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Figure 1: Given the temporal RGB images as input, our method can perform temporal modeling
based on the corresponding optical flow and occlusion mask, and predict semantic scene completion
for all voxels in 3D space.

Abstract

3D Semantic Scene Completion (SSC) provides comprehensive scene geometry
and semantics for autonomous driving perception, which is crucial for enabling
accurate and reliable decision-making. However, existing SSC methods are limited
to capturing sparse information from the current frame or naively stacking multi-
frame temporal features, thereby failing to acquire effective scene context. These
approaches ignore critical motion dynamics and struggle to achieve temporal
consistency. To address the above challenges, we propose a novel temporal SSC
method FlowScene: Learning Temporal 3D Semantic Scene Completion via Optical
Flow Guidance. By leveraging optical flow, FlowScene can integrate motion,
different viewpoints, occlusions, and other contextual cues, thereby significantly
improving the accuracy of 3D scene completion. Specifically, our framework
introduces two key components: (1) a Flow-Guided Temporal Aggregation module
that aligns and aggregates temporal features using optical flow, capturing motion-
aware context and deformable structures; and (2) an Occlusion-Guided Voxel
Refinement module that injects occlusion masks and temporally aggregated features
into 3D voxel space, adaptively refining voxel representations for explicit geometric
modeling. Experimental results demonstrate that FlowScene achieves state-of-
the-art performance, with mIoU of 17.70 and 20.81 on the SemanticKITTI and
SSCBench-KITTI-360 benchmarks.

1 Introduction

One of the key challenges in autonomous driving is 3D scene understanding, which involves inter-
preting the spatial layout and semantic properties of objects within the scene. The ability to perceive
and accurately interpret 3D scenes is essential for making safe and informed driving decisions.
Recently, the 3D Semantic Scene Completion (SSC) task [29, 27] has gained significant attention in
autonomous driving, as it enables the joint inference of geometry and semantics from incomplete
observations.
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Figure 2: Our method uses optical flow guide temporal SSC versus the previous temporal SSC
method.

Most existing SSC methods [26, 46, 6, 15, 27, 42] rely on input RGB images along with corresponding
3D data to predict volume occupancy and assign semantic labels. However, the dependence on 3D
data often requires specialized and costly depth sensors, which can limit the broader applicability of
SSC algorithms. Recently, many researchers [2, 47, 14, 9] have investigated camera-based approaches
to reconstruct dense 3D geometric structures and recover semantic information, offering a more
accessible alternative.

Previous camera-based SSC methods [12, 44, 14] typically rely on the limited observations available
in the current frame to recover 3D geometry and semantics. Later, some researchers [17, 13, 22, 38]
stacked historical temporal features or aligned features with estimated camera poses to enrich
contextual information, as shown in Figure 2(a). However, these direct temporal modeling methods
overlook the scene motion context, fail to achieve temporal consistency, and inherently limit the
increase of effective contextual cues. Based on these limitations, we asked: How can we accurately
identify the correlation between historical frames and the current frame to guide temporal SSC
modeling?

In this paper, we propose a novel temporal SSC method: FlowScene, Learning Temporal 3D Semantic
Scene Completion via Optical Flow Guidance. As shown in Figure 2(b), FlowScene uses optical
flow to guide temporal modeling, injecting various types of information into the SSC model, such
as motion, different viewpoints, deformation, texture, geometric structure, lighting, and occlusion.
As shown in Figure 1, the corresponding optical flow and occlusion masks are generated from
the historical and current frame images, allowing for the further derivation of scene geometry and
semantic structure. The positions and semantics of the car, tree trunk, vegetation, and pole within
the red box in Figure 1 are more accurate, even when they are mutually occluded. Specifically,
we introduce the Flow-Guided Temporal Aggregation module to effectively enhance temporal and
motion cues by incorporating motion and contextual information from previous frames. Furthermore,
we design the Occlusion-Guided Voxel Refinement module, which leverages aggregated features and
occlusion masks to refine 3D voxel predictions for explicit geometric modeling. To evaluate the
performance of FlowScene, we conduct thorough experiments on SemanticKITTI [1] and SSCBench-
KITTI360 [19, 16]. Our method achieves state-of-the-art performance. The main contributions of our
work are summarized as follows:

• We introduce FlowScene, a novel approach to 3D SSC that incorporates optical flow guidance
to capture and model temporal and spatial dependencies across frames.

• We propose the flow-guided temporal aggregation module, which effectively enhances
temporal and motion cues by incorporating motion and contextual information from previous
frames.

• We design the occlusion-guided voxel refinement module, which leverages aggregated
features and occlusion masks to refine 3D voxel predictions, enabling explicit geometric
modeling and improving the accuracy of scene reconstruction in occluded regions.

