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ABSTRACT

The rise of large language model (LLM)-based text-to-speech (TTS) synthesis
has enabled unprecedented voice cloning capabilities, calling for robust content
governance. In-processing watermarking, which embeds watermarks during gen-
eration, has proven effective for text and images. The immediate research question
is to adapt in-processing watermarks to LLM-based TTS models, which similarly
generate discrete tokens before synthesis Their transferability, in terms of qual-
ity and robustness, to speech remains a critical yet unverified conundrum. We
present SpeechWakBench, the first large-scale benchmark to systematically eval-
uate the transferability of in-processing watermarking from LLMs to speech syn-
thesis. SpeechWakBench evaluates 6 adapted in-processing LLM watermarking
methods against 4 post-processing audio watermarking baselines across 3 mod-
ern LLM-based TTS models, using 16 reference-free quality metrics and a unified
detectability metric under 10 attacks. Our results show that while in-processing
watermarking produces slightly higher speech quality, it fails catastrophically in
robustness, performing substantially worse than post-processing methods. We
demonstrate that this failure is systemic, caused by the irreversible token-to-
waveform conversion. This fundamental limitation highlights potential opportu-
nities for developing novel watermarking approaches that are specifically tailored
to address the unique challenges of speech synthesis. Our code is available at
https://anonymous.4open.science/r/SpeechWakBench—-1462.

1 INTRODUCTION

Large language model (LLM)-based text-to-speech (TTS) synthesis has reached a critical inflection
point where generated speech achieves near-human perceptual quality and enables sophisticated ca-
pabilities such as zero-shot voice cloning from only a few seconds of reference audio (Du et al.|
2024; |Guo et al.,[2024; Wang et al., 2025a). While these advances create opportunities in accessi-
bility, entertainment, and human-computer interaction, they also introduce profound societal risks,
including voice-based deepfakes and financial fraud through impersonation. These call for solutions,
such as watermark, to avoid undermining the digital audio communications (Roman et al., |[2024).

Highly realistic synthetic speech has created a pressing need for robust content governance mecha-
nisms that can distinguish human speech from Al-generated audio. Unlike reactive deepfake detec-
tion systems that struggle to generalize across evolving generative models, watermarking provides a
proactive defense by embedding signatures within the generation pipeline (Liu et al., 2024d). Most
existing speech watermarks operate in a post-processing paradigm, which embeds watermarks into
the final waveform after generation (Chen et al.l 2023 [Liu et al.| 2024c; Roman et al., [2024} |Singh
et al.||2024)). These methods typically involve additive modifications, which can cause quality degra-
dation and noticeable distortions. In contrast, in-processing watermarks for text (Kirchenbauer et al.,
2023} Dathathri et al., 2024) and image (Wen et al.l 2023} [Yang et al., |2024b) synthesis integrate
into the generation process, showing a superior trade-off between imperceptibility and robustness
over post-processing ones. This success raises a key question of whether the transferability of the
in-processing paradigm to speech synthesis can overcome current limitations of quality degradation.

State-of-the-art (SOTA) LLM-based TTS models such as FireRedTTS (Guo et al.| [2024), Fish-
Speech (Liao et al.l [2024), and Spark-TTS (Wang et al.l 2025a) undergo a paradigm shift by em-
ploying a two-stage generation process. An LLM first autoregressively generates discrete speech
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Figure 1: SpeechWakBench evaluates 10 watermarking methods across 3 LLM-based TTS models,
using 16 quality metrics and a unified detectability metric under 10 attack scenarios.

tokens from a learned codebook, which are then converted into audio by a separate vocoder. This
intermediate token generation process is functionally equivalent to text generation in language mod-
els, creating an opportunity to adapt existing LLM watermarking techniques (Kirchenbauer et al.,
2023} |Liu et al.| 2024b; [Wu et al.| 2023)) to the speech domain.

We present SpeechWakBench, the first comprehensive benchmark to systematically evaluate the
transferability of in-processing LLM watermarking techniques to speech synthesis. Our investiga-
tion includes 6 SOTA in-processing watermarks adapted for TTS architectures alongside 4 post-
processing audio watermarking baselines across 3 LLM-based TTS models that support zero-shot
voice cloning. We specifically introduce 16 reference-free quality metrics, unique to evaluating
in-processing watermarks, and a unified detectability framework based on TPR@X%FPR to stan-
dardize evaluation. Our surprising findings reveal that successful LLM watermarking paradigms
cannot be blindly transferred to speech. Contrary to expectations from text and image watermark-
ing, in-processing speech watermarks show weaker robustness than post-processing approaches due
to vulnerabilities introduced when reversing the token-to-waveform conversion. This finding chal-
lenges prevailing assumptions about the superiority of in-processing watermarking (Kirchenbauer,
et al) [2023; Dathathri et al [2024) and highlights the need for watermarking methods designed
specifically for LLM-based speech synthesis. To summarize, we list our contributions as follows:

1. We present SpeechWakBench, the first large-scale benchmark to systematically evaluate the
transferability of in-processing watermarking from LLMs to speech synthesis.

2. We conduct the first systematic study of speech watermarking by comparing 6 in-processing and
4 post-processing methods across 3 SOTA LLM-based TTS models under 10 attacks.

3. We introduce a quality evaluation protocol, tailored to in-processing watermarks, using 16
reference-free metrics that eliminate bias from ground truth.

4. We establish a unified detectability assessment framework using TPR@X%FPR that standard-
izes evaluation across methods with different detection statistics, such as p-value or bit accuracy.

2 SPEECH SYNTHESIS AND WATERMARKS

We review related works on post-processing speech watermarks, in-processing LLM watermarks,
and LLM-based TTS models. To the best of our knowledge, this is the first work to investigate
in-processing watermarking for speech LLMs.

Post-processing speech watermarks embed watermarks after speech generation by modifying the
final waveform. This process allows the use of non-watermarked reference speech for assessing
quality degradation through reference-based metrics such as Signal-to-Noise Ratio (SNR) and per-
ceptual distance measures. WavMark (Chen et al.l |2023) introduces invertible neural networks for
reciprocal encoding-decoding, while Timbre Watermarking (Liu et al.,|2024c) targets voice cloning
detection through frequency-temporal watermarking. More recent work like AudioSeal (Roman
et al.| [2024) uses jointly trained generator-detector networks optimized for real-time deployment,
and SilentCipher (Singh et al.| [2024)) integrates psychoacoustic models and compression layers to
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Table 1: Comparison of SpeechWakBench with existing works. Number of {IN In-processing
Watermarks; POST Post-processing Watermarks; ATT Attacks; RD Real Datasets; SD Synthetic
Datasets; REF-B Reference-based Quality Metrics; REF-F Reference-free Quality Metrics}.

Research Work IN POST ATT RD SD REF-B REF-F  Detectability Metric
WavMark! X 4 10 4 X 1 1 Bit accuracy
Timbre? X 4 15 2 X 1 3 Bit accuracy
AudioSeal® X 2 14 2 4 1 3 Bit accuracy, TPR, FPR
SilentCipher* X 4 11 3 X 1 X Bit accuracy
AudioMarkBench® X 3 15 2 X 2 X Bit accuracy, FNR, FPR
SpeechWakBench 6 4 10 X 2 x 3 (models) X 16 TPR@X%FPR

!Chen et al[(2023).  2[Liuetal|(2024c).  *|Roman et al(2024).  #/Singh et al[(2024).  |Liu et al.|(2024d).

preserve audio quality. However, these methods remain fragile against common distortions and neu-
ral transformations (Liu et al.,[2024d). While AudioMarkBench (Liu et al.,|2024d) provides a broad
robustness evaluation, its reliance on reference-based metrics such as ViSQOL and SNR limits its
applicability to in-processing methods, where no non-watermarked reference speech exists.

In-processing LLM watermarks integrate watermarking directly into the token generation pro-
cess. Early methods such as KGW (Kirchenbauer et al.,[2023) introduced the “green-list” paradigm,
later extended by Unigram (Zhao et al.l 2024) and SWEET (Lee et al., 2024). Production-ready
watermarking systems like SynthID-Text (Dathathri et al., 2024) demonstrate deployment readiness
with multi-state detection, while MorphMark (Wang et al., 2025b) highlights adaptability by dy-
namically selecting strategies. Semantic watermarking schemes such as SIR (Liu et al.| 2024b), X-
SIR (He et al., [2024)), and k-SemStamp (Hou et al., 2024) embed meaning-level signals to withstand
paraphrasing and cross-lingual transformations. Distribution-preserving methods like DiPmark (Wu
et al) [2023), Unbiased Watermark (Hu et al,, [2024), as well as noise-based approaches such as
EXP (Aaronson & Kirchner, [2022)) and Permute-and-Flip (Zhao et al., [2025)), expand the design
space by embedding watermarks while maintaining fidelity. Trust and verification have also been
explored through frameworks such as UPV (Liu et al [2024a). However, all of these methods have
been developed for text generation, while their transferability to speech remains entirely unexplored.

LLM-based TTS models generate speech using a discrete tokenization strategy, where an LLM
predicts speech tokens that a vocoder then renders into audio. In this paper, we focus on LLM-based
TTS models that support zero-shot voice cloning. FireRedTTS (Guo et al., 2024) uses HuBERT-
based tokenization with a flow-matching vocoder for deployment, Fish-Speech (Liao et al., 2024)
employs grouped quantization within a dual autoregressive framework for multilingual synthesis,
and Spark-TTS (Wang et al., [2025a) introduces a streamlined decoder-only architecture with Bi-
Codec tokenization. These models achieve highly natural, expressive, and controllable audio with
advanced capabilities such as zero-shot voice cloning and multilingual support. Importantly, their
token prediction stage is architecturally equivalent to text generation with LLMs, making it possible
to adapt in-processing LLM watermarking from text to speech.

3 SPEECHWAKBENCH

As shown in Table |1] SpeechWakBench stands out by covering 10 watermarking methods across 6
synthetic datasets generated from 3 LLM-based TTS models. It further incorporates 16 reference-
free quality metrics and a unified detectability metric, making it the most comprehensive and re-
alistic evaluation framework for speech watermarking to date. Following Figure [2] we provide an
overview of SpeechWakBench, including the in-processing and post-processing pipeline. The pro-
cess is mainly divided into two stages: (i) watermark embedding and (ii) watermark detection. Key
notations are summarized in Appendix[A] Details of benchmark design are provided in Appendix B}

3.1 IN-PROCESSING WATERMARKING ON LLM-BASED TTS MODELS

SOTA LLM-based TTS models such as FireRedTTS (Guo et al., 2024), Fish-Speech (Liao et al.,
2024), and Spark-TTS (Wang et al., 2025a) follow a unified token-based generation pipeline that
can be decomposed into two main stages.
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Figure 2: Pipeline of SpeechWakBench. In-processing methods embed watermarks during token
generation. For example, KGW watermark divides tokens into red and green lists. During to-
ken generation, more tokens are selected from the green list. Post-processing methods modify the
waveform directly, encoding bits as black (“0”) or white (“1”) regions. Detection uses p-value for
in-processing and bit accuracy for post-processing. All results are unified using TPR @X%FPR.

In the first stage, given input text 7, reference audio A for zero-shot synthesis, and optional
control attributes C = {cspeed, Cpitch) Cemotion }» @ autoregressive language model My generates a

sequence of discrete speech tokens x = (21, ¥a,...,z7) € VT, where V denotes the discrete token
vocabulary. The generation process follows:

p(xt |$<t7 T7 -Aref7 C) = SOftmaX(MLLM(.T)<t, Ta Arefa C))a

where ¢ denotes the time step in the autoregressive generation process. In Spark-TTS, this includes
both semantic tokens x(*) € VTs capturing linguistic content and global tokens x(9) ¢ VgT ¢ encoding
speaker characteristics. In the second stage, the generated discrete tokens are decoded into waveform
audio using a neural decoder y = D(x) € RY, where D : V' — R¥ represents the neural vocoder.

3.1.1 WATERMARK EMBEDDING

In-processing watermarks modify the token generation process during the first stage using a secret
key k € K. They can be grouped into two categories:

Logit Modification Method Directly modify the probability distributions before sampling:
it == Wlogil(k7 lt7 T<ty t)a

where 1, € R!Vl are the original logits and I, are the watermarked logits. For instance,
KGW (Kirchenbauer et al., [2023) watermark generates a context-dependent secret key k(Y =
H(xy—p,...,x4—1,k), where H is a cryptographic hash function and h is the context window
size. This key seeds a random number generator to partition the vocabulary into disjoint sets
V = G UG, where the green-list G,y contains -y|V| tokens for v € [0, 1]. The logit modifica-
tion follows:
it[’U] _ {lt[v] +6 lf’U € gk(t) :
lt[’U] ifv e gk(t)

where & > 0 controls watermark strength. After softmax normalization, this increases green-list
token probabilities while maintaining Ey[p;] = p; across different keys.

