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Abstract

Knowledge distillation is a common paradigm
for transferring capabilities from a larger model
to smaller models. Assuming white box ac-
cess to the larger model, traditional knowledge
distillation methods often draw a probabilis-
tic measure over the activations and minimize
a divergence measure between the larger and
smaller model. These methods are often lim-
ited to last-layer activations, and do not lever-
age any meaningful information from repre-
sentations included in the hidden layers. In
this work, we propose a distillation method
that explicitly utilizes popular measures of rep-
resentational alignment: CKA and Shape. We
show that our method yields statistically signifi-
cant improvement (up to 2 percentage point and
p < 0.05) over both fine-tuning and standard
logits-based distillation on three tasks (CoLA,
RTE and MRCP) of the GLUE benchmark.

1 Introduction

While large models are achieving state-of-the-art
results across almost all vision and language tasks,
the "emergent" abilities that are encapsulated in
them (Wei et al., 2022; Liang et al., 2023b) are of-
ten inaccessible to the public as a result of their in-
herent size and operating costs. Knowledge Distil-
lation (KD) is one of the many paradigms that aim
to bridge the gap between size and performance
by inducing ways of transferring knowledge and
abilities from a larger, complex model (teacher) to
a smaller and accessible model (student).
Assuming white-box access (weights and inter-
mediate representations) to the teacher model dur-
ing the training process, we can leverage align-
ment of the teacher-student model through not just
their outputs, but also their intermediary represen-
tations. Prior works have minimized probabilistic
divergences on the distributions of last-layer acti-
vations (Hinton et al., 2015; Wen et al., 2023) or
used variants of Euclidean norms between student

and teacher intermediary activations. (Sanh et al.,
2020; Liang et al., 2023a; Tung and Mori, 2019;
Sun et al., 2019; Mukherjee and Hassan Awadallah,
2020). Our work provides a framework that allows
for intermediary representation in any arbitrary hid-
den layer of a neural network to be aligned between
teacher and student models, taking the geometry
of the representational space into account. We an-
ticipate that this alignment in the representational
geometry will bias the student model towards better
downstream performance.

In picking the similarity function for aligning
the representation, we draw from a wide literature
in representational alignment (Sucholutsky et al.,
2023), particularly with a focus on measuring and
bridging the representational space between mod-
els (Klabunde et al., 2023). While a broad range of
similarity functions have been proposed and used
in the literature, we focus on using Centered Kernel
Alignment (CKA) (Kornblith et al., 2019) and liner
Shape (Williams et al., 2021) since they are both
differentiable and invariant to orthogonal transfor-
mations. A differentiable metric can be backpropa-
gated to align representations, while invariance to
orthogonality is a commonly proposed symmetry
of neural networks trained through gradient descent.
(Chen et al., 1993; Orhan and Pitkow, 2018). We
focus on cases where the student model is mini-
mized using a combination of cross-entropy loss
using labels and KL divergence between last layer
logits, alongside the alignment of hidden represen-
tations. Our core contributions are summarized
below:

1. We show that adding representational align-
ment in the distillation objective leads to a
statistically significant improvement in accu-
racy (upto 2 percentage points) of the student
model.

2. Adding more layers while calculating repre-
sentational similarity leads to better perfor-



mance. CKA, in particular, scales much better
when multiple layers are aligned.

2 Background

2.1 Distillation and divergences

The distillation process is usually done by gradient
descent on a loss that minimizes the student target
loss, as well as a secondary loss that incorporates
the difference in the "knowledge" being transferred
from the teacher to student model. Specifically, it
takes the form of

L = Lce(fs(x),y) + Lxp (fr(x), fs(x)) (1)

where fs(X) and fr(x) are last-layer logits of
the student and teacher model respectively, y is
the true output labels. Lx p is the KL divergence
between teacher and student logits and Lo is the
cross entropy loss of the student output.

