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ABSTRACT

The rise of large language model (LLM)-based text-to-speech (TTS) synthesis
has enabled unprecedented voice cloning capabilities, calling for robust content
governance. In-processing watermarking, which embeds watermarks during gen-
eration, has proven effective for text and images. The immediate research question
is to adapt in-processing watermarks to LLM-based TTS models, which similarly
generate discrete tokens before synthesis Their transferability, in terms of qual-
ity and robustness, to speech remains a critical yet unverified conundrum. We
present SpeechWakBench, the first large-scale benchmark to systematically eval-
uate the transferability of in-processing watermarking from LLMs to speech syn-
thesis. SpeechWakBench evaluates 6 adapted in-processing LLM watermarking
methods against 4 post-processing audio watermarking baselines across 3 mod-
ern LLM-based TTS models, using 16 reference-free quality metrics and a unified
detectability metric under 10 attacks. Our results show that while in-processing
watermarking produces slightly higher speech quality, it fails catastrophically in
robustness, performing substantially worse than post-processing methods. We
demonstrate that this failure is systemic, caused by the irreversible token-to-
waveform conversion. This fundamental limitation highlights potential opportu-
nities for developing novel watermarking approaches that are specifically tailored
to address the unique challenges of speech synthesis. Our code is available at
https://anonymous.4open.science/r/SpeechWakBench-1462.

1 INTRODUCTION

Large language model (LLM)-based text-to-speech (TTS) synthesis has reached a critical inflection
point where generated speech achieves near-human perceptual quality and enables sophisticated ca-
pabilities such as zero-shot voice cloning from only a few seconds of reference audio (Du et al.,
2024; Guo et al., 2024; Wang et al., 2025a). While these advances create opportunities in accessi-
bility, entertainment, and human-computer interaction, they also introduce profound societal risks,
including voice-based deepfakes and financial fraud through impersonation. These call for solutions,
such as watermark, to avoid undermining the digital audio communications (Roman et al., 2024).

Highly realistic synthetic speech has created a pressing need for robust content governance mecha-
nisms that can distinguish human speech from AI-generated audio. Unlike reactive deepfake detec-
tion systems that struggle to generalize across evolving generative models, watermarking provides a
proactive defense by embedding signatures within the generation pipeline (Liu et al., 2024d). Most
existing speech watermarks operate in a post-processing paradigm, which embeds watermarks into
the final waveform after generation (Chen et al., 2023; Liu et al., 2024c; Roman et al., 2024; Singh
et al., 2024). These methods typically involve additive modifications, which can cause quality degra-
dation and noticeable distortions. In contrast, in-processing watermarks for text (Kirchenbauer et al.,
2023; Dathathri et al., 2024) and image (Wen et al., 2023; Yang et al., 2024b) synthesis integrate
into the generation process, showing a superior trade-off between imperceptibility and robustness
over post-processing ones. This success raises a key question of whether the transferability of the
in-processing paradigm to speech synthesis can overcome current limitations of quality degradation.

State-of-the-art (SOTA) LLM-based TTS models such as FireRedTTS (Guo et al., 2024), Fish-
Speech (Liao et al., 2024), and Spark-TTS (Wang et al., 2025a) undergo a paradigm shift by em-
ploying a two-stage generation process. An LLM first autoregressively generates discrete speech
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Text-to-Speech Models   FireRedTTS, Fish-Speech, Spark-TTS

Watermarking Methods
In-processing

KGW, Unigram, SWEET
MorphMark, SynthID, EXP

Post-processing
WavMark, Timbre

AudioSeal, SilentCipher

Attacks
Time stretch, Smooth

Gaussian noise, Background noise
Echo, MP3 compression
EnCodec, Quantization

High-pass filter, Low-pass filter

Metrics
Quality

WER, Speaker Similarity
UTMOS, PLCMOS, 

DNSMOS Overall, Squim PESQ
Detectability

TPR@X%FPR

Figure 1: SpeechWakBench evaluates 10 watermarking methods across 3 LLM-based TTS models,
using 16 quality metrics and a unified detectability metric under 10 attack scenarios.

tokens from a learned codebook, which are then converted into audio by a separate vocoder. This
intermediate token generation process is functionally equivalent to text generation in language mod-
els, creating an opportunity to adapt existing LLM watermarking techniques (Kirchenbauer et al.,
2023; Liu et al., 2024b; Wu et al., 2023) to the speech domain.

We present SpeechWakBench, the first comprehensive benchmark to systematically evaluate the
transferability of in-processing LLM watermarking techniques to speech synthesis. Our investiga-
tion includes 6 SOTA in-processing watermarks adapted for TTS architectures alongside 4 post-
processing audio watermarking baselines across 3 LLM-based TTS models that support zero-shot
voice cloning. We specifically introduce 16 reference-free quality metrics, unique to evaluating
in-processing watermarks, and a unified detectability framework based on TPR@X%FPR to stan-
dardize evaluation. Our surprising findings reveal that successful LLM watermarking paradigms
cannot be blindly transferred to speech. Contrary to expectations from text and image watermark-
ing, in-processing speech watermarks show weaker robustness than post-processing approaches due
to vulnerabilities introduced when reversing the token-to-waveform conversion. This finding chal-
lenges prevailing assumptions about the superiority of in-processing watermarking (Kirchenbauer
et al., 2023; Dathathri et al., 2024) and highlights the need for watermarking methods designed
specifically for LLM-based speech synthesis. To summarize, we list our contributions as follows:

1. We present SpeechWakBench, the first large-scale benchmark to systematically evaluate the
transferability of in-processing watermarking from LLMs to speech synthesis.

2. We conduct the first systematic study of speech watermarking by comparing 6 in-processing and
4 post-processing methods across 3 SOTA LLM-based TTS models under 10 attacks.

3. We introduce a quality evaluation protocol, tailored to in-processing watermarks, using 16
reference-free metrics that eliminate bias from ground truth.

4. We establish a unified detectability assessment framework using TPR@X%FPR that standard-
izes evaluation across methods with different detection statistics, such as p-value or bit accuracy.

2 SPEECH SYNTHESIS AND WATERMARKS

We review related works on post-processing speech watermarks, in-processing LLM watermarks,
and LLM-based TTS models. To the best of our knowledge, this is the first work to investigate
in-processing watermarking for speech LLMs.

Post-processing speech watermarks embed watermarks after speech generation by modifying the
final waveform. This process allows the use of non-watermarked reference speech for assessing
quality degradation through reference-based metrics such as Signal-to-Noise Ratio (SNR) and per-
ceptual distance measures. WavMark (Chen et al., 2023) introduces invertible neural networks for
reciprocal encoding-decoding, while Timbre Watermarking (Liu et al., 2024c) targets voice cloning
detection through frequency-temporal watermarking. More recent work like AudioSeal (Roman
et al., 2024) uses jointly trained generator-detector networks optimized for real-time deployment,
and SilentCipher (Singh et al., 2024) integrates psychoacoustic models and compression layers to
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Table 1: Comparison of SpeechWakBench with existing works. Number of { IN In-processing
Watermarks; POST Post-processing Watermarks; ATT Attacks; RD Real Datasets; SD Synthetic
Datasets; REF-B Reference-based Quality Metrics; REF-F Reference-free Quality Metrics}.

Research Work IN POST ATT RD SD REF-B REF-F Detectability Metric

WavMark1 % 4 10 4 % 1 1 Bit accuracy
Timbre2 % 4 15 2 % 1 3 Bit accuracy
AudioSeal3 % 2 14 2 4 1 3 Bit accuracy, TPR, FPR
SilentCipher4 % 4 11 3 % 1 % Bit accuracy
AudioMarkBench5 % 3 15 2 % 2 % Bit accuracy, FNR, FPR

SpeechWakBench 6 4 10 % 2 × 3 (models) % 16 TPR@X%FPR
1 Chen et al. (2023). 2 Liu et al. (2024c). 3 Roman et al. (2024). 4 Singh et al. (2024). 5 Liu et al. (2024d).

preserve audio quality. However, these methods remain fragile against common distortions and neu-
ral transformations (Liu et al., 2024d). While AudioMarkBench (Liu et al., 2024d) provides a broad
robustness evaluation, its reliance on reference-based metrics such as ViSQOL and SNR limits its
applicability to in-processing methods, where no non-watermarked reference speech exists.

In-processing LLM watermarks integrate watermarking directly into the token generation pro-
cess. Early methods such as KGW (Kirchenbauer et al., 2023) introduced the “green-list” paradigm,
later extended by Unigram (Zhao et al., 2024) and SWEET (Lee et al., 2024). Production-ready
watermarking systems like SynthID-Text (Dathathri et al., 2024) demonstrate deployment readiness
with multi-state detection, while MorphMark (Wang et al., 2025b) highlights adaptability by dy-
namically selecting strategies. Semantic watermarking schemes such as SIR (Liu et al., 2024b), X-
SIR (He et al., 2024), and k-SemStamp (Hou et al., 2024) embed meaning-level signals to withstand
paraphrasing and cross-lingual transformations. Distribution-preserving methods like DiPmark (Wu
et al., 2023), Unbiased Watermark (Hu et al., 2024), as well as noise-based approaches such as
EXP (Aaronson & Kirchner, 2022) and Permute-and-Flip (Zhao et al., 2025), expand the design
space by embedding watermarks while maintaining fidelity. Trust and verification have also been
explored through frameworks such as UPV (Liu et al., 2024a). However, all of these methods have
been developed for text generation, while their transferability to speech remains entirely unexplored.

LLM-based TTS models generate speech using a discrete tokenization strategy, where an LLM
predicts speech tokens that a vocoder then renders into audio. In this paper, we focus on LLM-based
TTS models that support zero-shot voice cloning. FireRedTTS (Guo et al., 2024) uses HuBERT-
based tokenization with a flow-matching vocoder for deployment, Fish-Speech (Liao et al., 2024)
employs grouped quantization within a dual autoregressive framework for multilingual synthesis,
and Spark-TTS (Wang et al., 2025a) introduces a streamlined decoder-only architecture with Bi-
Codec tokenization. These models achieve highly natural, expressive, and controllable audio with
advanced capabilities such as zero-shot voice cloning and multilingual support. Importantly, their
token prediction stage is architecturally equivalent to text generation with LLMs, making it possible
to adapt in-processing LLM watermarking from text to speech.

3 SPEECHWAKBENCH

As shown in Table 1, SpeechWakBench stands out by covering 10 watermarking methods across 6
synthetic datasets generated from 3 LLM-based TTS models. It further incorporates 16 reference-
free quality metrics and a unified detectability metric, making it the most comprehensive and re-
alistic evaluation framework for speech watermarking to date. Following Figure 2, we provide an
overview of SpeechWakBench, including the in-processing and post-processing pipeline. The pro-
cess is mainly divided into two stages: (i) watermark embedding and (ii) watermark detection. Key
notations are summarized in Appendix A. Details of benchmark design are provided in Appendix B.

3.1 IN-PROCESSING WATERMARKING ON LLM-BASED TTS MODELS

SOTA LLM-based TTS models such as FireRedTTS (Guo et al., 2024), Fish-Speech (Liao et al.,
2024), and Spark-TTS (Wang et al., 2025a) follow a unified token-based generation pipeline that
can be decomposed into two main stages.
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Figure 2: Pipeline of SpeechWakBench. In-processing methods embed watermarks during token
generation. For example, KGW watermark divides tokens into red and green lists. During to-
ken generation, more tokens are selected from the green list. Post-processing methods modify the
waveform directly, encoding bits as black (“0”) or white (“1”) regions. Detection uses p-value for
in-processing and bit accuracy for post-processing. All results are unified using TPR@X%FPR.

In the first stage, given input text T , reference audio Aref for zero-shot synthesis, and optional
control attributes C = {cspeed, cpitch, cemotion}, an autoregressive language model MLLM generates a
sequence of discrete speech tokens x = (x1, x2, . . . , xT ) ∈ VT , where V denotes the discrete token
vocabulary. The generation process follows:

p(xt|x<t, T ,Aref, C) = softmax(MLLM(x<t, T ,Aref, C)),

where t denotes the time step in the autoregressive generation process. In Spark-TTS, this includes
both semantic tokens x(s) ∈ VTs

s capturing linguistic content and global tokens x(g) ∈ VTg
g encoding

speaker characteristics. In the second stage, the generated discrete tokens are decoded into waveform
audio using a neural decoder y = D(x) ∈ RN , where D : VT → RN represents the neural vocoder.

3.1.1 WATERMARK EMBEDDING

In-processing watermarks modify the token generation process during the first stage using a secret
key k ∈ K. They can be grouped into two categories:

Logit Modification Method Directly modify the probability distributions before sampling:

l̃t = Wlogit(k, lt, x<t, t),

where lt ∈ R|V| are the original logits and l̃t are the watermarked logits. For instance,
KGW (Kirchenbauer et al., 2023) watermark generates a context-dependent secret key k(t) =
H(xt−h, . . . , xt−1, k), where H is a cryptographic hash function and h is the context window
size. This key seeds a random number generator to partition the vocabulary into disjoint sets
V = Gk(t) ∪Gk(t) , where the green-list Gk(t) contains γ|V| tokens for γ ∈ [0, 1]. The logit modifica-
tion follows:

l̃t[v] =

{
lt[v] + δ if v ∈ Gk(t)

lt[v] if v ∈ Gk(t)

,

where δ > 0 controls watermark strength. After softmax normalization, this increases green-list
token probabilities while maintaining Ek[p̃t] = pt across different keys.

Sampling Modification Method Alter the sampling strategy while preserving the original logits:

xt ∼ Pwatermark(k, lt, x<t, t),

where Pwatermark incorporates watermark patterns through deterministic processes. For example,
EXP (Aaronson & Kirchner, 2022) watermark generates a secret vector r(t) ∈ [0, 1]|V| using the
same context-dependent key k(t) = H(xt−h, . . . , xt−1, k). For each token v, a uniform random
value r

(t)
v ∼ Uniform(0, 1) is sampled from the seeded generator. The token selection follows the

exponential minimum principle:

xt = argmax
v∈V

{
(r(t)v )1/pt[v]

}
,

4
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where pt[v] = softmax(lt)[v]. This deterministic selection maintains the exact original distribution
P (xt = v) = pt[v] over the randomness in the secret vector. Logit modification methods create a
direct trade-off between detectability and text quality, as a stronger signal requires a larger distortion
of the original probability distribution, potentially leading to lower quality generated tokens. In
contrast, some sampling modification methods (Kuditipudi et al., 2024) aim to be “distortion-free”
by preserving the original distribution, but this can weaken the detectability of the watermark.

