (3) Check if each 385

present risk factor is a valid risk factor of the query 386

diagnosis. We execute these steps sequentially by 387

one-shot prompting the evaluator LLM for (1) and 388

zero-shot prompting it for (2) and (3). We provide 389

more details in §B. Note that steps (2) and (3) are 390
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Evaluation Diagnosis Evidence Explanation
Very Useful intracranial

hemorrhage
Recent fossa surgery and now on antico-
agulants

Surgery in the brain inevitably leaves some hem-
orrhage. Anticoagulants increase the risk of hem-
orrhage. ‘Recent surgery’ and ‘anticoagulants’
make hemorrhage highly likely.

Useful cerebral infarc-
tion

There is calcified thrombus obstructing
the origins of the M2 branches

‘Thrombus’ is diagnostic of infarction, which is
very useful information. But ‘calcified thrombus’
implies chronicity, so the thrombus could have
been present for a long time and there may not
be an acute infarction at this time.

Partially Use-
ful

chemoradiation
necrosis

The patient is at risk of chemoradiation
necrosis due to her history of seizures and
brain abscess, which may have caused
damage to the brain tissue. Addition-
ally, her use of concurrent Temodar and
involved field radiation during her treat-
ment may have further increased her risk.

History of seizures and brain abscess are not rel-
evant to chemoradiation necrosis. Concurrent
Temodar use and involved field radiation is use-
ful information.

Weak Corre-
lation

pneumocephalus patient was involved in a motorcycle ac-
cident

A traumatic head injury is an important risk fac-
tor of pneumocephalus. A motorcycle accident
increases the likelihood of a head injury.

Not Useful small vessel dis-
ease (SVD)

patient is at risk of endocarditis Not helpful in diagnosing SVD.

Hallucination intracranial
hemorrhage

patient has a brain tumor Not present in the note.

Table 2: Examples of evidence surfaced by Flan-T5 and Mistral-Instruct for different evaluation categories. Snippet
highlighted in red is irrelevant to the query diagnosis.

0.4 0.6 0.8 1.0
Normalized Likelihood

Present

Hallucination

AUC: 0.937

LAMC
MIMIC

(a) Flan-T5

0.7 0.8 0.9
Normalized Likelihood

Present

Hallucination

AUC: 0.978

LAMC
MIMIC

(b) Mistral-Instruct

Figure 4: Distributions of normalized likelihood, for present and hallucinated evidence. The score provides good
discrimination of “hallucinated” evidence from present evidence (yielding AUCs of >0.9).

performed separately for each extracted risk factor.391

Recall that in addition to risk factors, we prompt392

for signs of diagnosis as well; we follow the same393

approach to evaluate these.394

5.1 Evaluating automatic evaluation395

We first validate this automated (LLM-based) eval-396

uation approach for our task by comparing it to the397

expert evaluations described in §3. Given its supe-398

rior performance according to expert evaluations,399

we use Mistral-Instruct as the LLM evaluator. We400

compute micro-F1 and Pearson’s Correlation Coef-401

ficient (PCC), using expert evaluations on the set of402

instances manually annotated as the ground truth.403

Micro-F1 measures how well the LLM evaluates404

each extracted risk or sign individually (irrespec-405

tive of which instance these are associated with).406

PCC is computed at the instance-level by calcu- 407

lating the average relevance over extracted risks 408

and signs from all pieces of evidence; this is there- 409

fore an aggregate measure of how well the LLM 410

evaluates an instance. 411

Because automatic evaluation yields binary pre- 412

dictions (whether a risk factor/sign is relevant to the 413

diagnosis or not), we map expert relevance scale to 414

binary labels: Not Useful → 0 and {Weak Correla- 415

tion, Useful, Very Useful} → 1. For evidence, we 416

assign 1 to pieces marked as (Very) Useful or Weak 417

Correlations, and 0 to the rest. As discussed in §4.2, 418

Weak Correlations fall into a grey area. Therefore, 419

we also perform a strict evaluation where Weak 420

Correlations → 0. We report results in Table 3, and 421

offer the following observations. 422
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“The patient is at risk of intracranial hemorrhage due to hypertension and 
gout. Additionally, the patient has a low platelet count.”

1. Extract risk factors 
from the evidence.

Hypertension

Gout

Low platelet count

2. Does patient have X?

Hypertension

Gout

Low platelet count

3. Is X a risk factor of 
intracranial hemorrhage?

Hypertension

Gout

Figure 5: Overview of automatic LLM-based evaluation
of retrieved evidence. The evaluator LLM: (1) extracts
risk factors from the evidence; (2) verifies the presence
of each risk factor in the note; and (3) validates each
present risk factor. The same approach is adopted for
evaluating signs of the query diagnosis.

Model MIMIC LAMC
2. Verify the presence of each risk factor/sign.