Traditional knowledge-distillation methods have
used either the forward (Sanh et al., 2020; Hin-
ton et al., 2015) or reverse (Agarwal et al., 2024;
Gu et al., 2024) KL divergence as the measure of
difference between last-layer logits. It has been
shown that even when student generalization im-
proves, teacher-student fidelity is still low when
knowledge distillation is performed on last-layer
features. (Stanton et al., 2021)

Beyond alignment of the last-layer logits,
hidden-layer representations can also be aligned. It
is natural to assume that £ p can take the form of
any vector p-norm. Variants of Euclidean norms,
including cosine-similarity (Sanh et al., 2020), nor-
malized mean-squared, (Liang et al., 2023a; Sun
et al., 2019) and ¢? norms (Tung and Mori, 2019;
Mukherjee and Hassan Awadallah, 2020) have been
used in a distillation setting. An obvious advantage
of this method is that, using a variety of higher
order projection/dimensionality reduction methods
on Euclidean spaces, (PCA, zero-padding, multi-
dimensional scaling), cases where the number of ac-
tivations in a student model is less than the teacher
model are supported. However, the curse of di-
mensionality is a consistent problem when work-
ing with high-dimensional vectors. Similarly, Eu-
clidean distances do not reflect the geometry of
neural representational spaces, which are often in-
variant to permutations and orthogonality in the
space of activation vectors. (Rombach et al., 2020).
We are motivated to use a metric that, by its con-
struction, is invariant to transformation of activa-
tions under certain groups.

2.2 Representational Similarity Metrics

Establishing a framework for comparing interme-
diate representations of neural networks is of sig-
nificant implications to deeper analysis of neural
network based models. Prior works in neuroscience
have approached a similar problem in comparing
representations of various stimuli to signals gener-
ated by the brain based on second order isometries
of raw signals (Barrett et al., 2019; Kriegeskorte
et al., 2008), while approaches in machine learning
have traditionally focused on measures based on
correlation analysis (Raghu et al., 2017).

Centered Kernel Alignment (CKA) (Kornblith
et al., 2019) is a widely used measure of representa-
tional alignment that constructs a kernel similarity
matrix and uses Hilbert-Schmidt Independence Cri-
terion (HSIC) (Gretton et al., 2005a) to compute
a metric between the similarity matrices. In the
context of neural networks, Batched CKA (Nguyen
et al., 2021), a slight reformulation of CKA with an
unbiased estimator of HSIC (Song et al., 2012) is
primarily used to construct a similarity index that
is independent of batch size.

Shape metric (Williams et al., 2021; Duong
et al., 2023) are a recently proposed extension of
alignment based similarity measures, that enforce
invariance in the measure with respect to orthogo-
nal transformation group. They can be conceptual-
ized as a similarity measure that works on second-
order isometric equivalence, and their construction
using {2 norms means that they are an appropri-
ate choice of similarity metric to back propagate
through for knowledge distillation.

By construction, CKA is invariant to both orthog-
onal transform and isometric scaling. Shape metric
can be constructed to be invariant to all invertible
linear transformation by preprocessing represen-
tations through a whitening transform. (Williams
et al., 2021) In this work, due to computational
constraints, we do not preprocess our representa-
tions. As a result, our implementation of Shape
is only invariant to orthogonal transformations. A
formal mathematical description of the similarity
measures, their construction and invariance proper-
ties are included in Appendix A.

3 Methods

3.1 Dataset & Tasks

Our results are reported on the GLUE benchmark
(Wang et al., 2018). Specifically, we use three
tasks within GLUE: The Corpus of Linguistic Ac-



Teacher hidden
layers Teacher logits

Input

u Student hidden u LI Us
layers

Student logits

Figure 1: Diagram showing our distillation method. ¢
is the output of the larger teacher model, §jg is the output
of the smaller student model, and y are true output labels.
Lgim 1s the alignment loss between hidden layers, £k p
is the KL divergence between teacher and student logits
and L¢ g is the cross entropy loss of the student output
with respect to the true labels.