3.1.2 WATERMARK DETECTION

Watermark detection requires the inversion of the generation pipeline, i.e., from speech to tokens,
and applying statistical hypothesis testing. The process involves three main steps:

1. Token Recovery Extract discrete semantic tokens from potentially watermarked speech ŷ ∈
RN using the speech encoder:

x̂ = E(ŷ) ∈ VT ,

where E : RN → VT is the speech encoder (e.g., BiCodec’s semantic tokenizer).
2. Statistical Hypothesis Testing Test the hypothesis H0: “the semantic tokens are without

watermark” against H1: “the semantic tokens are watermarked”, then compute a detection score
ST based on the recovered token sequence x̂ and the secret key k

ST = Fscore(k, x̂),

where Fscore is the scoring function that measures the statistical bias toward favorable tokens in
the recovered sequence.

3. Watermark Detection Calculate the p-value based on the score’s distribution under H0 and
compare against a predetermined false positive rate α. The speech is flagged as watermarked if
p-value(ST ) < α.

This detection process leverages the discrete nature of the LLM part of TTS models. Based on the
prior performance of in-processing LLM watermarks on text, one would expect reliable watermark
detection with theoretical guarantees on false positive rates without requiring access to the original
generation model parameters.

3.2 BENCHMARK DESIGN AND EVALUATION PROTOCOL

LLM-based TTS Models We evaluate watermarking methods on 3 recent LLM-based zero-shot
TTS models: FireRedTTS (Guo et al., 2024), Fish-Speech (Liao et al., 2024), and Spark-TTS (Wang
et al., 2025a). These SOTA models share a common architecture of discrete token prediction fol-
lowed by neural vocoding, making them directly compatible with in-processing watermarking. At
the same time, they differ in training data and architectural design, providing diversity in linguis-
tic coverage and synthesis quality. Since watermark embedding requires access to model internals,
our analysis focuses on open-source models. Nonetheless, the benchmark remains applicable for
internal evaluation of closed-source models by model developers.

Datasets To ensure a robust and comprehensive evaluation, we use 2 distinct benchmarks: Seed-
TTS-Eval (Anastassiou et al., 2024) and CV3-Eval (Du et al., 2025). Seed-TTS-Eval is an out-of-
domain test set specifically designed to assess zero-shot speech generation capabilities. It comprises
English and Chinese samples drawn from public corpora, including 1,000 samples from Common
Voice (Ardila et al., 2020) and 2,000 from DiDiSpeech-2 (Guo et al., 2021). Complementing this,
the CV3-Eval benchmark addresses the limitations of traditional clean audiobook datasets like Lib-
riSpeech (Panayotov et al., 2015) by including noisy and real-world recordings. This provides a
more challenging evaluation of multilingual voice cloning and emotional expressiveness (Du et al.,
2025). For our experiments, we use the English (EN) and Chinese (ZH) subsets from both bench-
marks and generate speech samples using all 3 LLM-based TTS models. We perform zero-shot
voice cloning by following the original speech and prompt from each dataset.

Watermarking Methods In our benchmark, we evaluate 6 in-processing and 4 post-processing
watermarking methods. The in-processing methods include KGW (Kirchenbauer et al., 2023), Un-
igram (Zhao et al., 2024), SWEET (Lee et al., 2024), MorphMark (Wang et al., 2025b), Google’s

5
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(c) Spark-TTS

Figure 3: Quality results on CV3-Eval English dataset. All metrics are normalized to the percentage
of the best performance per metric. WER is inverted for consistent interpretation.

SynthID (Dathathri et al., 2024), and EXP (Aaronson & Kirchner, 2022). On the other hand, we
consider WavMark (Chen et al., 2023), Timbre (Liu et al., 2024c), AudioSeal (Roman et al., 2024),
and SilentCipher (Singh et al., 2024) for post-processing methods.

Attacks To assess robustness, we evaluate watermarking methods under 10 attack scenarios across
multiple categories based on the implementation from AudioMarkBench (Liu et al., 2024d). Tem-
poral distortions include time stretching (TS) and smoothing (SMH). Noise-based distortions cover
Gaussian noise (GN), background noise (BN), and echo. Compression and quantization distortions
consist of MP3 compression (MP3), EnCodec (ECD), and quantization (QNT). Finally, filtering dis-
tortions include high-pass filtering (HPF) and low-pass filtering (LPF). Parameter settings for each
attack are provided in Appendix B.4.

Quality Metrics A key challenge in evaluating in-processing watermarks is the absence of ground
truth reference speech, which makes traditional reference-based metrics unsuitable. While post-
processing watermarks can be assessed against the non-watermarked ones, this inherently biases the
comparison. To ensure fairness across both paradigms, we adopt 16 reference-free metrics to assess
the quality of watermarked or non-watermarked synthetic speech by following the VERSA bench-
mark (Shi et al., 2025). For the main analysis, we provide 6 of them according to prior works (Du
et al., 2025; Wang et al., 2025a). These include Word Error Rate (WER) (Anastassiou et al., 2024)
for intelligibility, Speaker Similarity (SIM) (Jung et al., 2024) for voice identity preservation, and
several non-intrusive predictors of overall naturalness, including UTMOS (UT) (Saeki et al., 2022),
PLCMOS (PLC) (Diener et al., 2023), DNSMOS Overall (DNS) (Reddy et al., 2022), and Torch-
Squim PESQ (PESQ) (Kumar et al., 2023). All 16 metrics are shown in Appendix B.5.

Unified Detectability Metric Different watermarking schemes can produce different detection
outputs, such as p-values, bit accuracy, or empirical scores, which makes direct comparison dif-
ficult. To standardize evaluation, we adopt the True Positive Rate at a fixed False Positive Rate
(TPR@X%FPR) as a unified detectability metric. This provides a consistent measure of detection
reliability at a specified tolerance for false alarms (e.g., X = 3.0% or 0.2%). For p-value based meth-
ods, TPR is computed as the proportion of watermarked samples with p-value smaller than the cho-
sen FPR threshold α (e.g., TPR@3.0%FPR uses α = 0.03). For bit accuracy methods, we treat bit
accuracy as a test statistic under the null hypothesis H0 : “speech is non-watermarked” (random bit
recovery), where for an m-bit message, X ∼ Binomial(m, 0.5) represents correctly recovered bits.
To achieve X% FPR, the threshold is set as τ = min{k : P (Binomial(m, 0.5) ≥ k) ≤ X%}. For
example, with m = 16 bits, the thresholds are τ3.0% = 13 (bit accuracy ≥ 81.25%) and τ0.2% = 14
(bit accuracy ≥ 87.5%). For empirical score methods, we collect scores from N non-watermarked
samples and set the threshold as the (100−X)-th percentile τ = percentile100−X({s1, s2, . . . , sN}).

4 BENCHMARKING RESULTS AND ANALYSIS

We conduct extensive evaluations of speech watermarking across 3 aspects: quality, detectability,
and robustness. Additional experimental results and extended analyses are included in Appendix C.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Quality and detectability performance of watermarking methods on Seed-TTS-Eval.

EN ZH
M

od
el Quality Metric TPR@X%FPR Quality Metric TPR@X%FPR

Method WER ↓ SIM ↑ UT ↑ PLC ↑ DNS ↑ PESQ ↑ 0.2% ↑ 3.0% ↑ WER ↓ SIM ↑ UT ↑ PLC ↑ DNS ↑ PESQ ↑ 0.2% ↑ 3.0% ↑
No Watermark 2.5 0.63 3.64 4.12 3.04 3.20 — — 1.2 0.74 2.93 4.17 3.16 3.47 — —
KGW 2.6 0.63 3.62 4.10 3.04 3.20 0.875 0.966 1.1 0.75 2.92 4.16 3.15 3.48 0.997 1.000
Unigram 2.8 0.63 3.62 4.12 3.05 3.18 1.000 1.000 1.2 0.74 2.91 4.16 3.15 3.47 1.000 1.000
SWEET 2.6 0.63 3.62 4.12 3.04 3.18 0.873 0.976 1.2 0.75 2.92 4.16 3.15 3.48 0.995 1.000
MorphMark 2.5 0.63 3.63 4.13 3.04 3.18 0.062 0.274 1.2 0.74 2.93 4.17 3.16 3.47 0.101 0.360
SynthID 2.6 0.63 3.61 4.11 3.04 3.19 0.966 0.995 1.2 0.74 2.92 4.15 3.15 3.47 0.998 1.000
EXP 2.2 0.65 3.97 4.24 3.12 3.42 1.000 1.000 1.0 0.75 3.29 4.31 3.22 3.66 1.000 1.000
WavMark 2.6 0.63 3.57 4.12 3.00 3.11 1.000 1.000 1.1 0.73 2.89 4.25 3.13 3.36 1.000 1.000
Timbre 2.6 0.62 3.47 3.82 2.88 2.84 1.000 1.000 1.2 0.73 2.74 3.81 2.99 2.98 1.000 1.000
AudioSeal 2.6 0.63 3.61 4.14 3.02 3.18 1.000 1.000 1.2 0.74 2.89 4.15 3.13 3.45 1.000 1.000

Fi
re

R
ed

T
T

S

SilentCipher 2.5 0.63 3.63 4.26 3.04 3.22 0.980 0.981 1.2 0.74 2.94 4.32 3.16 3.49 0.998 0.998

No Watermark 2.0 0.53 4.15 4.45 3.22 3.58 — — 1.1 0.69 3.50 4.47 3.26 3.56 — —
KGW 1.8 0.53 4.14 4.44 3.22 3.58 0.075 0.235 1.2 0.68 3.45 4.47 3.25 3.56 0.253 0.515
Unigram 2.3 0.53 4.14 4.44 3.22 3.58 1.000 1.000 1.2 0.69 3.46 4.46 3.25 3.55 0.996 0.998
SWEET 2.0 0.53 4.14 4.44 3.22 3.59 0.066 0.243 1.3 0.68 3.45 4.46 3.25 3.56 0.289 0.544
MorphMark 2.0 0.53 4.15 4.44 3.22 3.59 0.000 0.001 1.3 0.69 3.48 4.47 3.26 3.57 0.000 0.001
SynthID 2.0 0.53 4.14 4.44 3.22 3.59 0.458 0.818 1.2 0.68 3.45 4.46 3.25 3.56 0.840 0.957
EXP 2.1 0.54 4.21 4.46 3.24 3.66 1.000 1.000 1.2 0.69 3.54 4.49 3.28 3.61 0.998 0.999
WavMark 2.1 0.55 4.04 4.46 3.16 3.38 1.000 1.000 1.2 0.69 3.39 4.52 3.18 3.35 1.000 1.000
Timbre 2.1 0.51 4.04 4.32 3.14 3.39 1.000 1.000 1.2 0.67 3.32 4.30 3.18 3.25 1.000 1.000
AudioSeal 2.1 0.53 4.14 4.45 3.19 3.55 1.000 1.000 1.2 0.69 3.46 4.46 3.21 3.53 1.000 1.000

Fi
sh

-S
pe

ec
h

SilentCipher 2.1 0.54 4.15 4.45 3.22 3.60 0.969 0.969 1.2 0.69 3.50 4.47 3.27 3.57 1.000 1.000

No Watermark 2.7 0.59 3.93 4.39 3.12 3.31 — — 1.6 0.67 3.28 4.38 3.22 3.58 — —
KGW 3.0 0.59 3.89 4.37 3.12 3.27 0.450 0.685 1.5 0.67 3.24 4.37 3.22 3.58 0.482 0.765
Unigram 5.2 0.58 3.88 4.32 3.08 3.24 0.851 0.926 3.6 0.65 3.36 4.31 3.18 3.57 0.964 0.991
SWEET 4.3 0.58 3.90 4.35 3.11 3.26 0.463 0.680 2.7 0.67 3.23 4.36 3.21 3.56 0.535 0.765
MorphMark 2.6 0.59 3.94 4.39 3.14 3.31 0.032 0.182 2.7 0.67 3.27 4.37 3.22 3.59 0.044 0.224
SynthID 2.8 0.60 3.90 4.38 3.13 3.30 0.365 0.626 1.4 0.67 3.23 4.36 3.22 3.57 0.000 0.778
EXP 18.3 0.48 3.73 3.99 2.76 2.96 0.662 0.744 14.0 0.60 3.14 4.17 3.02 3.39 0.895 0.919
WavMark 3.9 0.60 3.76 4.30 3.09 3.24 0.997 0.997 1.6 0.67 3.15 4.32 3.12 3.39 0.996 0.996
Timbre 2.8 0.59 3.78 4.19 2.96 2.95 1.000 1.000 2.3 0.65 3.09 4.17 3.02 3.13 1.000 1.000
AudioSeal 2.8 0.59 3.91 4.41 3.11 3.25 1.000 1.000 2.3 0.67 3.25 4.36 3.20 3.54 1.000 1.000

Sp
ar

k-
T

T
S

SilentCipher 2.8 0.57 3.93 4.40 3.11 3.33 0.962 0.963 1.4 0.67 3.23 4.36 3.22 3.57 0.995 0.995
■ In-processing. ■ Post-processing. ↑ Higher is better. ↓ Lower is better.

4.1 BENCHMARKING SYNTHETIC SPEECH QUALITY AND WATERMARK DETECTABILITY

Table 2 shows that in-processing watermarking methods consistently outperform post-processing
baselines. This indicates that embedding watermarks during token generation does not degrade the
speech quality. As depicted in Figure 3, we observe that most post-processing methods (dashed
lines) fall within the performance boundaries of in-processing methods (solid lines). Notably, the
EXP watermark consistently achieves the best overall quality with FireRedTTS and Fish-Speech
models. However, it struggles with Spark-TTS. This is because Spark-TTS fails to generate speech
for certain input prompts, resulting in silent outputs. This limitation highlights the importance of
considering architectures of LLM-based TTS models when applying in-processing watermarking.