H P H P
Flan-T5 75.0(4) 90.0 83.3(6) 86.1
Mistral-Instruct 100.0(3) 88.2 60.0(5) 95.1

3. Check if each present risk factor/sign is valid.
F1 PCC F1 PCC

Flan-T5 75.6 79.2 74.2 37.8
Mistral-Instruct 81.4 92.0 77.5 34.2
CBERT 55.0 41.1 63.9 68.1

Table 3: Evaluating automatic evaluation. We first com-
pute the accuracy for hallucinated (H) and present (P)
evidence (Step 2 in Figure 5). We then compute micro-
F1 and PCC for present evidence (Step 3 in Figure 5).

Hallucinations can be automatically detected.423

As seen in Table 3 (top), prompting to confirm424

whether a patient has a condition based on the note425

permits discrimination of “hallucinated” and actu-426

ally present conditions.427

Micro-F1 scores are high for generative evi-428

dence. The evaluator LLM is able to extract and429

validate risk factors and signs of diagnoses in a way430

that agrees reasonably well with human experts.431

The micro-F1 scores are high for both Flan-T5 and432

Mistral-Instruct across the datasets.433

Micro-F1 scores are relatively low for the base-434

line retrieval approach. CBERT fares compara-435

tively poorly here. Prompting for risk factors and436

signs from extractive evidence is difficult because437

these are not as explicitly stated (as opposed to gen-438

erative outputs of the format ‘The patient is at risk439

of X because of Y ’) and are buried in irrelevant in-440

formation. (This issue was observed during expert441

evaluation as well.) The result is noisy outputs (e.g.,442

‘intubation’, ‘worsening respiratory status’, ‘age’)443

that generate false positives for valid risk factors444

and signs. This highlights the relative advantage of445

LLMs for flexible evidence retrieval.446

PCC varies from moderate to high. While PCC 447

is high for both Flan-T5 and Mistral-Instruct for 448

MIMIC, the correlation is moderate for LAMC. 449

This is apparently due to poor evaluative perfor- 450

mance for one diagnosis (chemoradiation necro- 451

sis for Flan-T5 and intracranial hypotension for 452

Mistral-Instruct). In both cases, a unique risk fac- 453

tor was incorrectly validated by the evaluator LLM. 454

But multiple occurrences of the risk factor across 455

notes, resulting in repeated retrieval as evidence, 456

significantly brought down PCC. Removing the di- 457

agnoses out increases PCC to 82.3 and 51.3 for 458

Flan-T5 and Mistral-Instruct, respectively. 459

Correlation drops significantly in strict evalua- 460

tion. Table 4 shows the change in micro-F1 and 461

PCC when strict evaluation is performed (com- 462

pared to when Weak Correlations → 1, shown in 463

Table 3). With the exception of PCC for CBERT 464

(MIMIC), there is a drop in micro-F1 and PCC 465

across all model-dataset combinations when Weak 466

Correlations → 0. This owes to the inherent com- 467

plexity of evaluating clinical evidence (automati- 468

cally or otherwise). What constitutes ‘Useful’ evi- 469

dence for supporting diagnosis is, to a degree, in- 470

herently subjective. 471

Model MIMIC LAMC
∆ F1 ∆ PCC ∆ F1 ∆ PCC

Flan-T5 9.9↓ 9.8↓ 6.3↓ 9.7↓
Mistral-Instruct 15.3↓ 14.8↓ 1.9↓ 13.5↓
CBERT 14.1↓ 18.7↑ 13.5↓ 13.7↓

Table 4: Evaluating strict automatic evaluation metrics.
The figures here indicate the change in micro-F1 and
PCC compared to when Weak Correlations → 1 (shown
in Table 3). Correlation with expert evaluation drops
when Weak Correlations → 0.

Overall, automatic evaluation using an LLM has a 472

meaningful correlation (micro-F1) with expert eval- 473

uation when measured at risk factor (sign)-level. At 474

the instance-level, the correlation (PCC) is moder- 475

ate (LAMC) to high (MIMIC). The variance may 476

owe to the small number of instances evaluated. 477

5.2 Scaling our Evaluation 478

Having verified that automatic evaluation provides 479

an imperfect but meaningful assessment of outputs, 480

we now scale our evaluation using this approach. 481

Specifically, we complement our manual analysis 482

with an automatic evaluation of the three models 483

at a larger scale. We evaluate 100 and 50 instances 484

(patient-diagnosis combinations) for MIMIC and 485

LAMC respectively. As discussed in §3, a collab- 486
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Model Useful Not Useful Hallucinations
Flan-T5