ceptability (CoLA) (Warstadt et al., 2019), The
Microsoft Research Paraphrase Corpus (MRPC)
(Dolan and Brockett, 2005) and The Recognizing
Textual Entailment (RTE) (Dagan et al., 2005; Bar-
Haim et al., 2006; Giampiccolo et al., 2007; Ben-
tivogli et al., 2009). CoLA involves predicting
whether a sequence of words is a grammatical En-
glish sentence, and is evaluated using Matthews
correlation coefficient (MCC) (Matthews, 1975).
MRPC contains two sentences and the task in-
volves predicting if they are semantically equiv-
alent. Since the dataset is imbalanced, we report
both accuracy and F1 score. RTE involves an en-
tailment challenge; given a premise sentence and a
hypothesis sentence, the task is to predict whether
the premise entails the hypothesis. We evaluate
RTE using classification accuracy. These tasks
were chosen from the 9 GLUE benchmark tasks
because they had the greatest discrepancy in per-
formance between teacher and student model after
five epochs of fine-tuning.

3.2 Loss functions

Our loss function takes the form of

L=~LcE (fs,9) + aLsm (o7 (f1), d5(fs))
+(1 = a)Lxp (fs, fr) 2

Lcp represents the cross entropy loss of the stu-
dent logits with respect to output labels, Ly, rep-
resents the loss with respect to the representational
similarity measuring function and Lx p is the KL
divergence between student and teacher logits.

v € {0,1} indicates whether we are including
supervised cross entropy loss, and a € [0, 1] con-

trols the interplay between hidden layer and last
layer similarities. fg and fr are outputs, including
hidden representations, of student and teacher mod-
els. ¢ is a function that extracts hidden layers from
the model. For ease of notation, if ¢7 = (a, b), it
is extracting hidden representations from the "
and b'" layers of the model.

3.3 Model and training details

We perform all our distillation tasks on the BERT
model. (Devlin et al., 2019). As in common in most
distillation studies, we use pre-trained BERT-large
model, which has 24 encoder layers, as the teacher
model and pre-trained BERT-base model with 12
layers as the student model. We fine-tune the pre-
trained BERT-large model for 5 epochs on each
task, and use this fine-tuned model as the teacher
for distillation. The student is not fine-tuned on
any tasks; the distillation begins with a pre-trained
student model. For calculation of L, we zero
pad the student hidden representations to match the
dimension of the teacher representations.

To make experiments computationally viable,
we use a token size of 128. We optimize using
ADAM (Kingma and Ba, 2015) with a learning
rate of 2 x 107° and a batch size per GPU of
64. We use Hugging Face libraries (Wolf et al.,
2020) to perform all our training and evaluation.
We run distillation across the three tasks for 6
epochs. Each training run required optimizing over
108,311,810 parameters. Furthermore, to ensure
statistical significance in the performance of our
distilled model, we use McNemar’s test (McNemar,
1947; Dietterich, 1998) to compare all distilled
models against the fine-tuned baseline. Unless oth-
erwise noted, all results reported are statistically
significant (p < 0.05)

o % Lim Acc/F1 Remarks
N/A | N/A | N/A 0.68/0.809 RD baseline
N/A 1 N/A 0.816/0.877 | FT baseline

0 0 N/A | 0.813/0.866 1 | KD baseline
0.6 0 Shape | 0.791/0.859 | Shape+KD

1 0 Shape | 0.683/0.812 | Shape only
0.6 0 CKA 0.811/0.873 | CKA+KD

1 0 CKA 0.683/0.812 | CKA only
0.6 1 Shape | 0.835/0.887 | Shape+KD+FT
0.6 1 CKA 0.813/0.846 | CKA+KD+FT

Table 1: Performance on MRPC. RD: Random baseline,
FT: Fine-tuning on labels, KD: Distillation on KL di-
vergence of the last layer logits. T indicates cases when
statistical significance is broken (p > 0.05)