To evaluate the watermark detectability, we report TPR@X%FPR using 0.2% and 3.0% thresholds,
which correspond to 14/16 and 13/16 bit accuracy for a 16 bits watermark message. As shown
in Table 2, post-processing baselines achieve a nearly perfect detection even at the stricter 0.2% FPR,
whereas in-processing methods show an inconsistent and often weak performance. For instance,
Unigram and EXP watermarks on FireRedTTS and Fish-Speech, and SynthID on FireRedTTS,
achieve an almost perfect TPR@0.2%FPR. However, KGW and MorphMark watermarks underper-
form other baselines, especially on Fish-Speech model. This differs greatly from text (Kirchenbauer
et al., 2023) and image (Yang et al., 2024b) watermarking, where in-processing methods are known
to provide highly reliable detection. Additional results are provided in Appendix C.

4.2 BENCHMARKING WATERMARK ROBUSTNESS AGAINST ATTACKS

Table 3 presents robustness results under a wide range of speech transformations. Post-processing
watermarks, except SilentCipher, successfully defend against more than half of the attacks. In con-
trast, in-processing methods are less reliable. Although the EXP watermark achieves strong de-
tectability without attacks, it does poorly under most attacks, achieving TPR@0.2%FPR above 0.7
in only two cases on the Fish-Speech model, hence reflecting difficulties in balancing the trade-
off between quality and robustness. Besides, almost all methods fail under EnCodec, quantization,
and high-pass filtering attacks. This pattern is also consistently observed across our comprehensive
attack evaluation reported in Appendix C, indicating fundamental limitations in the robustness of
in-processing watermarking against realistic speech distortions.
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Table 3: Robustness evaluation results on Seed-TTS-Eval under attacks. All metrics represent
TPR@0.2% FPR (higher is better).

M
od

el EN ZH

Method TS SMH GN BN Echo MP3 ECD QNT HPF LPF TS SMH GN BN Echo MP3 ECD QNT HPF LPF

KGW 0.000 0.006 0.149 0.270 0.000 0.824 0.020 0.008 0.000 0.875 0.000 0.006 0.602 0.788 0.000 0.995 0.032 0.033 0.000 0.997
Unigram 0.092 0.051 0.742 0.870 0.015 0.998 0.369 0.086 1.000 1.000 0.203 0.142 0.991 1.000 0.143 1.000 0.727 0.310 1.000 1.000
SWEET 0.000 0.002 0.151 0.255 0.000 0.844 0.017 0.014 0.000 0.873 0.000 0.003 0.584 0.772 0.002 0.995 0.037 0.021 0.000 0.995
MorphMark 0.000 0.001 0.006 0.011 0.000 0.052 0.002 0.008 0.000 0.062 0.000 0.003 0.021 0.021 0.000 0.090 0.005 0.012 0.000 0.101
SynthID 0.005 0.005 0.206 0.342 0.033 0.943 0.017 0.009 0.000 0.966 0.012 0.009 0.538 0.755 0.052 0.998 0.042 0.026 0.000 0.998
EXP 0.050 0.097 0.919 0.987 0.342 1.000 0.591 0.092 0.000 1.000 0.049 0.110 0.998 1.000 0.534 1.000 0.622 0.316 0.000 1.000
WavMark 0.506 1.000 0.987 1.000 0.976 1.000 0.000 0.159 0.000 1.000 0.770 1.000 1.000 1.000 1.000 1.000 0.000 0.408 0.000 1.000
Timbre 1.000 1.000 1.000 1.000 0.999 1.000 0.523 0.998 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.451 1.000 0.000 1.000
AudioSeal 0.993 0.999 1.000 1.000 0.999 1.000 0.829 0.988 0.000 1.000 0.973 1.000 1.000 1.000 1.000 1.000 0.806 0.993 0.000 1.000

Fi
re

R
ed

T
T

S

SilentCipher 0.000 0.596 0.863 0.807 0.460 0.979 0.000 0.000 0.000 0.979 0.000 0.820 0.988 0.984 0.785 0.998 0.000 0.000 0.000 0.998

KGW 0.000 0.000 0.000 0.000 0.000 0.073 0.000 0.000 0.000 0.076 0.000 0.000 0.000 0.002 0.000 0.283 0.000 0.000 0.000 0.283
Unigram 0.196 0.060 0.027 0.143 0.000 0.955 0.016 0.074 0.002 0.958 0.345 0.096 0.188 0.500 0.011 0.997 0.038 0.085 0.000 0.996
SWEET 0.000 0.000 0.000 0.000 0.000 0.068 0.000 0.000 0.000 0.066 0.000 0.000 0.000 0.002 0.000 0.273 0.000 0.000 0.000 0.287
MorphMark 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SynthID 0.001 0.004 0.007 0.016 0.001 0.441 0.004 0.001 0.000 0.460 0.000 0.014 0.035 0.104 0.001 0.838 0.012 0.002 0.000 0.840
EXP 0.000 0.087 0.052 0.176 0.002 0.953 0.020 0.000 0.000 0.961 0.000 0.065 0.267 0.458 0.004 0.993 0.027 0.000 0.000 0.992
WavMark 0.936 0.994 0.765 0.955 0.982 1.000 0.000 0.105 0.000 1.000 0.980 1.000 0.956 0.999 1.000 1.000 0.000 0.205 0.000 1.000
Timbre 1.000 1.000 1.000 1.000 0.994 1.000 0.483 0.999 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.596 1.000 0.000 1.000
AudioSeal 0.993 1.000 1.000 1.000 0.997 1.000 1.000 0.997 0.000 1.000 0.973 1.000 1.000 1.000 0.999 1.000 1.000 0.998 0.000 1.000

Fi
sh

-S
pe

ec
h

SilentCipher 0.000 0.763 0.905 0.842 0.397 0.965 0.000 0.001 0.000 0.967 0.000 0.763 0.905 0.842 0.397 0.965 0.000 0.001 0.000 0.967

KGW 0.040 0.005 0.212 0.316 0.045 0.436 0.024 0.007 0.000 0.449 0.047 0.001 0.257 0.362 0.031 0.472 0.013 0.006 0.000 0.482
Unigram 0.222 0.048 0.701 0.800 0.073 0.842 0.353 0.077 1.000 0.851 0.246 0.035 0.889 0.945 0.031 0.964 0.591 0.095 0.999 0.964
SWEET 0.169 0.013 0.203 0.329 0.034 0.457 0.020 0.014 0.014 0.465 0.320 0.007 0.292 0.400 0.018 0.538 0.048 0.007 0.005 0.535
MorphMark 0.034 0.006 0.028 0.026 0.032 0.032 0.029 0.006 0.000 0.032 0.056 0.002 0.019 0.037 0.012 0.048 0.006 0.004 0.000 0.044
SynthID 0.017 0.003 0.147 0.214 0.004 0.348 0.034 0.008 1.000 0.365 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.001 0.877 0.000
EXP 0.023 0.066 0.528 0.606 0.088 0.652 0.260 0.085 0.003 0.663 0.016 0.045 0.832 0.870 0.077 0.889 0.447 0.109 0.000 0.895
WavMark 0.179 0.997 0.993 0.997 0.948 1.000 0.000 0.057 0.000 0.997 0.321 0.996 0.995 0.996 0.992 1.000 0.000 0.115 0.000 0.996
Timbre 0.999 1.000 1.000 1.000 1.000 1.000 0.405 0.997 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.225 0.997 0.000 1.000
AudioSeal 0.980 0.994 1.000 1.000 0.999 1.000 0.000 0.902 0.000 1.000 0.965 0.996 1.000 1.000 1.000 1.000 0.085 0.950 0.000 1.000

Sp
ar

k-
T

T
S

SilentCipher 0.000 0.476 0.502 0.822 0.336 0.952 0.000 0.000 0.000 0.957 0.000 0.700 0.847 0.974 0.592 0.990 0.000 0.000 0.000 0.990
■ In-processing. ■ Post-processing. Red Low robustness (< 0.3). Orange Medium robustness (0.3 − 0.5). Green High robustness (> 0.7).

4.3 DISCUSSION

Understanding Architecture Dependent Watermark Detectability To investigate the underly-
ing factors that cause in-processing watermarks to exhibit different levels of detectability across
LLM-based TTS models, we conduct a systematic analysis of the token-to-audio-to-token recon-
struction process. We quantify four key aspects: (1) reconstruction accuracy by comparing origi-
nal language model outputs against tokens reconstructed from synthesized audio, (2) average token
length, which is determined by the average audio duration and the generated tokens per audio length,
(3) average duration of generated audio samples, and (4) tokens per second in the generated audio.

As depicted in Figure 4, we compute the results based on the CV3-Eval dataset for both English and
Chinese samples. Our analysis shows that the architectural properties of a model are strongly corre-
lated with watermark detectability. FireRedTTS demonstrates optimal conditions with high recon-
struction accuracy and long token sequences, while Fish-Speech shows comparable reconstruction
accuracy but produces shorter tokens. In contrast, Spark-TTS performs the worst, with both low
reconstruction accuracy and very short token length. To capture these effects, we define “valid to-
kens” as the product of reconstruction accuracy and token length, which reflects both fidelity and the
quantity of preserved information through the synthesis pipeline. As a result, FireRedTTS achieves
the highest valid token count, followed by Fish-Speech, while Spark-TTS lags far behind. This mea-
sure serves as a strong indicator of watermark detectability across architectures of LLM-based TTS
models, as higher valid token counts allow watermarks to be preserved more reliably.

Understanding Poor Robustness of In-processing Watermarks The key difference between
LLM-based watermarks in text generation and their adaptation to LLM-based TTS models is the
additional token-to-waveform synthesis step. We evaluate token reconstruction accuracy across
LLM-based TTS models under various attacks to understand this relationship. As shown in Figure 5,
most attacks significantly lower the token reconstruction accuracy across all models, with only MP3
compression and low-pass filtering showing minimal impact. Thus, the token reconstruction accu-
racy directly correlates with attack robustness. For example, the EXP watermark on FireRedTTS
maintains high detection rates under attacks that preserve tokens (MP3 compression, low-pass fil-
tering) but fails under attacks that corrupt tokens (quantization, time stretching, high-pass filtering).
This explains why the in-processing watermarks struggle in LLM-based TTS models. Unlike text
watermarking, where watermarked tokens remain in their original domain, LLM-based TTS models
must preserve token-level information through an additional synthesis and reconstruction pipeline.
Attacks that disrupt this pipeline break the fundamental assumption of token-level watermarking,
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Figure 4: TTS Model Performance Comparison on CV3-Eval dataset: (a) Token reconstruction
accuracy, (b) Average token length, (c) Average audio duration, (d) Token generation rate.
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Figure 5: Token reconstruction accuracy under different attacks on CV3-Eval dataset.

leading to poor robustness of in-processing methods compared to post-processing baselines that
embed watermarks directly in the speech waveform.

5 CONCLUSION

We present SpeechWakBench, the first benchmark evaluating in-processing watermark transferabil-
ity from LLMs to speech synthesis. We compare 6 in-processing and 4 post-processing methods
across 3 SOTA LLM-based TTS models under 10 attacks, introduce 16 reference-free quality met-
rics for unbiased evaluation, and establish a unified detectability evaluation based on TPR@X%FPR.
Our results show that in-processing watermarks preserve speech quality but fail under attacks due
to the irreversible token-to-waveform conversion and degradation of token reconstruction accuracy,
while post-processing methods are more robust at the cost of quality. These findings demonstrate
that text watermarking methods cannot be directly applied to speech, highlighting the need for novel
approaches that explicitly address the challenges of the token-to-waveform conversion bottleneck.

Limitations In this research, we applied in-processing watermarks only to LLM with autoen-
coder architecture-based TTS models. Some SOTA LLM-based TTS models (Du et al., 2024)
use flow-matching for token-to-waveform conversion, where waveform-to-token reconstruction is
more difficult. Future work could investigate inverting the flow-matching component to embed in-
processing watermarks. Due to dataset size and the number of watermarking methods, we only
considered no-box attacks. White-box and black-box attacks require more evaluation time, making
robustness under such attacks an interesting open problem. All watermarking methods used default
hyperparameters from their implementations. The influence of hyperparameter tuning on different
watermarks presents another interesting research direction.
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Reproducibility Statement To ensure the reproducibility of our research, we have open-sourced
the complete SpeechWakBench codebase at https://anonymous.4open.science/r/
SpeechWakBench-1462. This repository includes implementations of all 10 watermarking
methods, the 16 reference-free quality metrics, 10 attack scenarios, and evaluation scripts for all
three LLM-based TTS models. All experiments utilize publicly available datasets (Seed-TTS-Eval
and CV3-Eval) and open-source models (FireRedTTS, Fish-Speech, Spark-TTS), with detailed hy-
perparameters documented in the appendices and the codebase.

Ethics Statement This research on speech watermarking aims to advance content governance for
AI-generated audio, addressing critical societal needs for combating voice cloning and voice-based
fraud. Large language models were used solely for language polishing and grammar correction
during paper writing.
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A NOMENCLATURE

α False positive rate threshold

δ Watermark strength parameter

γ Fraction of vocabulary in green-list

x̂ Recovered token sequence

ŷ Potentially watermarked speech

lt Original logits at time step t

r(t) Secret vector for EXP watermark

x Sequence of discrete speech tokens

x(g) Global tokens

x(s) Semantic tokens

y Waveform audio

Aref Reference audio for zero-shot synthesis

C Control attributes including speed, pitch, and emotion

D Neural decoder/vocoder

E Speech encoder

Fscore Scoring function

Gk(t) Green-list tokens at time step t

K Key space

MLLM Autoregressive language model

Pwatermark Watermark sampling distribution

T Input text

V Discrete token vocabulary

Vg Global token vocabulary

Vs Semantic token vocabulary

Wlogit Logit modification watermarking function

Gk(t) Non-green-list tokens at time step t

τ Detection threshold

l̃t Watermarked logits at time step t

p̃t Watermarked probability distribution at time step t

cspeed, cpitch, cemotion Individual control attributes

H Cryptographic hash function

h Context window size

H0 Null hypothesis (no watermark)

H1 Alternative hypothesis (watermarked)

k Secret key

k(t) Context-dependent secret key at time t

m Number of bits in watermark message

N Length of waveform audio

pt Original probability distribution at time step t

pt[v] Probability of token v at time step t
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r
(t)
v Random value for token v in EXP watermark

ST Detection score

T Total number of tokens

t Time step in autoregressive generation

Tg Number of global tokens

Ts Number of semantic tokens

v Token in vocabulary

xt Token at time step t

x<t Tokens before time step t

B BENCHMARK DESIGN DETAILS

B.1 LLM-BASED TTS MODELS

FireRedTTS (Guo et al., 2024) FireRedTTS presents an industry-scale TTS framework based on
language modeling with three core components. The Semantic-Aware Speech Tokenizer (SAST)
combines HuBERT (Hsu et al., 2021) representations discretized into 40ms tokens (16,384 code-
words) with ECAPA-TDNN (Desplanques et al., 2020) utterance-level embeddings for speaker char-
acteristics. The system employs a 30-layer autoregressive transformer (400M parameters) that pro-
cesses BPE-tokenized text and speaker embeddings to generate semantic tokens. For high-fidelity
synthesis, a two-stage approach first converts tokens to Mel spectrograms via flow-matching (Lip-
man et al., 2023) or CNN decoders, then applies BigVGAN-V2 (Lee et al., 2023) super-resolution
to produce 48 kHz audio.