MIMIC 48.5 42.1 9.4
LAMC 47.0 38.4 14.6

Mistral-Instruct
MIMIC 55.0 35.9 9.1
LAMC 59.8 32.0 8.2

CBERT
MIMIC 29.7 70.3 -
LAMC 28.7 71.3 -

Table 5: Results of large-scale evaluation performed by
using Mistral-Instruct as an evaluator. LLMs outperform
the retrieval baseline. Mistral-Instruct generates more
useful evidence compared to Flan-T5.

orating radiologist identified the query diagnoses487

in the radiology reports during manual evaluation.488

For this automatic evaluation, we follow prior work489

(Tang et al., 2023), and consider conditions fol-490

lowing likely indicators (such as ‘concerning for’,491

‘diagnosis include’. Details in §D) as diagnoses.492

Table 5 shows results of the scaled up evaluation493

(see Table 8 for data statistics). Both Flan-T5 and494

Mistral-Instruct significantly outperform CBERT,495

consistent with the findings from our manual eval-496

uation. Mistral-Instruct appears to generate more497

useful evidence compared to Flan-T5 (again con-498

sistent with the manual evaluation). Both models499

have comparable rates of hallucination for MIMIC500

but Flan-T5 has a higher rate for LAMC.501

6 Related Work502

NLP for EHR. Navigating EHRs is cumbersome,503

motivating efforts in summarization of and infor-504

mation extraction from EHR (Pivovarov and El-505

hadad, 2015). For example, in recent related work,506

(Jiang et al., 2023b) created a proactive note re-507

trieval system based on the current clinical context508

to aid note-writing. (Adams et al., 2021) consid-509

ered “hospital-course summarization”, condensing510

the notes of a patient visit into a paragraph. Other511

work (Liang et al., 2019) has sought to produce512

disease-specific summaries from notes.513

LLMs for healthcare There has been a flurry of514

work on the capabilities of LLMs for healthcare515

generally, i.e., in terms of ability to answer general516

questions and take medical exams, e.g., (Singhal517

et al., 2023; Lehman et al., 2023; Nori et al., 2023;518

Yang et al., 2022). Our work, however, is focused519

on a grounded, specific task.520

NLP in Radiology. Previous works regarding NLP521

in radiology primarily focus on processing radiol-522

ogy reports. Some work has sought to automat-523

ically generate the Impression section of reports 524

(Van Veen et al., 2023; Zhang et al., 2019; Sotudeh 525

et al., 2020). Other efforts have focused on extract- 526

ing specific observations (Smit et al., 2020; Jaiswal 527

et al., 2021), and modeling disease progression 528

(Di Noto et al., 2021; Khanna et al., 2023). 529

NLP to aid diagnosis. The prior works most rel- 530

evant to this effort concern aiding radiologists in 531

diagnosing conditions. McInerney et al. (2020) 532

propose a distantly supervised model (trained to 533

predict ICD codes) to perform extractive summa- 534

rization conditioned on a diagnoses; our work ad- 535

dresses this problem with LLMs, zero-shot. Tang 536

et al. 2023 address diagnostic uncertainty by sug- 537

gesting less likely diagnosis to radiologists, learnt 538

by differentiating between likely and less likely 539

diagnoses via contrastive learning. 540

7 Discussion and Limitations 541

We proposed an approach for using LLMs to re- 542

trieve and summarize evidence from patient records 543

which might be relevant to a particular diagnosis 544

of interest, with the aim of aiding radiologists per- 545

forming imaging diagnosis. Expert evaluations of 546

model outputs performed by radiologists show that 547

this is a promising approach, compared to pre-LLM 548

techniques. We also established that automated 549

(LLM-based) evaluation is feasible, and confirmed 550

our findings using this approach. 551

There are important limitations to the approach 552

and to our evaluation. We found that LLMs are 553

prone to hallucinating (plausible) evidence, poten- 554

tially hindering their utility for the envisioned use. 555

However, our results also indicate that model con- 556

fidence might allow one to pro-actively identify 557

hallucinations, and abstain in such cases; an inter- 558

esting direction for future work. 559

Our evaluation was limited in a few key ways. 560

We enlisted radiologists to perform in-depth eval- 561

uation of a small number of instances, because 562

evaluation is time consuming: We emphasize that 563

this exercise required substantial allocation (∼16 564

hours) of scarce expert time. We attempt to mitigate 565

this via LLM-based automatic evaluation. How- 566

ever, our assessment of this strategy also relied 567

on this relatively small annotated set and so may 568

not generalize. Another limitation here is that we 569

considered only two LLMs: Other LLMs might, 570

naturally, perform better or worse. Finally, we did 571

not extensively iterate on the prompts used, and 572

this too could substantially affect results. 573

8



References574

Griffin Adams, Emily Alsentzer, Mert Ketenci, Jason575
Zucker, and Noémie Elhadad. 2021. What’s in a576
summary? laying the groundwork for advances in577
hospital-course summarization. In Proceedings of578
the conference. Association for Computational Lin-579
guistics. North American Chapter. Meeting, volume580
2021, page 4794. NIH Public Access.581