Sampling Modification Method Alter the sampling strategy while preserving the original logits:

Tt ~ Pwatermark(k'a 1t7 T<t, t)7

where Pyaermark iNCOrporates watermark patterns through deterministic processes. For example,
EXP (Aaronson & Kirchner, 2022)) watermark generates a secret vector r® e [0, 1]“)| using the
same context-dependent key Y = H (z¢—pn,...,x1—1,k). For each token v, a uniform random
value ri) ~ Uniform(0, 1) is sampled from the seeded generator. The token selection follows the
exponential minimum principle:

- ) 1/ptm}
Xy argrgleaéc{(rv ) ,
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where p;[v] = softmax(1;)[v]. This deterministic selection maintains the exact original distribution
P(x; = v) = py[v] over the randomness in the secret vector. Logit modification methods create a
direct trade-off between detectability and text quality, as a stronger signal requires a larger distortion
of the original probability distribution, potentially leading to lower quality generated tokens. In
contrast, some sampling modification methods (Kuditipudi et al.l|2024)) aim to be “distortion-free”
by preserving the original distribution, but this can weaken the detectability of the watermark.

3.1.2 WATERMARK DETECTION

Watermark detection requires the inversion of the generation pipeline, i.e., from speech to tokens,
and applying statistical hypothesis testing. The process involves three main steps:

1. Token Recovery Extract discrete semantic tokens from potentially watermarked speech y €
R” using the speech encoder:
x=E&(y) e VT,
where £ : RN — V7 is the speech encoder (e.g., BiCodec’s semantic tokenizer).

2. Statistical Hypothesis Testing Test the hypothesis Hy: “the semantic tokens are without
watermark” against H;: “the semantic tokens are watermarked”, then compute a detection score
St based on the recovered token sequence X and the secret key k

ST = -Fscore (k, &)a

where F.qre 1S the scoring function that measures the statistical bias toward favorable tokens in
the recovered sequence.

3. Watermark Detection Calculate the p-value based on the score’s distribution under Hy and
compare against a predetermined false positive rate «. The speech is flagged as watermarked if
p-value(St) < a.

This detection process leverages the discrete nature of the LLM part of TTS models. Based on the
prior performance of in-processing LLM watermarks on text, one would expect reliable watermark
detection with theoretical guarantees on false positive rates without requiring access to the original
generation model parameters.

3.2 BENCHMARK DESIGN AND EVALUATION PROTOCOL

LLM-based TTS Models We evaluate watermarking methods on 3 recent LLM-based zero-shot
TTS models: FireRedTTS (Guo et al.,[2024)), Fish-Speech (Liao et al.|[2024), and Spark-TTS (Wang
et al.,2025a). These SOTA models share a common architecture of discrete token prediction fol-
lowed by neural vocoding, making them directly compatible with in-processing watermarking. At
the same time, they differ in training data and architectural design, providing diversity in linguis-
tic coverage and synthesis quality. Since watermark embedding requires access to model internals,
our analysis focuses on open-source models. Nonetheless, the benchmark remains applicable for
internal evaluation of closed-source models by model developers.

Datasets To ensure a robust and comprehensive evaluation, we use 2 distinct benchmarks: Seed-
TTS-Eval (Anastassiou et al., [2024) and CV3-Eval (Du et al., 2025). Seed-TTS-Eval is an out-of-
domain test set specifically designed to assess zero-shot speech generation capabilities. It comprises
English and Chinese samples drawn from public corpora, including 1,000 samples from Common
Voice (Ardila et al., 2020) and 2,000 from DiDiSpeech-2 (Guo et al., [2021). Complementing this,
the CV3-Eval benchmark addresses the limitations of traditional clean audiobook datasets like Lib-
riSpeech (Panayotov et al., |2015) by including noisy and real-world recordings. This provides a
more challenging evaluation of multilingual voice cloning and emotional expressiveness (Du et al.,
2025)). For our experiments, we use the English (EN) and Chinese (ZH) subsets from both bench-
marks and generate speech samples using all 3 LLM-based TTS models. We perform zero-shot
voice cloning by following the original speech and prompt from each dataset.

Watermarking Methods In our benchmark, we evaluate 6 in-processing and 4 post-processing
watermarking methods. The in-processing methods include KGW (Kirchenbauer et al.| 2023)), Un-
igram (Zhao et al.l [2024), SWEET (Lee et al., 2024), MorphMark (Wang et al.l [2025b), Google’s
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Figure 3: Quality results on CV3-Eval English dataset. All metrics are normalized to the percentage
of the best performance per metric. WER is inverted for consistent interpretation.

SynthID (Dathathri et al.| [2024), and EXP (Aaronson & Kirchner, 2022). On the other hand, we
consider WavMark (Chen et al., 2023)), Timbre (Liu et al., [2024c)), AudioSeal (Roman et al., [2024),
and SilentCipher (Singh et al.l 2024])) for post-processing methods.

Attacks To assess robustness, we evaluate watermarking methods under 10 attack scenarios across
multiple categories based on the implementation from AudioMarkBench (Liu et al.| 2024d). Tem-
poral distortions include time stretching (TS) and smoothing (SMH). Noise-based distortions cover
Gaussian noise (GN), background noise (BN), and echo. Compression and quantization distortions
consist of MP3 compression (MP3), EnCodec (ECD), and quantization (QNT). Finally, filtering dis-
tortions include high-pass filtering (HPF) and low-pass filtering (LPF). Parameter settings for each
attack are provided in Appendix [B.4]

Quality Metrics A key challenge in evaluating in-processing watermarks is the absence of ground
truth reference speech, which makes traditional reference-based metrics unsuitable. While post-
processing watermarks can be assessed against the non-watermarked ones, this inherently biases the
comparison. To ensure fairness across both paradigms, we adopt 16 reference-free metrics to assess
the quality of watermarked or non-watermarked synthetic speech by following the VERSA bench-
mark (Shi et al.| 2025). For the main analysis, we provide 6 of them according to prior works (Du
et al.l 2025} [Wang et al., |2025a). These include Word Error Rate (WER) (Anastassiou et al., [2024)
for intelligibility, Speaker Similarity (SIM) (Jung et al.,2024) for voice identity preservation, and
several non-intrusive predictors of overall naturalness, including UTMOS (UT) (Saeki et al.,[2022)),
PLCMOS (PLC) (Diener et al.| |2023), DNSMOS Overall (DNS) (Reddy et al., 2022), and Torch-
Squim PESQ (PESQ) (Kumar et al.| 2023). All 16 metrics are shown in Appendix [B.3]

Unified Detectability Metric Different watermarking schemes can produce different detection
outputs, such as p-values, bit accuracy, or empirical scores, which makes direct comparison dif-
ficult. To standardize evaluation, we adopt the True Positive Rate at a fixed False Positive Rate
(TPR@X%FPR) as a unified detectability metric. This provides a consistent measure of detection
reliability at a specified tolerance for false alarms (e.g., X = 3.0% or 0.2%). For p-value based meth-
ods, TPR is computed as the proportion of watermarked samples with p-value smaller than the cho-
sen FPR threshold « (e.g., TPR@3.0%FPR uses o = 0.03). For bit accuracy methods, we treat bit
accuracy as a test statistic under the null hypothesis Hy : “speech is non-watermarked” (random bit
recovery), where for an m-bit message, X ~ Binomial(m, 0.5) represents correctly recovered bits.
To achieve X% FPR, the threshold is set as 7 = min{k : P(Binomial(m,0.5) > k) < X%}. For
example, with m = 16 bits, the thresholds are 73 go, = 13 (bit accuracy > 81.25%) and 79 o9, = 14
(bit accuracy > 87.5%). For empirical score methods, we collect scores from N non-watermarked
samples and set the threshold as the (100—X)-th percentile 7 = percentile,5q_x({s1, S2,- .., SN }).

4 BENCHMARKING RESULTS AND ANALYSIS

We conduct extensive evaluations of speech watermarking across 3 aspects: quality, detectability,
and robustness. Additional experimental results and extended analyses are included in Appendix [C]
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Table 2: Quality and detectability performance of watermarking methods on Seed-TTS-Eval.

EN ZH
g Quality Metric TPR@X%FPR Quality Metric TPR@X%FPR
S Method WER| SIM{ UTt PLCT DNS{ PESQ{ 02%1 3.0%1 WER| SIMt UT{ PLCt DNS{ PESQ?T 02%1 3.0% 1
No Watermark 2.5 0.63 3.64 412 3.04 3.20 — — 12 074 293 4.17 3.16 3.47 — —
KGW 2.6 0.63 3.62 4.10 3.04 3.20 0.875  0.966 1.1 075 292 4.16 3.15 3.48 0.997  1.000
Unigram 2.8 0.63 3.62 4.12 3.05 3.18 1.000  1.000 12 074 291 4.6 3.15 3.47 1.000  1.000
vs  SWEET 2.6 0.63 3.62 4.12 3.04 3.18 0.873  0.976 12 075 292 4.16 3.15 3.48 0.995  1.000
E MorphMark 2.5 0.63 3.63 413 3.04 3.18 0.062 0.274 12 074 293 417 3.16 3.47 0.101  0.360
E SynthID 2.6 0.63 3.61 4.11 3.04 319 0966 0.995 12 074 292 415 3.5 3.47 0.998  1.000
s EXP 22 0.65 397 424 312 3.42 1.000  1.000 1.0 075 329 431 3.22 3.66 1.000  1.000
& WavMark 2.6 0.63 357 412 3.00 3.11 1.000  1.000 1.1 073 289 425 3.3 3.36 1.000  1.000
Timbre 2.6 062 347 382 288 2.84 1.000  1.000 12 073 274 3.81 2.99 2.98 1.000  1.000
AudioSeal 2.6 0.63 3.61 414 3.02 3.18 1.000  1.000 .2 074 289 415 3.3 345 1.000  1.000
SilentCipher 2.5 0.63 3.63 426 3.04 322 0980 0.981 1.2 074 294 432 3.6 3.49 0.998  0.998
No Watermark 2.0 053 415 445 322 3.58 — — 1.1 0.69 350 447 326 3.56 — —
KGW 1.8 053 414 444 322 3.58 0.075 0.235 2 0.68 345 447 325 3.56 0.253 0515
Unigram 2.3 053 414 444 322 3.58 1.000  1.000 1.2 069 346 446 325 3.55 0.996  0.998
< SWEET 2.0 0.53 414 444 322 359  0.066 0.243 1.3 0.68 345 446 325 3.56 0.289  0.544
$  MorphMark 2.0 053 415 444 322 3.59 0.000  0.001 1.3 0.69 348 447 3.26 3.57 0.000  0.001
& SynthID 2.0 053 4.14 444 322 3.59 0458 0818 12 0.68 345 446 3.25 3.56 0.840  0.957
J:(; EXP 2.1 0.54 421 446 3.24 3.66 1.000  1.000 12 0.69 354 449 3.28 3.61 0.998  0.999
& WavMark 21l 0.55 4.04 446 3.16 3.38 1.000  1.000 12 0.69 339 452 3.18 3.35 1.000  1.000
Timbre 2.1 051 4.04 432 3.14 3.39 1.000  1.000 12 0.67 332 430 3.18 3.25 1.000  1.000
AudioSeal 2.1 053 4.14 445 3.19 3.55 1.000  1.000 1.2 0.69 346 446 321 3.53 1.000  1.000
SilentCipher 2.1 054 415 445 322 3.60 0969 0.969 12 0.69 350 447 327 3.57 1.000  1.000
No Watermark 2.7 059 393 439 3.12 331 — — 1.6 0.67 328 4.38 322 3.58 — —
KGW 3.0 059 3.89 437 3.12 3.27 0.450  0.685 15 0.67 324 437 322 3.58 0.482  0.765
Unigram 52 058 3.88 432 3.08 324 0851 0.926 3.6 0.65 336 431 3.18 3.57 0.964  0.991
v SWEET 43 058 390 435 3.1 326 0463 0.680 2.7 0.67 323 436 321 3.56 0.535  0.765
[tj MorphMark 2.6 059 394 439 3.4 3.31 0.032  0.182 2.7 0.67 327 437 322 3.59 0.044  0.224
v SynthID 2.8 0.60 390 438 3.13 330 0365 0.626 1.4 0.67 323 436 322 3.57 0.000 0.778
§_ EXP 18.3 048 373 399 276 296  0.662 0.744 140 060 3.14 417 3.02 3.39 0.895 0.919
» WavMark 39 0.60 3.76 430 3.09 324 0997 0.997 1.6 0.67 3.15 432 312 3.39 0.996  0.996
Timbre 2.8 059 378 419 296 2.95 1.000  1.000 2.3 065 3.09 417 3.02 3.13 1.000  1.000
AudioSeal 2.8 059 391 441 3.11 3.25 1.000  1.000 2.3 0.67 325 436 320 3.54 1.000  1.000
SilentCipher 2.8 0.57 393 440 3.11 333 0.962  0.963 1.4 0.67 323 436 322 3.57 0.995 0.995
In-processing. Post-processing. T Higher is better. 4 Lower is better.

4.1 BENCHMARKING SYNTHETIC SPEECH QUALITY AND WATERMARK DETECTABILITY

Table [2| shows that in-processing watermarking methods consistently outperform post-processing
baselines. This indicates that embedding watermarks during token generation does not degrade the
speech quality. As depicted in Figure [3] we observe that most post-processing methods (dashed
lines) fall within the performance boundaries of in-processing methods (solid lines). Notably, the
EXP watermark consistently achieves the best overall quality with FireRedTTS and Fish-Speech
models. However, it struggles with Spark-TTS. This is because Spark-TTS fails to generate speech
for certain input prompts, resulting in silent outputs. This limitation highlights the importance of
considering architectures of LLM-based TTS models when applying in-processing watermarking.