Fish-Speech (Guo et al., 2024) Fish-Speech introduces a dual autoregressive architecture trained
on 720,000 hours of multilingual data, eliminating traditional G2P dependencies through direct
LLM-based feature extraction. The Dual-AR design cascades a Slow Transformer for global lin-
guistic modeling with a Fast Transformer that refines outputs through codebook embedding pro-
cessing. The Firefly-GAN vocoder employs Grouped Finite Scalar Vector Quantization (GFSQ)
with depth-wise separable (Howard et al., 2017) and dilated convolutions (Yu & Koltun, 2016),
achieving complete codebook utilization through systematic feature partitioning and scalar quanti-
zation. The system achieves real-time factors of 1:5 on RTX 4060 mobile and 1:15 on RTX 4090,
with 150ms first-packet latency through KV-cache optimization.

Spark-TTS (Wang et al., 2025a) Spark-TTS proposes a unified LLM-based architecture using
BiCodec, a single-stream codec that decomposes speech while maintaining compatibility with text
LLMs. BiCodec generates hybrid token streams combining semantic tokens (50 TPS) from wav2vec
2.0 (Baevski et al., 2020) features processed by ConvNeXt (Liu et al., 2022) encoders, and fixed-
length global tokens encoding speaker attributes via ECAPA-TDNN (Desplanques et al., 2020) with
FSQ quantization. Built on Qwen2.5-0.5B (Yang et al., 2024a), the system enables direct audio
synthesis without intermediate flow-matching stages. Controllable generation spans coarse categor-
ical labels to fine-grained numerical values through chain-of-thought inference. The accompanying
VoxBox dataset provides 100,000 hours of annotated speech from 29 datasets with gender, pitch,
and speed annotations.

Table 4: LLM-based TTS models with their repositories and checkpoints.

Model GitHub Repository Hugging Face Checkpoint

FireRedTTS FireRedTeam/FireRedTTS FireRedTeam/FireRedTTS-1S
Fish-Speech fishaudio/fish-speech fishaudio/openaudio-s1-mini
Spark-TTS SparkAudio/Spark-TTS SparkAudio/Spark-TTS-0.5B
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B.2 DATASETS

Seed-TTS-Eval (Anastassiou et al., 2024) Seed-TTS-Eval is a bilingual test set specifically de-
signed to assess zero-shot speech generation capabilities. It comprises English and Chinese samples
drawn from public corpora, including 1,000 samples from Common Voice (Ardila et al., 2020) and
2,000 from DiDiSpeech-2 (Guo et al., 2021).

CV3-Eval (Du et al., 2025) CV3-Eval is a multilingual benchmark for evaluating zero-shot speech
synthesis in-the-wild scenarios, designed to address the limitations of existing evaluation bench-
marks that primarily focus on clean, standard audio from sources like audiobooks (Du et al., 2025).
The benchmark was released alongside CosyVoice 3 and is built on authentic in-the-wild reference
speech from Common Voice (Ardila et al., 2020), FLUERS (Conneau et al., 2022), EmoBox (Ma
et al., 2024), and web-crawled real-world audio data, spanning a broad range of languages and
dialects, domains and environments, emotions and styles. CV3-Eval includes both objective and
subjective evaluation subsets, with the objective evaluation covering three main areas: multilin-
gual voice cloning (supporting 9 languages including Chinese, English, Japanese, Korean, German,
French, Russian, Italian, and Spanish), cross-lingual voice cloning (where source audio and target
text are from different languages), and emotion cloning (featuring happy, sad, and angry emotions
from Chinese and English samples). This benchmark is specifically designed to evaluate the com-
prehensive capability of text-to-speech systems beyond traditional metrics, including aspects such
as emotion expression, rhythmic richness, voice controllability, and cross-lingual voice cloning,
particularly in challenging real-world scenarios with noisy backgrounds and diverse acoustic condi-
tions (Du et al., 2025).

Table 5: Datasets with their repositories.

Dataset GitHub Repository

Seed-TTS-Eval BytedanceSpeech/seed-tts-eval
CV3-Eval FunAudioLLM/CV3-Eval

B.3 WATERMARKING METHODS

KGW (Kirchenbauer et al., 2023) KGW watermarking establishes the foundational paradigm
for LLM watermarking through vocabulary partitioning and statistical bias injection. At each
generation step t, the vocabulary V is dynamically partitioned using a pseudorandom function:
Gt,Rt = partition(V, hash(s(t−1)), γ) where Gt represents the green list (size γ|V| with green list
fraction γ), Rt the red list, and s(t−1) the previous token serving as context key. The original logits
l
(t)
k are modified through soft watermarking: l̂(t)k = l

(t)
k + δ for tokens in Gt, unchanged for red-list

tokens, where δ is the watermark strength parameter. Detection employs a one-proportion z-test:
z = |s|G−γT√

Tγ(1−γ)
where |s|G represents observed green tokens in sequence s and T is the total token

count. The method provides training-free implementation with public detectability without model
access, though it suffers reduced effectiveness on low-entropy text and vulnerability to paraphrasing
attacks.

Unigram (Zhao et al., 2024) Unigram watermarking simplifies KGW by eliminating context
dependency through fixed partitioning strategy: G,R = partition(V, key, γ) with no dependency
on previous tokens, where key is a secret key. The detection statistic becomes more robust:
z = |s|G−γT√

Tγ(1−γ)
with fixed lists enabling straightforward analysis and eliminating attack amplifica-

tion effects present in KGW where larger context windows can amplify vulnerabilities. The method
provides provable robustness against text editing attacks (insertion, deletion, substitution), para-
phrasing attacks with bounded edit distance, and token-level adversarial modifications, with quality
preservation mathematically proven when watermark parameter δ is appropriately chosen. Imple-
mentation benefits include better robustness against adversarial attacks, simpler theoretical analysis,
no attack amplification problems, and more predictable behavior, though with trade-offs including
potentially lower watermark entropy and possible vulnerability to brute-force key discovery.
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SWEET (Lee et al., 2024) SWEET addresses the fundamental challenge of watermarking low-
entropy text through entropy-based selective application. The method calculates entropy of the
probability distribution at each step: H(p(t)) = −

∑
k p

(t)
k log p

(t)
k where p

(t)
k is the probability

of token k at step t, and applies watermarking only when H(p(t)) > τ where τ is the entropy
threshold. Detection with entropy filtering modifies the test statistic: z =

|s|τG−γ|s|τ√
|s|τγ(1−γ)

where |s|τ

represents tokens exceeding the entropy threshold and |s|τG counts green tokens among high-entropy
tokens. This preserves quality in structured text while maintaining detectability in high-entropy
regions. Advanced development includes EWD (Entropy-based Watermark Detection) improving
upon SWEET using continuous weighting functions instead of binary thresholds: wi = f(entropyi)
where wi is the weight for token i, with weighted detection score z′ =

∑
i wi·1[tokeni∈G]√∑

i w
2
i

where 1[·]
is the indicator function.

MorphMark (Wang et al., 2025b) MorphMark introduces adaptive watermarking strength ad-
justment based on real-time entropy analysis. The method calculates cumulative green-list proba-
bility Pgreen =

∑
i∈G pi where pi is the probability of token i in the green list, and dynamically

adjusts watermark strength: δt = f(Pgreen) where f is an adaptation function. The multi-objective
optimization framework balances effectiveness E and quality Q: maxαE(δt) + βQ(δt) subject to
entropy constraints, where α and β are weighting parameters. Dynamic strategy selection applies
strong watermarking (δt = δmax) in high-entropy contexts, graduated strength (δt = δbase × Pgreen)
in medium entropy, and reduced watermarking in low-entropy scenarios, where δmax and δbase are
predefined strength levels. Key distinguishing features from baseline methods include real-time
adaptation versus static parameters, context awareness through cumulative probability analysis, and
unified framework handling diverse entropy scenarios without preprocessing, achieving superior
quality-detectability trade-off across entropy ranges with minimal computational overhead (¡0.5%).

SynthID-Text (Dathathri et al., 2024) SynthID-Text employs tournament sampling with pseu-
dorandom g-functions for embedding statistical signatures during generation. The method gen-
erates random seeds: rt = h(xt−H , ..., xt−1, k) where h is a hash function, xt−H , ..., xt−1

represents the context window of size H , and k is the secret key, then computes g-values:
gℓ(x, r) = F−1

g

(
h(x,ℓ,r)

2n

)
for each tournament layer ℓ, where F−1

g is the inverse cumulative dis-
tribution function, x is a token, and n is the hash output bit length. The tournament sampling
algorithm samples 2m tokens from LLM distribution where m is the number of tournament lay-
ers, then for each layer ℓ = 1 to m: groups tokens into pairs, selects winners using gℓ scores,
and advances winners until the final winner becomes output token. Detection uses mean G-score:
S(x) = 1

T

∑T
t=1

1
m

∑m
ℓ=1 gℓ(xt, rt) where xt is the token at position t, with Bayesian classification

providing multi-state output: {watermarked, not watermarked, uncertain}. Production implementa-
tion features logits processor architecture integrated with Hugging Face Transformers, speculative
sampling compatibility, and multi-state detection system with configurable thresholds, validated on
20 million Gemini responses with no quality degradation and formal non-distortion properties.

EXP (Aaronson & Kirchner, 2022) The EXP watermark utilizes exponential minimum sampling
based on Gumbel noise for pseudorandom but biased token selection. For each token xi, the method
generates Gumbel noise Gi ∼ Gumbel(0, 1) and computes scores: Si = log(pi) + Gi where pi is
the LLM probability for token xi. The Gumbel-based selection process computes pseudorandom
Gumbel sample Gi = − log(− log(Ui)) where Ui = PRF(xi, context hash, secret key) with PRF
being a pseudorandom function, then computes adjusted scores Si = log(pi) + Gi and selects to-
ken with maximum score: x∗ = argmax(Si). The mathematical foundation leverages max-stable
properties of Gumbel distributions for consistent sampling and exponential minimum principle pro-
viding theoretical guarantee of distribution preservation under expectation. Key advantages include
strong mathematical basis in extreme value theory, provably maintains expected token distributions,
minimal overhead beyond pseudorandom number generation, and straightforward implementation,
though with limitations including key dependency for detection, vulnerability to synonym substitu-
tion attacks, and reduced effectiveness in low-entropy contexts.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

WavMark (Chen et al., 2023) WavMark employs invertible neural networks (INNs) for spectro-
gram domain watermarking with shared parameters between encoding and decoding processes. The
method transforms audio waveform xwave to spectrogram: S, P = STFT(xwave) ∈ R2×T×F where S
and P are magnitude and phase components, T is time frames, and F is frequency bins, and expands
watermark message: W ′ = Linear(W ) → STFT → R2×T×F where W is the original watermark
message. Invertible block operations for the i-th block follow: yi1 = xi

1 ⊙ σ(Fi(x
i
2)) + Gi(x

i
2)

and yi2 = xi
2 ⊙ σ(Hi(y

i
1)) + Ii(y

i
1) where ⊙ denotes element-wise multiplication, σ is an activa-

tion function, and Fi, Gi, Hi, Ii are learnable dense blocks for the i-th invertible block. Network
architecture features 8 cascaded invertible blocks, each containing 5 layers of 2D CNNs with dense
connections, window size of 1,000 samples with 400-sample hop length, and 32 bits per second
capacity. Synchronization mechanism uses Brute Force Detection (BFD) combining pattern bits (10
bits) with payload bits (22 bits), achieving 0.54% BER (Bit Error Rate) localization accuracy with
loss functions: Ltotal = λ1 ·Lmessage +λ2 ·Lperceptual +λ3 ·Ladversarial where λ1, λ2, λ3 are weighting
coefficients.

Timbre (Liu et al., 2024c) Timbre Watermarking focuses on frequency-temporal watermarking
with emphasis on voice cloning attack detection. The method processes linear spectrogram as car-
rier: s, p = STFT(a) where a is the input audio, s is the magnitude spectrogram, and p is the
phase, and performs feature extraction: fc = ENc(s) for carrier features and fw = ENw(w)
for watermark features, where ENc and ENw are encoder networks and w is the watermark mes-
sage. Repeated embedding strategy follows: f+ = Concatenate(fc, s,Repeat(fw, T )) where T
is the number of time frames, followed by watermark embedding: sw = EM(f+) where EM
is the embedding network and sw is the watermarked spectrogram. Extraction with averaging:
f ′
w = EX(sw) and w′ = DE(Average(f ′

w)) where EX is the extraction network, DE is the decoder,
and w′ is the recovered watermark, provides temporal invariance against time-domain manipula-
tions. Key innovation includes distortion layer simulating voice cloning pipeline during training:
DP(aw) = GL(Mel(aw/max(|aw|))) where DP is the distortion process, aw is watermarked audio,
GL is Griffin-Lim vocoder, and Mel represents mel-spectrogram transform. The method achieves
temporal invariance through repeated embedding across time frames, averaging extraction reducing
time-domain sensitivity, 90% cropping robustness maintenance, 100% accuracy against professional
attacks (Tacotron2, FastSpeech2 + HiFi-GAN) and 99%+ accuracy against regular attacks.