Monica Agrawal, Stefan Hegselmann, Hunter Lang,582
Yoon Kim, and David Sontag. 2022. Large language583
models are zero-shot clinical information extractors.584
arXiv preprint arXiv:2205.12689.585

Emily Alsentzer, John Murphy, William Boag, Wei-586
Hung Weng, Di Jindi, Tristan Naumann, and587
Matthew McDermott. 2019. Publicly available clin-588
ical BERT embeddings. In Proceedings of the 2nd589
Clinical Natural Language Processing Workshop,590
pages 72–78, Minneapolis, Minnesota, USA. Associ-591
ation for Computational Linguistics.592

Razvan Azamfirei, Sapna R Kudchadkar, and James593
Fackler. 2023. Large language models and the perils594
of their hallucinations. Critical Care, 27(1):1–2.595

Yapei Chang, Kyle Lo, Tanya Goyal, and Mohit Iyyer.596
2023. Booookscore: A systematic exploration of597
book-length summarization in the era of llms. arXiv598
preprint arXiv:2310.00785.599

Cheng-Han Chiang and Hung-yi Lee. 2023. Can large600
language models be an alternative to human evalua-601
tions? arXiv preprint arXiv:2305.01937.602

Hyung Won Chung, Le Hou, Shayne Longpre, Bar-603
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi604
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.605
2022. Scaling instruction-finetuned language models.606
arXiv preprint arXiv:2210.11416.607

Tommaso Di Noto, Chirine Atat, Eduardo Gamito Teiga,608
Monika Hegi, Andreas Hottinger, Meritxell Bach609
Cuadra, Patric Hagmann, and Jonas Richiardi. 2021.610
Diagnostic surveillance of high-grade gliomas: to-611
wards automated change detection using radiology612
report classification. In Joint European Conference613
on Machine Learning and Knowledge Discovery in614
Databases, pages 423–436. Springer.615

Matthew Honnibal and Ines Montani. 2017. spaCy 2:616
Natural language understanding with Bloom embed-617
dings, convolutional neural networks and incremental618
parsing. To appear.619

Ajay Jaiswal, Liyan Tang, Meheli Ghosh, Justin F620
Rousseau, Yifan Peng, and Ying Ding. 2021.621
Radbert-cl: Factually-aware contrastive learning for622
radiology report classification. In Machine Learning623
for Health, pages 196–208. PMLR.624

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-625
sch, Chris Bamford, Devendra Singh Chaplot, Diego626
de las Casas, Florian Bressand, Gianna Lengyel, Guil-627
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,628

Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, 629
Thibaut Lavril, Thomas Wang, Timothée Lacroix, 630
and William El Sayed. 2023a. Mistral 7b. 631

Sharon Jiang, Shannon Shen, Monica Agrawal, Bar- 632
bara Lam, Nicholas Kurtzman, Steven Horng, David 633
Karger, and David Sontag. 2023b. Conceptualizing 634
machine learning for dynamic information retrieval 635
of electronic health record notes. arXiv preprint 636
arXiv:2308.08494. 637

Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H 638
Lehman, Mengling Feng, Mohammad Ghassemi, 639
Benjamin Moody, Peter Szolovits, Leo Anthony Celi, 640
and Roger G Mark. 2016. Mimic-iii, a freely accessi- 641
ble critical care database. Scientific data, 3(1):1–9. 642

Sameer Khanna, Adam Dejl, Kibo Yoon, Quoc Hung 643
Truong, Hanh Duong, Agustina Saenz, and Pranav 644
Rajpurkar. 2023. Radgraph2: Modeling disease pro- 645
gression in radiology reports via hierarchical infor- 646
mation extraction. arXiv preprint arXiv:2308.05046. 647

Seungone Kim, Jamin Shin, Yejin Cho, Joel Jang, 648
Shayne Longpre, Hwaran Lee, Sangdoo Yun, 649
Seongjin Shin, Sungdong Kim, James Thorne, et al. 650
2023. Prometheus: Inducing fine-grained evalua- 651
tion capability in language models. arXiv preprint 652
arXiv:2310.08491. 653

Eric Lehman, Evan Hernandez, Diwakar Mahajan, 654
Jonas Wulff, Micah J Smith, Zachary Ziegler, Daniel 655
Nadler, Peter Szolovits, Alistair Johnson, and Emily 656
Alsentzer. 2023. Do we still need clinical language 657
models? In Proceedings of the Conference on Health, 658
Inference, and Learning, volume 209 of Proceed- 659
ings of Machine Learning Research, pages 578–597. 660
PMLR. 661