• We evaluate FlowScene on the SemanticKITTI and SSCBench-KITTI-360 benchmarks,
achieving state-of-the-art performance. Our method surpasses the latest methods in both
semantic and geometric analysis, demonstrating the effectiveness of optical flow-guided
temporal modeling in SSC tasks.
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2 Related Work

3D Semantic Scene Completion. The vision-based 3D Semantic Scene Completion (SSC) solution
has received widespread attention in the field of autonomous driving perception. MonoScene [2]
was the first to infer dense 3D semantics from a single RGB image. TPVFormer [9] introduced a
tri-perspective view (TPV) representation, extending BEV with two vertical planes. OccFormer [47]
proposed a dual-path transformer to encode voxel features, while VoxFormer [17] introduced a
two-stage pipeline for voxelized semantic scene understanding. SurroundOcc [40] employed 3D
convolutions for progressive voxel upsampling and dense SSC ground truth generation. OctOcc [24]
utilized an octree-based representation for semantic occupancy prediction, while NDCScene [43] re-
defined spatial encoding by mapping 2D feature maps to normalized device coordinates (NDC) rather
than world space. MonoOcc [48] enhanced 3D volumetric representations using an image-conditioned
cross-attention mechanism. H2GFormer [39] introduced a progressive feature reconstruction strategy
to propagate 2D information across multiple viewpoints. Symphonize [12] extracted high-level in-
stance features to serve as key-value pairs for cross-attention. HASSC [38] proposed a self-distillation
framework to improve the performance of VoxFormer. Stereo-based methods, such as BRGScene [14],
leveraged stereo depth estimation to resolve geometric ambiguities. MixSSC [36] fused forward
projection sparsity with the denseness of depth-prior backward projection. CGFormer [44] utilized
a context-aware query generator to initialize context-dependent queries tailored to individual input
images, effectively capturing their unique characteristics and aggregating information within the
region of interest. HTCL [13] decomposed temporal context learning into two hierarchical steps:
cross-frame affinity measurement and affinity-based dynamic refinement. VLScene [37] leveraged
vision-language models to extract high-level semantic priors for SSC.

Optical Flow for Visual Perception. Optical flow estimation, a fundamental task in computer
vision, aims to establish dense pixel-wise correspondences between consecutive frames. FlowNet [3,
11] introduced the first CNN-based end-to-end flow estimation pipeline, leveraging a hierarchical
pyramid structure. PWC-Net [31] further refined this approach by incorporating multi-stage warping
to handle large-displacement motion. RAFT [34] introduced an iterative, recurrent architecture
that refines residual flow predictions in a fully convolutional manner. GMFlow [41] reframed
optical flow as a global matching problem, directly computing feature similarities to establish
correspondences. Beyond motion estimation, optical flow has been leveraged to enhance various
vision tasks. FlowTrack [50] used optical flow to enrich feature representations and improve tracking
accuracy. FGFA [49] employed flow-guided feature aggregation for end-to-end video object detection.
LoSh [45] utilized flow-based warping to propagate annotations across temporal neighbors, thereby
boosting referring video object segmentation. DATMO [30] introduced a moving object detection
and tracking framework tailored for autonomous vehicles. DeVOS [4] incorporated optical flow into
scene motion modeling, using it as a prior for learnable offsets in video segmentation.

3 Methodology

3.1 Preliminary

Problem Setting. Given a set of RGB images I = {It−i}ni=0, where n is the number of historical
temporal images, the objective is to jointly infer the geometry and semantics of a 3D scene. This scene
is represented as a voxel grid Y ∈ RX×Y×Z×(M+1), where X,Y, Z represent the height, width, and
depth in 3D space, respectively. Each voxel in the grid is assigned a unique semantic label from the set
C ∈ {C0, C1, ..., CM}, where C0 represents empty space and the remaining classes {C1, ..., CM}
correspond to specific semantic categories. Here, M denotes the total number of semantic classes.
The goal is to learn a transformation Y = θ(Is) that closely approximates the ground truth Ŷ.

3.2 Overview

We illustrate our method in Figure 3. First, we use the lightweight image encoder RepViT [35] and
FPN [20] to extract the current image features, Ft, and the historical temporal features, Ftemp =
{Ft−i}ni=1. We then apply the pre-trained optical flow estimation model [41] (Section 3.3) to generate
bidirectional optical flow, Flow = {Flowt−i→t

fwd , F lowt−i→t
bwd }ni=1. The historical temporal features,

Ftemp, are warped using Flowbwd to obtain Fwarp = {F t−i→t
warp }ni=1. The bidirectional optical
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Figure 3: The FlowScene framework is proposed for temproal 3D semantic scene completion.

flow is then used for occlusion detection through a forward and backward consistency check to
obtain the cumulative mask, M ∈ 0, 11×h×w. Subsequently, Fwarp, Ft, and M are passed into
the FGTA module (Section 3.4) to perform optical flow-guided temporal feature aggregation in the
2D image feature space, resulting in the aggregated feature Fagg. Next, we apply the LSS view
transformation [25] to project Ft, Fagg, and M into the 3D voxel space, obtaining Vt, Vagg, and
Vmask, respectively. In the subsequent OGVR module (Section 3.5), the two voxel features are fused
based on the occlusion information, yielding the refined voxel features, Vfine. Finally, Vfine passes
through the voxel encoder, then undergoes upsampling and linear projection to output the dense
semantic voxels, Y.

3.3 Optical Flow Estimation

Flow-Guided Warping. Given a reference image frame It and historical frames It−i, the flow
field Flowt→t−i = F(It, It−i) is estimated by a flow network F (e.g., GMFlow [41]). The feature
map from the historical frame is warped to the reference frame according to the flow. The warping
function is defined as

F t−i→t
warp =Warp(Ft−i, F lowt→t−i) (1)

whereWarp(·) is a bilinear warping function applied to all locations of each channel in the feature
map, and F t−i→t

warp represents the feature map warped from frame t− i to t.