AudioSeal (Roman et al., 2024) AudioSeal employs generator-detector architecture trained
jointly for localized watermark detection at sample level. The generator uses EnCodec-based
encoder-decoder design with four convolutional blocks, residual units, LSTM layers, and ELU acti-
vation, while the decoder mirrors encoder structure using transposed convolutions and the detector
outputs watermark probability at 1

16,000 second resolution (corresponding to 16 kHz sampling rate).
Joint optimization strategy balances perceptual loss functions minimizing difference between orig-
inal and watermarked audio, and detection loss functions maximizing accuracy and localization
precision. Training augmentation includes watermark masking with random selections (revert to
original: 0.4, replace with zeros: 0.2, substitute different audio: 0.4) where the probabilities indicate
the fraction of samples for each augmentation type, and extensive audio augmentations including
bandpass filtering, echo, noise addition, and compression. The method achieves single-pass detector
design with 2 orders of magnitude faster detection, sample-level resolution versus coarse 1-second
alternatives, no synchronization requirements, multi-bit watermarking supporting up to 16-bit secret
messages, up to 100× faster detection than existing methods, sample-level watermark localization,
state-of-the-art robustness against audio manipulations, and generalizability across different models
and languages without retraining.

SilentCipher (Singh et al., 2024) SilentCipher represents the first deep learning-based model
integrating psychoacoustic model-based thresholding for imperceptible watermarking. The neural
network architecture includes Message Transformation Network (L) transforming message tokens
M into learnable embeddings Me(M) where Me is the embedding function, Encoder Network (E)
processing carrier signal magnitude spectrogram combined with original carrier and message em-
beddings, Decoder Network reconstructing watermarked audio from combined representation, and
Detector Network identifying watermark presence and extracting embedded messages. Psychoa-
coustic model-based thresholding uses masking threshold calculation to determine imperceptible
embedding regions, band-limited signal handling addressing artifacts in frequency-limited audio,
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and professional audio compatibility ensuring imperceptibility in high-quality settings. The sys-
tem features pseudo-differentiable compression layers enhancing robustness against MP3, AAC,
and other lossy formats while allowing gradient-based optimization despite non-differentiable oper-
ations, with SDR (Signal-to-Distortion Ratio) control mechanism providing dynamic thresholding
where psychoacoustic model determines embedding capacity per segment, user-configurable SDR
threshold without model retraining, frequency-aware embedding with different strengths across fre-
quency bands, and professional quality maintenance in band-limited signals.

Our implementations of in-processing watermarking methods are adapted from the MarkLLM
toolkit (Pan et al., 2024).

B.4 WATERMARKING ATTACKS

To assess robustness, we evaluate watermarking methods under 10 attack scenarios based on the
implementation from AudioMarkBench (Liu et al., 2024d). To summarize, we list the details of
attacks in Table 6.

Table 6: Details of attacks.

Attack Parameter Value Description

Time stretch Speed factor 1.5 Change playback speed of the audio.
Smooth Window size 6 Apply Gaussian smoothing via 1D convolution.
Gaussian noise SNR (dB) 40 Add random noise at a fixed SNR.
Background noise SNR (dB) 40 Mixe background noise at a fixed SNR.
Echo Delay (second) 0.9 Introduce delayed and decayed repetitions.
MP3 compression Bitrate (kbps) 40 Compression with the MP3 codec.
EnCodec Bandwidth (kHz) 24 Compression with a neural audio codec.
Quantization Bit levels 64 Reduce audio resolution to n discrete levels.
High-pass filter Cutoff ratio 0.5 Remove low frequency components.
Low-pass filter Cutoff ratio 0.5 Remove high frequency components.

B.5 METRICS

We assess the quality of watermarked or non-watermarked synthetic speech by following the
VERSA benchmark (Shi et al., 2025). Table 7 shows the 16 reference-free quality metrics used
in our experiments.

Table 7: Details of quality metrics.

Name Abbreviation Direction Reference

Word Error Rate WER ↓ Anastassiou et al. (2024)
Speaker Similarity SIM ↑ Jung et al. (2024)
UTokyo-SaruLab System for VoiceMOS 2022 UT ↑ Saeki et al. (2022)
Packet Loss Concealment-focus MOS PLC ↑ Diener et al. (2023)
Deep Noise Suppression MOS Score of P.835 DNS ↑ Reddy et al. (2022)
Torch-Squim PESQ PESQ ↑ Kumar et al. (2023)
Torch-Squim MOS MOS ↑ Kumar et al. (2023)
Torch-Squim STOI STOI ↑ Kumar et al. (2023)
Speech Enhancement-based SAR SAR ↑ Zhang et al. (2024)
Speech Enhancement-based SDR SDR ↑ Zhang et al. (2024)
Speech Enhancement-based SI-SNR SNR ↑ Zhang et al. (2024)
Torch-Squim SI-SDR Si-SDR ↑ Kumar et al. (2023)
Subjective Speech Quality Assessment SSQA ↑ Huang et al. (2024)
Deep Noise Suppression MOS Score of P.808 DNS-P ↑ Reddy et al. (2022)
Singing voice MOS SING ↑ Tang et al. (2024)
Speech Enhancement-based CI-SDR Ci-SDR ↑ Zhang et al. (2024)
↑ Higher is better. ↓ Lower is better.
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C ADDITIONAL EXPERIMENTAL RESULTS

Table 8: Quality and detectability performance of watermarking methods on CV3-Eval.

EN ZH

M
od

el Quality Metric TPR@X%FPR Quality Metric TPR@X%FPR

Method WER ↓ SIM ↑ UT ↑ PLC ↑ DNS ↑ PESQ ↑ 0.2% ↑ 3.0% ↑ WER ↓ SIM ↑ UT ↑ PLC ↑ DNS ↑ PESQ ↑ 0.2% ↑ 3.0% ↑
No Watermark 6.8 0.62 3.13 3.98 3.00 2.92 — — 4.4 0.68 2.55 4.10 3.12 3.04 — —
KGW 6.6 0.62 3.14 3.97 3.01 2.94 0.980 0.990 4.5 0.68 2.55 4.09 3.12 3.04 0.994 0.998
Unigram 6.4 0.62 3.12 3.96 2.99 2.90 1.000 1.000 4.6 0.67 2.54 4.10 3.12 3.04 1.000 1.000
SWEET 6.4 0.62 3.11 3.95 3.00 2.94 0.988 0.996 4.7 0.68 2.55 4.09 3.12 3.03 0.998 1.000
MorphMark 6.6 0.62 3.15 3.97 2.99 2.92 0.128 0.394 4.1 0.68 2.56 4.11 3.12 3.05 0.437 0.673
SynthID 7.2 0.62 3.13 3.97 3.00 2.90 0.984 0.996 4.7 0.68 2.53 4.09 3.11 3.04 0.996 1.000
EXP 5.5 0.65 3.61 4.11 3.10 3.17 1.000 1.000 3.9 0.70 3.08 4.24 3.20 3.27 1.000 1.000
WavMark 6.8 0.63 3.07 3.97 2.98 2.81 0.990 0.990 4.5 0.69 2.50 4.05 3.10 2.90 1.000 1.000
Timbre 6.9 0.60 2.92 3.72 2.88 2.52 1.000 1.000 4.4 0.67 2.44 3.92 3.02 2.79 1.000 1.000
AudioSeal 7.0 0.62 3.10 3.99 2.95 2.89 1.000 1.000 4.4 0.68 2.53 4.11 3.10 2.99 1.000 1.000

Fi
re

R
ed

T
T

S

SilentCipher 6.9 0.51 2.86 3.93 2.88 2.79 1.000 1.000 4.5 0.68 2.55 4.12 3.12 3.06 1.000 1.000

No Watermark 5.3 0.50 3.87 4.42 3.15 3.39 — — 4.0 0.59 3.22 4.43 3.22 3.41 — —
KGW 4.6 0.49 3.87 4.42 3.16 3.42 0.122 0.348 5.0 0.59 3.19 4.42 3.21 3.39 0.214 0.471
Unigram 5.0 0.50 3.88 4.41 3.16 3.40 0.960 0.978 4.2 0.59 3.21 4.42 3.22 3.39 0.992 0.994
SWEET 5.3 0.50 3.85 4.41 3.15 3.39 0.136 0.334 4.1 0.59 3.19 4.41 3.21 3.39 0.260 0.487
MorphMark 5.1 0.50 3.87 4.42 3.16 3.39 0.000 0.000 4.1 0.59 3.22 4.43 3.21 3.41 0.000 0.000
SynthID 4.9 0.50 3.87 4.41 3.16 3.41 0.584 0.844 4.1 0.59 3.18 4.42 3.20 3.40 0.788 0.926
EXP 4.4 0.52 4.02 4.45 3.20 3.53 0.890 0.944 3.7 0.61 3.42 4.45 3.25 3.51 0.978 0.986
WavMark 5.4 0.51 3.76 4.34 3.09 3.17 1.000 1.000 4.0 0.60 3.11 4.32 3.13 3.14 1.000 1.000
Timbre 5.6 0.47 3.69 4.20 3.04 3.10 1.000 1.000 4.0 0.57 3.08 4.21 3.15 3.22 1.000 1.000
AudioSeal 5.5 0.50 3.84 4.40 3.09 3.33 1.000 1.000 3.9 0.59 3.19 4.42 3.18 3.35 1.000 1.000

Fi
sh

-S
pe

ec
h

SilentCipher 5.5 0.51 3.87 4.44 3.15 3.42 0.966 0.966 4.0 0.59 3.22 4.45 3.23 3.43 0.998 0.998

No Watermark 9.8 0.55 3.46 3.75 2.94 3.00 — — 5.9 0.68 2.96 4.00 3.15 3.17 — —
KGW 9.0 0.57 3.54 3.81 3.03 3.07 0.434 0.630 5.1 0.68 2.92 4.01 3.15 3.17 0.528 0.776
Unigram 13.9 0.55 3.49 3.69 2.94 3.03 0.816 0.896 9.0 0.66 2.91 3.92 3.10 3.09 0.956 0.978
SWEET 11.1 0.56 3.51 3.75 2.99 3.05 0.400 0.594 5.6 0.68 2.93 3.99 3.15 3.14 0.574 0.766
MorphMark 10.4 0.56 3.54 3.79 2.99 3.07 0.076 0.226 5.1 0.68 2.96 4.01 3.15 3.16 0.060 0.208
SynthID 8.9 0.57 3.50 3.77 3.01 3.07 0.006 0.508 4.8 0.69 2.92 4.00 3.15 3.15 0.006 0.634
EXP 33.8 0.38 3.11 3.15 2.43 2.56 0.546 0.606 31.7 0.46 2.65 3.41 2.61 2.74 0.668 0.720
WavMark 9.8 0.58 3.50 3.81 2.99 2.97 0.986 0.986 5.7 0.69 2.87 3.96 3.13 3.05 0.996 0.996
Timbre 9.8 0.57 3.42 3.59 2.86 2.77 1.000 1.000 6.1 0.68 2.81 3.69 3.00 2.92 1.000 1.000
AudioSeal 10.0 0.57 3.56 3.79 2.99 3.01 1.000 1.000 8.4 0.68 2.94 3.96 3.13 3.11 1.000 1.000

Sp
ar

k-
T

T
S

SilentCipher 9.8 0.53 3.56 4.06 3.01 3.10 0.932 0.932 7.7 0.62 2.97 4.16 3.13 3.17 0.984 0.984
■ In-processing. ■ Post-processing. ↑ Higher is better. ↓ Lower is better.

Table 9: Quality comparison across watermarking methods on Seed-TTS-Eval English.

M
od

el Quality Metric

Method WER ↓ SIM ↑ UT ↑ PLC ↑ DNS ↑ MOS ↑ STOI ↑ PESQ ↑ SAR ↑ SDR ↑ SNR ↑ Si-SDR ↑ SSQA ↑ DNS-P ↑ SING ↑ Ci-SDR ↑
No Watermark 2.5 0.63 3.64 4.12 3.04 4.34 0.98 3.20 39.06 39.06 38.45 20.54 4.21 3.80 3.69 38.75
KGW 2.6 0.63 3.62 4.10 3.04 4.35 0.98 3.20 38.83 38.83 38.23 20.51 4.20 3.79 3.69 38.57
Unigram 2.8 0.63 3.62 4.12 3.05 4.35 0.98 3.18 38.81 38.81 38.21 20.37 4.20 3.80 3.69 38.55
SWEET 2.6 0.63 3.62 4.12 3.04 4.36 0.98 3.18 38.79 38.79 38.20 20.36 4.21 3.80 3.69 38.58
MorphMark 2.5 0.63 3.63 4.13 3.04 4.35 0.98 3.18 38.85 38.85 38.25 20.45 4.21 3.80 3.69 38.57
SynthID 2.6 0.63 3.61 4.11 3.04 4.35 0.98 3.19 38.82 38.82 38.21 20.53 4.20 3.79 3.69 38.63
EXP 2.2 0.65 3.97 4.24 3.12 4.34 0.99 3.42 39.73 39.73 39.04 22.26 4.37 3.85 3.69 39.50
WavMark 2.6 0.63 3.57 4.12 3.00 4.33 0.98 3.11 38.78 38.78 38.53 20.72 4.05 3.75 3.70 38.71
Timbre 2.6 0.62 3.47 3.82 2.88 4.34 0.97 2.84 37.68 37.68 37.46 19.34 3.94 3.66 3.66 37.56
AudioSeal 2.6 0.63 3.61 4.14 3.02 4.34 0.98 3.18 38.65 38.65 38.35 20.18 4.19 3.76 3.68 38.45

Fi
re

R
ed

T
T

S

SilentCipher 2.5 0.63 3.63 4.26 3.04 4.34 0.98 3.22 39.04 39.04 38.38 20.67 4.22 3.80 3.70 38.46

No Watermark 2.0 0.53 4.15 4.45 3.22 4.30 0.99 3.58 40.27 40.27 39.26 23.72 4.45 3.96 3.77 39.22
KGW 1.8 0.53 4.14 4.44 3.22 4.31 0.99 3.58 40.23 40.23 39.23 23.70 4.44 3.96 3.78 39.22
Unigram 2.3 0.53 4.14 4.44 3.22 4.30 0.99 3.58 40.43 40.43 39.41 23.64 4.44 3.96 3.78 39.46
SWEET 2.0 0.53 4.14 4.44 3.22 4.31 0.99 3.59 40.25 40.25 39.25 23.78 4.45 3.95 3.78 39.10
MorphMark 2.0 0.53 4.15 4.44 3.22 4.31 0.99 3.59 40.41 40.41 39.42 23.79 4.44 3.96 3.78 39.45
SynthID 2.0 0.53 4.13 4.44 3.22 4.29 0.99 3.57 40.22 40.22 39.22 23.66 4.44 3.95 3.77 39.31
EXP 2.1 0.54 4.21 4.46 3.24 4.30 0.99 3.66 40.18 40.18 38.98 24.12 4.47 3.97 3.77 39.05
WavMark 2.1 0.55 4.04 4.46 3.16 4.27 0.99 3.38 40.21 40.21 39.69 23.51 4.29 3.87 3.77 39.62
Timbre 2.1 0.51 4.04 4.32 3.14 4.32 0.98 3.39 40.10 40.10 39.38 22.83 4.32 3.84 3.77 39.31
AudioSeal 2.1 0.53 4.14 4.45 3.19 4.29 0.99 3.55 39.81 39.81 38.84 23.05 4.43 3.93 3.76 38.86