4 Results & Discussion Task | Lsim or s Score
CKA (12) (6) 0.5803
CoLA (6,12, 18) | (3,6,9) 0.5804
« ¥ Lsim MCC Remarks Shape (12) (6) 0.5103
N/A | N/A N/A 0.0 RD baseline P (6,12, 18) | (3,6,9) 0.5179
N/A 1 N/A 0.5702 | FT baseline (12) ©6) 0.6462 T
0 0 N/A 0.5752 | KD baseline CKA 6,12, 18) | (3,6,9) 0.6823
0.6 0 Shape | 0.5103 | Shape+KD RTE Shape (12) (6) 0.6337
1 0 Shape | 0.1194 | Shape only P (6,12,18) | (3,6,9) 0.6606
0.6 0 CKA | 0.5803 | CKA+KD CKA (12) (6) 0.8112/0.8739
1 0 CKA | 0.1066 | CKA only MRPC (6,12, 18) | (3,6,9) | 0.8406/0.8896
06 | 1 | Shape | 0.5497 | Shape+KD+FT Shape (12) (©) | 0.7916/0.8595
06 | 1 | CKA | 0.5804 | CKA+KD+FT (6,12, 18) | (3,69) | 0.8357/0.8885
Table 2: Performance on CoLA. RD: Random baseline, Table 4: Changes in distillation performance while

FT: Fine-tuning on labels, KD: Distillation on KL di-
vergence of the last layer logits.

4.1 Distillation performance

For all tasks in this section, we assume ¢ = (12)
and ¢g = (6), i.e we are aligning the middle layer
of the teacher model with the middle layer of the
student model. All results are noted after minimiz-
ing the loss function from Equation 2 with values
varying for «, v and L.

Alignment can help improve distillation:

As shown in Table 1, 2, 3 and , including L
alongside Lxp and Lop increases the perfor-
mance of the student model across all three tasks.
Shape does better in RTE and MRPC, while CKA
produces the best student model in CoLA. It is in-
teresting to note that adding similarity measures
alongside logits distillation, without even includ-
ing cross entropy of the labels (o« = 0.6, v = 0),
seems to do better than boths logits distillation and
fine-tuning.

Alignment, by itself, is disastrous

When we remove Lxp and Log entirely (o =
1,+ = 0) we see that the performance is signifi-

« y Lsim Accuracy | Remarks
N/A | N/A | N/A 0 RD baseline
N/A 1 N/A 0.6173 FT baseline

0 0 N/A 0.6389 | KD baseline
0.6 0 Shape 0.6337 Shape+KD

1 0 Shape 0.5631 Shape only
0.6 0 CKA | 0.64621 | CKA+KD

1 0 CKA 0.4729 CKA only
0.6 1 Shape 0.6570 Shape+KD+FT
0.6 1 CKA | 0.6462 1 | CKA+KD+FT

Table 3: Performance on RTE. RD: Random baseline,
FT: Fine-tuning on labels, KD: Distillation on KL di-
vergence of the last layer logits. T indicates cases when
statistical significance is broken (p > 0.05)

adding layers.} indicates cases when statistical signifi-
cance is broken (p > 0.05)

cantly worse across all tasks and similarity func-
tions. While leveraging the geometry of hidden
representations can steer the student model towards
producing the correct output, it cannot by itself bias
the model to produce the correct output. Some out-
put information, either through teacher logits or
supervised labels, are essential to ensure the model
performs well.

4.2 Layer by layer performance

In this section, we use the previous results and set
a = 0.6 and v = 0. We change ¢ and ¢g to ob-
serve the impact of adding more layers during the
calculation of L. To ensure appropriate layers
are matched, we match layer n of the student model
with layer 2n of the teacher model. The first third,
middle and second third model are matched. As
seen from the results in Table 4, for both shape and
CKA, going from aligning a single layer to three
layers increases the performance of the distilled
student model. In fact, CKA tends to scale much
better with a greater number of layers, resulting in
the best performance across all three tasks.

5 Conclusion

We propose a novel distillation method that in-
corporates representations of hidden layers and
aligns them using two measures of representa-
tional similarity: CKA and shape. We showed
that adding these measures besides divergence of
teacher-student last layer logits or standard cross
entropy with labels can yield better performance,
however alignment by itself cannot steer distillation
towards the correct output. We also showed that
adding the number of layers in the calculation of
the similarity leads to performance improvements,
particularly in the context of CKA.