Occlusion Detection. First, we note that there is relative motion between almost all frames in
an autonomous driving scenario, which results in pixels in the current image that do not have
corresponding matching pixels in the historical frames; these are referred to as occluded areas. To
detect occlusion, as shown in Figure 4, we use the commonly employed forward and backward
consistency check technique [32, 23], which is implemented as:

M = CC(Flowt→t−i, F lowt−i→t), (2)

where CC(·) denotes the forward and backward consistency check function, and we have included a
detailed explanation in the Technical Appendix. For non-occluded pixels, the forward optical flow
should be the inverse of the backward optical flow of the corresponding pixel in the second frame. A
pixel is marked as occluded if the mismatch between the two flows exceeds a predefined threshold.
Thus, we define the occlusion flag as 1 whenever the constraint is violated and 0 otherwise.

3.4 Flow-Guided Temporal Aggregation

Previous SSC methods either stacked historical frame features or estimated camera poses to align
features, aiming to complement the current frame. However, this direct temporal modeling approach
overlooks the scene motion context, fails to achieve temporal consistency, and inherently limits the
ability to leverage additional effective cues. To better incorporate time- and motion-related cues, we
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propose a flow-guided temporal aggregation module in 2D space. This module leverages optical flow
information to align and aggregate temporal features along the motion path. As illustrated on the
right side of Figure 3.

Specifically, guided by optical flow, the historical frame features are warped to the reference frame.
Features from different frames provide multiple information for the same object instance, such
as motion, different viewpoints, deformations, textures, geometric structures, various lighting and
occlusions. First, we assign different weights to different spatial locations, while ensuring that the
spatial weights remain the same across all feature channels. At position P, if the warped feature
F t−i→t
warp (P) is close to the feature Ft(P), it is assigned a larger weight. Otherwise, a smaller weight is

assigned. Inspired by FGFA [49], we use the cosine similarity [21] to measure the similarity between
the warped features and the reference frame features:

wt−i→t(P) = similarity(F t−i→t
warp (P), Ft(P)). (3)

Then, we use the similarity weights to aggregate these feature maps to enhance the scene motion
context features. The aggregation feature Fagg is obtained as:

Fagg =

t∑
i=0

wt−i→t · F t−i→t
warp . (4)

The non-occluded regions in the historical frames usually have richer texture and feature information,
which may be missing in the current frame due to visual occlusion. To address this, we enhance the
current frame features, we effectively fuse spatiotemporal information through the neighborhood
cross-attention mechanism [7]. We selectively use non-occluded features from historical frames
to prevent injecting unreliable or distorted information caused by occlusions or inaccurate flow.
Including occluded regions can introduce noise and harm completion quality. First, we select reliable
non-occluded region features in the historical frames based on the occlusion mask. The reference
features Ft are used as query, and the warp features Fwarp of the non-occluded regions serve as key
and value. The specific operations are as follows:

Ft = NCA(Ft, (1−M) · Fwarp), (5)
where NCA(·) is the neighborhood cross attention mechanism. After these operations, Ft fuses the
non-occluded region information from both the current and historical frames, providing more stable
and accurate features that enhance the perception of dynamic scenes and occluded regions.

3.5 Occlusion-Guided Voxel Refinement

After passing through the FGTA module, time- and motion-related cues are injected into the image
features Ft and the aggregate features Fagg. However, for the 3D voxel space, there is a lack of
explicit geometric modeling. To incorporate occlusion and optical flow information into the 3D space,
we introduce the occlusion-guided voxel refinement module. This module enhances the semantic
completion ability of the occluded region by employing a weighted strategy of the occlusion mask.
As shown in the right side of Figure 3.

Specifically, as shown in Figure 5, we follow the LSS view transformation paradigm and use depth
bin D assignment to project Ft, Fagg , and M into the 3D voxel space to obtain Vt, Vagg , and Vmask,
respectively,

Vt = VoxelPooling(Ft ⊗D),

Vagg = VoxelPooling(Fagg ⊗D), (6)
Vmask = VoxelPooling(M ⊗D),
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where ⊗ is the dot product operation, VoxelPooling is the voxel pooling operation. First, we use
Vmask to distinguish occluded and non-occluded regions in the 3D voxel space. For the non-occluded
region, we use the aggregate features Vagg that fuse multiple cues. Subsequently, since the information
from the corresponding position in the historical frame may be inaccurate due to occlusion, we use
the voxel features from the current frame to update the occluded area to supplement the latest
environmental information. Finally, by constructing a weighted matrix, we normalize the fused voxel
features to ensure that there is no mutation at the boundary between the occluded and non-occluded
areas, thereby improving the smoothness of the features. The specific operation is as follows:

Vfine =
(1− Vmask) · Vagg + Vt

(1− Vmask) + 1
. (7)

Finally, Vfine enters the sparse voxel encoder for feature extraction, and then performs linear
prediction to output dense semantic voxels Y.

3.6 Training Loss

In the FlowScene framework, we adopt the scene-class affinity loss Lscal from MonoScene [2] to
optimize precision, recall, and specificity concurrently. The scene-class affinity loss is applied to
semantic and geometric predictions, in conjunction with the cross-entropy loss weighted by class
frequencies. Besides, the intermediate depth distribution for view transformation is supervised by the
projections of LiDAR points, with the binary cross-entropy loss Ld following BEVDepth [18]. The
overall loss function is formulated as follows:

L = λsemLsem
scal + λgeoLgeo

scal + λceLce + λdLd, (8)

where several λ are balancing coefficients.