Fi
sh

-S
pe

ec
h

SilentCipher 2.1 0.54 4.15 4.45 3.22 4.31 0.99 3.60 40.37 40.37 39.33 24.07 4.45 3.96 3.78 39.37

No Watermark 2.7 0.59 3.93 4.39 3.12 4.31 0.98 3.31 40.09 40.09 39.33 21.81 4.37 3.78 3.89 39.89
KGW 3.0 0.59 3.89 4.37 3.12 4.32 0.98 3.27 40.22 40.22 39.48 21.55 4.35 3.78 3.87 39.99
Unigram 5.2 0.58 3.88 4.32 3.08 4.27 0.97 3.24 39.33 39.33 38.43 21.01 4.28 3.74 3.84 38.90
SWEET 4.3 0.58 3.90 4.35 3.11 4.30 0.97 3.26 39.84 39.84 39.05 21.23 4.32 3.77 3.86 39.63
MorphMark 2.6 0.59 3.94 4.39 3.14 4.30 0.98 3.31 40.33 40.33 39.58 22.00 4.38 3.79 3.89 40.00
SynthID 2.8 0.60 3.90 4.38 3.13 4.30 0.98 3.30 40.29 40.29 39.56 21.73 4.35 3.77 3.89 40.08
EXP 18.3 0.48 3.73 3.99 2.76 4.19 0.92 2.96 31.68 31.68 29.28 15.61 3.82 3.48 3.60 31.52
WavMark 3.9 0.60 3.76 4.30 3.09 4.26 0.98 3.24 37.68 37.68 36.96 21.82 4.11 3.71 3.86 37.54
Timbre 2.8 0.59 3.78 4.19 2.96 4.31 0.97 2.95 38.24 38.24 37.73 20.29 4.18 3.65 3.87 38.14
AudioSeal 2.8 0.59 3.91 4.41 3.11 4.31 0.98 3.25 39.83 39.83 39.14 20.68 4.35 3.76 3.86 39.55

Sp
ar

k-
T

T
S

SilentCipher 2.8 0.57 3.93 4.40 3.11 4.32 0.98 3.33 40.30 40.30 39.34 21.90 4.38 3.78 3.90 39.82
■ In-processing. ■ Post-processing. ↑ Higher is better. ↓ Lower is better.
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Table 10: Quality comparison across watermarking methods on Seed-TTS-Eval Chinese.
M

od
el Quality Metric

Method WER ↓ SIM ↑ UT ↑ PLC ↑ DNS ↑ MOS ↑ STOI ↑ PESQ ↑ SAR ↑ SDR ↑ SNR ↑ Si-SDR ↑ SSQA ↑ DNS-P ↑ SING ↑ Ci-SDR ↑
No Watermark 1.2 0.74 2.93 4.17 3.16 4.26 0.99 3.47 38.04 38.04 ∞ 23.27 4.29 3.84 3.85 38.03
KGW 1.1 0.75 2.92 4.16 3.15 4.25 0.99 3.48 37.84 37.84 ∞ 23.28 4.28 3.84 3.85 37.84
Unigram 1.2 0.74 2.91 4.16 3.15 4.26 0.99 3.47 37.97 37.97 ∞ 23.19 4.28 3.84 3.84 37.97
SWEET 1.2 0.75 2.92 4.16 3.15 4.26 0.99 3.48 37.75 37.75 37.51 23.13 4.29 3.84 3.84 37.74
MorphMark 1.2 0.74 2.93 4.17 3.16 4.25 0.99 3.47 38.16 38.16 ∞ 23.20 4.29 3.84 3.85 38.16
SynthID 1.2 0.74 2.92 4.15 3.15 4.25 0.99 3.47 38.00 38.00 37.77 23.22 4.28 3.84 3.85 37.97
EXP 1.0 0.75 3.29 4.31 3.22 4.25 0.99 3.66 38.85 38.85 ∞ 24.40 4.42 3.88 3.89 38.85
WavMark 1.1 0.73 2.89 4.25 3.13 4.25 0.99 3.36 37.55 37.55 ∞ 23.57 4.04 3.82 3.88 37.55
Timbre 1.2 0.73 2.74 3.81 2.99 4.25 0.97 2.98 35.49 35.49 ∞ 21.42 4.02 3.67 3.77 35.49
AudioSeal 1.2 0.74 2.89 4.15 3.13 4.27 0.99 3.45 37.45 37.45 ∞ 23.29 4.26 3.79 3.85 37.45

Fi
re

R
ed

T
T

S

SilentCipher 1.2 0.74 2.94 4.32 3.16 4.26 0.99 3.49 37.59 37.59 ∞ 23.13 4.30 3.86 3.85 37.23

No Watermark 1.1 0.69 3.50 4.47 3.26 4.24 0.98 3.56 40.27 40.27 39.91 23.39 4.49 3.90 3.99 39.59
KGW 1.2 0.68 3.45 4.47 3.25 4.25 0.98 3.56 40.13 40.13 39.78 23.26 4.47 3.90 3.98 39.62
Unigram 1.2 0.69 3.46 4.46 3.25 4.25 0.99 3.55 40.19 40.19 39.82 23.34 4.47 3.90 3.99 39.57
SWEET 1.3 0.68 3.45 4.46 3.25 4.24 0.99 3.56 40.28 40.28 39.94 23.41 4.47 3.90 3.98 39.71
MorphMark 1.3 0.69 3.48 4.47 3.26 4.25 0.99 3.57 40.16 40.16 39.82 23.37 4.48 3.90 3.99 39.58
SynthID 1.2 0.68 3.45 4.46 3.25 4.25 0.98 3.56 40.27 40.27 39.94 23.45 4.47 3.90 3.98 39.71
EXP 1.2 0.69 3.54 4.49 3.28 4.24 0.99 3.61 40.23 40.23 39.74 23.56 4.50 3.91 3.98 39.62
WavMark 1.2 0.69 3.39 4.52 3.18 4.22 0.98 3.35 39.25 39.25 39.04 23.80 4.30 3.84 3.96 38.82
Timbre 1.2 0.67 3.32 4.30 3.18 4.25 0.98 3.25 39.46 39.46 39.34 21.97 4.36 3.73 3.93 39.01
AudioSeal 1.2 0.69 3.46 4.46 3.21 4.25 0.98 3.53 39.55 39.55 39.20 23.41 4.47 3.85 3.97 39.01

Fi
sh

-S
pe

ec
h

SilentCipher 1.2 0.69 3.50 4.47 3.27 4.24 0.98 3.57 40.42 40.42 40.03 23.55 4.49 3.92 3.98 39.79

No Watermark 1.6 0.67 3.28 4.38 3.22 4.04 0.98 3.58 39.42 38.78 ∞ 24.41 4.40 3.80 3.97 39.37
KGW 1.5 0.67 3.24 4.37 3.22 4.17 0.99 3.58 39.39 39.39 38.95 24.32 4.41 3.80 3.97 39.27
Unigram 3.6 0.65 3.36 4.31 3.18 4.15 0.98 3.57 38.39 38.39 37.83 24.55 4.35 3.72 3.96 38.35
SWEET 2.7 0.67 3.23 4.36 3.21 4.15 0.98 3.56 39.48 39.48 39.07 24.16 4.39 3.79 3.96 39.35
MorphMark 2.7 0.67 3.27 4.37 3.22 4.16 0.98 3.59 39.25 39.25 38.76 24.37 4.40 3.80 3.97 39.08
SynthID 1.4 0.67 3.23 4.36 3.22 4.16 0.99 3.57 39.45 39.45 39.07 24.35 4.40 3.80 3.97 39.32
EXP 14.0 0.60 3.14 4.17 3.02 4.09 0.96 3.39 35.38 35.38 ∞ 20.95 4.11 3.64 3.79 35.22
WavMark 1.6 0.67 3.15 4.32 3.12 4.14 0.98 3.39 36.86 36.86 36.47 24.17 4.09 3.62 3.97 36.86
Timbre 2.3 0.65 3.09 4.17 3.02 4.19 0.98 3.13 36.82 36.82 36.53 22.49 4.25 3.66 3.92 36.76
AudioSeal 2.3 0.67 3.25 4.36 3.20 4.17 0.98 3.54 39.11 39.11 38.74 23.80 4.39 3.77 3.95 39.02

Sp
ar

k-
T

T
S

SilentCipher 1.4 0.67 3.23 4.36 3.22 4.18 0.98 3.57 39.55 39.55 38.92 24.30 4.42 3.80 3.97 39.23
■ In-processing. ■ Post-processing. ↑ Higher is better. ↓ Lower is better. ∞ Infinity.

Table 11: Quality comparison across watermarking methods on CV3-Eval English.

M
od

el Quality Metric

Method WER ↓ SIM ↑ UT ↑ PLC ↑ DNS ↑ MOS ↑ STOI ↑ PESQ ↑ SAR ↑ SDR ↑ SNR ↑ Si-SDR ↑ SSQA ↑ DNS-P ↑ SING ↑ Ci-SDR ↑
No Watermark 6.8 0.62 3.13 3.98 3.00 4.26 0.97 2.92 32.83 32.83 32.91 19.57 3.68 3.66 3.65 32.68
KGW 6.6 0.62 3.14 3.97 3.01 4.26 0.97 2.94 33.48 33.48 33.59 19.94 3.69 3.66 3.67 33.33
Unigram 6.4 0.62 3.12 3.96 2.99 4.27 0.97 2.90 33.26 33.26 33.32 19.47 3.68 3.64 3.67 33.16
SWEET 6.4 0.62 3.11 3.95 3.00 4.27 0.97 2.94 33.26 33.26 ∞ 19.68 3.67 3.66 3.66 33.10
MorphMark 6.6 0.62 3.15 3.97 2.99 4.26 0.97 2.92 33.53 33.53 33.63 19.79 3.69 3.65 3.66 33.33
SynthID 7.2 0.62 3.13 3.97 3.00 4.26 0.97 2.90 33.51 33.51 33.56 19.50 3.68 3.64 3.65 33.34
EXP 5.5 0.65 3.61 4.11 3.10 4.23 0.98 3.17 34.54 34.54 ∞ 21.99 3.90 3.70 3.65 34.47
WavMark 6.8 0.63 3.07 3.97 2.98 4.26 0.96 2.81 32.24 32.24 32.40 19.28 3.51 3.63 3.70 32.03
Timbre 6.9 0.60 2.92 3.72 2.88 4.21 0.95 2.52 31.10 31.10 31.13 17.80 3.38 3.48 3.68 30.99
AudioSeal 7.0 0.62 3.10 3.99 2.95 4.25 0.97 2.89 32.20 32.20 ∞ 19.34 3.60 3.60 3.60 31.98

Fi
re

R
ed

T
T

S

SilentCipher 6.9 0.51 2.86 3.93 2.88 4.23 0.95 2.79 33.09 33.09 32.96 18.49 3.63 3.63 3.59 32.92

No Watermark 5.3 0.50 3.87 4.42 3.15 4.08 0.98 3.39 38.38 38.38 37.82 23.20 4.16 3.81 4.00 38.17
KGW 4.6 0.49 3.87 4.42 3.16 4.07 0.98 3.42 38.62 38.62 38.07 23.27 4.18 3.81 4.00 38.49
Unigram 5.0 0.50 3.88 4.41 3.16 4.06 0.98 3.40 38.61 38.61 38.11 23.21 4.17 3.81 3.99 38.40
SWEET 5.3 0.50 3.85 4.41 3.15 4.07 0.98 3.39 38.96 38.96 38.41 22.95 4.16 3.81 3.99 38.70
MorphMark 5.1 0.50 3.87 4.42 3.16 4.12 0.98 3.39 38.71 38.71 38.18 23.17 4.17 3.81 3.99 38.62
SynthID 4.9 0.50 3.87 4.41 3.16 4.08 0.98 3.41 38.70 38.70 38.18 23.24 4.16 3.81 3.99 38.45
EXP 4.4 0.52 4.02 4.45 3.20 4.08 0.98 3.53 38.71 38.71 38.11 24.03 4.23 3.80 4.00 38.25
WavMark 5.4 0.51 3.76 4.34 3.09 4.06 0.98 3.17 37.50 37.50 37.07 22.82 3.95 3.75 3.96 37.22
Timbre 5.6 0.47 3.69 4.20 3.04 4.14 0.98 3.10 37.64 37.64 37.20 22.06 3.95 3.65 3.95 37.46
AudioSeal 5.5 0.50 3.84 4.40 3.09 4.08 0.98 3.33 37.46 37.46 36.91 22.84 4.13 3.75 3.99 37.24

Fi
sh

-S
pe

ec
h

SilentCipher 5.5 0.51 3.87 4.44 3.15 4.09 0.98 3.42 38.48 38.48 37.90 23.43 4.17 3.82 4.00 38.27