6 Limitations

* Generalization to other models and tasks
Our analysis have been carried out using
BERT on three tasks of the GLUE dataset.
Analysis on further datasets with models of
varying capability would lead to a stronger ar-
gument about the efficacy of representational
alignment for distillation.

* Limitations with CKA: Linear CKA has
been previously shown to be sensitive to out-
lier data points (Nguyen et al., 2022), and high
variance principal components in the represen-
tations (Ding et al., 2021), while theoretical
analysis shows that CKA is sensitive to sub-
set translation (Davari et al., 2023). These
studies point out that using just linear CKA
as a proxy for model similarity can be flawed.
Since we’re not using CKA to infer the repre-
sentational capabilities of models, but instead
using it as an intermediary measure to that can
be optimized to improve end-to-end distilla-
tion performance, we believe some of these
issues raised in these works do not apply to
our method. However, it is important to be
aware of the limitations in using CKA.

* Runtime considerations: Computing and op-
timizing over the representational metrics is
extremely time-consuming. Shape, for in-
stance, requires computing the SVD of the
covariance matrices of the representations,
which is in O(n?) on the size of representa-
tions. This means that without further work on
more efficient calculation of these measures,
our method cannot be scaled up to larger mod-
els and datasets.

7 Ethical Considerations

Our work proposes a framework for better distil-
lation of larger inaccessible models into smaller,
more accessible ones. We intend this work to
contribute to a larger process of democratizing
access to the impressive abilities of larger mod-
els, allowing for the deployment of these models
in a resource-constrained settings. However, if
the teacher model has inherent biases or has been
trained with malicious intent, these biases can be
propagated to the student model. Special care must
be taken, prior to distillation, to ensure that the
teacher model is fair and unbiased.
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A Supplemental Material

Notation

Consider R¢ to a d-dimensional activation from a
particular hidden layer. A representational matrix,
R € R™ is a collection of activations from n
different inputs. The similarity measure can be for-
mulated as a function m : R"*?4 x R"*4 — R. We
will use || F'|| to represent the Frobenius norm is F
is a matrix and the Euclidean 2-norm if F is a vec-
tor. ¢ : R™*?4 — R™*P is a pre-processing function
applied to the rows of the representation matrix. ¢
can be common pre-processing functions that pre-
serve the same dimension (mean-centering, stan-
dard scaling, etc), in whichcase p = d. p << d, i.e
pre-processing by applying a dimensionality reduc-
tion function like PCA. The group for orthogonal
transformations for a d dimensional vector is given

as O(d) = {Q e R4 . QTQ = I}
Al Lgnm: Shape

Generalized shape metrics, as presented in
(Williams et al., 2021), uses the theory of statistical
shape (Kendall, 1989) to create a similarity func-
tion that is a metric in the representational shape
space. The similarity between representations is
defined with respect to a linear isometry group,
G. We define the equivalence relation ¢(R;) ~
¢(Ry) < IT € G: ¢(R;) = ¢(Ry)T, where
¢ is a preprocessing function. The similarity score
is then calculated as

d(Re, Ry) = min [[6(Re) — (BT )

The orthogonal transformation group in the
feature space dimension O(d) is a commonly
used isometry group, however simpler permutation
groups can be also be used. Shape metrics can thus
be conceptually thought of as a second order isom-
etry on neural network representations, accounting
for any first-order differences in the raw activations.
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These metrics follow the standard properties of the
distance function, including the triangle inequality.