Jennifer Liang, Ching-Huei Tsou, and Ananya Poddar. 662
2019. A novel system for extractive clinical note 663
summarization using ehr data. In Proceedings of 664
the Clinical Natural Language Processing Workshop, 665
pages 46–54. 666

Denis Jered McInerney, Borna Dabiri, Anne-Sophie 667
Touret, Geoffrey Young, Jan-Willem Meent, and By- 668
ron C Wallace. 2020. Query-focused ehr summariza- 669
tion to aid imaging diagnosis. In Machine Learning 670
for Healthcare Conference, pages 632–659. PMLR. 671

Denis Jered McInerney, Geoffrey Young, Jan-Willem 672
van de Meent, and Byron C. Wallace. 2023. CHiLL: 673
Zero-shot Custom Interpretable Feature Extraction 674
from Clinical Notes with Large Language Models. 675
In Proceeding of Findings of the Conference on Em- 676
pirical Methods for Natural Language Processing 677
(EMNLP). 678

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike 679
Lewis, Wen-tau Yih, Pang Wei Koh, Mohit Iyyer, 680
Luke Zettlemoyer, and Hannaneh Hajishirzi. 2023. 681
Factscore: Fine-grained atomic evaluation of factual 682
precision in long form text generation. arXiv preprint 683
arXiv:2305.14251. 684

9

https://doi.org/10.18653/v1/W19-1909
https://doi.org/10.18653/v1/W19-1909
https://doi.org/10.18653/v1/W19-1909
http://arxiv.org/abs/2310.06825
https://proceedings.mlr.press/v209/eric23a.html
https://proceedings.mlr.press/v209/eric23a.html
https://proceedings.mlr.press/v209/eric23a.html


Harsha Nori, Yin Tat Lee, Sheng Zhang, Dean Carignan,685
Richard Edgar, Nicolo Fusi, Nicholas King, Jonathan686
Larson, Yuanzhi Li, Weishung Liu, Renqian Luo,687
Scott Mayer McKinney, Robert Osazuwa Ness, Hoi-688
fung Poon, Tao Qin, Naoto Usuyama, Chris White,689
and Eric Horvitz. 2023. Can generalist foundation690
models outcompete special-purpose tuning? case691
study in medicine.692

Rimma Pivovarov and Noémie Elhadad. 2015. Auto-693
mated methods for the summarization of electronic694
health records. Journal of the American Medical695
Informatics Association, 22(5):938–947.696

Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres,697
Ellery Wulczyn, Le Hou, Kevin Clark, Stephen698
Pfohl, Heather Cole-Lewis, Darlene Neal, et al.699
2023. Towards expert-level medical question an-700
swering with large language models. arXiv preprint701
arXiv:2305.09617.702

Akshay Smit, Saahil Jain, Pranav Rajpurkar, Anuj Pa-703
reek, Andrew Y Ng, and Matthew P Lungren. 2020.704
Chexbert: combining automatic labelers and expert705
annotations for accurate radiology report labeling706
using bert. arXiv preprint arXiv:2004.09167.707

Sajad Sotudeh, Nazli Goharian, and Ross W Filice.708
2020. Attend to medical ontologies: Content se-709
lection for clinical abstractive summarization. arXiv710
preprint arXiv:2005.00163.711

Liyan Tang, Yifan Peng, Yanshan Wang, Ying Ding,712
Greg Durrett, and Justin F Rousseau. 2023. Less713
likely brainstorming: Using language models to714
generate alternative hypotheses. arXiv preprint715
arXiv:2305.19339.716

Miles Turpin, Julian Michael, Ethan Perez, and717
Samuel R Bowman. 2023. Language models don’t718
always say what they think: Unfaithful explana-719
tions in chain-of-thought prompting. arXiv preprint720
arXiv:2305.04388.721

Dave Van Veen, Cara Van Uden, Maayane Attias,722
Anuj Pareek, Christian Bluethgen, Malgorzata Po-723
lacin, Wah Chiu, Jean-Benoit Delbrouck, Juan724
Manuel Zambrano Chaves, Curtis P Langlotz, et al.725
2023. Radadapt: Radiology report summarization726
via lightweight domain adaptation of large language727
models. arXiv preprint arXiv:2305.01146.728

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien729
Chaumond, Clement Delangue, Anthony Moi, Pier-730
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-731
icz, Joe Davison, Sam Shleifer, Patrick von Platen,732
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,733
Teven Le Scao, Sylvain Gugger, Mariama Drame,734
Quentin Lhoest, and Alexander Rush. 2020. Trans-735
formers: State-of-the-art natural language processing.736
In Proceedings of the 2020 Conference on Empirical737
Methods in Natural Language Processing: System738
Demonstrations, pages 38–45, Online. Association739
for Computational Linguistics.740