No Watermark 9.8 0.55 3.46 3.75 2.94 4.07 0.95 3.00 36.01 36.01 ∞ 19.74 3.93 3.56 3.65 35.93
KGW 9.0 0.57 3.54 3.81 3.03 4.07 0.96 3.07 36.32 36.32 ∞ 20.48 4.00 3.62 3.70 36.15
Unigram 13.9 0.55 3.49 3.69 2.94 4.07 0.95 3.03 34.91 34.91 ∞ 19.23 3.82 3.54 3.59 34.75
SWEET 11.1 0.56 3.51 3.75 2.99 4.10 0.96 3.05 35.92 35.92 ∞ 19.82 3.92 3.60 3.65 35.86
MorphMark 10.4 0.56 3.54 3.79 2.99 4.09 0.96 3.07 35.82 35.82 ∞ 20.29 3.94 3.57 3.64 35.75
SynthID 8.9 0.57 3.50 3.77 3.01 4.10 0.96 3.07 36.26 36.26 ∞ 20.48 3.94 3.61 3.66 36.14
EXP 33.8 0.38 3.11 3.15 2.43 3.89 0.88 2.56 23.93 23.93 ∞ 10.77 3.14 3.09 3.21 23.73
WavMark 9.8 0.58 3.50 3.81 2.99 4.08 0.96 2.97 35.86 35.86 ∞ 20.11 3.81 3.59 3.70 35.81
Timbre 9.8 0.57 3.42 3.59 2.86 4.08 0.95 2.77 34.02 34.02 33.80 18.85 3.78 3.50 3.67 33.95
AudioSeal 10.0 0.57 3.56 3.79 2.99 4.08 0.96 3.01 36.08 36.08 ∞ 19.54 3.98 3.59 3.63 35.88

Sp
ar
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T
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SilentCipher 9.8 0.53 3.56 4.06 3.01 4.09 0.95 3.10 36.34 36.34 ∞ 20.49 4.00 3.59 3.67 35.81
■ In-processing. ■ Post-processing. ↑ Higher is better. ↓ Lower is better. ∞ Infinity.
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Table 12: Quality comparison across watermarking methods on CV3-Eval Chinese.
M

od
el Quality Metric

Method WER ↓ SIM ↑ UT ↑ PLC ↑ DNS ↑ MOS ↑ STOI ↑ PESQ ↑ SAR ↑ SDR ↑ SNR ↑ Si-SDR ↑ SSQA ↑ DNS-P ↑ SING ↑ Ci-SDR ↑
No Watermark 4.4 0.68 2.55 4.10 3.12 4.19 0.98 3.04 32.86 32.86 ∞ 20.91 4.05 3.75 3.82 32.56
KGW 4.5 0.68 2.55 4.09 3.12 4.20 0.97 3.04 32.37 32.37 32.45 20.88 4.03 3.74 3.81 32.24
Unigram 4.6 0.67 2.54 4.10 3.12 4.19 0.98 3.04 32.51 32.51 ∞ 20.79 4.02 3.74 3.81 32.33
SWEET 4.7 0.68 2.55 4.09 3.12 4.21 0.97 3.03 32.94 32.94 33.07 20.90 4.04 3.75 3.80 32.77
MorphMark 4.1 0.68 2.56 4.11 3.12 4.18 0.98 3.05 32.84 32.84 32.95 20.98 4.07 3.74 3.81 32.75
SynthID 4.7 0.68 2.53 4.09 3.11 4.20 0.98 3.04 32.72 32.72 32.78 20.92 4.04 3.75 3.80 32.53
EXP 3.9 0.70 3.08 4.24 3.20 4.15 0.98 3.27 34.28 34.28 ∞ 22.80 4.21 3.77 3.85 34.15
WavMark 4.5 0.69 2.50 4.05 3.10 4.20 0.97 2.90 32.43 32.43 ∞ 20.52 3.78 3.72 3.83 32.31
Timbre 4.4 0.67 2.44 3.92 3.02 4.15 0.97 2.79 31.76 31.76 ∞ 19.98 3.81 3.60 3.81 31.62
AudioSeal 4.4 0.68 2.53 4.11 3.10 4.20 0.97 2.99 32.59 32.59 ∞ 20.44 4.00 3.72 3.78 32.41

Fi
re

R
ed

T
T

S

SilentCipher 4.5 0.68 2.55 4.12 3.12 4.20 0.98 3.06 33.13 33.13 ∞ 20.96 4.08 3.76 3.80 32.81

No Watermark 4.0 0.59 3.22 4.43 3.22 4.02 0.98 3.41 38.90 38.90 38.54 23.56 4.42 3.84 4.06 38.67
KGW 5.0 0.59 3.19 4.42 3.21 4.03 0.98 3.39 39.24 39.24 38.89 23.41 4.41 3.84 4.05 38.96
Unigram 4.2 0.59 3.21 4.42 3.22 4.02 0.99 3.39 38.82 38.82 38.46 23.49 4.41 3.85 4.06 38.58
SWEET 4.1 0.59 3.19 4.41 3.21 4.02 0.98 3.39 38.81 38.81 38.48 23.51 4.39 3.84 4.07 38.56
MorphMark 4.1 0.59 3.22 4.43 3.21 4.03 0.99 3.41 39.09 39.09 38.74 23.55 4.43 3.84 4.06 38.91
SynthID 4.1 0.59 3.18 4.42 3.20 4.02 0.98 3.40 38.89 38.89 38.55 23.50 4.40 3.83 4.06 38.69
EXP 3.7 0.61 3.42 4.45 3.25 4.03 0.99 3.51 39.24 39.24 38.85 24.29 4.48 3.83 4.10 38.84
WavMark 4.0 0.60 3.11 4.32 3.13 3.97 0.98 3.14 37.81 37.81 37.56 22.93 4.16 3.79 3.99 37.60
Timbre 4.0 0.57 3.08 4.21 3.15 4.08 0.98 3.22 38.21 38.21 37.95 22.72 4.29 3.73 3.99 37.98
AudioSeal 3.9 0.59 3.19 4.42 3.18 4.03 0.98 3.35 38.48 38.48 38.13 22.93 4.39 3.82 4.05 38.17

Fi
sh

-S
pe

ec
h

SilentCipher 4.0 0.59 3.22 4.45 3.23 4.05 0.98 3.43 39.04 39.04 38.67 23.67 4.43 3.85 4.06 38.78

No Watermark 5.9 0.68 2.96 4.00 3.15 4.04 0.98 3.17 36.49 36.49 ∞ 21.94 4.24 3.69 3.82 36.37
KGW 5.1 0.68 2.92 4.01 3.15 4.07 0.97 3.17 36.88 36.88 ∞ 22.00 4.24 3.70 3.81 36.68
Unigram 9.0 0.66 2.91 3.92 3.10 4.06 0.97 3.09 35.83 35.83 ∞ 20.81 4.15 3.64 3.74 35.61
SWEET 5.6 0.68 2.93 3.99 3.15 4.07 0.97 3.14 36.47 36.47 ∞ 21.71 4.24 3.69 3.80 36.34
MorphMark 5.1 0.68 2.96 4.01 3.15 4.05 0.98 3.16 36.54 36.54 ∞ 21.88 4.25 3.69 3.80 36.32
SynthID 4.8 0.69 2.92 4.00 3.15 4.07 0.98 3.15 36.99 36.99 37.16 21.93 4.26 3.70 3.82 36.81
EXP 31.7 0.46 2.65 3.41 2.61 3.90 0.91 2.74 27.45 27.45 ∞ 14.75 3.45 3.19 3.28 27.32
WavMark 5.7 0.69 2.87 3.96 3.13 4.09 0.97 3.05 36.28 36.28 ∞ 21.68 4.03 3.67 3.83 36.26
Timbre 6.1 0.68 2.81 3.69 3.00 4.05 0.97 2.92 33.94 33.94 33.91 21.01 4.09 3.59 3.78 33.79
AudioSeal 8.4 0.68 2.94 3.96 3.13 4.03 0.98 3.11 36.34 36.34 ∞ 21.24 4.22 3.68 3.78 36.00

Sp
ar
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T
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S

SilentCipher 7.7 0.62 2.97 4.16 3.13 4.05 0.97 3.17 36.60 36.60 ∞ 21.67 4.25 3.68 3.80 36.32
■ In-processing. ■ Post-processing. ↑ Higher is better. ↓ Lower is better. ∞ Infinity.

Table 13: Robustness evaluation results on Seed-TTS-Eval under attacks. All metrics represent
TPR@3.0% FPR (higher is better).

M
od

el EN ZH

Method TS SMH GN BN Echo MP3 ECD QNT HPF LPF TS SMH GN BN Echo MP3 ECD QNT HPF LPF

KGW 0.000 0.054 0.392 0.528 0.002 0.954 0.122 0.070 0.000 0.966 0.000 0.071 0.823 0.939 0.002 1.000 0.183 0.139 0.000 1.000
Unigram 0.307 0.232 0.891 0.964 0.090 1.000 0.658 0.244 1.000 1.000 0.503 0.389 0.999 1.000 0.358 1.000 0.893 0.570 1.000 1.000
SWEET 0.000 0.057 0.381 0.562 0.017 0.962 0.121 0.061 0.000 0.976 0.000 0.056 0.822 0.937 0.035 1.000 0.190 0.118 0.000 1.000
MorphMark 0.000 0.025 0.100 0.100 0.000 0.244 0.050 0.063 0.000 0.274 0.000 0.037 0.132 0.178 0.000 0.339 0.051 0.062 0.000 0.360
SynthID 0.082 0.069 0.505 0.676 0.235 0.994 0.140 0.085 0.000 0.995 0.072 0.054 0.785 0.923 0.237 1.000 0.176 0.114 0.000 1.000
EXP 0.153 0.346 0.966 0.993 0.615 1.000 0.803 0.244 0.000 1.000 0.102 0.346 1.000 1.000 0.767 1.000 0.829 0.564 0.000 1.000
WavMark 0.506 1.000 0.987 1.000 0.976 1.000 0.000 0.159 0.000 1.000 0.770 1.000 1.000 1.000 1.000 1.000 0.000 0.408 0.000 1.000
Timbre 1.000 1.000 1.000 1.000 0.999 1.000 0.523 0.998 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.451 1.000 0.000 1.000
AudioSeal 0.993 0.999 1.000 1.000 0.999 1.000 0.829 0.988 0.000 1.000 0.973 1.000 1.000 1.000 1.000 1.000 0.806 0.993 0.000 1.000

Fi
re

R
ed

T
T

S

SilentCipher 0.000 0.603 0.867 0.807 0.479 0.981 0.000 0.000 0.000 0.980 0.000 0.824 0.988 0.984 0.797 0.998 0.000 0.000 0.000 0.998

KGW 0.000 0.000 0.000 0.002 0.000 0.251 0.000 0.000 0.000 0.234 0.000 0.000 0.004 0.018 0.000 0.560 0.000 0.000 0.000 0.550
Unigram 0.541 0.244 0.099 0.327 0.107 0.989 0.096 0.294 0.013 0.985 0.716 0.329 0.340 0.696 0.074 0.998 0.159 0.329 0.007 0.998
SWEET 0.000 0.001 0.000 0.001 0.000 0.218 0.000 0.000 0.000 0.240 0.000 0.000 0.002 0.010 0.000 0.539 0.000 0.000 0.000 0.547
MorphMark 0.000 0.000 0.001 0.000 0.000 0.002 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.001
SynthID 0.014 0.091 0.089 0.150 0.026 0.824 0.070 0.031 0.000 0.818 0.005 0.095 0.159 0.315 0.034 0.951 0.092 0.028 0.000 0.957
EXP 0.000 0.255 0.148 0.335 0.013 0.979 0.068 0.003 0.000 0.979 0.000 0.219 0.425 0.652 0.026 0.996 0.104 0.008 0.000 0.996
WavMark 0.936 0.994 0.765 0.955 0.982 1.000 0.000 0.105 0.000 1.000 0.980 1.000 0.956 0.999 1.000 1.000 0.000 0.205 0.000 1.000
Timbre 1.000 1.000 1.000 1.000 0.994 1.000 0.483 0.999 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.596 1.000 0.000 1.000
AudioSeal 0.993 1.000 1.000 1.000 0.997 1.000 1.000 0.997 0.000 1.000 0.973 1.000 1.000 1.000 0.999 1.000 1.000 0.998 0.000 1.000

Fi
sh

-S
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h

SilentCipher 0.000 0.767 0.907 0.845 0.417 0.965 0.000 0.002 0.000 0.967 0.000 0.923 0.986 0.983 0.694 0.999 0.000 0.005 0.000 0.999

KGW 0.175 0.042 0.454 0.579 0.197 0.666 0.155 0.056 0.000 0.686 0.215 0.043 0.552 0.659 0.155 0.761 0.155 0.064 0.000 0.766
Unigram 0.501 0.137 0.849 0.915 0.201 0.926 0.647 0.170 1.000 0.926 0.540 0.134 0.964 0.986 0.099 0.988 0.841 0.272 1.000 0.991
SWEET 0.412 0.056 0.481 0.571 0.142 0.683 0.156 0.069 0.014 0.679 0.635 0.059 0.597 0.695 0.080 0.762 0.188 0.069 0.005 0.765
MorphMark 0.174 0.048 0.113 0.149 0.184 0.179 0.086 0.040 0.000 0.181 0.244 0.034 0.149 0.185 0.104 0.223 0.074 0.027 0.000 0.224
SynthID 0.079 0.032 0.413 0.531 0.029 0.628 0.153 0.040 1.000 0.627 0.077 0.042 0.573 0.667 0.056 0.772 0.177 0.075 1.000 0.778
EXP 0.045 0.099 0.673 0.733 0.188 0.739 0.473 0.144 0.003 0.744 0.060 0.099 0.893 0.908 0.231 0.912 0.674 0.257 0.000 0.919
WavMark 0.179 0.997 0.993 0.997 0.948 1.000 0.000 0.057 0.000 0.997 0.321 0.996 0.995 0.996 0.992 1.000 0.000 0.115 0.000 0.996
Timbre 0.999 1.000 1.000 1.000 1.000 1.000 0.402 0.997 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.225 0.997 0.000 1.000
AudioSeal 0.980 0.994 1.000 1.000 0.999 1.000 0.000 0.902 0.000 1.000 0.965 0.996 1.000 1.000 1.000 1.000 0.085 0.950 0.000 1.000

Sp
ar
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T

T
S

SilentCipher 0.000 0.488 0.518 0.824 0.360 0.953 0.000 0.000 0.001 0.958 0.000 0.708 0.850 0.974 0.617 0.990 0.000 0.000 0.000 0.991
■ In-processing. ■ Post-processing. Red Low robustness (< 0.3). Orange Medium robustness (0.3 − 0.5). Green High robustness (> 0.7).
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Table 14: Robustness evaluation results on CV3-Eval under attacks. All metrics represent
TPR@0.2% FPR (higher is better).