To evaluate the watermark detectability, we report TPR @X%FPR using 0.2% and 3.0% thresholds,
which correspond to 14/16 and 13/16 bit accuracy for a 16 bits watermark message. As shown
in Table[2] post-processing baselines achieve a nearly perfect detection even at the stricter 0.2% FPR,
whereas in-processing methods show an inconsistent and often weak performance. For instance,
Unigram and EXP watermarks on FireRedTTS and Fish-Speech, and SynthID on FireRedTTS,
achieve an almost perfect TPR@0.2%FPR. However, KGW and MorphMark watermarks underper-
form other baselines, especially on Fish-Speech model. This differs greatly from text (Kirchenbauer
et al.,[2023) and image (Yang et al.| |2024b)) watermarking, where in-processing methods are known
to provide highly reliable detection. Additional results are provided in Appendix[C|

4.2 BENCHMARKING WATERMARK ROBUSTNESS AGAINST ATTACKS

Table [3] presents robustness results under a wide range of speech transformations. Post-processing
watermarks, except SilentCipher, successfully defend against more than half of the attacks. In con-
trast, in-processing methods are less reliable. Although the EXP watermark achieves strong de-
tectability without attacks, it does poorly under most attacks, achieving TPR@0.2%FPR above 0.7
in only two cases on the Fish-Speech model, hence reflecting difficulties in balancing the trade-
off between quality and robustness. Besides, almost all methods fail under EnCodec, quantization,
and high-pass filtering attacks. This pattern is also consistently observed across our comprehensive
attack evaluation reported in Appendix [C} indicating fundamental limitations in the robustness of
in-processing watermarking against realistic speech distortions.
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Table 3: Robustness evaluation results on Seed-TTS-Eval under attacks. All metrics represent
TPR@0.2% FPR (higher is better).

E EN ZH
EO Method TS SMH GN BN Echo MP3 ECD QNT HPF LPF TS SMH GN BN Echo MP3 ECD QNT HPF LPF
KGW 0.000 0.006 0.149 0.270 0.000 0.824 0.020 0.008 0.000 0.875 0.000 0.006 0.602 0.788 0.000 0.995 0.032 0.033 0.000 0.997
Unigram 0.092 0.051 0.742 0.870 0.015 0.998 0.086 1.000 1.000 0.203 0.142 0.991 1.000 0.143 1.000 0.727 1.000 1.000
- SWEET 0.000 0.002 0.151 0.255 0.000 0.844 0.017 0.014 0.000 0.873 0.000 0.003 0.584 0.772 0.002 0.995 0.037 0.021 0.000 0.995
& MorphMark 0.000 0.001 0.006 0.011 0.000 0.052 0.002 0.008 0.000 0.062 0.000 0.003 0.021 0.021 0.000 0.090 0.005 0.012 0.000 0.101
% SynthID 0.005 0.005 0.206 0.033 0.943 0.017 0.009 0.000 0.966 0.012 0.009 0.538 0.755 0.052 0.998 0.042 0.026 0.000 0.998
& EXP 0.050 0.097 0.919 0.987 1.000 0.591 0.092 0.000 1.000 0.049 0.110 0.998 1.000 0.534 1.000 0.622 0.000 1.000
E WavMark 0.506 1.000 0.987 1.000 0.976 1.000 0.000 0.159 0.000 1.000 0.770 1.000 1.000 1.000 1.000 1.000 0.000 0.000 1.000
Timbre 1.000 1.000 1.000 1.000 0.999 1.000 0.523 0.998 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000
AudioSeal  0.993 0.999 1.000 1.000 0.999 1.000 0.829 0.988 0.000 1.000 0.973 1.000 1.000 1.000 1.000 1.000 0.806 0.993 0.000 1.000
SilentCipher 0.000 0.596 0.863 0.807 0.979 0.000 0.000 0.000 0.979 0.000 0.820 0.988 0.984 0.785 0.998 0.000 0.000 0.000 0.998
KGW 0.000 0.000 0.000 0.000 0.000 0.073 0.000 0.000 0.000 0.076 0.000 0.000 0.000 0.002 0.000 0.283 0.000 0.000 0.000 0.283
Unigram 0.196 0.060 0.027 0.143 0.000 0.955 0.016 0.074 0.002 0.958 0.096 0.188 0.011 0.997 0.038 0.085 0.000 0.996
= SWEET 0.000 0.000 0.000 0.000 0.000 0.068 0.000 0.000 0.000 0.066 0.000 0.000 0.000 0.002 0.000 0.273 0.000 0.000 0.000 0.287
3 MorphMark  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2. SynthID 0.001 0.004 0.007 0.016 0.001 0.004 0.001 0.000 0.000 0.014 0.035 0.104 0.001 0.838 0.012 0.002 0.000 0.840
2 EXP 0.000 0.087 0.052 0.176 0.002 0.953 0.020 0.000 0.000 0.961 0.000 0.065 0.267 0.004 0.993 0.027 0.000 0.000 0.992
LIZ; ‘WavMark 0.936 0.994 0.765 0.955 0.982 1.000 0.000 0.105 0.000 1.000 0.980 1.000 0.956 0.999 1.000 1.000 0.000 0.205 0.000 1.000
Timbre 1.000 1.000 1.000 1.000 0.994 1.000 0.999 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.596 1.000 0.000 1.000
AudioSeal  0.993 1.000 1.000 1.000 0.997 1.000 1.000 0.997 0.000 1.000 0.973 1.000 1.000 1.000 0.999 1.000 1.000 0.998 0.000 1.000
SilentCipher 0.000 0.763 0.905 0.842 0.965 0.000 0.001 0.000 0.967 0.000 0.763 0.905 0.842 0.965 0.000 0.001 0.000 0.967
KGW 0.040 0.005 0.212 0.045 0.024 0.007 0.000 0.047 0.001 0.257 0.031 0.013 0.006 0.000
Unigram 0.222 0.048 0.701 0.800 0.073 0.842 0.077 1.000 0.851 0.246 0.035 0.889 0.945 0.031 0.964 0.591 0.095 0.999 0.964
SWEET 0.169 0.013 0.203 0.034 0.020 0.014 0.014 0.007 0.292 0.018 0.538 0.048 0.007 0.005 0.535
g MorphMark 0.034 0.006 0.028 0.026 0.032 0.032 0.029 0.006 0.000 0.032 0.056 0.002 0.019 0.037 0.012 0.048 0.006 0.004 0.000 0.044
= SynthID 0.017 0.003 0.147 0.214 0.004 0.034 0.008 1.000 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.001 0.877 0.000
E EXP 0.023 0.066 0.528 0.606 0.088 0.652 0.260 0.085 0.003 0.663 0.016 0.045 0.832 0.870 0.077 0.889 0.109 0.000 0.895
& WavMark 0.179 0.997 0.993 0.997 0.948 1.000 0.000 0.057 0.000 0.997 0.996 0.995 0.996 0.992 1.000 0.000 0.115 0.000 0.996
Timbre 0.999 1.000 1.000 1.000 1.000 1.000 0.997 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.225 0.997 0.000 1.000
AudioSeal 0.980 0.994 1.000 1.000 0.999 1.000 0.000 0.902 0.000 1.000 0.965 0.996 1.000 1.000 1.000 1.000 0.085 0.950 0.000 1.000
SilentCipher 0.000 0.502 0.822 0.952 0.000 0.000 0.000 0.957 0.000 0.700 0.847 0.974 0.592 0.990 0.000 0.000 0.000 0.990
In-processing. Post-processing. Red 1 ow robustness (< 0.3). Medium robustness (0.3 — 0.5). Green Hioh robustness (> 0.7).

4.3 DISCUSSION

Understanding Architecture Dependent Watermark Detectability To investigate the underly-
ing factors that cause in-processing watermarks to exhibit different levels of detectability across
LLM-based TTS models, we conduct a systematic analysis of the token-to-audio-to-token recon-
struction process. We quantify four key aspects: (1) reconstruction accuracy by comparing origi-
nal language model outputs against tokens reconstructed from synthesized audio, (2) average token
length, which is determined by the average audio duration and the generated tokens per audio length,
(3) average duration of generated audio samples, and (4) tokens per second in the generated audio.

As depicted in Figured] we compute the results based on the CV3-Eval dataset for both English and
Chinese samples. Our analysis shows that the architectural properties of a model are strongly corre-
lated with watermark detectability. FireRedTTS demonstrates optimal conditions with high recon-
struction accuracy and long token sequences, while Fish-Speech shows comparable reconstruction
accuracy but produces shorter tokens. In contrast, Spark-TTS performs the worst, with both low
reconstruction accuracy and very short token length. To capture these effects, we define “valid to-
kens” as the product of reconstruction accuracy and token length, which reflects both fidelity and the
quantity of preserved information through the synthesis pipeline. As a result, FireRedTTS achieves
the highest valid token count, followed by Fish-Speech, while Spark-TTS lags far behind. This mea-
sure serves as a strong indicator of watermark detectability across architectures of LLM-based TTS
models, as higher valid token counts allow watermarks to be preserved more reliably.

Understanding Poor Robustness of In-processing Watermarks The key difference between
LLM-based watermarks in text generation and their adaptation to LLM-based TTS models is the
additional token-to-waveform synthesis step. We evaluate token reconstruction accuracy across
LLM-based TTS models under various attacks to understand this relationship. As shown in Figure[5]
most attacks significantly lower the token reconstruction accuracy across all models, with only MP3
compression and low-pass filtering showing minimal impact. Thus, the token reconstruction accu-
racy directly correlates with attack robustness. For example, the EXP watermark on FireRedTTS
maintains high detection rates under attacks that preserve tokens (MP3 compression, low-pass fil-
tering) but fails under attacks that corrupt tokens (quantization, time stretching, high-pass filtering).
This explains why the in-processing watermarks struggle in LLM-based TTS models. Unlike text
watermarking, where watermarked tokens remain in their original domain, LLM-based TTS models
must preserve token-level information through an additional synthesis and reconstruction pipeline.
Attacks that disrupt this pipeline break the fundamental assumption of token-level watermarking,
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leading to poor robustness of in-processing methods compared to post-processing baselines that
embed watermarks directly in the speech waveform.

5 CONCLUSION

We present SpeechWakBench, the first benchmark evaluating in-processing watermark transferabil-
ity from LLMs to speech synthesis. We compare 6 in-processing and 4 post-processing methods
across 3 SOTA LLM-based TTS models under 10 attacks, introduce 16 reference-free quality met-
rics for unbiased evaluation, and establish a unified detectability evaluation based on TPR @X%FPR.
Our results show that in-processing watermarks preserve speech quality but fail under attacks due
to the irreversible token-to-waveform conversion and degradation of token reconstruction accuracy,
while post-processing methods are more robust at the cost of quality. These findings demonstrate
that text watermarking methods cannot be directly applied to speech, highlighting the need for novel
approaches that explicitly address the challenges of the token-to-waveform conversion bottleneck.

Limitations In this research, we applied in-processing watermarks only to LLM with autoen-
coder architecture-based TTS models. Some SOTA LLM-based TTS models 2024)
use flow-matching for token-to-waveform conversion, where waveform-to-token reconstruction is
more difficult. Future work could investigate inverting the flow-matching component to embed in-
processing watermarks. Due to dataset size and the number of watermarking methods, we only
considered no-box attacks. White-box and black-box attacks require more evaluation time, making
robustness under such attacks an interesting open problem. All watermarking methods used default
hyperparameters from their implementations. The influence of hyperparameter tuning on different
watermarks presents another interesting research direction.
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Reproducibility Statement To ensure the reproducibility of our research, we have open-sourced
the complete SpeechWakBench codebase at https://anonymous.4open.science/r/
SpeechWakBench-1462. This repository includes implementations of all 10 watermarking
methods, the 16 reference-free quality metrics, 10 attack scenarios, and evaluation scripts for all
three LLM-based TTS models. All experiments utilize publicly available datasets (Seed-TTS-Eval
and CV3-Eval) and open-source models (FireRedTTS, Fish-Speech, Spark-TTS), with detailed hy-
perparameters documented in the appendices and the codebase.