Xi Yang, Aokun Chen, Nima PourNejatian, Hoo Chang 741
Shin, Kaleb E Smith, Christopher Parisien, Colin 742
Compas, Cheryl Martin, Anthony B Costa, Mona G 743
Flores, et al. 2022. A large language model for 744
electronic health records. NPJ Digital Medicine, 745
5(1):194. 746

Muru Zhang, Ofir Press, William Merrill, Alisa 747
Liu, and Noah A Smith. 2023. How language 748
model hallucinations can snowball. arXiv preprint 749
arXiv:2305.13534. 750

Yuhao Zhang, Derek Merck, Emily Bao Tsai, Christo- 751
pher D Manning, and Curtis P Langlotz. 2019. Opti- 752
mizing the factual correctness of a summary: A study 753
of summarizing radiology reports. arXiv preprint 754
arXiv:1911.02541. 755

A Prompting for Evidence 756

A.1 Zero-shot Sequential Prompting 757

For the zero-shot sequential prompting (§2), we use 758

the following prompt to query whether a patient 759

is at risk for a diagnosis for Flan-T5 and Mistral- 760

Instruct. 761

Read the following clinical note of a pa- 762

tient: [NOTE]. 763

Question: Is the patient at risk of 764

[DIAGNOSIS]? 765

Choice -Yes -No. 766

Answer: 767

To elicit supporting evidence from the model for 768

such risk predictions, we use the following prompt 769

for Flan-T5. 770

Read the following clinical note of a pa- 771

tient: [NOTE]. 772

Based on the note, why is the patient at 773

risk of [DIAGNOSIS]? 774

Answer step by step: 775

For Mistral-Instruct, we found that CoT prompt- 776

ing yielded very lengthy responses. We thus used 777

the following prompt: 778

Read the following clinical note of a pa- 779

tient: [NOTE]. 780

Based on the note, why is the patient at 781

risk of [DIAGNOSIS]? Be concise. 782

Answer: 783
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Similarly, to query whether the patient has a784