4 Experiments

To assess the effectiveness of our FlowScene, we conducted thorough experiments using the large
outdoor datasets SemanticKITTI [1, 5], SSCBench-KITTI-360 [16, 19]. Information about datasets,
metrics, and detailed implementation details is provided in the Technical Appendix, where additional
experiments and analysis are also provided.

Table 1: Quantitative results on the SemanticKITTI hidden test set. The best and the second best
results are in bold and underlined, respectively. The “S” and “T” denote single-frame images, and
temporal images, respectively.
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MonoScene [2] CVPR’2022 S 34.16 54.70 27.10 24.80 5.70 14.40 18.80 3.30 0.50 0.70 4.40 14.90 2.40 19.50 1.00 1.40 0.40 11.10 3.30 2.10 11.08
TPVFormer [9] CVPR’2023 S 34.25 55.10 27.20 27.40 6.50 14.80 19.20 3.70 1.00 0.50 2.30 13.90 2.60 20.40 1.10 2.40 0.30 11.00 2.90 1.50 11.26
OccFormer [47] ICCV’2023 S 34.53 55.90 30.30 31.50 6.50 15.70 21.60 1.20 1.50 1.70 3.20 16.80 3.90 21.30 2.20 1.10 0.20 11.90 3.80 3.70 12.32
Symphonize [12] CVPR’2024 S 42.19 58.40 29.30 26.90 11.70 24.70 23.60 3.20 3.60 2.60 5.60 24.20 10.00 23.10 3.20 1.90 2.00 16.10 7.70 8.00 15.04
BRGScene [14] IJCAI’2024 S 43.34 61.90 31.20 30.70 10.70 24.20 22.80 2.80 3.40 2.40 6.10 23.80 8.40 27.00 2.90 2.20 0.50 16.50 7.00 7.20 15.36
CGFormer [44] NIPS’2024 S 44.41 64.30 34.20 34.10 12.10 25.80 26.10 4.30 3.70 1.30 2.70 24.50 11.20 29.30 1.70 3.60 0.40 18.70 8.70 9.30 16.63
VoxFormer-T [17] CVPR’2023 T 43.21 54.10 26.90 25.10 7.30 23.50 21.70 3.60 1.90 1.60 4.10 24.40 8.10 24.20 1.60 1.10 0.00 13.10 6.60 5.70 13.41
H2GFormer-T [39] AAAI’2024 T 43.52 57.90 30.40 30.00 6.90 24.00 23.70 5.20 0.60 1.20 5.00 25.20 10.70 25.80 1.10 0.10 0.00 14.60 7.50 9.30 14.60
HASSC-T [38] CVPR’2024 T 42.87 55.30 29.60 25.90 11.30 23.10 23.00 2.90 1.90 1.50 4.90 24.80 9.80 26.50 1.40 3.00 0.00 14.30 7.00 7.10 14.38
SGN [22] TIP’2024 T 43.71 57.90 29.70 25.60 5.50 27.00 25.00 1.50 0.90 0.70 3.60 26.90 12.00 26.40 0.60 0.30 0.00 14.70 9.00 6.40 14.39
HTCL [13] ECCV’2024 T 44.23 64.40 34.80 33.80 12.40 25.90 27.30 5.70 1.80 2.20 5.40 25.30 10.80 31.20 1.10 3.10 0.90 21.10 9.00 8.30 17.09
Ours T 45.20 64.10 35.00 33.70 13.00 27.70 26.40 10.00 4.20 3.10 7.00 26.30 10.00 30.20 3.10 5.10 1.10 20.20 8.90 9.10 17.70

4.1 Main Results

Quantitative Results. As shown in Table 1, we compare FlowScene with the latest public methods
on the SemanticKITTI dataset, including approaches that use single-image input (S) and temporal
image input (T). Temporal methods, such as VoxFormer [17], H2GFormer [39], HASSC [38], and
SGN [22], utilize additional historical 5-frame input, while HTCL [13] uses a 3-frame historical
input. In contrast, FlowScene uses only 2 historical frames as input, achieving the highest mIoU
for the overall semantic metric and the highest IoU for the completion metric. Compared to the
best-performing HTCL with temporal input, FlowScene improves the mIoU and IoU by 0.61%
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Table 2: Quantitative results on the SSCBench-KITTI360 test set. The best and the second best
results are in bold and underlined, respectively.