Ethics Statement This research on speech watermarking aims to advance content governance for
Al-generated audio, addressing critical societal needs for combating voice cloning and voice-based
fraud. Large language models were used solely for language polishing and grammar correction
during paper writing.
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A NOMENCLATURE

« False positive rate threshold

0 Watermark strength parameter

~ Fraction of vocabulary in green-list

X Recovered token sequence

y Potentially watermarked speech

L; Original logits at time step ¢

r®) Secret vector for EXP watermark

b'q Sequence of discrete speech tokens

x(9) Global tokens

x(®) Semantic tokens

y Waveform audio

Aot Reference audio for zero-shot synthesis

C Control attributes including speed, pitch, and emotion
D Neural decoder/vocoder

& Speech encoder

Ficore Scoring function

Grvy Green-list tokens at time step ¢

K Key space

Miim Autoregressive language model

Pwatermark Watermark sampling distribution

T Input text

1% Discrete token vocabulary

Vy Global token vocabulary

Vs Semantic token vocabulary

Wiogit Logit modification watermarking function
[ Non-green-list tokens at time step ¢

T Detection threshold

I, Watermarked logits at time step ¢

Dt Watermarked probability distribution at time step ¢
Cspeed > Cpitch, Cemotion  1ndividual control attributes

H Cryptographic hash function

h Context window size

Hy Null hypothesis (no watermark)

Hy Alternative hypothesis (watermarked)

k Secret key

E® Context-dependent secret key at time ¢

m Number of bits in watermark message

N Length of waveform audio

jn Original probability distribution at time step ¢
pt[v] Probability of token v at time step ¢
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(®)

T Random value for token v in EXP watermark
St Detection score

T Total number of tokens

t Time step in autoregressive generation

T, Number of global tokens

T, Number of semantic tokens

v Token in vocabulary

Tt Token at time step ¢

Tt Tokens before time step ¢

B BENCHMARK DESIGN DETAILS

B.1 LLM-BASED TTS MODELS

FireRedTTS (Guo et al.,[2024) FireRedTTS presents an industry-scale TTS framework based on
language modeling with three core components. The Semantic-Aware Speech Tokenizer (SAST)
combines HUBERT (Hsu et al., [2021) representations discretized into 40ms tokens (16,384 code-
words) with ECAPA-TDNN (Desplanques et al.,|2020) utterance-level embeddings for speaker char-
acteristics. The system employs a 30-layer autoregressive transformer (400M parameters) that pro-
cesses BPE-tokenized text and speaker embeddings to generate semantic tokens. For high-fidelity
synthesis, a two-stage approach first converts tokens to Mel spectrograms via flow-matching (Lip-
man et al., |2023) or CNN decoders, then applies BigVGAN-V2 (Lee et al., |2023) super-resolution
to produce 48 kHz audio.

Fish-Speech (Guo et al., 2024) Fish-Speech introduces a dual autoregressive architecture trained
on 720,000 hours of multilingual data, eliminating traditional G2P dependencies through direct
LLM-based feature extraction. The Dual-AR design cascades a Slow Transformer for global lin-
guistic modeling with a Fast Transformer that refines outputs through codebook embedding pro-
cessing. The Firefly-GAN vocoder employs Grouped Finite Scalar Vector Quantization (GFSQ)
with depth-wise separable (Howard et al., 2017) and dilated convolutions (Yu & Koltun, |2016),
achieving complete codebook utilization through systematic feature partitioning and scalar quanti-
zation. The system achieves real-time factors of 1:5 on RTX 4060 mobile and 1:15 on RTX 4090,
with 150ms first-packet latency through KV-cache optimization.

Spark-TTS (Wang et al., 2025a) Spark-TTS proposes a unified LLM-based architecture using
BiCodec, a single-stream codec that decomposes speech while maintaining compatibility with text
LLMs. BiCodec generates hybrid token streams combining semantic tokens (50 TPS) from wav2vec
2.0 (Baevski et al} 2020) features processed by ConvNeXt (Liu et al., 2022) encoders, and fixed-
length global tokens encoding speaker attributes via ECAPA-TDNN (Desplanques et al., 2020) with
FSQ quantization. Built on Qwen2.5-0.5B (Yang et al.| [2024a), the system enables direct audio
synthesis without intermediate flow-matching stages. Controllable generation spans coarse categor-
ical labels to fine-grained numerical values through chain-of-thought inference. The accompanying
VoxBox dataset provides 100,000 hours of annotated speech from 29 datasets with gender, pitch,
and speed annotations.

Table 4: LLM-based TTS models with their repositories and checkpoints.

Model GitHub Repository Hugging Face Checkpoint
FireRedTTS [FireRedTeam/FireRedTTS| [FireRedTeam/FireRedTTS-1S
Fish-Speech  fishaudio/fish-speech fishaudio/openaudio-s1-mini

Spark-TTS SparkAudio/Spark-TTS SparkAudio/Spark-TTS-0.5B
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B.2 DATASETS

Seed-TTS-Eval (Anastassiou et al.,[2024) Seed-TTS-Eval is a bilingual test set specifically de-
signed to assess zero-shot speech generation capabilities. It comprises English and Chinese samples
drawn from public corpora, including 1,000 samples from Common Voice (Ardila et al.| 2020) and
2,000 from DiDiSpeech-2 (Guo et al.,|2021)).

CV3-Eval (Du et al.,2025) CV3-Evalis a multilingual benchmark for evaluating zero-shot speech
synthesis in-the-wild scenarios, designed to address the limitations of existing evaluation bench-
marks that primarily focus on clean, standard audio from sources like audiobooks (Du et al., [2025).
The benchmark was released alongside CosyVoice 3 and is built on authentic in-the-wild reference
speech from Common Voice (Ardila et al., 2020), FLUERS (Conneau et al., [2022), EmoBox (Ma
et al., 2024)), and web-crawled real-world audio data, spanning a broad range of languages and
dialects, domains and environments, emotions and styles. CV3-Eval includes both objective and
subjective evaluation subsets, with the objective evaluation covering three main areas: multilin-
gual voice cloning (supporting 9 languages including Chinese, English, Japanese, Korean, German,
French, Russian, Italian, and Spanish), cross-lingual voice cloning (where source audio and target
text are from different languages), and emotion cloning (featuring happy, sad, and angry emotions
from Chinese and English samples). This benchmark is specifically designed to evaluate the com-
prehensive capability of text-to-speech systems beyond traditional metrics, including aspects such
as emotion expression, rhythmic richness, voice controllability, and cross-lingual voice cloning,
particularly in challenging real-world scenarios with noisy backgrounds and diverse acoustic condi-
tions (Du et al., [2025]).

Table 5: Datasets with their repositories.

Dataset GitHub Repository
Seed-TTS-Eval BytedanceSpeech/seed-tts-eval
CV3-Eval FunAudioLLM/CV3-Eval

B.3 WATERMARKING METHODS

KGW (Kirchenbauer et al., 2023) KGW watermarking establishes the foundational paradigm
for LLM watermarking through vocabulary partitioning and statistical bias injection. At each
generation step ¢, the vocabulary V' is dynamically partitioned using a pseudorandom function:
Gi, Rt = partition(V, hash(s(*=1)), v) where G; represents the green list (size v|V| with green list
fraction ), R the red list, and s(*~ 1) the previous token serving as context key. The original logits
l,(:) are modified through soft watermarking: lAl(f) = ll(f) + 4 for tokens in G;, unchanged for red-list
tokens, where ¢ is the watermark strength parameter. Detection employs a one-proportion z-test:

= \}% where |s|g represents observed green tokens in sequence s and T is the total token
y(1—y

count. The method provides training-free implementation with public detectability without model
access, though it suffers reduced effectiveness on low-entropy text and vulnerability to paraphrasing
attacks.

Unigram (Zhao et al., 2024) Unigram watermarking simplifies KGW by eliminating context
dependency through fixed partitioning strategy: G, R = partition(V, key, v) with no dependency
on previous tokens, where key is a secret key. The detection statistic becomes more robust:

= \}% with fixed lists enabling straightforward analysis and eliminating attack amplifica-
y(1—y

tion effects present in KGW where larger context windows can amplify vulnerabilities. The method
provides provable robustness against text editing attacks (insertion, deletion, substitution), para-
phrasing attacks with bounded edit distance, and token-level adversarial modifications, with quality
preservation mathematically proven when watermark parameter § is appropriately chosen. Imple-
mentation benefits include better robustness against adversarial attacks, simpler theoretical analysis,
no attack amplification problems, and more predictable behavior, though with trade-offs including
potentially lower watermark entropy and possible vulnerability to brute-force key discovery.

16


https://github.com/BytedanceSpeech/seed-tts-eval
https://github.com/FunAudioLLM/CV3-Eval

Under review as a conference paper at ICLR 2026

SWEET (Lee et al., 2024) SWEET addresses the fundamental challenge of watermarking low-
entropy text through entropy-based selective application. The method calculates entropy of the

probability distribution at each step: H(p®)) = -3, p,(f) log p,(;’) where p,(f) is the probability
of token k at step t, and applies watermarking only when H(p®*)) > 7 where 7 is the entropy

Islg—Isl”
VIslTy(1=7)
represents tokens exceeding the entropy threshold and |s|; counts green tokens among high-entropy
tokens. This preserves quality in structured text while maintaining detectability in high-entropy
regions. Advanced development includes EWD (Entropy-based Watermark Detection) improving
upon SWEET using continuous weighting functions instead of binary thresholds: w; = f(entropy,)
>, wi-1[token; €G] where 1[]
> wi

threshold. Detection with entropy filtering modifies the test statistic: z = where |s|™

where w; is the weight for token 4, with weighted detection score 2’ =

is the indicator function.

MorphMark (Wang et al., 2025b) MorphMark introduces adaptive watermarking strength ad-
justment based on real-time entropy analysis. The method calculates cumulative green-list proba-
bility Pyeen = Y _;cg Pi Where p; is the probability of token 4 in the green list, and dynamically
adjusts watermark strength: §; = f(Pgeen) Where f is an adaptation function. The multi-objective
optimization framework balances effectiveness £ and quality Q: max «E(d;) + SQ(d;) subject to
entropy constraints, where « and 3 are weighting parameters. Dynamic strategy selection applies
strong watermarking (§; = dmax) in high-entropy contexts, graduated strength (§; = dpase X Plrcen)
in medium entropy, and reduced watermarking in low-entropy scenarios, where dy,ax and Jpuse are
predefined strength levels. Key distinguishing features from baseline methods include real-time
adaptation versus static parameters, context awareness through cumulative probability analysis, and
unified framework handling diverse entropy scenarios without preprocessing, achieving superior
quality-detectability trade-off across entropy ranges with minimal computational overhead (;0.5%).

SynthID-Text (Dathathri et al., [2024) SynthID-Text employs tournament sampling with pseu-
dorandom g-functions for embedding statistical signatures during generation. The method gen-
erates random seeds: r; = h(zi_pm,...,x4—1,k) where h is a hash function, x;_p,...,z¢—1
represents the context window of size H, and k is the secret key, then computes g-values:

g 2

tribution function, x is a token, and n is the hash output bit length. The tournament sampling
algorithm samples 2™ tokens from LLM distribution where m is the number of tournament lay-
ers, then for each layer / = 1 to m: groups tokens into pairs, selects winners using g, scores,
and advances winners until the final winner becomes output token. Detection uses mean G-score:
S(z) =+ Zthl LS, ge(wy, 7)) where ¢ is the token at position ¢, with Bayesian classification
providing multi-state output: {watermarked, not watermarked, uncertain}. Production implementa-
tion features logits processor architecture integrated with Hugging Face Transformers, speculative
sampling compatibility, and multi-state detection system with configurable thresholds, validated on
20 million Gemini responses with no quality degradation and formal non-distortion properties.

ge(x,r) = F1 (Lfr)) for each tournament layer ¢, where F~ ! is the inverse cumulative dis-

EXP (Aaronson & Kirchner,2022) The EXP watermark utilizes exponential minimum sampling
based on Gumbel noise for pseudorandom but biased token selection. For each token x;, the method
generates Gumbel noise G; ~ Gumbel(0, 1) and computes scores: .S; = log(p;) + G; where p; is
the LLM probability for token z;. The Gumbel-based selection process computes pseudorandom
Gumbel sample G; = — log(—log(U;)) where U; = PRF(z;, context_hash, secret_key) with PRF
being a pseudorandom function, then computes adjusted scores S; = log(p;) + G; and selects to-
ken with maximum score: x* = arg max(S;). The mathematical foundation leverages max-stable
properties of Gumbel distributions for consistent sampling and exponential minimum principle pro-
viding theoretical guarantee of distribution preservation under expectation. Key advantages include
strong mathematical basis in extreme value theory, provably maintains expected token distributions,
minimal overhead beyond pseudorandom number generation, and straightforward implementation,
though with limitations including key dependency for detection, vulnerability to synonym substitu-
tion attacks, and reduced effectiveness in low-entropy contexts.
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WavMark (Chen et al.,[2023) WavMark employs invertible neural networks (INNs) for spectro-
gram domain watermarking with shared parameters between encoding and decoding processes. The
method transforms audio waveform .y to spectrogram: S, P = STFT(Zyaye) € R2XTXF where S
and P are magnitude and phase components, 7' is time frames, and F' is frequency bins, and expands
watermark message: W' = Linear(WW) — STFT — R2XT*F where W is the original watermark
message. Invertible block operations for the i-th block follow: ¢ = 2t © o(F;(z%)) + Gi(xh)
and y4 = 2% © o(H;(y})) + I;(yi) where © denotes element-wise multiplication, o is an activa-
tion function, and F;, G;, H;, I; are learnable dense blocks for the i-th invertible block. Network
architecture features 8 cascaded invertible blocks, each containing 5 layers of 2D CNNs with dense
connections, window size of 1,000 samples with 400-sample hop length, and 32 bits per second
capacity. Synchronization mechanism uses Brute Force Detection (BFD) combining pattern bits (10
bits) with payload bits (22 bits), achieving 0.54% BER (Bit Error Rate) localization accuracy with
loss functions: Liotal = A1 - Linessage T A2 - Lperceptual + A3 * Ladversarial Where A1, Az, A3 are weighting
coefficients.