given diagnosis, we ask instead “Question: Does785

the patient have [DIAGNOSIS]?” (asking for a bi-786

nary response). And then to obtain evidence sup-787

porting this assessment (in the case of a positive788

response), we prompt with: “Question: Extract789

signs of [DIAGNOSIS] from the note.”. In the790

above prompts, [NOTE] denotes a patient note, and791

[DIAGNOSIS] a potential diagnosis for which we792

would like to retrieve supporting evidence. We then793

combine and present the result for the two types of794

evidence (risks and signs) to the end user.795

A.2 Single prompt796

For the single prompt setting (§2), we followed797

(McInerney et al., 2020)’s approach of using ‘fu-798

ture’ ICD codes as the patient’s diagnoses. To799

select a diagnosis that the patient did not have, we800

randomly sampled an ICD code, excluding the pa-801

tient’s diagnoses.802

For Flan-T5, we use the following Chain of803

Thought (CoT) prompt :804

Read the following clinical note of a pa-805

tient: [NOTE]806

Question: Is the patient at risk of807

[DIAGNOSIS]?808

Answer: Let’s think step by step.809

Some examples of incorrect reasoning by Flan-T5:810

1. Diagnosis: Diabetes insipidus811

The patient has a Swan-Ganz catheter in place.812

The Swan-Ganz catheter is a device that is813

used to measure the amount of blood circulat-814

ing to the brain. The higher the blood flow815

to the brain, the higher the risk of diabetes816

insipidus. The answer: yes.817

2. Diagnosis: Extradural and subdural abscess818

The patient has asymmetrically distributed819

airspace opacities affecting the left lung more820

than the right with coexisting bilateral septal821

thickening is most suggestive of widespread822

pulmonary edema. Superimposed aspiration823

is also possible, particularly in the left lung.824

The heart remains enlarged. Small pleural825

effusions are new. The patient is at risk of826

extradural and subdural abscess.827

For Mistral-Instruct, again we found that CoT828

prompting yielded very lengthy responses which829

were harder to parse. We thus used the following830

prompt:831

Read the following clinical note of a pa- 832

tient: [NOTE] 833

Question: Is the patient at risk of 834

[DIAGNOSIS]? Answer Yes or No and 835

explain your answer. Be concise. 836

Answer: 837

Some examples of incorrect reasoning by 838

Mistral-Instruct: 839

1. Diagnosis: Pneumocephalus 840

The patient has a history of taking Tylenol 841

PR and has a cool bath, ice packs, and a fan 842

to cool down, which may increase the risk of 843

pneumocephalus. 844

2. Diagnosis: Stroke 845

The patient has an endotracheal tube in place, 846

which can increase the risk of stroke if not 847

properly positioned and secured. 848

A.3 Few-shot prompting 849

We provide additional details on our preliminary 850

experiments with few-shot prompting. As done in 851

§A.2, we followed (McInerney et al., 2020)’s ap- 852

proach of using ‘future’ ICD codes as the patient’s 853

diagnoses. To select a diagnosis that the patient 854

did not have, we randomly sampled an ICD code, 855

excluding the patient’s diagnoses. We used the 856

following prompt: 857

Read the following clinical note of a pa- 858

tient: [RANDOM NOTE SNIPPET]. 859

Answer step by step: can the patient pos- 860

sibly have cardioembolic strokes in the 861

future? 862

Answer: There is no evidence. Final an- 863

swer: No. 864

Read the following clinical note of a 865

patient: patient stopped taking a blood 866

thinning medication required for a heart 867

valve due to side effects. 868

Answer step by step: can the patient pos- 869

sibly have cardioembolic strokes in the 870

future? 871

Answer: The patient stopped taking a 872

blood thinning medication required for 873

a heart valve. The medication thins the 874

blood and prevents blood clots. Blood 875

clots can lead to strokes. Final answer: 876

Yes. 877
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Read the following clinical note of a pa-878

tient: [NOTE].879

Answer step by step: based on the880

note, why is the patient at risk of881

[DIAGNOSIS]?882

Answer:883

We observed that with few-shot prompting the884

model surfaced evidence for almost every diagnosis885

that the patient did not have. For example, for a pa-886

tient with ‘with g/j tube in place for gastroparesis’,887

the model’s output for the diagnosis, encephalitis,888

was ‘The patient has a jejunostomy tube in place.889

The jejunostomy tube can be pulled out. The je-890

junostomy tube can be pulled out of the body. The891

jejunostomy tube can be pulled out of the body and892

into the brain. Final answer: Yes’.893

We suspect the prompt biases the model to894

support the query diagnosis which then makes895

the model generate incorrect explanations as ev-896

idence (Turpin et al., 2023). We also experi-897

mented with prompts such as ‘Extract evidence898

for [DIAGNOSIS]. Output N/A if no evidence exists’899

but the model then mostly generated ‘N/A’. Given900

these results, we carried the rest of the evaluation901

with the zero-shot prompting approach.902

B Automatic Evaluation903

Our proposed LLM-based automatic evaluation904

(Section 5) consists of three steps, each realized as905

a single prompt. We use a one-shot prompt for the906

first step and zero-shot prompts for the subsequent907

steps, as shown below.908

1. Extract risk factors from the evidence.909

Read the following statement: The910

patient is at risk of intracranial hem-911

orrhage due to presence of an endo-912

tracheal tube (ETT) in the patient’s913

trachea which may increase the risk914

of complications such as aspiration915

and airway obstruction.916

Question: Extract the risk factors917

from the statement as a list. Be con-918

cise.919

Answer: 1. presence of endotra-920

cheal tube (ETT) in the trachea.921

Read the following statement:922

[EVIDENCE]923

Question: Extract the risk factors924

from the statement as a list. Be con-925

cise.926

Answer: " 927

2. Verify the presence of each risk factor in the 928

note. 929

Read the following clinical note of 930

a patient: [NOTE] 931

Question: Does the patient have 932

[RISK FACTOR]? Answer Yes or 933

No. 934

3. Validate if each present risk factor is a valid 935

risk factor of query diagnosis. 936

Is [RISK FACTOR] a risk factor of 937

[DIAGNOSIS]? Choice: -Yes -No. 938

Be concise. 939

Answer: 940

We used the following prompts for signs: 941

1. Extract signs from the evidence. 942

Read the following statement: A 943

patient may have intracranial hem- 944

orrhage because of the follow- 945

ing report - Large left subdural 946

hematoma, extensive subarachnoid 947

hemorrhage, right temporal efface- 948

ment, left uncal herniation, and ef- 949

facement of the sulci. 950

Question: Extract the signs from 951

the statement as a list. Be concise. 952

Answer: 1. Large left subdural 953

hematoma 2. Extensive subarach- 954

noid hemorrhage 3. Right temporal 955

effacement 4. Left uncal herniation 956

5. Effacement of the sulci 957

Read the following statement: A 958

patient may have [DIAGNOSIS] be- 959

cause of the following report - 960

[EVIDENCE]. 961

Question: Extract the signs from 962

the statement as a list. Be concise. 963

Answer: " 964

2. Verify the presence of each sign in the note. 965

Read the following clinical note of 966

a patient: [NOTE] 967

Question: Does the patient have 968

[SIGN]? Answer Yes or No. 969

3. Validate if each present sign is a valid sign of 970

query diagnosis. 971
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Diagnosis Risk Factors
pneumocephalus head injury, skull fracture, neurosurgical procedures, sinus or mastoid surgery, meningitis,

cerebrospinal fluid leak, barotrauma, diving or scuba diving accidents, iatrogenic causes, such as
lumbar puncture or spinal anesthesia

stroke hypertension, smoking, diabetes, obesity, sedentary lifestyle, high cholesterol levels, atrial
fibrillation, family history of stroke, previous history of stroke, excessive alcohol consumption,
drug abuse.