Methods Prec. Rec. IoU
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mIoU
MonoScene 56.73 53.26 37.87 19.34 0.43 0.58 8.02 2.03 0.86 48.35 11.38 28.13 3.32 32.89 3.53 26.15 16.75 6.92 5.67 4.20 3.09 12.31
VoxFormer 58.52 53.44 38.76 17.84 1.16 0.89 4.56 2.06 1.63 47.01 9.67 27.21 2.89 31.18 4.97 28.99 14.69 6.51 6.92 3.79 2.43 11.91
TPVFormer 59.32 55.54 40.22 21.56 1.09 1.37 8.06 2.57 2.38 52.99 11.99 31.07 3.78 34.83 4.80 30.08 17.52 7.46 5.86 5.48 2.70 13.64
OccFormer 59.70 55.31 40.27 22.58 0.66 0.26 9.89 3.82 2.77 54.30 13.44 31.53 3.55 36.42 4.80 31.00 19.51 7.77 8.51 6.95 4.60 13.81
IAMSSC - - 41.80 18.53 2.45 1.76 5.12 3.92 3.09 47.55 10.56 28.35 4.12 31.53 6.28 29.17 15.24 8.29 7.01 6.35 4.10 12.97
Symphonies 69.24 54.88 44.12 30.02 1.85 5.90 25.07 12.06 8.20 54.94 13.83 32.76 6.93 35.11 8.58 38.33 11.52 14.01 9.57 14.44 11.28 18.58
CGFormer - - 48.07 29.85 3.42 3.96 17.59 6.79 6.63 63.85 17.15 40.72 5.53 42.73 8.22 38.80 24.94 16.24 17.45 10.18 6.77 20.05
Ours 69.70 58.99 46.95 32.48 1.87 4.93 25.47 14.86 9.62 60.53 16.49 36.13 8.58 39.66 9.62 39.82 13.32 17.52 14.35 16.25 13.08 20.81

and 0.97%, respectively. When compared to the best CGFormer, which uses single-frame input,
FlowScene achieves improvements of 1.07% in mIoU and 0.79% in IoU. Additionally, our method
achieves the best or second-best results in most categories, outperforming or closely matching other
methods. These results demonstrate the superiority of FlowScene in both geometry and semantics,
effectively utilizing optical flow motion information and achieving temporal consistency.

To demonstrate the diversity of our model, we conducted experiments on the SSCBench-KITTI-
360 dataset, as shown in Table 2. It is worth noting that our method has a huge advantage in the
performance of potential moving objects (such as car, truck, other-vehicle, person, etc.)

Moreover, Table 3 illustrates the performance of FlowScene across three distance ranges (12.5m,
25.6m, 51.2m) on the SemanticKITTI validation set. It is evident that our approach significantly
outperforms state-of-the-art methods at every tested distance. Furthermore, as shown in Table 4,
we compare the inference time and number of parameters of our method with other state-of-the-art
methods on the SemanticKITTI validation set. The inference time of MonoScene is optimal because
of its FLoSP feature projection method. But, FlowScene achieves state-of-the-art performance with
a mIoU of 18.13%, while utilizing only 52.4M parameters. Additionally, FlowScene processes the
extra 2-frame temporal image input with lower inference time, further demonstrating its efficiency
and superior mIoU performance.

Table 3: Comparison of different ranges on Se-
manticKITTI validation set.

Methods Venues mIoU(%)
12.8m 25.6m 51.2m

MonoScene CVPR’2022 12.25 12.22 11.30
VoxFormer-T CVPR’2023 21.55 18.42 13.35
HASSC-T CVPR’2024 24.10 20.27 14.74
H2GFormer-T AAAI’2024 23.43 20.37 14.29
BRGScene IJCAI’2024 23.27 21.15 15.24
SGN-T TIP’2024 25.70 22.02 15.32
VLScene AAAI’2025 26.51 24.37 17.83
Ours 27.63 24.65 18.13

Table 4: Comparison of inference time and num-
ber of parameters.

Method Input mIoU(%) Times(s) Params(M)

MonoScene T 12.96 0.281 132.4
OccFormer T 13.58 0.338 203.4
VoxFormer T 13.35 0.307 57.9
Symphonize S 14.89 0.319 59.3
BRGScene S 15.43 0.285 161.4
HTCL T 17.13 0.297 181.4
Ours T 18.13 0.301 52.4

Qualitative Visualizations. To intuitively demonstrate the performance of FlowScene, Figure 6
presents qualitative results for VoxFormer-T, BRGScene, and our method on the SemanticKITTI
validation set. The first column displays the input reference image and the corresponding optical flow.
It is evident that optical flow is particularly sensitive to the perception of moving objects, such as
cars and cyclists. Compared to BRGScene, our method more effectively captures the location and
details of mutually occluded objects in the scene (e.g., the arrangement of multiple cars in the second
row). In comparison to VoxFormer-T, FlowScene maintains better temporal consistency, as shown by
the car parked on the roadside in the blue box in the third row. Overall, our method demonstrates
superior geometric and semantic visualization.

4.2 Analysis of Static and Dynamic Objects

To better understand the performance of our method across different types of semantic categories,
we conduct a detailed analysis by separating static and dynamic object classes in the autonomous
driving datasets. For SemanticKITTI, we define dynamic objects as the classes that are likely to
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Figure 6: Qualitative results on the SemanticKITTI validation set.

Table 5: Analysis of Static and Dynamic Objects

Method SemanticKITTI SSCBench-KITTI-360
Dynamic Static All-mIoU Dynamic Static All-mIoU

MonoScene 3.81 16.36 11.08 5.21 15.87 12.13
VoxFormer 4.45 19.91 13.41 4.69 12.19 11.91
Symphonie 5.71 21.83 15.04 13.85 20.94 18.58
CGFormer 5.48 24.75 16.63 11.37 24.38 20.05

Ours 7.50 25.29 17.70 14.87 23.78 20.81

involve motion: car, truck, bicycle, motocycle, other-vehicle, person and bicylist
as dynamic objects and others as static objects. For SSCBench-KITTI-360, we classified car,
bicycle, motocycle, truck, other-vehicle and person as dynamic objects and others as static
objects. Table 12 presents a comparative evaluation of our method against several prior state-of-the-art
approaches, reporting mean IoU (mIoU) separately for dynamic objects, static objects, and the overall
average.