M
od

el EN ZH

Method TS SMH GN BN Echo MP3 ECD QNT HPF LPF TS SMH GN BN Echo MP3 ECD QNT HPF LPF

KGW 0.000 0.006 0.438 0.270 0.006 0.908 0.036 0.174 0.000 0.980 0.000 0.010 0.452 0.788 0.022 0.988 0.030 0.118 0.000 0.994
Unigram 0.314 0.238 0.858 0.938 0.566 0.986 0.454 0.410 1.000 1.000 0.358 0.378 0.908 0.976 0.648 1.000 0.726 0.398 1.000 1.000
SWEET 0.000 0.008 0.416 0.255 0.034 0.908 0.086 0.096 0.000 0.988 0.000 0.004 0.415 0.772 0.060 0.988 0.064 0.052 0.000 0.998
MorphMark 0.000 0.000 0.016 0.026 0.000 0.100 0.004 0.146 0.000 0.128 0.000 0.002 0.064 0.112 0.000 0.395 0.008 0.104 0.000 0.437
SynthID 0.026 0.014 0.378 0.342 0.182 0.958 0.028 0.188 0.000 0.984 0.028 0.016 0.479 0.663 0.251 0.992 0.052 0.140 0.000 0.996
EXP 0.106 0.096 0.838 0.934 0.748 0.996 0.384 0.134 0.000 1.000 0.088 0.118 0.854 0.972 0.794 1.000 0.569 0.146 0.000 1.000
WavMark 0.800 0.974 0.976 0.990 0.988 0.990 0.000 0.235 0.000 0.990 0.862 1.000 0.988 1.000 1.000 1.000 0.000 0.289 0.000 1.000
Timbre 1.000 1.000 1.000 1.000 1.000 1.000 0.424 0.998 0.000 1.000 1.000 1.000 1.000 0.998 1.000 1.000 0.533 1.000 0.000 1.000
AudioSeal 0.890 0.942 1.000 1.000 0.996 1.000 0.752 0.954 0.000 1.000 0.882 0.996 1.000 0.998 1.000 1.000 0.852 0.988 0.000 1.000

Fi
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R
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T
T

S

SilentCipher 0.000 0.868 0.898 0.874 0.872 0.982 0.010 0.000 0.098 0.984 0.000 0.932 0.970 0.966 0.966 1.000 0.008 0.004 0.024 1.000

KGW 0.000 0.000 0.000 0.002 0.000 0.130 0.000 0.000 0.000 0.128 0.000 0.000 0.000 0.002 0.000 0.261 0.000 0.000 0.000 0.257
Unigram 0.346 0.180 0.130 0.236 0.028 0.960 0.045 0.108 0.110 0.960 0.494 0.350 0.138 0.220 0.032 0.990 0.063 0.136 0.132 0.990
SWEET 0.000 0.000 0.000 0.000 0.000 0.146 0.000 0.000 0.000 0.132 0.000 0.000 0.000 0.000 0.000 0.254 0.000 0.000 0.000 0.266
MorphMark 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SynthID 0.004 0.028 0.004 0.034 0.006 0.570 0.004 0.006 0.000 0.584 0.000 0.032 0.042 0.062 0.000 0.778 0.002 0.008 0.000 0.796
EXP 0.000 0.056 0.094 0.138 0.000 0.892 0.000 0.000 0.000 0.888 0.000 0.124 0.110 0.124 0.000 0.972 0.014 0.000 0.000 0.978
WavMark 0.974 0.971 0.640 0.926 0.998 1.000 0.000 0.044 0.000 1.000 0.996 0.996 0.546 0.942 1.000 1.000 0.000 0.052 0.000 1.000
Timbre 1.000 1.000 1.000 1.000 1.000 1.000 0.493 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.604 0.998 0.000 1.000
AudioSeal 0.944 1.000 1.000 1.000 0.994 1.000 0.988 0.992 0.000 1.000 0.910 1.000 1.000 1.000 0.998 1.000 0.998 0.996 0.000 1.000

Fi
sh
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SilentCipher 0.000 0.812 0.868 0.826 0.600 0.968 0.000 0.000 0.000 0.964 0.000 0.956 0.976 0.962 0.778 0.998 0.000 0.004 0.000 0.998

KGW 0.034 0.004 0.292 0.338 0.028 0.408 0.077 0.024 0.000 0.406 0.052 0.004 0.320 0.452 0.054 0.524 0.074 0.010 0.000 0.524
Unigram 0.314 0.116 0.630 0.728 0.164 0.806 0.514 0.210 0.998 0.816 0.320 0.082 0.844 0.896 0.104 0.954 0.586 0.166 0.998 0.952
SWEET 0.302 0.016 0.294 0.356 0.050 0.408 0.042 0.046 0.048 0.412 0.436 0.014 0.358 0.440 0.040 0.572 0.067 0.036 0.020 0.568
MorphMark 0.036 0.016 0.026 0.036 0.024 0.060 0.022 0.020 0.000 0.060 0.050 0.008 0.032 0.038 0.014 0.058 0.020 0.008 0.000 0.062
SynthID 0.018 0.018 0.000 0.000 0.014 0.014 0.000 0.018 0.848 0.012 0.006 0.006 0.000 0.000 0.006 0.006 0.000 0.006 1.000 0.006
EXP 0.052 0.118 0.446 0.490 0.182 0.536 0.224 0.146 0.000 0.518 0.050 0.102 0.534 0.618 0.202 0.638 0.238 0.124 0.000 0.650
WavMark 0.471 0.986 0.974 0.986 0.962 0.986 0.000 0.104 0.000 0.986 0.529 0.996 0.992 0.996 0.994 0.996 0.000 0.128 0.000 0.996
Timbre 1.000 1.000 1.000 0.996 1.000 1.000 0.327 0.980 0.000 1.000 1.000 1.000 1.000 0.996 1.000 1.000 0.481 0.994 0.000 1.000
AudioSeal 0.866 0.968 1.000 1.000 1.000 1.000 0.018 0.876 0.000 1.000 0.820 0.990 1.000 1.000 1.000 1.000 0.020 0.852 0.000 1.000

Sp
ar
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T
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SilentCipher 0.000 0.708 0.648 0.848 0.639 0.914 0.000 0.000 0.062 0.928 0.000 0.790 0.806 0.960 0.772 0.978 0.000 0.000 0.012 0.982
■ In-processing. ■ Post-processing. Red Low robustness (< 0.3). Orange Medium robustness (0.3 − 0.5). Green High robustness (> 0.7).

Table 15: Robustness evaluation results on CV3-Eval under attacks. All metrics represent
TPR@3.0% FPR (higher is better).

M
od

el EN ZH

Method TS SMH GN BN Echo MP3 ECD QNT HPF LPF TS SMH GN BN Echo MP3 ECD QNT HPF LPF

KGW 0.000 0.068 0.620 0.716 0.068 0.958 0.152 0.268 0.000 0.990 0.000 0.066 0.658 0.802 0.064 0.998 0.182 0.234 0.000 0.998
Unigram 0.550 0.508 0.916 0.966 0.706 0.986 0.622 0.594 1.000 1.000 0.630 0.634 0.960 0.990 0.828 1.000 0.858 0.582 1.000 1.000
SWEET 0.000 0.080 0.612 0.694 0.142 0.964 0.240 0.172 0.000 0.996 0.000 0.072 0.659 0.838 0.214 0.996 0.218 0.148 0.000 1.000
MorphMark 0.000 0.036 0.142 0.136 0.000 0.328 0.026 0.226 0.000 0.394 0.000 0.040 0.208 0.295 0.004 0.629 0.058 0.194 0.000 0.673
SynthID 0.058 0.050 0.496 0.706 0.348 0.994 0.102 0.278 0.000 0.996 0.074 0.050 0.617 0.802 0.483 0.998 0.178 0.255 0.000 1.000
EXP 0.194 0.328 0.916 0.974 0.872 0.998 0.590 0.280 0.000 1.000 0.142 0.345 0.936 0.986 0.924 1.000 0.800 0.299 0.000 1.000
WavMark 0.800 0.974 0.976 0.990 0.988 0.990 0.000 0.235 0.000 0.990 0.862 1.000 0.988 1.000 1.000 1.000 0.000 0.289 0.000 1.000
Timbre 1.000 1.000 1.000 1.000 1.000 1.000 0.424 0.998 0.000 1.000 1.000 1.000 1.000 0.998 1.000 1.000 0.533 1.000 0.000 1.000
AudioSeal 0.890 0.942 1.000 1.000 0.996 1.000 0.752 0.954 0.000 1.000 0.882 0.996 1.000 0.998 1.000 1.000 0.852 0.988 0.000 1.000

Fi
re

R
ed

T
T

S

SilentCipher 0.000 0.868 0.904 0.874 0.876 0.984 0.010 0.002 0.102 0.984 0.000 0.932 0.970 0.966 0.966 1.000 0.010 0.004 0.026 1.000

KGW 0.000 0.002 0.000 0.002 0.000 0.334 0.000 0.000 0.000 0.344 0.000 0.000 0.000 0.002 0.000 0.505 0.000 0.000 0.000 0.519
Unigram 0.678 0.448 0.226 0.368 0.128 0.984 0.153 0.316 0.156 0.978 0.796 0.644 0.232 0.376 0.140 0.996 0.176 0.400 0.212 0.996
SWEET 0.000 0.000 0.002 0.008 0.000 0.298 0.000 0.000 0.000 0.330 0.000 0.000 0.002 0.006 0.000 0.518 0.000 0.000 0.000 0.492
MorphMark 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SynthID 0.028 0.176 0.146 0.186 0.048 0.858 0.081 0.048 0.000 0.848 0.008 0.172 0.136 0.210 0.036 0.922 0.071 0.026 0.000 0.926
EXP 0.002 0.184 0.184 0.240 0.008 0.944 0.032 0.002 0.000 0.944 0.002 0.308 0.172 0.206 0.012 0.984 0.066 0.000 0.000 0.986
WavMark 0.974 0.971 0.640 0.926 0.998 1.000 0.000 0.044 0.000 1.000 0.996 0.996 0.546 0.942 1.000 1.000 0.000 0.052 0.000 1.000
Timbre 1.000 1.000 1.000 1.000 1.000 1.000 0.493 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.604 0.998 0.000 1.000
AudioSeal 0.944 1.000 1.000 1.000 0.994 1.000 0.988 0.992 0.000 1.000 0.910 1.000 1.000 1.000 0.998 1.000 0.998 0.996 0.000 1.000

Fi
sh

-S
pe

ec
h

SilentCipher 0.000 0.812 0.868 0.828 0.604 0.968 0.000 0.000 0.000 0.964 0.000 0.956 0.976 0.962 0.780 0.998 0.000 0.006 0.000 0.998

KGW 0.106 0.054 0.486 0.546 0.210 0.614 0.253 0.072 0.000 0.614 0.126 0.038 0.600 0.678 0.234 0.772 0.231 0.056 0.000 0.768
Unigram 0.534 0.246 0.788 0.858 0.319 0.890 0.705 0.330 0.998 0.896 0.536 0.190 0.952 0.956 0.246 0.984 0.817 0.336 1.000 0.980
SWEET 0.448 0.060 0.490 0.550 0.180 0.614 0.216 0.120 0.048 0.622 0.676 0.056 0.608 0.698 0.164 0.770 0.200 0.136 0.020 0.778
MorphMark 0.096 0.054 0.112 0.156 0.118 0.208 0.093 0.054 0.000 0.220 0.154 0.050 0.196 0.186 0.112 0.212 0.083 0.036 0.000 0.216
SynthID 0.308 0.048 0.326 0.366 0.058 0.510 0.111 0.094 1.000 0.506 0.362 0.032 0.412 0.568 0.064 0.642 0.093 0.048 1.000 0.646
EXP 0.118 0.148 0.550 0.584 0.294 0.598 0.368 0.210 0.000 0.586 0.130 0.148 0.630 0.702 0.312 0.696 0.412 0.212 0.000 0.698
WavMark 0.471 0.986 0.974 0.986 0.962 0.986 0.000 0.104 0.000 0.986 0.529 0.996 0.992 0.996 0.994 0.996 0.000 0.128 0.000 0.996
Timbre 1.000 1.000 1.000 0.996 1.000 1.000 0.327 0.980 0.000 1.000 1.000 1.000 1.000 0.996 1.000 1.000 0.481 0.994 0.000 1.000
AudioSeal 0.866 0.968 1.000 1.000 1.000 1.000 0.018 0.876 0.000 1.000 0.820 0.990 1.000 1.000 1.000 1.000 0.020 0.852 0.000 1.000

Sp
ar

k-
T

T
S

SilentCipher 0.000 0.712 0.660 0.848 0.649 0.918 0.000 0.000 0.064 0.930 0.000 0.808 0.812 0.960 0.780 0.978 0.000 0.000 0.012 0.982
■ In-processing. ■ Post-processing. Red Low robustness (< 0.3). Orange Medium robustness (0.3 − 0.5). Green High robustness (> 0.7).
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Figure 6: Quality results on Seed-TTS-Eval English. All metrics are normalized to the percentage
of the best performance per metric. WER is inverted for consistent interpretation.
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Figure 7: Quality results on Seed-TTS-Eval Chinese. All metrics are normalized to the percentage
of the best performance per metric. WER is inverted for consistent interpretation.
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Figure 8: Quality results on CV3-Eval English. All metrics are normalized to the percentage of the
best performance per metric. WER is inverted for consistent interpretation.
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Figure 9: Quality results on CV3-Eval Chinese. All metrics are normalized to the percentage of the
best performance per metric. WER is inverted for consistent interpretation.
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Figure 10: Token length effects on watermark detection of CV3-Eval dataset. Audio samples split
by token count: short (0-50th percentile) vs. long (50th-100th percentile). Bars show TPR at fixed
FPR, with darker bars for shorter sequences. Colors indicate TTS models (FireRedTTS: blue, Fish-
Speech: orange, Spark-TTS: purple); hatching shows languages (solid: English, diagonal: Chinese).
Longer sequences show better detectability across all methods.
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Figure 11: Token length effects on watermark detection of CV3-Eval dataset. Audio samples split
by token count: short (0-50th percentile) vs. long (50th-100th percentile). Bars show TPR at fixed
FPR, with darker bars for shorter sequences. Colors indicate TTS models (FireRedTTS: blue, Fish-
Speech: orange, Spark-TTS: purple); hatching shows languages (solid: English, diagonal: Chinese).
Longer sequences show better detectability across all methods.
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