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Abstract

Knowledge distillation is a common paradigm001
for transferring capabilities from a larger model002
to smaller models. Assuming white box ac-003
cess to the larger model, traditional knowledge004
distillation methods often draw a probabilis-005
tic measure over the activations and minimize006
a divergence measure between the larger and007
smaller model. These methods are often lim-008
ited to last-layer activations, and do not lever-009
age any meaningful information from repre-010
sentations included in the hidden layers. In011
this work, we propose a distillation method012
that explicitly utilizes popular measures of rep-013
resentational alignment: CKA and Shape. We014
show that our method yields statistically signifi-015
cant improvement (up to 2 percentage point and016
p < 0.05) over both fine-tuning and standard017
logits-based distillation on three tasks (CoLA,018
RTE and MRCP) of the GLUE benchmark.019

1 Introduction020

While large models are achieving state-of-the-art021

results across almost all vision and language tasks,022

the "emergent" abilities that are encapsulated in023

them (Wei et al., 2022; Liang et al., 2023b) are of-024

ten inaccessible to the public as a result of their in-025

herent size and operating costs. Knowledge Distil-026

lation (KD) is one of the many paradigms that aim027

to bridge the gap between size and performance028

by inducing ways of transferring knowledge and029

abilities from a larger, complex model (teacher) to030

a smaller and accessible model (student).031

Assuming white-box access (weights and inter-032

mediate representations) to the teacher model dur-033

ing the training process, we can leverage align-034

ment of the teacher-student model through not just035

their outputs, but also their intermediary represen-036

tations. Prior works have minimized probabilistic037

divergences on the distributions of last-layer acti-038

vations (Hinton et al., 2015; Wen et al., 2023) or039

used variants of Euclidean norms between student040

and teacher intermediary activations. (Sanh et al., 041

2020; Liang et al., 2023a; Tung and Mori, 2019; 042

Sun et al., 2019; Mukherjee and Hassan Awadallah, 043

2020). Our work provides a framework that allows 044

for intermediary representation in any arbitrary hid- 045

den layer of a neural network to be aligned between 046

teacher and student models, taking the geometry 047

of the representational space into account. We an- 048

ticipate that this alignment in the representational 049

geometry will bias the student model towards better 050

downstream performance. 051

In picking the similarity function for aligning 052

the representation, we draw from a wide literature 053

in representational alignment (Sucholutsky et al., 054

2023), particularly with a focus on measuring and 055

bridging the representational space between mod- 056

els (Klabunde et al., 2023). While a broad range of 057

similarity functions have been proposed and used 058

in the literature, we focus on using Centered Kernel 059

Alignment (CKA) (Kornblith et al., 2019) and liner 060

Shape (Williams et al., 2021) since they are both 061

differentiable and invariant to orthogonal transfor- 062

mations. A differentiable metric can be backpropa- 063

gated to align representations, while invariance to 064

orthogonality is a commonly proposed symmetry 065

of neural networks trained through gradient descent. 066

(Chen et al., 1993; Orhan and Pitkow, 2018). We 067

focus on cases where the student model is mini- 068

mized using a combination of cross-entropy loss 069

using labels and KL divergence between last layer 070

logits, alongside the alignment of hidden represen- 071

tations. Our core contributions are summarized 072

below: 073

1. We show that adding representational align- 074

ment in the distillation objective leads to a 075

statistically significant improvement in accu- 076

racy (upto 2 percentage points) of the student 077

model. 078

2. Adding more layers while calculating repre- 079

sentational similarity leads to better perfor- 080
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mance. CKA, in particular, scales much better081