Timbre (Liu et al.,2024c) Timbre Watermarking focuses on frequency-temporal watermarking
with emphasis on voice cloning attack detection. The method processes linear spectrogram as car-
rier: s,p = STFT(a) where a is the input audio, s is the magnitude spectrogram, and p is the
phase, and performs feature extraction: f. = EN.(s) for carrier features and f,, = EN,(w)
for watermark features, where EN, and EN,, are encoder networks and w is the watermark mes-
sage. Repeated embedding strategy follows: f* = Concatenate( f., s, Repeat(f,,T)) where T
is the number of time frames, followed by watermark embedding: s, = EM(f™") where EM
is the embedding network and s,, is the watermarked spectrogram. Extraction with averaging:
fl = EX(sy) and w’ = DE(Average(f,,)) where EX is the extraction network, DE is the decoder,
and w’ is the recovered watermark, provides temporal invariance against time-domain manipula-
tions. Key innovation includes distortion layer simulating voice cloning pipeline during training:
DP(a,,) = GL(Mel(a,,/ max(|a,]|))) where DP is the distortion process, a,, is watermarked audio,
GL is Griffin-Lim vocoder, and Mel represents mel-spectrogram transform. The method achieves
temporal invariance through repeated embedding across time frames, averaging extraction reducing
time-domain sensitivity, 90% cropping robustness maintenance, 100% accuracy against professional
attacks (Tacotron2, FastSpeech2 + HiFi-GAN) and 99%-+ accuracy against regular attacks.

AudioSeal (Roman et al., 2024) AudioSeal employs generator-detector architecture trained
jointly for localized watermark detection at sample level. The generator uses EnCodec-based
encoder-decoder design with four convolutional blocks, residual units, LSTM layers, and ELU acti-
vation, while the decoder mirrors encoder structure using transposed convolutions and the detector
outputs watermark probability at 16,% second resolution (corresponding to 16 kHz sampling rate).
Joint optimization strategy balances perceptual loss functions minimizing difference between orig-
inal and watermarked audio, and detection loss functions maximizing accuracy and localization
precision. Training augmentation includes watermark masking with random selections (revert to
original: 0.4, replace with zeros: 0.2, substitute different audio: 0.4) where the probabilities indicate
the fraction of samples for each augmentation type, and extensive audio augmentations including
bandpass filtering, echo, noise addition, and compression. The method achieves single-pass detector
design with 2 orders of magnitude faster detection, sample-level resolution versus coarse 1-second
alternatives, no synchronization requirements, multi-bit watermarking supporting up to 16-bit secret
messages, up to 100x faster detection than existing methods, sample-level watermark localization,
state-of-the-art robustness against audio manipulations, and generalizability across different models
and languages without retraining.

SilentCipher (Singh et al., 2024) SilentCipher represents the first deep learning-based model
integrating psychoacoustic model-based thresholding for imperceptible watermarking. The neural
network architecture includes Message Transformation Network (L) transforming message tokens
M into learnable embeddings M. (M) where M, is the embedding function, Encoder Network (E)
processing carrier signal magnitude spectrogram combined with original carrier and message em-
beddings, Decoder Network reconstructing watermarked audio from combined representation, and
Detector Network identifying watermark presence and extracting embedded messages. Psychoa-
coustic model-based thresholding uses masking threshold calculation to determine imperceptible
embedding regions, band-limited signal handling addressing artifacts in frequency-limited audio,
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and professional audio compatibility ensuring imperceptibility in high-quality settings. The sys-
tem features pseudo-differentiable compression layers enhancing robustness against MP3, AAC,
and other lossy formats while allowing gradient-based optimization despite non-differentiable oper-
ations, with SDR (Signal-to-Distortion Ratio) control mechanism providing dynamic thresholding
where psychoacoustic model determines embedding capacity per segment, user-configurable SDR
threshold without model retraining, frequency-aware embedding with different strengths across fre-
quency bands, and professional quality maintenance in band-limited signals.

Our implementations of in-processing watermarking methods are adapted from the MarkLLM
toolkit (Pan et al., 2024)).

B.4 WATERMARKING ATTACKS

To assess robustness, we evaluate watermarking methods under 10 attack scenarios based on the
implementation from AudioMarkBench (Liu et al.l 2024d). To summarize, we list the details of
attacks in Table [0l

Table 6: Details of attacks.

Attack Parameter Value Description

Time stretch Speed factor 1.5  Change playback speed of the audio.
Smooth Window size 6 Apply Gaussian smoothing via 1D convolution.
Gaussian noise SNR (dB) 40 Add random noise at a fixed SNR.
Background noise  SNR (dB) 40 Mixe background noise at a fixed SNR.
Echo Delay (second) 0.9  Introduce delayed and decayed repetitions.
MP3 compression  Bitrate (kbps) 40 Compression with the MP3 codec.
EnCodec Bandwidth (kHz) 24 Compression with a neural audio codec.
Quantization Bit levels 64 Reduce audio resolution to n discrete levels.
High-pass filter Cutoff ratio 0.5 Remove low frequency components.
Low-pass filter Cutoff ratio 0.5 Remove high frequency components.

B.5 METRICS

We assess the quality of watermarked or non-watermarked synthetic speech by following the
VERSA benchmark (Shi et al [2025). Table [/| shows the 16 reference-free quality metrics used
in our experiments.

Table 7: Details of quality metrics.

Name Abbreviation Direction Reference

Word Error Rate WER 1 Anastassiou et al.|(2024)
Speaker Similarity SIM T Jung et al.|(2024)
UTokyo-SaruLab System for VoiceMOS 2022 UT T Saeki et al.|(2022)
Packet Loss Concealment-focus MOS PLC T Diener et al.|(2023)
Deep Noise Suppression MOS Score of P.835  DNS T Reddy et al.|(2022)
Torch-Squim PESQ PESQ T Kumar et al.|(2023)
Torch-Squim MOS MOS T Kumar et al.|(2023)
Torch-Squim STOI STOI T Kumar et al.|(2023)
Speech Enhancement-based SAR SAR T Zhang et al.|(2024)
Speech Enhancement-based SDR SDR T Zhang et al.|(2024)
Speech Enhancement-based SI-SNR SNR T Zhang et al.|(2024)
Torch-Squim SI-SDR Si-SDR 1T Kumar et al.|(2023)
Subjective Speech Quality Assessment SSQA T Huang et al.|(2024)
Deep Noise Suppression MOS Score of P.§08  DNS-P T Reddy et al.|(2022)
Singing voice MOS SING 1T Tang et al.|(2024)
Speech Enhancement-based CI-SDR Ci-SDR T Zhang et al.|(2024)

T Higher is better. + Lower is better.
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C ADDITIONAL EXPERIMENTAL RESULTS

Table 8: Quality and detectability performance of watermarking methods on CV3-Eval.

EN ZH
E Quality Metric TPR@X%FPR Quality Metric TPR@X%FPR
S Method WER| SIMt UT{ PLCt DNST PESQtT 02%1 3.0%1 WER| SIMt UTt PLCT DNS{ PESQtT 0.2%1 3.0% 1
No Watermark 6.8 062 3.13 398 3.00 2.92 — — 44 0.68 255 410 3.2 3.04 — —
KGW 6.6 062 3.14 397 3.01 2.94 0.980  0.990 4.5 0.68 255 4.09 3.12 3.04 0.994  0.998
Unigram 6.4 062 3.12 396 299 2.90 1.000  1.000 4.6 0.67 254 410 3.12 3.04 1.000  1.000
@ SWEET 6.4 062 3.11 395 3.00 2.94 0.988  0.996 4.7 0.68 255 4.09 3.12 3.03 0.998  1.000
= MorphMark 6.6 0.62 315 397 2.99 292 0.128  0.394 4.1 0.68 256 4.11 3.12 3.05 0.437  0.673
3 SynthID 7.2 0.62 313 397 3.00 2.90 0.984  0.996 4.7 0.68 253 4.09 3.11 3.04 0.996  1.000
r.é EXP 5.5 0.65 3.61 4.11 3.10 3.17 1.000  1.000 3.9 0.70 3.08 4.24 3.20 3.27 1.000  1.000
i, WavMark 6.8 0.63 3.07 397 2.98 2.81 0.990  0.990 4.5 0.69 250 4.05 3.10 2.90 1.000 1.000
Timbre 6.9 060 292 372 288 2.52 1.000  1.000 44 0.67 244 392 3.02 2.79 1.000  1.000
AudioSeal 7.0 062 3.10 399 295 2.89 1.000  1.000 44 0.68 253 4.1 3.10 2.99 1.000  1.000
SilentCipher 6.9 051 286 3.93 2.88 2.79 1.000  1.000 4.5 0.68 255 412 312 3.06 1.000 1.000
No Watermark 5.3 0.50 3.87 442 3.15 3.39 — — 4.0 0.59 322 443 3.22 3.41 — —
KGW 4.6 049 387 442 3.16 342 0.122  0.348 5.0 059 3.19 442 3.21 3.39 0214 0471
Unigram 5.0 050 3.88 441 3.16 3.40 0.960 0978 42 059 321 442 3.22 3.39 0.992  0.994
< SWEET 53 050 3.85 441 3.15 3.39 0.136  0.334 4.1 059 3.19 441 3.21 3.39 0.260 0.487
$  MorphMark 5.1 050 3.87 442 3.16 3.39 0.000  0.000 4.1 059 322 443 3.21 3.41 0.000  0.000
& SynthID 49 050 3.87 441 3.16 341 0.584 0.844 4.1 059 3.18 442 3.20 3.40 0.788  0.926
< EXP 44 052 4.02 445 3.20 3.53 0.890 0.944 3.7 0.61 342 445 3.25 3.51 0.978  0.986
& WavMark 54 051 376 434 3.09 3.17 1.000  1.000 4.0 0.60 3.11 432 3.13 3.14 1.000  1.000
Timbre 5.6 047 3.69 4.20 3.04 3.10 1.000  1.000 4.0 057 3.08 421 3.15 322 1.000  1.000
AudioSeal 55 050 3.84 440 3.09 333 1.000  1.000 39 059 3.19 442 3.18 3.35 1.000  1.000
SilentCipher 5.5 0.51 387 444 3.15 342 0.966  0.966 4.0 059 322 445 323 3.43 0.998  0.998
No Watermark 9.8 055 346 375 2.94 3.00 — — 59 0.68 296 4.00 3.15 3.17 — —
KGW 9.0 057 3.54 381 3.03 3.07 0434  0.630 5.1 0.68 292 401 3.15 3.17 0.528 0.776
Unigram 13.9 0.55 349 3.69 2.94 3.03 0.816  0.896 9.0 0.66 291 392 3.10 3.09 0.956 0.978
»» SWEET 11.1 0.56 351 375 2.99 3.05 0.400 0.594 5.6 0.68 293 399 3.15 3.14 0.574  0.766
E MorphMark 10.4 0.56 354 3.79 2.99 3.07 0.076  0.226 5.1 0.68 296 4.01 3.15 3.16 0.060 0.208
v SynthID 8.9 0.57 350 3.77 3.01 3.07 0.006  0.508 4.8 0.69 292 4.00 3.15 3.15 0.006 0.634
§_ EXP 33.8 038 3.11 3.15 243 2.56 0.546  0.606 31.7 046 2.65 341 2.61 2.74 0.668 0.720
»? WavMark 9.8 058 3.50 3.81 2.99 297 0.986  0.986 5.7 0.69 287 396 3.13 3.05 0.996 0.996
Timbre 9.8 057 342 359 286 2.77 1.000  1.000 6.1 0.68 281 3.69 3.00 2.92 1.000  1.000
AudioSeal 10.0 057 356 379 299 3.01 1.000  1.000 8.4 068 294 396 3.13 3.11 1.000  1.000
SilentCipher 9.8 053 3.56 4.06 3.01 3.10 0.932 0932 7.7 062 297 416 3.13 3.17 0.984 0.984
In-processing. Post-processing. T Higher is better. ¥ Lower is better.
Table 9: Quality comparison across watermarking methods on Seed-TTS-Eval English.
3 Quality Metric
§ Method WER | SIM1 UT1 PLC1T DNST MOS?T STOIt PESQT SART SDR1 SNRT Si-SDR1T SSQA 1 DNS-P71 SING 1 Ci-SDR 1
No Watermark 2.5 0.63 3.64 412 3.04 434 0.98 320 39.06 39.06 3845 20.54 4.21 3.80 3.69 38.75
KGW 2.6 063 3.62 410 3.04 435 0.98 320 3883 3883 3823 2051 420 3.79 3.69 38.57
Unigram 2.8 0.63 3.62 4.12 3.05 4.35 0.98 3.18 38.81 38.81 3821 20.37 4.20 3.80 3.69 38.55
v SWEET 2.6 063 3.62 412 3.04 436 0.98 3.18 3879 3879 3820 20.36 421 3.80 3.69 38.58
E MorphMark 2.5 0.63 3.63 4.13 3.04 435 0.98 3.18 38.85 38.85 38.25 2045 4.21 3.80 3.69 38.57
3 SynthID 2.6 0.63 3.61 411 3.04 435 0.98 3.19 38.82 38.82 3821 20.53 4.20 3.79 3.69 38.63
l:é EXP 22 0.65 397 424 312 434 0.99 342 3973 39.73 39.04 2226 437 3.85 3.69 39.50
£, WavMark 2.6 0.63 3.57 4.12 3.00 433 0.98 3.11 38.78 38.78 38.53 20.72 4.05 3.75 3.70 38.71
Timbre 2.6 0.62 347 382 288 434 097 284 37.68 37.68 37.46 19.34 3.94 3.66 3.66 37.56
AudioSeal 2.6 0.63 3.61 4.14 3.02 434 0.98 3.18 38.65 38.65 38.35 20.18 4.19 3.76 3.68 38.45