Our method clearly outperforms all baselines in both datasets. Notably: On SemanticKITTI, our
model achieves 7.50% mIoU for dynamic objects—the highest among all methods, surpassing
CGFormer (5.48%) and Symphonie (5.71%). For static objects, we also lead with 25.29%, again
outperforming CGFormer (24.75%). On SSCBench-KITTI-360, our method obtains 14.87% mIoU
on dynamic objects, significantly ahead of CGFormer (11.37%) and Symphonie (13.85%). Although
CGFormer slightly surpasses us on static objects (24.38% vs. 23.78%), our method achieves the
highest overall score of 20.81% mIoU. These results demonstrate that FlowScene plays a crucial
role in handling motion and temporal variation, making it especially effective in recognizing and
completing dynamic objects. Unlike previous approaches that rely on frame stacking or static
assumptions, our model adapts to motion patterns, improving semantic consistency across time.

Figure 7 illustrates the qualitative results of dynamic object modeling in a challenging real-world
scenario. As shown, the cyclist in motion is effectively captured by the optical flow module, which
accurately estimates the movement across frames. By leveraging this motion information, our
model performs kinematic compensation, aligning temporal features and preserving object structure
throughout the sequence. This results in a more coherent and complete 3D semantic reconstruction
of the dynamic scene. To further support this case, we provide a supplementary video that offers
an intuitive, frame-by-frame visualization of the temporal alignment and dynamic object modeling.
This additional material highlights the superior capability of our method to handle complex motion
compared to static-assumption baselines.
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Figure 7: Dynamic object modeling case visualization results.

Table 6: Ablation study for Architecture Components on SemanticKITTI validation set. OFE: Optical
Flow Estimation; FGTA: Flow-Guided Temporal Aggregation; OGVR: Occlusion-Guided Voxel
Refinement; FGW: Flow-Guided Warping; OD: Occlusion Detection; TA: Temporal Aggregation;
OCA: Occlusion Cross-Attention; Vt: reference voxel features; Vagg: aggregation voxel features;
Vmask: voxel occlusion mask.

Variants OFE FGTA OGVR IoU(%) mIoU(%) Params(M)FGW OD TA OCA Vt Vagg Vmask

Baseline 43.98 15.89 47.4
1 ✓ 44.13 16.21 52.1
2 ✓ ✓ ✓ ✓ 44.38 16.43 52.2
3 ✓ ✓ ✓ ✓ ✓ 44.56 16.67 52.1
4 ✓ ✓ ✓ ✓ ✓ ✓ 44.63 17.23 52.3
5 ✓ ✓ ✓ ✓ ✓ ✓ 44.42 17.08 52.3
6 ✓ ✓ ✓ ✓ ✓ 44.68 17.18 52.4
7 ✓ ✓ ✓ ✓ ✓ ✓ 44.72 17.63 52.4
8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 45.01 18.13 52.4

4.3 Ablation Studies

We conduct extensive ablation experiments for FlowScene on the Semantickitti validation set. Specif-
ically, we analyze the impact of different architecture component variations in Table 6.

Optical Flow Estimation (OFE). The baseline model removes all components, using only the
current image and two frames of historical images as input. After passing through the image encoder,
all features are stacked together. Variant 1 in Table 6 uses Flow-Guided Warping to align the temporal
features to the reference moment, achieving a 0.32% mIoU improvement (Variant 1 vs. Baseline).
Additionally, Variant 2 incorporates Occlusion Detection to obtain an occlusion mask, which guides
the interaction of non-occluded areas in the 2D feature space, boosting the mIoU score by 0.22%
(Variant 2 vs. Variant 1).

Flow-Guided Temporal Aggregation (FGTA). In Table 6, Variants 3, 4, and 5 represent different
configurations of the FGTA module: removing the FGTA module (Variant 3), removing the Occlusion
Cross-Attention (Variant 4), and removing the Temporal Aggregation component (Variant 5). Variant
4 adaptively assigns weights to aggregate historical features, resulting in a 0.56% mIoU improvement
(Variant 4 vs. Variant 3). Variant 5 uses Occlusion Cross-Attention to facilitate interaction between
the current feature and the non-occluded areas in the historical frame, enhancing the texture and
contextual information of the current frame’s features, further boosting the mIoU by 0.41% (Variant
5 vs. Variant 3).

Occlusion-Guided Voxel Refinement (OGVR). In Table 6, Variant 6 represents the removal of
the OGVR module, while Variant 7 uses convolution fusion to concatenate Vt and Vagg. Even with
this simple fusion strategy, a 0.45% mIoU improvement is achieved (Variant 7 vs. Variant 6). Variant
8 represents our final full model. Compared to Variant 7, the mask-based refinement strategy further
improves the mIoU metric. It is worth noting that the OGVR module incurs no additional parameter
overhead.

9



Table 7: Ablation study for temporal
alignment strategy.

Method IoU(%) mIoU(%)

Stack 43.98 15.89
VoxFormer-T [17] 44.15 13.35
HTCL [13] 45.51 17.13
Flow-Guided [Ours] 45.01 18.13

Table 8: Ablation study for different number of temporal
inputs.