when multiple layers are aligned.082

2 Background083

2.1 Distillation and divergences084

The distillation process is usually done by gradient085

descent on a loss that minimizes the student target086

loss, as well as a secondary loss that incorporates087

the difference in the "knowledge" being transferred088

from the teacher to student model. Specifically, it089

takes the form of090

L = LCE(fS(x), y) + LKD (fT (x), fS(x)) (1)091

where fS(X) and fT (x) are last-layer logits of092

the student and teacher model respectively, y is093

the true output labels. LKD is the KL divergence094

between teacher and student logits and LCE is the095

cross entropy loss of the student output.096

Traditional knowledge-distillation methods have097

used either the forward (Sanh et al., 2020; Hin-098

ton et al., 2015) or reverse (Agarwal et al., 2024;099

Gu et al., 2024) KL divergence as the measure of100

difference between last-layer logits. It has been101

shown that even when student generalization im-102

proves, teacher-student fidelity is still low when103

knowledge distillation is performed on last-layer104

features. (Stanton et al., 2021)105

Beyond alignment of the last-layer logits,106

hidden-layer representations can also be aligned. It107

is natural to assume that LKD can take the form of108

any vector p-norm. Variants of Euclidean norms,109

including cosine-similarity (Sanh et al., 2020), nor-110

malized mean-squared, (Liang et al., 2023a; Sun111

et al., 2019) and ℓ2 norms (Tung and Mori, 2019;112

Mukherjee and Hassan Awadallah, 2020) have been113

used in a distillation setting. An obvious advantage114

of this method is that, using a variety of higher115

order projection/dimensionality reduction methods116

on Euclidean spaces, (PCA, zero-padding, multi-117

dimensional scaling), cases where the number of ac-118

tivations in a student model is less than the teacher119

model are supported. However, the curse of di-120

mensionality is a consistent problem when work-121

ing with high-dimensional vectors. Similarly, Eu-122

clidean distances do not reflect the geometry of123

neural representational spaces, which are often in-124

variant to permutations and orthogonality in the125

space of activation vectors. (Rombach et al., 2020).126

We are motivated to use a metric that, by its con-127

struction, is invariant to transformation of activa-128

tions under certain groups.129

2.2 Representational Similarity Metrics 130

Establishing a framework for comparing interme- 131

diate representations of neural networks is of sig- 132

nificant implications to deeper analysis of neural 133

network based models. Prior works in neuroscience 134

have approached a similar problem in comparing 135

representations of various stimuli to signals gener- 136

ated by the brain based on second order isometries 137

of raw signals (Barrett et al., 2019; Kriegeskorte 138

et al., 2008), while approaches in machine learning 139

have traditionally focused on measures based on 140

correlation analysis (Raghu et al., 2017). 141

Centered Kernel Alignment (CKA) (Kornblith 142

et al., 2019) is a widely used measure of representa- 143

tional alignment that constructs a kernel similarity 144

matrix and uses Hilbert-Schmidt Independence Cri- 145

terion (HSIC) (Gretton et al., 2005a) to compute 146

a metric between the similarity matrices. In the 147

context of neural networks, Batched CKA (Nguyen 148

et al., 2021), a slight reformulation of CKA with an 149

unbiased estimator of HSIC (Song et al., 2012) is 150

primarily used to construct a similarity index that 151

is independent of batch size. 152

Shape metric (Williams et al., 2021; Duong 153

et al., 2023) are a recently proposed extension of 154

alignment based similarity measures, that enforce 155

invariance in the measure with respect to orthogo- 156

nal transformation group. They can be conceptual- 157

ized as a similarity measure that works on second- 158

order isometric equivalence, and their construction 159

using ℓ2 norms means that they are an appropri- 160

ate choice of similarity metric to back propagate 161

through for knowledge distillation. 162

By construction, CKA is invariant to both orthog- 163

onal transform and isometric scaling. Shape metric 164

can be constructed to be invariant to all invertible 165

linear transformation by preprocessing represen- 166

tations through a whitening transform. (Williams 167

et al., 2021) In this work, due to computational 168

constraints, we do not preprocess our representa- 169

tions. As a result, our implementation of Shape 170

is only invariant to orthogonal transformations. A 171

formal mathematical description of the similarity 172

measures, their construction and invariance proper- 173

ties are included in Appendix A. 174

3 Methods 175

3.1 Dataset & Tasks 176

Our results are reported on the GLUE benchmark 177

(Wang et al., 2018). Specifically, we use three 178

tasks within GLUE: The Corpus of Linguistic Ac- 179
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Figure 1: Diagram showing our distillation method. ŷT
is the output of the larger teacher model, ŷS is the output
of the smaller student model, and y are true output labels.
Lsim is the alignment loss between hidden layers, LKD

is the KL divergence between teacher and student logits
and LCE is the cross entropy loss of the student output
with respect to the true labels.