SilentCipher ) 0.63 3.63 426 3.04 434 098 322  39.04 39.04 3838 20.67 422 3.80 3.70 38.46

No Watermark 2.0 053 4.15 445 322 430 099 3.58 40.27 4027 3926 2372 4.45 3.96 3.77 39.22

KGW 1.8 053 4.14 444 322 431 0.99 358 4023 4023 3923 23.70 4.44 3.96 3.78 39.22
Unigram 2.3 053 4.14 444 322 430 099 3.58 4043 4043 3941 23.64 4.44 3.96 3.78 39.46
< SWEET 20 053 414 444 322 431 0.99 359 4025 4025 3925 2378 4.45 3.95 3.78 39.10
$ MorphMark 20 053 415 444 322 431 0.99 359 4041 4041 3942 23.79 4.44 3.96 3.78 39.45
& SynthID 20 053 413 444 322 429 099 3.57 4022 4022 3922  23.66 4.44 3.95 3.77 39.31
< EXP 2.1 054 421 446 324 430 099 3.66 40.18 40.18 3898  24.12 4.47 3.97 3.77 39.05
& WavMark 2.1 055 4.04 446 316 427 099 338 40.21 40.21 39.69 2351 4.29 3.87 3.77 39.62
Timbre 2.1 051 404 432 314 432 098 339  40.10 40.10 39.38 2283 4.32 3.84 3.77 39.31
AudioSeal 2.1 053 4.14 445 319 429 099 3.55 39.81 39.81 3884 23.05 4.43 3.93 3.76 38.86

SilentCipher 2.1 054 415 445 322 431 099 3.60 40.37 40.37 3933  24.07 4.45 3.96 3.78 3031

No Watermark 2.7 059 393 439 312 431 0.98 331 40.09 40.09 3933 21.81 437 3.78 3.89 39.89

KGW 30 059 389 437 312 432 098 327 4022 4022 3948 21.55 435 3.78 3.87 39.99
Unigram 52 058 3.88 432 3.08 427 097 324 3933 3933 3843 21.01 4.28 3.74 3.84 38.90
«» SWEET 4.3 058 390 435 311 430 097 326 39.84 39.84 39.05 21.23 432 3.77 3.86 39.63
(tj MorphMark 2.6 059 394 439 314 430 098 331 4033 40.33 3958  22.00 4.38 3.79 3.89 40.00
v SynthID 2.8 0.60 390 438 3.13 430 098 330 4029 4029 3956 21.73 435 3.77 3.89 40.08
i EXP 183 048 373 399 276 419 092 296 31.68 31.68 29.28 15.61 3.82 3.48 3.60 31.52
» WavMark 3.9 0.60 3.76 430 3.09 426 098 324 37.68 37.68 36.96 21.82 4.11 3.71 3.86 37.54
Timbre 2.8 059 378 419 296 431 0.97 295 3824 3824 3773  20.29 4.18 3.65 3.87 38.14
AudioSeal 2.8 059 391 441 311 431 0.98 325 39.83 39.83 39.14 20.68 4.35 3.76 3.86 39.55

SilentCipher 2.8 057 393 440 3.1 432 098 333 4030 4030 3934 21.90 438 3.78 3.90 39.82

In-processing. Post-processing. T Higher is better. + Lower is better.
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Table 10: Quality comparison across watermarking methods on Seed-TTS-Eval Chinese.

g Quality Metric
S Method WER | SIM1 UT+ PLC{ DNS{ MOS+ STOI{ PESQt SAR+ SDR1 SNR?T Si-SDR1 SSQA 1 DNS-P{ SING 1 Ci-SDR 1
No Watermark 1.2 074 293 417 316 426 0.99 347 38.04 38.04 o 23.27 429 3.84 3.85 38.03
KGW 1.1 075 292 416 3.5 425 0.99 348 37.84 3784 23.28 4.28 3.84 3.85 37.84
Unigram 12 074 291 416 3.15 426 0.99 347 3797 3797 00 23.19 428 3.84 3.84 37.97
@ SWEET 2 075 292 416 3.5 426 0.99 348 3775 3775 3751 23.13 4.29 3.84 3.84 37.74
& MorphMark 12 0.74 293 417 316 425 0.99 347 3816 38.16 o 23.20 429 3.84 3.85 38.16
3 SynthID 1.2 074 292 415 315 425 0.99 347 38.00 38.00 37.77 23.22 4.28 3.84 3.85 37.97
% EXP 1.0 075 329 431 322 425 0.99 3.66 3885 3885 24.40 4.42 3.88 3.89 38.85
iZ. WavMark 1.1 073 2.89 425 313 425 0.99 336 3755 3755 00 23.57 4.04 3.82 3.88 37.55
Timbre 12 073 274 381 299 425 0.97 298 3549 3549 o 21.42 4.02 3.67 3.77 35.49
AudioSeal 12 074 289 415 313 427 099 345 3745 3745 23.29 4.26 3.79 3.85 37.45
SilentCipher (182 074 294 432 316 426 0.99 349 3759 3759 oo 23.13 4.30 3.86 3.85 37.23
No Watermark 1.1 0.69 350 447 326 424 098 3.56 4027 4027 3991 23.39 4.49 3.90 3.99 39.59
KGW 1.2 0.68 345 447 325 425 0.98 356 40.13 40.13 39.78  23.26 4.47 3.90 3.98 39.62
Unigram 2 069 346 446 325 425 0.99 355 40.19 40.19 39.82 23.34 4.47 3.90 3.99 39.57
< SWEET 1.3 0.68 345 446 325 424 099 3.56  40.28 40.28 39.94 2341 4.47 3.90 3.98 39.71
$ MorphMark 13 0.69 348 447 326 425 0.99 3.57 40.16 40.16 39.82  23.37 4.48 3.90 3.99 39.58
& SynthID 1.2 0.68 345 446 325 425 0.98 3.56  40.27 40.27 39.94 2345 4.47 3.90 3.98 39.71
4; EXP 1.2 0.69 354 449 328 424 0.99 3.61 4023 4023 39.74 23.56 4.50 391 3.98 39.62
& WavMark 112 0.69 339 452 318 422 0.98 335 3925 3925 39.04 23.80 4.30 3.84 3.96 38.82
Timbre 12 0.67 332 430 3.18 425 0.98 325 3946 3946 3934 2197 4.36 3.73 3.93 39.01
AudioSeal 2 0.69 346 446 321 4.25 0.98 353 39.55 39.55 3920 2341 4.47 3.85 3.97 39.01
SilentCipher 12 0.69 350 447 327 424 098 3.57 4042 4042 40.03 2355 4.49 3.92 3.98 39.79
No Watermark 1.6 0.67 328 438 322 404 0.98 3.58 3942 3878 00 24.41 4.40 3.80 3.97 39.37
KGW IS} 0.67 324 437 322 417 0.99 3.58 3939 3939 3895 2432 4.41 3.80 3.97 39.27
Unigram 3.6 0.65 336 431 318 415 0.98 3.57 3839 3839 37.83 2455 4.35 3.72 3.96 38.35
« SWEET 2.7 0.67 323 436 321 4.15 0.98 356 3948 39.48 39.07 24.16 4.39 3.79 3.96 39.35
E MorphMark 2.7 0.67 327 437 322 416 098 3.59 3925 3925 3876 2437 4.40 3.80 3.97 39.08
v SynthID 1.4 0.67 323 436 322 416 0.99 357 3945 3945 39.07 2435 4.40 3.80 3.97 39.32
i EXP 140 060 3.14 417 3.02 4.09 0.96 339 3538 3538 0 20.95 4.11 3.64 3.79 35.22
»* WavMark 1.6 0.67 3.15 432 312 414 098 339 36.86 36.86 3647 2417 4.09 3.62 3.97 36.86
Timbre 23 065 3.09 417 3.02 419 0.98 3.13  36.82 36.82 36.53 2249 425 3.66 3.92 36.76
AudioSeal 2.3 0.67 325 436 320 417 098 354  39.11 39.11 3874 23.80 4.39 3.77 3.95 39.02
SilentCipher 1.4 0.67 323 436 322 418 0.98 3.57 39.55 39.55 3892 2430 4.42 3.80 3.97 39.23
In-processing. Post-processing. T Higher is better. L Lower is better. °° Infinity.
Table 11: Quality comparison across watermarking methods on CV3-Eval English.
3 Quality Metric
S Method WER | SIM1 UT1 PLCT DNS1 MOS{ STOI1 PESQ? SART SDRT SNRT Si-SDR T SSQA 1 DNS-P1 SING 1 Ci-SDR
No Watermark 6.8 062 3.13 398 3.00 426 097 292 3283 32.83 3291 19.57 3.68 3.66 3.65 32.68
KGW 6.6 062 3.14 397 3.01 4.26 0.97 294 3348 3348 33.59 19.94 3.69 3.66 3.67 33.33
Unigram 6.4 0.62 3.12 396 299 427 0.97 290 3326 3326 3332 19.47 3.68 3.64 3.67 33.16
v SWEET 6.4 062 3.11 395 3.00 427 097 294 3326 3326 19.68 3.67 3.66 3.66 33.10
E MorphMark 6.6 062 3.15 397 299 426 0.97 292 3353 3353 33.63 19.79 3.69 3.65 3.66 33.33
E SynthID 72 062 3.13 397 3.00 426 097 290 3351 3351 3356  19.50 3.68 3.64 3.65 33.34
v EXP 55 065 3.61 411 310 423 0.98 317 3454 3454 o 21.99 3.90 3.70 3.65 34.47
iz WavMark 6.8 0.63 3.07 397 298 426 0.96 2.81 3224 3224 3240 19.28 3.51 3.63 3.70 32.03
Timbre 6.9 060 292 372 288 421 0.95 252 3110 31.10 31.13  17.80 3.38 3.48 3.68 30.99
AudioSeal 7.0 062 3.10 399 295 425 0.97 289 3220 3220 oo 19.34 3.60 3.60 3.60 31.98
SilentCipher 6.9 051 286 393 288 423 0.95 279 33.09 33.09 3296 1849 3.63 3.63 3.59 32.92
No Watermark 5.3 050 3.87 442 315 408 0.98 339 3838 3838 37.82 23.20 4.16 3.81 4.00 38.17
KGW 4.6 049 3.87 442 316 407 0.98 342 38.62 38.62 38.07 23.27 4.18 3.81 4.00 38.49
Unigram 5.0 050 3.88 441 316 406 098 340 38.61 38.61 3811 2321 4.17 3.81 3.99 38.40
= SWEET 53 050 3.85 441 315 407 0.98 339 3896 3896 3841 22.95 4.16 3.81 3.99 38.70
$ MorphMark 5.1 050 3.87 442 316 412 098 339 3871 3871 38.18 2317 4.17 3.81 3.99 38.62
& SynthID 4.9 050 3.87 441 316 408 0.98 341 3870 3870 38.18 23.24 4.16 3.81 3.99 38.45
45', EXP 4.4 052 4.02 445 320 408 0.98 3.53 3871 3871 38.11 24.03 423 3.80 4.00 38.25
& WavMark 54 051 376 434 3.09 406 098 3.17 3750 37.50 37.07 2282 3.95 3.75 3.96 37.22
Timbre 5.6 047 3.69 420 3.04 414 0.98 3.10 37.64 37.64 3720 22.06 3.95 3.65 3.95 37.46
AudioSeal 5.5 050 3.84 440 3.09 408 098 333 3746 3746 3691 2284 4.13 3.75 3.99 37.24
SilentCipher 55 051 3.87 444 315 4.09 0.98 342 3848 3848 3790 2343 4.17 3.82 4.00 38.27
No Watermark 9.8 055 346 375 294 407 0.95 3.00 36.01 36.01 0 19.74 3.93 3.56 3.65 35.93
KGW 9.0 057 354 381 3.03 407 096 3.07 3632 3632 20.48 4.00 3.62 3.70 36.15
Unigram 139 055 349 369 294 407 0.95 3.03 3491 3491 0 19.23 3.82 3.54 3.59 34.75
«n SWEET 1.1 056 351 375 299 410 0.96 3.05 3592 3592 19.82 3.92 3.60 3.65 35.86
E MorphMark 104 056 354 379 299 4.09 0.96 3.07 3582 3582 20.29 3.94 3.57 3.64 35.75
. SynthID 8.9 0.57 3,50 377 3.01 4.10 0.96 3.07 3626 3626 o 20.48 3.94 3.61 3.66 36.14
§_ EXP 338 038 3.1 315 243 389 088 256 2393 2393 10.77 3.14 3.09 3.21 23.73
@ WavMark 9.8 058 3.50 381 299 4.08 0.96 297 3586 3586 oo 20.11 3.81 3.59 3.70 35.81
Timbre 9.8 057 342 359 286 408 095 277 3402 3402 33.80 1885 3.78 3.50 3.67 33.95
AudioSeal 10.0 057 3.56 379 299 408 0.96 3.01  36.08 36.08 o 19.54 3.98 3.59 3.63 35.88
SilentCipher 9.8 053 3.56 406 3.01 4.09 0.95 3.10 3634 3634 20.49 4.00 3.59 3.67 35.81
In-processing. Post-processing. T Higher is better. + Lower is better. °° Infinity.
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Table 12: Quality comparison across watermarking methods on CV3-Eval Chinese.