Temporal Inputs IoU(%) mIoU(%) Times(s)t-1 t-2 t-3 t-4 t-5

✓ 44.63 17.74 0.290
✓ ✓ 45.01 18.13 0.301
✓ ✓ ✓ 44.72 18.30 0.314
✓ ✓ ✓ ✓ 44.66 17.68 0.328
✓ ✓ ✓ ✓ ✓ 44.53 17.55 0.344

Table 9: Ablation study for optical flow
networks.

Method IoU(%) mIoU(%) Params(M)

PWC-Net+ [31] 43.31 17.13 8.8
RAFT [34] 44.12 17.56 5.3
FlowFormer [10] 44.33 17.74 18.2
GMFlow [41] 45.01 18.13 4.7

Table 10: Ablation study for image backbone networks.
Acc represents the classification accuracy of each pre-
trained model on ImageNet [28].

Method IoU(%) mIoU(%) Params(M) Acc(%)

ResNet50 [8] 44.12 16.98 25.6 79.3
EfficientNetB7 [33] 44.31 17.63 63.8 84.4
RepVit-M2.3 [35] 45.01 18.13 22.4 83.3

Overall, compared to the baseline, our method achieves significant improvements in both completion
and semantic metrics (+2.24% mIoU, +1.03% IoU).
Temporal Alignment Strategy and Temporal Inputs. Table 7 presents the results of an ablation
study comparing different temporal alignment strategies used for fusing features across frames. Our
Flow-Guided strategy delivers the best mIoU of 18.13%, showing that optical flow-guided alignment
is highly effective for preserving fine-grained semantic consistency, particularly for dynamic scenes.
As shown in Table 8, we evaluate the performance of temporal inputs with different numbers of
frames. We observe that, as the number of frames increases, the time overhead also increases.
However, the mIoU metric does not grow linearly, as the quality of optical flow prediction decreases
when the time interval between frames is longer. As a result, inputs with 4 or 5 frames (t-4 and t-5)
lead to reduced effectiveness. Considering both the experimental metrics and the time overhead, we
use 2 frames as the input for our FlowScene method.
Optical Flow Networks. Table 9 presents the performance of different optical flow networks. We
compare several state-of-the-art methods, including PWC-Net [31], RAFT [34], and FlowFormer [10],
along with our setting, GMFlow [41], which is highlighted in the last row. Our setting achieves the
highest IoU of 45.01% and mIoU of 18.13%, outperforming all other methods in both metrics. These
results suggest that GMFlow effectively captures motion cues and integrates them into the semantic
scene completion task, providing superior performance over the other optical flow networks tested,
with significantly fewer parameters.
Image Backbone Networks. Table 10 examines the impact of different backbone networks on the
performance of FlowScene. The study compares EfficientNetB7 [33], ResNet50 [8], and RepVit-
M2.3 [35](our setting). Our method, using RepVit-M2.3, achieves the highest IoU of 45.01% and
mIoU of 18.13%, surpassing both EfficientNetB7 (44.31% IoU, 17.63% mIoU) and ResNet50
(44.12% IoU, 16.98% mIoU). RepVit-M2.3, though achieving the best performance, maintains a
relatively low parameter count of 22.4M. In comparison, EfficientNetB7 has a much higher parameter
count of 63.8M, while ResNet50 is more parameter-efficient at 25.6M. RepVit-M2.3 offers a good
balance between performance and parameter count, making it an ideal choice for our backbone
network. Different image encoders have significant improvements over the baseline, demonstrating
the effectiveness of our entire model.

5 Conclusion

In this paper, we propose a novel temporal SSC method FlowScene. Specifically, we introduce
a Flow-Guided Temporal Aggregation module that aligns and aggregates temporal features using
optical flow, capturing motion-aware context and deformable structures. In addition, we design an
Occlusion-Guided Voxel Refinement module that injects occlusion masks and temporally aggregated
features into 3D voxel space, adaptively refining voxel representations for explicit geometric modeling.
Experimental results demonstrate that FlowScene achieves SOTA performance on the SemanticKITTI
and SSCBench-KITTI-360 benchmarks.
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Technical Appendices and Supplementary Material

This technical appendices consists of the following sections:

• In Section A, we provide information of datasets, metrics and detailed implementation
details.

• In Section B, we provide more experiments results and analysis.
• In Section C, we analyze the limitations of our approach, directions for future work, and the

broader impacts of this work.

We also include a video in the supplementary material.

A Experimental Setup

Datasets. The SemanticKITTI[1, 5] dataset includes dense semantic scene completion annotations
and labels a voxelized scene with 20 semantic classes. It consists of 10 training sequences, 1 validation
sequence, and 11 testing sequences. RGB images are resized to 1280 × 384 for input processing.
The SSCBench-KITTI-360[16, 19] dataset contains 7 training sequences, 1 validation sequence, and
1 testing sequence, covering 19 semantic classes in total. The RGB images are resized to 1408× 384
for input processing.

Metrics. We use intersection over union (IoU) to evaluate the scene completion performance. To
assess the effectiveness of our 3D Semantic Scene Completion method, we focus on the mean IoU
(mIoU). A higher IoU value reflects accurate geometric predictions, while a higher mIoU value
indicates more precise semantic segmentation.