ceptability (CoLA) (Warstadt et al., 2019), The180

Microsoft Research Paraphrase Corpus (MRPC)181

(Dolan and Brockett, 2005) and The Recognizing182

Textual Entailment (RTE) (Dagan et al., 2005; Bar-183

Haim et al., 2006; Giampiccolo et al., 2007; Ben-184

tivogli et al., 2009). CoLA involves predicting185

whether a sequence of words is a grammatical En-186

glish sentence, and is evaluated using Matthews187

correlation coefficient (MCC) (Matthews, 1975).188

MRPC contains two sentences and the task in-189

volves predicting if they are semantically equiv-190

alent. Since the dataset is imbalanced, we report191

both accuracy and F1 score. RTE involves an en-192

tailment challenge; given a premise sentence and a193

hypothesis sentence, the task is to predict whether194

the premise entails the hypothesis. We evaluate195

RTE using classification accuracy. These tasks196

were chosen from the 9 GLUE benchmark tasks197

because they had the greatest discrepancy in per-198

formance between teacher and student model after199

five epochs of fine-tuning.200

3.2 Loss functions201

Our loss function takes the form of202

L = γLCE (fS , ŷ) + αLsim (ϕT (fT ), ϕS(fS))203

+(1− α)LKD (fS , fT ) (2)204

LCE represents the cross entropy loss of the stu-205

dent logits with respect to output labels, Lsim rep-206

resents the loss with respect to the representational207

similarity measuring function and LKD is the KL208

divergence between student and teacher logits.209

γ ∈ {0, 1} indicates whether we are including210

supervised cross entropy loss, and α ∈ [0, 1] con-211

trols the interplay between hidden layer and last 212

layer similarities. fS and fT are outputs, including 213

hidden representations, of student and teacher mod- 214

els. ϕ is a function that extracts hidden layers from 215

the model. For ease of notation, if ϕT = (a, b), it 216

is extracting hidden representations from the ath 217

and bth layers of the model. 218

3.3 Model and training details 219

We perform all our distillation tasks on the BERT 220

model. (Devlin et al., 2019). As in common in most 221

distillation studies, we use pre-trained BERT-large 222

model, which has 24 encoder layers, as the teacher 223

model and pre-trained BERT-base model with 12 224

layers as the student model. We fine-tune the pre- 225

trained BERT-large model for 5 epochs on each 226

task, and use this fine-tuned model as the teacher 227

for distillation. The student is not fine-tuned on 228

any tasks; the distillation begins with a pre-trained 229

student model. For calculation of Lsim, we zero 230

pad the student hidden representations to match the 231

dimension of the teacher representations. 232

To make experiments computationally viable, 233

we use a token size of 128. We optimize using 234

ADAM (Kingma and Ba, 2015) with a learning 235

rate of 2 × 10−5 and a batch size per GPU of 236

64. We use Hugging Face libraries (Wolf et al., 237

2020) to perform all our training and evaluation. 238

We run distillation across the three tasks for 6 239

epochs. Each training run required optimizing over 240

108,311,810 parameters. Furthermore, to ensure 241

statistical significance in the performance of our 242

distilled model, we use McNemar’s test (McNemar, 243

1947; Dietterich, 1998) to compare all distilled 244

models against the fine-tuned baseline. Unless oth- 245

erwise noted, all results reported are statistically 246

significant (p < 0.05) 247

α γ Lsim Acc/F1 Remarks
N/A N/A N/A 0.68/0.809 RD baseline
N/A 1 N/A 0.816/0.877 FT baseline

0 0 N/A 0.813/0.866 † KD baseline
0.6 0 Shape 0.791/0.859 Shape+KD
1 0 Shape 0.683/0.812 Shape only

0.6 0 CKA 0.811/0.873 CKA+KD
1 0 CKA 0.683/0.812 CKA only

0.6 1 Shape 0.835/0.887 Shape+KD+FT
0.6 1 CKA 0.813/0.846 CKA+KD+FT

Table 1: Performance on MRPC. RD: Random baseline,
FT: Fine-tuning on labels, KD: Distillation on KL di-
vergence of the last layer logits. † indicates cases when
statistical significance is broken (p ≥ 0.05)
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4 Results & Discussion248

α γ Lsim MCC Remarks
N/A N/A N/A 0.0 RD baseline
N/A 1 N/A 0.5702 FT baseline

0 0 N/A 0.5752 KD baseline
0.6 0 Shape 0.5103 Shape+KD
1 0 Shape 0.1194 Shape only

0.6 0 CKA 0.5803 CKA+KD
1 0 CKA 0.1066 CKA only

0.6 1 Shape 0.5497 Shape+KD+FT
0.6 1 CKA 0.5804 CKA+KD+FT

Table 2: Performance on CoLA. RD: Random baseline,
FT: Fine-tuning on labels, KD: Distillation on KL di-
vergence of the last layer logits.