intracranial hemorrhage hypertension, aneurysms, arteriovenous malformations, blood clotting disorders, trauma, drug
abuse, liver disease, brain tumor, stroke, coagulopathy

brain tumor progression genetics, exposure to ionizing radiation, family history of brain tumors, certain
hereditary conditions, weakened immune system, previous history of brain tumor.

intracranial hypotension obesity, connective tissue disorders, previous spinal or cranial surgery, leaking cerebrospinal
fluid, spinal epidural anesthesia, lumbar puncture or spinal tap

Table 6: Examples of risk factors provided by GPT-3.5

Diagnosis Evidence Explanation
intracranial hemorrhage patient had multiple cardiac

surgeries
Multiple cardiac surgeries may suggest anticoagulation or un-
derlying cardiac dysfunction which could in turn predispose the
patient to intracranial hemorrhage.

intracranial hypotension The patient has a ventriculoperi-
toneal shunt.

A ventriculoperitoneal shunt (VPS) is a surgical device used to
relieve intracranial pressure by draining excessive cerebrospinal
fluid. Having a VPS catheter may increase the risk of intracranial
hypotension due to over drainage.

craniopharyngioma s/p resection X2, s/p VPS and
panhypopitutiarism with second
resection

Panhypopituitarism and the fact that something was removed
through surgery suggests there was a tumor involving the sella
which may or may not have been craniopharyngioma.

Table 7: Examples of weakly correlated evidence surfaced by the model for different diagnosis queries. All have
plausible but somewhat removed (or weak) connections.

A patient is showing the following972

sign: [SIGN].973

Question: Can the sign indicate974

[DIAGNOSIS]? Choice: -Yes -No.975

Be concise.976

Answer:977

C Binary decision recall978

Recall that we first ask the LLM whether a note979

indicates that the corresponding patient is at risk980

for, or has, a given query diagnosis. The precision981

of this LLM inference is implicitly measured by982

the assessment of generated evidence; if the patient983

does not have (is not at risk for) a condition, gen-984

erated evidence will necessarily be irrelevant. But985

this does not capture model recall, i.e., recognizing986

when a patient indeed has (is at risk of) a condition.987

To also estimate model recall, we sampled 20 pa-988

tients from LAMC and followed prior work (McIn-989

erney et al., 2020) in our evaluation. Specifically,990

we asked radiologists to browse reports from up to991

one year following a reference radiology report and992

tag relevant diagnoses; these constitute “future” di-993

agnoses with respect to the reference report. Radi-994

ologists then flagged past notes containing support-995

ing evidence for these diagnoses. Of the 200 notes996

marked as containing evidence, Mistral-Instruct,997

Model % instances # evidence # risks
with evidence (signs)

Flan-T5
MIMIC 91.0 1, 077 2, 817
LAMC 88.0 701 2, 027

Mistral-Instruct
MIMIC 84.0 968 2, 894
LAMC 90.0 614 1, 799

CBERT
MIMIC 100.0 2, 000 7, 467
LAMC 100.0 1, 000 3, 336

Table 8: Data statistics of large-scale evaluation per-
formed in §5.2. We evaluated 100 and 50 instances
from MIMIC and LAMC datasets respectively.

Flan-T5, and CBERT had a recall of 58.2, 70.0, 998

and 80.4 respectively. 999

D Likely Indicators 1000

For the likely indicators in §5.2, we used ‘likely rep- 1001

resent’, ’concerning for’, and ‘diagnosis include’. 1002

We did not consider diagnoses such as ‘old infarc- 1003

tion’, which came up often for ‘likely represent’. 1004

An infarction can be myocardial or cerebral. Since 1005

our dataset comprises of radiology reports concern- 1006

ing brain scans, we added ’cerebral’ as prefix to ‘in- 1007

farction’ to ensure specificity. Similarly, we added 1008

‘brain’ as a prefix to ‘metastasis’. 1009
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Diagnosis: small vessel disease
Evidence: marked low-attenuation bilateral periventricular changes

Figure 6: Screenshot of the evaluation interface showing highlighted evidence.

E Implementation Details1010

We used the HuggingFace (Wolf et al., 2020) li-1011

brary to run inference using Mistral-Instruct (7B),1012

Flan-T5 XXL (11B) and ClinicalBERT (110 mil-1013

lion parameters). We split notes into sentences1014

using the spaCy (en_core_web_sm) library (Hon-1015

nibal and Montani, 2017). We processed notes in1016

chunks of size 750 tokens (including the prompt1017

text) for Flan-T5 and Mistral-Instruct. We used a1018

single NVIDIA Tesla V100 (32G) GPU.1019
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