Orthogonal Procrustes Problem

The problem of computing the 7' that optimizes
the |R, — RyT'|| when G = O(d) is solved by
(Schonemann, 1966). In fact, we can show that
T =VUT, where RTR, = ULV is the Singular
Value Decomposition. Furthermore, (R;, R,) =
>; 04, Where 01 > oo - -+ > 0y, > 0 are the singu-
lar values of RT R,

Invariances in Shape

It is clear that when the ¢(x) = x, the shape metric
is only invariant to orthogonal transformation. By
using the linear whitening transform as the pre-
processing function, we can control the functional
group our metric is invariant to. The whitening
transform takes the form of

6(R) = CR (BLo+ (1 - B)(R"CR)7) )

where C' = I,, — %11T is the n x n center-
ing matrix, that mean-centers the columns of the
representational matrix. When § = 1, Eq 4,
reduces to invariance to orthogonal groups only,
since (R) = CR is simply mean-centering the
columns. On the other hand, with 5 = 0, the
o(R) = C’R(RTCR)*%, which is equivalent to
ZCA whitening. (Kessy et al., 2018). In this case,
all invertible linear transformations are equivalent
in the representation; thus the shape metric is in-
variant to all linear transformations. [ is thus an
important hyperparameter that we can tune to ad-
just the strength of our isometry group.

In our implementation of shape, to ease the com-
putational complexity of backpropagating through
the metric, we preprocess our representations by
setting S = 1 in Equation 4. As a result, we are
only invoking orthogonal invariance in the interme-
diary representations.

Computational constraints

Computing the SVD of R R, takes O(n3) time.
Classical divergence based approaches and Eu-
clidean distances are often O(n), so the overhead
while gradient descending through a metric calcu-
lated by solving the orthogonal Procrustes can be
quite expensive.

A2 Lgm: Centered Kernel Alignment (CKA)

Centered Kernel Alignment, proposed in (Korn-
blith et al., 2019), draws from older literature study-
ing Representational Similarity Analysis (RSA)
in neuroscience (Kriegeskorte et al., 2008). The
core idea in both lies in computing a similarly
matrix of pairwise activations of each sample,
K., K, € R"™". While these matrices can take
the form of positive semi definite matrices through
a kernel function, and have a rich mathematical
structure based on the theory of Reproducing Ker-
nel Hilbert Spaces (RKHS), we limit ourselves to
linear kernels. So, we will define K, = CRfoc
and K, = CR,R] C, as centered similarity matri-
ces, where C' = I, — %11T is the n x n centering
matrix.

HSIC and computation of the metric

Hilbert-Schmidt Independence Criterion (HSIC)
(Gretton et al., 2005b) is used as a way to compare
the two similarity matrices. HSIC can be concep-
tualized as a generalization of the covariance op-
eration in the context RKHS. For the linear kernel
that we are using, the empirical estimator for HSIC
takes the form

HSIC(K,, K,) = K.;Ky) (5)

—tr
CEE
Howeyver, this estimator of HSIC is biased, and
it is impossible to calculate the HSIC of the entire
dataset at once. To ensure that the calculated CKA
is independent of batch size, we instead use an

unbiased estimator of HSIC in our implementation.
(Song et al., 2012; Nguyen et al., 2021)

ASIC(K,, K,) =

1"K,11"K,1 2
m—1)(n-2) n-2

where K. - and K y are hollow matrices obtained
by setting the diagonal of K, and K, to 0.
The CKA value is then calculated as

CKA(K, Ky) = ——— HSIC(KI’/I&)
VASIC(K, , K.)ASIC(K,, K,)

Q)

Invariances in CKA

CKA is invariant to both isotropic scaling and or-
thogonal transformation. HSIC, by itself, is not



invariant to isotropic scaling. However, the normal-
ization with self HSIC in Equation 7 means that
CKA will be invariant to isotropic scaling since the
trace as well as all matrix multiplications are linear
operators.

Orthogonal invariance in CKA can be seen in
the construction of K, and K. For instance when
a representation, I?, is transformed through @) €
O(d), the linear kernel similarity matrix takes the
form of

Kr,0= CRyQ(RyQ)TC
= CR,QQ"R]C
=CR,RIC =K,
Hence, construction of the similarity kernels are
invariant to orthogonal transformation of the rep-

resentation, and thus the CKA score also remains
invariant.
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