4.1 Distillation performance249

For all tasks in this section, we assume ϕT = (12)250

and ϕS = (6), i.e we are aligning the middle layer251

of the teacher model with the middle layer of the252

student model. All results are noted after minimiz-253

ing the loss function from Equation 2 with values254

varying for α, γ and Lsim.255

Alignment can help improve distillation:256

As shown in Table 1, 2, 3 and , including Lsim257

alongside LKD and LCE increases the perfor-258

mance of the student model across all three tasks.259

Shape does better in RTE and MRPC, while CKA260

produces the best student model in CoLA. It is in-261

teresting to note that adding similarity measures262

alongside logits distillation, without even includ-263

ing cross entropy of the labels (α = 0.6, γ = 0),264

seems to do better than boths logits distillation and265

fine-tuning.266

Alignment, by itself, is disastrous267

When we remove LKD and LCE entirely (α =268

1, γ = 0) we see that the performance is signifi-269

α γ Lsim Accuracy Remarks
N/A N/A N/A 0 RD baseline
N/A 1 N/A 0.6173 FT baseline

0 0 N/A 0.6389 † KD baseline
0.6 0 Shape 0.6337 Shape+KD
1 0 Shape 0.5631 Shape only

0.6 0 CKA 0.6462 † CKA+KD
1 0 CKA 0.4729 CKA only

0.6 1 Shape 0.6570 Shape+KD+FT
0.6 1 CKA 0.6462 † CKA+KD+FT

Table 3: Performance on RTE. RD: Random baseline,
FT: Fine-tuning on labels, KD: Distillation on KL di-
vergence of the last layer logits. † indicates cases when
statistical significance is broken (p ≥ 0.05)

Task Lsim ϕT ϕS Score

CoLA
CKA (12) (6) 0.5803

(6, 12, 18) (3,6,9) 0.5804

Shape (12) (6) 0.5103
(6, 12, 18) (3,6,9) 0.5179

RTE
CKA (12) (6) 0.6462 †

(6, 12, 18) (3,6,9) 0.6823

Shape (12) (6) 0.6337
(6, 12, 18) (3,6,9) 0.6606

MRPC
CKA (12) (6) 0.8112/0.8739

(6, 12, 18) (3,6,9) 0.8406/0.8896

Shape (12) (6) 0.7916/0.8595
(6, 12, 18) (3,6,9) 0.8357/0.8885

Table 4: Changes in distillation performance while
adding layers.† indicates cases when statistical signifi-
cance is broken (p ≥ 0.05)

cantly worse across all tasks and similarity func- 270

tions. While leveraging the geometry of hidden 271

representations can steer the student model towards 272

producing the correct output, it cannot by itself bias 273

the model to produce the correct output. Some out- 274

put information, either through teacher logits or 275

supervised labels, are essential to ensure the model 276

performs well. 277

4.2 Layer by layer performance 278

In this section, we use the previous results and set 279

α = 0.6 and γ = 0. We change ϕT and ϕS to ob- 280

serve the impact of adding more layers during the 281

calculation of Lsim. To ensure appropriate layers 282

are matched, we match layer n of the student model 283

with layer 2n of the teacher model. The first third, 284

middle and second third model are matched. As 285

seen from the results in Table 4, for both shape and 286

CKA, going from aligning a single layer to three 287

layers increases the performance of the distilled 288

student model. In fact, CKA tends to scale much 289

better with a greater number of layers, resulting in 290

the best performance across all three tasks. 291

5 Conclusion 292

We propose a novel distillation method that in- 293

corporates representations of hidden layers and 294

aligns them using two measures of representa- 295

tional similarity: CKA and shape. We showed 296

that adding these measures besides divergence of 297

teacher-student last layer logits or standard cross 298

entropy with labels can yield better performance, 299

however alignment by itself cannot steer distillation 300

towards the correct output. We also showed that 301

adding the number of layers in the calculation of 302

the similarity leads to performance improvements, 303

particularly in the context of CKA. 304
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6 Limitations305