g Quality Metric
S Method WER | SIM{ UT+ PLC1 DNS{ MOS+ STOI1 PESQt SAR+ SDR 1 SNR?T Si-SDR1 SSQA 1+ DNS-P{ SING 1 Ci-SDR
No Watermark 4.4 068 255 410 3.12 419 0.98 3.04 3286 3286 2091 4.05 3.75 3.82 32.56
KGW 4.5 0.68 255 409 312 420 097 3.04 3237 3237 3245 2088 4.03 3.74 3.81 32.24
Unigram 4.6 0.67 254 410 312 419 0.98 3.04 3251 3251 00 20.79 4.02 3.74 3.81 32.33
© SWEET 4.7 0.68 255 4.09 312 421 0.97 3.03 3294 3294 33.07 20.90 4.04 3.75 3.80 32.77
& MorphMark 4.1 0.68 256 411 312 418 098 3.05 32.84 32.84 3295 2098 4.07 3.74 3.81 3275
3 SynthID 4.7 0.68 253 409 3.11 4.20 0.98 3.04 3272 3272 3278 20.92 4.04 3.75 3.80 32.53
% EXP 3.9 070 3.08 424 320 415 098 327 3428 3428 22.80 4.21 3.77 3.85 34.15
& WavMark 4.5 0.69 250 405 3.10 420 0.97 290 3243 3243 0 20.52 3.78 3.72 3.83 32.31
Timbre 44 067 244 392 302 415 097 279 3176 31.76 19.98 3.81 3.60 3.81 31.62
AudioSeal 44 068 253 411 310 420 097 299 32359 3259 o 20.44 4.00 3.72 3.78 3241
SilentCipher 4.5 0.68 255 412 312 420 0.98 3.06 33.13 33.13 [} 20.96 4.08 3.76 3.80 32.81
No Watermark 4.0 059 322 443 322 402 098 341 3890 3890 3854 23.56 4.42 3.84 4.06 38.67
KGW 5.0 059 3.19 442 321 4.03 0.98 339 3924 39.24 3889 2341 441 3.84 4.05 38.96
Unigram 42 059 321 442 322 4.02 0.99 339 38.82 38.82 3846 2349 4.41 3.85 4.06 38.58
< SWEET 4.1 059 3.19 441 321 402 098 339 38.81 38.81 3848 2351 4.39 3.84 4.07 38.56
$ MorphMark 4.1 059 322 443 321 4.03 0.99 341 39.09 39.09 3874 23.55 443 3.84 4.06 38.91
& SynthID 4.1 059 3.18 442 320 402 098 340 38.89 38.89 3855 23.50 4.40 3.83 4.06 38.69
—g'g EXP 3.7 0.61 342 445 325 403 0.99 351 3924 3924 3885 24.29 4.48 3.83 4.10 38.84
& WavMark 4.0 0.60 3.11 432 3.3 3.97 0.98 3.14 37.81 37.81 37.56 2293 4.16 3.79 3.99 37.60
Timbre 40 057 3.08 421 315 408 098 322 3821 3821 3795 2272 429 3.73 3.99 37.98
AudioSeal 39 059 3.19 442 318 403 0.98 335 3848 3848 3813 2293 4.39 3.82 4.05 38.17
SilentCipher 40 059 322 445 323 405 098 343  39.04 39.04 38.67 23.67 4.43 3.85 4.06 38.78
No Watermark 5.9 068 296 400 3.15 404 0.98 317 3649 3649 21.94 424 3.69 3.82 36.37
KGW 5.1 0.68 292 401 3.15 407 0.97 3.17 36.88 36.88 o 22.00 4.24 3.70 3.81 36.68
Unigram 9.0 066 291 392 310 406 097 3.09 3583 3583 20.81 4.15 3.64 3.74 35.61
« SWEET 5.6 0.68 293 399 315 407 0.97 3.14 3647 3647 o 21.71 424 3.69 3.80 36.34
E MorphMark 5.1 0.68 296 401 315 405 098 3.16 3654 3654 21.88 4.25 3.69 3.80 36.32
v SynthID 4.8 0.69 292 400 3.15 407 098 315 3699 3699 37.16 2193 4.26 3.70 3.82 36.81
i EXP 31.7 046 265 341 261 3.90 0.91 274 2745 2745 [} 14.75 3.45 3.19 3.28 27.32
“* WavMark 5.7 0.69 287 396 3.13 409 097 3.05 3628 3628 o 21.68 4.03 3.67 3.83 36.26
Timbre 6.1 0.68 281 3.69 3.00 4.05 0.97 292 3394 3394 3391 2101 4.09 3.59 3.78 33.79
AudioSeal 84 068 294 396 3.13 4.03 098 311 3634 3634 21.24 422 3.68 3.78 36.00
SilentCipher 7.7 062 297 416 3.13 405 0.97 3.17  36.60 36.60 oo 21.67 425 3.68 3.80 36.32
In-processing. Post-processing. T Higher is better. + Lower is better. °° Infinity.

Table 13: Robustness evaluation results on Seed-TTS-Eval under attacks. All metrics represent
TPR@3.0% FPR (higher is better).

E EN ZH
§ Method TS SMH GN BN Echo MP3 ECD QNT HPF LPF TS SMH GN BN Echo MP3 ECD QNT HPF LPF
KGW 0.000 0.054 0.528 0.002 0.954 0.122 0.070 0.000 0.966 0.000 0.071 0.823 0.939 0.002 1.000 0.183 0.139 0.000 1.000
Unigram 0.232 0.891 0.964 0.090 1.000 0.658 0.244 1.000 1.000 0.503 0.999 1.000 1.000 0.893 0.570 1.000 1.000
I SWEET 0.000 0.057 0.562 0.017 0.962 0.121 0.061 0.000 0.976 0.000 0.056 0.822 0.937 0.035 1.000 0.190 0.118 0.000 1.000
& MorphMark 0.000 0.025 0.100 0.100 0.000 0.244 0.050 0.063 0.000 0.274 0.000 0.037 0.132 0.178 0.000 0.051 0.062 0.000
% SynthID 0.082 0.069 0.505 0.676 0.235 0.994 0.140 0.085 0.000 0.995 0.072 0.054 0.785 0.923 0.237 1.000 0.176 0.114 0.000 1.000
& EXP 0.153 0.966 0.993 0.615 1.000 0.803 0.244 0.000 1.000 0.102 1.000 1.000 0.767 1.000 0.829 0.564 0.000 1.000
é WavMark 0.506 1.000 0.987 1.000 0.976 1.000 0.000 0.159 0.000 1.000 0.770 1.000 1.000 1.000 1.000 1.000 0.000 0.000 1.000
Timbre 1.000 1.000 1.000 1.000 0.999 1.000 0.523 0.998 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000
AudioSeal  0.993 0.999 1.000 1.000 0.999 1.000 0.829 0.988 0.000 1.000 0.973 1.000 1.000 1.000 1.000 1.000 0.806 0.993 0.000 1.000
SilentCipher 0.000 0.603 0.867 0.807 0.981 0.000 0.000 0.000 0.980 0.000 0.824 0.988 0.984 0.797 0.998 0.000 0.000 0.000 0.998
KGW 0.000 0.000 0.000 0.002 0.000 0.251 0.000 0.000 0.000 0.234 0.000 0.000 0.004 0.018 0.000 0.560 0.000 0.000 0.000 0.550
Unigram 0.541 0.244 0.099 0.107 0.989 0.096 0.294 0.013 0.985 0.716 0.696 0.074 0.998 0.159 0.007 0.998
= SWEET 0.000 0.001 0.000 0.001 0.000 0.218 0.000 0.000 0.000 0.240 0.000 0.000 0.002 0.010 0.000 0.539 0.000 0.000 0.000 0.547
g MorphMark 0.000 0.000 0.001 0.000 0.000 0.002 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.001
2. SynthID 0.014 0.091 0.089 0.150 0.026 0.824 0.070 0.031 0.000 0.818 0.005 0.095 0.159 0.034 0.951 0.092 0.028 0.000 0.957
2 EXP 0.000 0.255 0.148 0.013 0.979 0.068 0.003 0.000 0.979 0.000 0.219 0.652 0.026 0.996 0.104 0.008 0.000 0.996
E WavMark 0.936 0.994 0.765 0.955 0.982 1.000 0.000 0.105 0.000 1.000 0.980 1.000 0.956 0.999 1.000 1.000 0.000 0.205 0.000 1.000
Timbre 1.000 1.000 1.000 1.000 0.994 1.000 0.999 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.596 1.000 0.000 1.000
AudioSeal  0.993 1.000 1.000 1.000 0.997 1.000 1.000 0.997 0.000 1.000 0.973 1.000 1.000 1.000 0.999 1.000 1.000 0.998 0.000 1.000
SilentCipher 0.000 0.767 0.907 0.845 0.965 0.000 0.002 0.000 0.967 0.000 0.923 0.986 0.983 0.694 0.999 0.000 0.005 0.000 0.999
KGW 0.175 0.042 0.579 0.197 0.666 0.155 0.056 0.000 0.686 0.215 0.043 0.552 0.659 0.155 0.761 0.155 0.064 0.000 0.766
Unigram 0.501 0.137 0.849 0915 0.201 0.926 0.647 0.170 1.000 0.926 0.540 0.134 0.964 0.986 0.099 0.988 0.841 0.272 1.000 0.991
SWEET 0.056 0.571 0.142 0.683 0.156 0.069 0.014 0.679 0.635 0.059 0.597 0.695 0.080 0.762 0.188 0.069 0.005 0.765
£ MorphMark 0.174 0.048 0.113 0.149 0.184 0.179 0.086 0.040 0.000 0.181 0.244 0.034 0.149 0.185 0.104 0.223 0.074 0.027 0.000 0.224
l: SynthID 0.079 0.032 0.531 0.029 0.628 0.153 0.040 1.000 0.627 0.077 0.042 0.573 0.667 0.056 0.772 0.177 0.075 1.000 0.778
é EXP 0.045 0.099 0.673 0.733 0.188 0.739 0.144 0.003 0.744 0.060 0.099 0.893 0.908 0.231 0.912 0.674 0.257 0.000 0.919
& WavMark 0.179 0.997 0.993 0.997 0.948 1.000 0.000 0.057 0.000 0.997 0.996 0.995 0.996 0.992 1.000 0.000 0.115 0.000 0.996
Timbre 0.999 1.000 1.000 1.000 1.000 1.000 0.997 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.225 0.997 0.000 1.000
AudioSeal  0.980 0.994 1.000 1.000 0.999 1.000 0.000 0.902 0.000 1.000 0.965 0.996 1.000 1.000 1.000 1.000 0.085 0.950 0.000 1.000
SilentCipher 0.000 0.518 0.824 0.953 0.000 0.000 0.001 0.958 0.000 0.708 0.850 0.974 0.617 0.990 0.000 0.000 0.000 0.991
In-processing. Post-processing. Red 1 6w robustness (< 0.3). Medium robustness (0.3 — 0.5). Green High robustness (> 0.7).
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Table 14: Robustness evaluation results on CV3-Eval under attacks. All metrics represent
TPR@0.2% FPR (higher is better).

E EN ZH
§ Method TS SMH GN BN Echo MP3 ECD QNT HPF LPF TS SMH GN BN Echo MP3 ECD QNT HPF LPF
KGW 0.000 0.006 0.438 0.270 0.006 0.908 0.036 0.174 0.000 0.980 0.000 0.010 0.452 0.788 0.022 0.988 0.030 0.118 0.000 0.994
Unigram 0.314 0.238 0.858 0.938 0.566 0.986 0.454 0.410 1.000 1.000 0.358 0.378 0.908 0.976 0.648 1.000 0.726 0.398 1.000 1.000
" SWEET 0.000 0.008 0.416 0.255 0.034 0.908 0.086 0.096 0.000 0.988 0.000 0.004 0.415 0.772 0.060 0.988 0.064 0.052 0.000 0.998
E MorphMark 0.000 0.000 0.016 0.026 0.000 0.100 0.004 0.146 0.000 0.128 0.000 0.002 0.064 0.112 0.000 0.395 0.008 0.104 0.000 0.437
E SynthID 0.026 0.014 0.378 0.342 0.182 0.958 0.028 0.188 0.000 0.984 0.028 0.016 0.479 0.663 0.251 0.992 0.052 0.140 0.000 0.996
« EXP 0.106 0.096 0.838 0.934 0.748 0.996 0.384 0.134 0.000 1.000 0.088 0.118 0.854 0.972 0.794 1.000 0.569 0.146 0.000 1.000
£ WavMark 0.800 0.974 0.976 0.990 0.988 0.990 0.000 0.235 0.000 0.990 0.862 1.000 0.988 1.000 1.000 1.000 0.000 0.289 0.000 1.000
™ Timbre 1.000 1.000 1.000 1.000 1.000 1.000 0.424 0.998 0.000 1.000 1.000 1.000 1.000 0.998 1.000 1.000 0.533 1.000 0.000 1.000
AudioSeal  0.890 0.942 1.000 1.000 0.996 1.000 0.752 0.954 0.000 1.000 0.882 0.996 1.000 0.998 1.000 1.000 0.852 0.988 0.000 1.000
SilentCipher 0.000 0.868 0.898 0.874 0.872 0.982 0.010 0.000 0.098 0.984 0.000 0.932 0.970 0.966 0.966 1.000 0.008 0.004 0.024 1.000
KGW 0.000 0.000 0.000 0.002 0.000 0.130 0.000 0.000 0.000 0.128 0.000 0.000 0.000 0.002 0.000 0.261 0.000 0.000 0.000 0.257
Unigram 0.346 0.180 0.130 0.236 0.028 0.960 0.045 0.108 0.110 0.960 0.494 0.350 0.138 0.220 0.032 0.990 0.063 0.136 0.132 0.990
- SWEET 0.000 0.000 0.000 0.000 0.000 0.146 0.000 0.000 0.000 0.132 0.000 0.000 0.000 0.000 0.000 0.254 0.000 0.000 0.000 0.266
S MorphMark  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2. SynthID 0.004 0.028 0.004 0.034 0.006 0.570 0.004 0.006 0.000 0.584 0.000 0.032 0.042 0.062 0.000 0.778 0.002 0.008 0.000 0.796
E EXP 0.000 0.056 0.094 0.138 0.000 0.892 0.000 0.000 0.000 0.888 0.000 0.124 0.110 0.124 0.000 0.972 0.014 0.000 0.000 0.978
£ ‘WavMark 0.974 0.971 0.640 0.926 0.998 1.000 0.000 0.044 0.000 1.000 0.996 0.996 0.546 0.942 1.000 1.000 0.000 0.052 0.000 1.000
Timbre 1.000 1.000 1.000 1.000 1.000 1.000 0.493 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.604 0.998 0.000 1.000
AudioSeal  0.944 1.000 1.000 1.000 0.994 1.000 0.988 0.992 0.000 1.000 0.910 1.000 1.000 1.000 0.998 1.000 0.998 0.996 0.000 1.000
SilentCipher 0.000 0.812 0.868 0.826 0.600 0.968 0.000 0.000 0.000 0.964 0.000 0.956 0.976 0.962 0.778 0.998 0.000 0.004 0.000 0.998
KGW 0.034 0.004 0.292 0.338 0.028 0.408 0.077 0.024 0.000 0.406 0.052 0.004 0.320 0.452 0.054 0.524 0.074 0.010 0.000 0.524
Unigram 0314 0.116 0.630 0.728 0.164 0.806 0.514 0.210 0.998 0.816 0.320 0.082 0.844 0.896 0.104 0.954 0.586 0.166 0.998 0.952
SWEET 0.302 0.016 0.294 0.356 0.050 0.408 0.042 0.046 0.048 0412 0436 0.014 0.358 0.440 0.040 0.572 0.067 0.036 0.020 0.568
% MorphMark 0.036 0.016 0.026 0.036 0.024 0.060 0.022 0.020 0.000 0.060 0.050 0.008 0.032 0.038 0.014 0.058 0.020 0.008 0.000 0.062
& SynthID 0.018 0.018 0.000 0.000 0.014 0.014 0.000 0.018 0.848 0.012 0.006 0.006 0.000 0.000 0.006 0.006 0.000 0.006 1.000 0.006
Ag EXP 0.052 0.118 0.446 0490 0.182 0.536 0.224 0.146 0.000 0.518 0.050 0.102 0.534 0.618 0.202 0.638 0.238 0.124 0.000 0.650
& WavMark 0471 0986 0.974 0.986 0.962 0.986 0.000 0.104 0.000 0.986 0.529 0.996 0.992 0.996 0.994 0.996 0.000 0.128 0.000 0.996
Timbre 1.000 1.000 1.000 0.996 1.000 1.000 0.327 0.980 0.000 1.000 1.000 1.000 1.000 0.996 1.000 1.000 0.481 0.994 0.000 1.000
AudioSeal  0.866 0.968 1.000 1.000 1.000 1.000 0.018 0.876 0.000 1.000 0.820 0.990 1.000 1.000 1.000 1.000 0.020 0.852 0.000 1.000
SilentCipher 0.000 0.708 0.648 0.848 0.639 0.914 0.000 0.000 0.062 0.928 0.000 0.790 0.806 0.960 0.772 0.978 0.000 0.000 0.012 0.982
In-processing. Post-processing. Red 1 ow robustness (< 0.3). Orange Medium robustness (0.3 — 0.5). Green Hioh robustness (> 0.7).

Table 15: Robustness evaluation results on CV3-Eval under attacks. All metrics represent
TPR@3.0% FPR (higher is better).

E EN ZH
§ Method TS SMH GN BN Echo MP3 ECD QNT HPF LPF TS SMH GN BN Echo MP3 ECD QNT HPF LPF
KGW 0.000 0.068 0.620 0.716 0.068 0.958 0.152 0.268 0.000 0.990 0.000 0.066 0.658 0.802 0.064 0.998 0.182 0.234 0.000 0.998
Unigram 0.550 0.508 0.916 0.966 0.706 0.986 0.622 0.594 1.000 1.000 0.630 0.634 0.960 0.990 0.828 1.000 0.858 0.582 1.000 1.000
- SWEET 0.000 0.080 0.612 0.694 0.142 0.964 0.240 0.172 0.000 0.996 0.000 0.072 0.659 0.838 0.214 0.996 0.218 0.148 0.000 1.000
& MorphMark 0.000 0.036 0.142 0.136 0.000 0.328 0.026 0.226 0.000 0.394 0.000 0.040 0.208 0.295 0.004 0.629 0.058 0.194 0.000 0.673
% SynthID 0.058 0.050 0.496 0.706 0.348 0.994 0.102 0.278 0.000 0.996 0.074 0.050 0.617 0.802 0.483 0.998 0.178 0.255 0.000 1.000
~ EXP 0.194 0.328 0916 0.974 0.872 0.998 0.590 0.280 0.000 1.000 0.142 0.345 0.936 0.986 0.924 1.000 0.800 0.299 0.000 1.000
,E WavMark 0.800 0.974 0.976 0.990 0.988 0.990 0.000 0.235 0.000 0.990 0.862 1.000 0.988 1.000 1.000 1.000 0.000 0.289 0.000 1.000
Timbre 1.000 1.000 1.000 1.000 1.000 1.000 0.424 0.998 0.000 1.000 1.000 1.000 1.000 0.998 1.000 1.000 0.533 1.000 0.000 1.000
AudioSeal  0.890 0.942 1.000 1.000 0.996 1.000 0.752 0.954 0.000 1.000 0.882 0.996 1.000 0.998 1.000 1.000 0.852 0.988 0.000 1.000
SilentCipher 0.000 0.868 0.904 0.874 0.876 0.984 0.010 0.002 0.102 0.984 0.000 0.932 0.970 0.966 0.966 1.000 0.010 0.004 0.026 1.000
KGW 0.000 0.002 0.000 0.002 0.000 0.334 0.000 0.000 0.000 0.344 0.000 0.000 0.000 0.002 0.000 0.505 0.000 0.000 0.000 0.519
Unigram 0.678 0.448 0.226 0.368 0.128 0.984 0.153 0.316 0.156 0.978 0.796 0.644 0.232 0.376 0.140 0.996 0.176 0.400 0.212 0.996
= SWEET 0.000 0.000 0.002 0.008 0.000 0.298 0.000 0.000 0.000 0.330 0.000 0.000 0.002 0.006 0.000 0.518 0.000 0.000 0.000 0.492
g MorphMark 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2. SynthID 0.028 0.176 0.146 0.186 0.048 0.858 0.081 0.048 0.000 0.848 0.008 0.172 0.136 0.210 0.036 0.922 0.071 0.026 0.000 0.926
2 EXP 0.002 0.184 0.184 0.240 0.008 0.944 0.032 0.002 0.000 0.944 0.002 0.308 0.172 0.206 0.012 0.984 0.066 0.000 0.000 0.986
E ‘WavMark 0.974 0.971 0.640 0.926 0.998 1.000 0.000 0.044 0.000 1.000 0.996 0.996 0.546 0.942 1.000 1.000 0.000 0.052 0.000 1.000
Timbre 1.000 1.000 1.000 1.000 1.000 1.000 0.493 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.604 0.998 0.000 1.000
AudioSeal  0.944 1.000 1.000 1.000 0.994 1.000 0.988 0.992 0.000 1.000 0.910 1.000 1.000 1.000 0.998 1.000 0.998 0.996 0.000 1.000
SilentCipher 0.000 0.812 0.868 0.828 0.604 0.968 0.000 0.000 0.000 0.964 0.000 0.956 0.976 0.962 0.780 0.998 0.000 0.006 0.000 0.998
KGW 0.106 0.054 0.486 0.546 0.210 0.614 0.253 0.072 0.000 0.614 0.126 0.038 0.600 0.678 0.234 0.772 0.231 0.056 0.000 0.768
Unigram 0.534 0.246 0.788 0.858 0.319 0.890 0.705 0.330 0.998 0.896 0.536 0.190 0.952 0.956 0.246 0.984 0.817 0.336 1.000 0.980
SWEET 0.448 0.060 0.490 0.550 0.180 0.614 0.216 0.120 0.048 0.622 0.676 0.056 0.608 0.698 0.164 0.770 0.200 0.136 0.020 0.778
£ MorphMark  0.096 0.054 0.112 0.156 0.118 0.208 0.093 0.054 0.000 0.220 0.154 0.050 0.196 0.186 0.112 0.212 0.083 0.036 0.000 0.216
; SynthID 0.308 0.048 0.326 0.366 0.058 0.510 0.111 0.094 1.000 0.506 0.362 0.032 0.412 0.568 0.064 0.642 0.093 0.048 1.000 0.646
E EXP 0.118 0.148 0.550 0.584 0.294 0.598 0.368 0.210 0.000 0.586 0.130 0.148 0.630 0.702 0.312 0.696 0.412 0.212 0.000 0.698
& WavMark 0.471 0986 0.974 0.986 0.962 0.986 0.000 0.104 0.000 0.986 0.529 0.996 0.992 0.996 0.994 0.996 0.000 0.128 0.000 0.996
Timbre 1.000 1.000 1.000 0.996 1.000 1.000 0.327 0.980 0.000 1.000 1.000 1.000 1.000 0.996 1.000 1.000 0.481 0.994 0.000 1.000
AudioSeal  0.866 0.968 1.000 1.000 1.000 1.000 0.018 0.876 0.000 1.000 0.820 0.990 1.000 1.000 1.000 1.000 0.020 0.852 0.000 1.000
SilentCipher 0.000 0.712 0.660 0.848 0.649 0.918 0.000 0.000 0.064 0.930 0.000 0.808 0.812 0.960 0.780 0.978 0.000 0.000 0.012 0.982
In-processing. Post-processing. Red 1 ow robustness (< 0.3). Oran2¢ Medium robustness (0.3 — 0.5). Green Hioh robustness (> 0.7).
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— No Watermark —— KGW —— Unigram — SWEET —— MorphMark —— SynthID —— EXP - = WavMark - — Timbre — = AudioSeal - - SilentCipher
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(a) FireRedTTS (b) Fish-Speech (c) Spark-TTS

Figure 6: Quality results on Seed-TTS-Eval English. All metrics are normalized to the percentage
of the best performance per metric. WER is inverted for consistent interpretation.

Ur

(a) FireRedTTS (b) Fish-Speech (c) Spark-TTS

Figure 7: Quality results on Seed-TTS-Eval Chinese. All metrics are normalized to the percentage
of the best performance per metric. WER is inverted for consistent interpretation.

UT ————— SIM Ur ———— SIM

(b) Fish-Speech (c) Spark-TTS

Uur ——— SIM
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Figure 8: Quality results on CV3-Eval English. All metrics are normalized to the percentage of the
best performance per metric. WER is inverted for consistent interpretation.
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(a) FireRedTTS (b) Fish-Speech (c) Spark-TTS

Figure 9: Quality results on CV3-Eval Chinese. All metrics are normalized to the percentage of the
best performance per metric. WER is inverted for consistent interpretation.
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Figure 10: Token length effects on watermark
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detection of CV3-Eval dataset. Audio samples split

by token count: short (0-50th percentile) vs. long (50th-100th percentile). Bars show TPR at fixed
FPR, with darker bars for shorter sequences. Colors indicate TTS models (FireRedTTS: blue, Fish-
Speech: orange, Spark-TTS: purple); hatching shows languages (solid: English, diagonal: Chinese).
Longer sequences show better detectability across all methods.
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Figure 11: Token length effects on watermark
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detection of CV3-Eval dataset. Audio samples split

by token count: short (0-50th percentile) vs. long (50th-100th percentile). Bars show TPR at fixed
FPR, with darker bars for shorter sequences. Colors indicate TTS models (FireRedTTS: blue, Fish-
Speech: orange, Spark-TTS: purple); hatching shows languages (solid: English, diagonal: Chinese).
Longer sequences show better detectability across all methods.
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