• Generalization to other models and tasks306

Our analysis have been carried out using307

BERT on three tasks of the GLUE dataset.308

Analysis on further datasets with models of309

varying capability would lead to a stronger ar-310

gument about the efficacy of representational311

alignment for distillation.312

• Limitations with CKA: Linear CKA has313

been previously shown to be sensitive to out-314

lier data points (Nguyen et al., 2022), and high315

variance principal components in the represen-316

tations (Ding et al., 2021), while theoretical317

analysis shows that CKA is sensitive to sub-318

set translation (Davari et al., 2023). These319

studies point out that using just linear CKA320

as a proxy for model similarity can be flawed.321

Since we’re not using CKA to infer the repre-322

sentational capabilities of models, but instead323

using it as an intermediary measure to that can324

be optimized to improve end-to-end distilla-325

tion performance, we believe some of these326

issues raised in these works do not apply to327

our method. However, it is important to be328

aware of the limitations in using CKA.329

• Runtime considerations: Computing and op-330

timizing over the representational metrics is331

extremely time-consuming. Shape, for in-332

stance, requires computing the SVD of the333

covariance matrices of the representations,334

which is in O(n3) on the size of representa-335

tions. This means that without further work on336

more efficient calculation of these measures,337

our method cannot be scaled up to larger mod-338

els and datasets.339

7 Ethical Considerations340

Our work proposes a framework for better distil-341

lation of larger inaccessible models into smaller,342

more accessible ones. We intend this work to343

contribute to a larger process of democratizing344

access to the impressive abilities of larger mod-345

els, allowing for the deployment of these models346

in a resource-constrained settings. However, if347

the teacher model has inherent biases or has been348

trained with malicious intent, these biases can be349

propagated to the student model. Special care must350

be taken, prior to distillation, to ensure that the351

teacher model is fair and unbiased.352
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A Supplemental Material 583

Notation 584

Consider Rd to a d-dimensional activation from a 585

particular hidden layer. A representational matrix, 586

R ∈ Rn×d is a collection of activations from n 587

different inputs. The similarity measure can be for- 588

mulated as a function m : Rn×d×Rn×d → R. We 589

will use ∥F∥ to represent the Frobenius norm is F 590

is a matrix and the Euclidean 2-norm if F is a vec- 591

tor. ϕ : Rn×d → Rn×p is a pre-processing function 592

applied to the rows of the representation matrix. ϕ 593

can be common pre-processing functions that pre- 594

serve the same dimension (mean-centering, stan- 595

dard scaling, etc), in which case p = d. p << d, i.e 596

pre-processing by applying a dimensionality reduc- 597

tion function like PCA. The group for orthogonal 598

transformations for a d dimensional vector is given 599

as O(d) = {Q ∈ Rd×d : QTQ = I} 600

A.1 Lsim: Shape 601

Generalized shape metrics, as presented in 602

(Williams et al., 2021), uses the theory of statistical 603

shape (Kendall, 1989) to create a similarity func- 604

tion that is a metric in the representational shape 605

space. The similarity between representations is 606

defined with respect to a linear isometry group, 607

G. We define the equivalence relation ϕ(Rx) ∼ 608

ϕ(Ry) ⇐⇒ ∃T ∈ G : ϕ(Rx) = ϕ(Ry)T , where 609

ϕ is a preprocessing function. The similarity score 610

is then calculated as 611

d(Rx, Ry) = min
T∈G

∥ϕ(Rx)− ϕ(Ry)T∥ (3) 612

The orthogonal transformation group in the 613

feature space dimension O(d) is a commonly 614

used isometry group, however simpler permutation 615

groups can be also be used. Shape metrics can thus 616

be conceptually thought of as a second order isom- 617

etry on neural network representations, accounting 618

for any first-order differences in the raw activations. 619
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These metrics follow the standard properties of the620

distance function, including the triangle inequality.621

Orthogonal Procrustes Problem622

The problem of computing the T that optimizes623

the ∥Rx −RyT∥ when G = O(d) is solved by624

(Schönemann, 1966). In fact, we can show that625

T = V UT , where RT
xRy = UΣV T is the Singular626

Value Decomposition. Furthermore, ⟨Rx, Ry⟩ =627 ∑
i σi, where σ1 ≥ σ2 · · · ≥ σn ≥ 0 are the singu-628

lar values of RT
xRy.629

Invariances in Shape630

It is clear that when the ϕ(x) = x, the shape metric631

is only invariant to orthogonal transformation. By632

using the linear whitening transform as the pre-633

processing function, we can control the functional634

group our metric is invariant to. The whitening635

transform takes the form of636

ϕ(R) = CR
(
βId + (1− β)(RTCR)−

1
2

)
(4)637

where C = In − 1
n11

T is the n × n center-638

ing matrix, that mean-centers the columns of the639

representational matrix. When β = 1, Eq 4,640

reduces to invariance to orthogonal groups only,641

since ϕ(R) = CR is simply mean-centering the642

columns. On the other hand, with β = 0, the643

ϕ(R) = CR(RTCR)−
1
2 , which is equivalent to644

ZCA whitening. (Kessy et al., 2018). In this case,645

all invertible linear transformations are equivalent646

in the representation; thus the shape metric is in-647

variant to all linear transformations. β is thus an648

important hyperparameter that we can tune to ad-649

just the strength of our isometry group.650

In our implementation of shape, to ease the com-651

putational complexity of backpropagating through652

the metric, we preprocess our representations by653

setting β = 1 in Equation 4. As a result, we are654

only invoking orthogonal invariance in the interme-655

diary representations.656

Computational constraints657

Computing the SVD of RT
xRy takes O(n3) time.658

Classical divergence based approaches and Eu-659

clidean distances are often O(n), so the overhead660

while gradient descending through a metric calcu-661

lated by solving the orthogonal Procrustes can be662

quite expensive.663

A.2 Lsim: Centered Kernel Alignment (CKA) 664

Centered Kernel Alignment, proposed in (Korn- 665

blith et al., 2019), draws from older literature study- 666

ing Representational Similarity Analysis (RSA) 667

in neuroscience (Kriegeskorte et al., 2008). The 668

core idea in both lies in computing a similarly 669

matrix of pairwise activations of each sample, 670

Kx,Ky ∈ Rn×n. While these matrices can take 671

the form of positive semi definite matrices through 672

a kernel function, and have a rich mathematical 673

structure based on the theory of Reproducing Ker- 674

nel Hilbert Spaces (RKHS), we limit ourselves to 675

linear kernels. So, we will define Kx = CRxR
T
xC 676

and Ky = CRyR
T
y C, as centered similarity matri- 677

ces, where C = In − 1
n11

T is the n× n centering 678

matrix. 679

HSIC and computation of the metric 680

Hilbert-Schmidt Independence Criterion (HSIC) 681

(Gretton et al., 2005b) is used as a way to compare 682

the two similarity matrices. HSIC can be concep- 683

tualized as a generalization of the covariance op- 684

eration in the context RKHS. For the linear kernel 685

that we are using, the empirical estimator for HSIC 686

takes the form 687

HSIC(Kx,Ky) =
1

(n− 1)2
tr(KxKy) (5) 688

However, this estimator of HSIC is biased, and 689

it is impossible to calculate the HSIC of the entire 690

dataset at once. To ensure that the calculated CKA 691

is independent of batch size, we instead use an 692

unbiased estimator of HSIC in our implementation. 693

(Song et al., 2012; Nguyen et al., 2021) 694

H̃SIC(Kx,Ky) =
1

n(n− 3)

(
tr(K̃xK̃y)+ (6) 695

1T K̃x11
T K̃y1

(n− 1)(n− 2)
− 2

n− 2
1T K̃xK̃y1

)
696

where K̃x and K̃y are hollow matrices obtained 697

by setting the diagonal of Kx and Ky to 0. 698

The CKA value is then calculated as 699

CKA(Kx,Ky) =
H̃SIC(Kx,Ky)√

H̃SIC(Kx,Kx)H̃SIC(Ky,Ky)

(7) 700

Invariances in CKA 701

CKA is invariant to both isotropic scaling and or- 702

thogonal transformation. HSIC, by itself, is not 703
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invariant to isotropic scaling. However, the normal-704

ization with self HSIC in Equation 7 means that705

CKA will be invariant to isotropic scaling since the706

trace as well as all matrix multiplications are linear707

operators.708

Orthogonal invariance in CKA can be seen in709

the construction of Kx and Ky. For instance when710

a representation, Ry is transformed through Q ∈711

O(d), the linear kernel similarity matrix takes the712

form of713

KRyQ = CRyQ(RyQ)TC714

= CRyQQTRT
y C715

= CRyR
T
Y C = Ky716

Hence, construction of the similarity kernels are717

invariant to orthogonal transformation of the rep-718

resentation, and thus the CKA score also remains719

invariant.720
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