Training Details. We use RepVit [35] and FPN [20] to extract features for all images. The number
of historical temporal frames n is set to 2. We use and freeze the GMFlow [41] optical flow estimation
model to obtain optical flow information. We use the LSS paradigm for 2D-3D projection. The
neighborhood cross-attention range is set to 7, and the number of attention heads is set to 8. Finally,
the final outputs of SemantiKITTI is 20 classes, and SSCBench-KITTI-360 is 19 classes. All datasets
have the scene size of 51.2m× 51.2m× 64m with the voxel grid size of 256× 256× 32. By default,
the model is trained for 25 epochs. We optimise the process, utilizing the AdamW optimizer with an
initial learning rate of 1e-4 and a weight decay of 0.01. We also employ a multi-step scheduler to
reduce the learning rate. All models are trained on two A100 Nvidia GPUs with 80G memory and
batch size 4.

Implementation of Flow Consistency Check.

1. Variable Definition:

Forward Flow: ( Flowt→t−1 )

• Maps pixels from the current frame ( It) to the previous frame ( It−1 ).
• For a pixel (xt ∈ It), the corresponding location in (I_t− 1) is:
xt−1 = xt + Flowt→t−1(xt)

Backward Flow: (Flowt−1→t )

• Maps pixels from the previous frame (It−1) to the current frame ( It ).
• For a pixel ( xt−1 ∈ I_t− 1), the corresponding location in ( It ) is:
x′
t = x_t− 1 + Flowt−1→t(x_t− 1)

2. Consistency Check

The forward-backward consistency check verifies whether a pixel mapping is valid by ensuring
round-trip correspondence.

Round-trip Mapping

15



A pixel in ( It) is mapped to ( It−1) using forward flow, and then mapped back using backward flow:

x′′
t = xt + Flowt→t−1(xt) + Flowt−1→t(xt + F t→t−1(xt))

Define the consistency residual as:
∆(xt) = Flowt→t−1(xt) + Flowt−1→t(xt + F t→t−1(xt))

If the norm ( ∥∆(xt)∥) is small (below a threshold), the mapping is considered consistent.

3. Occlusion Mask

Pixels with high inconsistency are typically considered occluded or unreliable.

Occlusion Mask (M(x)):

M(x) =


1 if ∥∆(x)∥ > τ (occluded)

0 otherwise (non-occluded)

Where (τ ) is a predefined threshold.

Implementation of FGTA and OGVR module. Algorithms 1 and 2 describe the implementation
details of the two key components proposed in this work: Flow-Guided Temporal Aggregation
(FGTA) and Occlusion-Guided Voxel Refinement (OGVR).

Algorithm 1 outlines the inference procedure for FGTA. Given the current and historical image frames
{It−i}Ni=0 and their corresponding features {Ft−i}Ni=0, the algorithm first estimates forward and
backward optical flows between the current frame It and each historical frame It−i. Each historical
feature map Ft−i is warped to the reference frame using flow-guided warping. Cosine similarity
between the warped features and the current frame feature Ft is computed to assign adaptive weights,
which emphasize temporally consistent and visually similar regions. Simultaneously, an occlusion
mask is constructed through a bidirectional flow consistency check to identify unreliable regions.
The weighted historical features are aggregated into Fagg, and a Neighborhood Cross-Attention
(NCA) operation is applied to further refine Ft, focusing only on non-occluded regions. This process
enhances temporal consistency and robustness to motion and occlusion artifacts.

Algorithm 2 describes the inference procedure for the OGVR module. The goal is to refine the voxel
features in 3D space by integrating information from the aggregated feature volume Vagg , the current
frame’s voxel features Vt, and the occlusion mask volume Vmask. Non-occluded regions are updated
using features from Vagg , while occluded regions are filled in using the current frame’s voxel features
Vt, which are more reliable in such areas. A per-voxel weight map is maintained to track the number
of valid sources contributing to each voxel. The final voxel feature representation Vfineis obtained
by normalizing the fused features with the accumulated weights, ensuring smooth transitions at the
boundaries between occluded and non-occluded regions. Importantly, this refinement process is
lightweight and introduces no additional parameter overhead.

Together, these modules enable FlowScene to effectively align temporal information and reason
across occlusions in both 2D and 3D spaces, leading to improved semantic and geometric scene
understanding in dynamic environments.

B More Results

B.1 Reproduce SOTA Method using Different Image Encoder

To ensure a fair and consistent comparison across methods, we re-implemented several state-of-
the-art Semantic Scene Completion models using a unified experimental setup. Specifically, we
replaced the original image encoders used in existing methods with a lightweight and efficient
backbone—RepViT [35]—while keeping all other architectural and training settings unchanged.

As shown in Table 11, the results demonstrate that RepViT significantly reduces the number of
parameters across all models, often without degrading performance—and in some cases, even
improving it. This confirms the generalizability and efficiency of RepViT as an image encoder for
SSC tasks.
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Algorithm 1 Inference algorithm of flow-guided temporal alignment

1: Inputs: Images {It−i}Ni=0, Features {Ft−i}Ni=0
2: M = Zeros ▷ init occlusion mask
3: for i = 1 to N do
4: Flowt→t−i, F lowt−i→t ← F(It, It−i) ▷ compute dual optical flow
5: F t−i→t

warp ←Warp(Ft−i, F lowt→t−i) ▷ flow-guided warp
6: wt−i→t ← similarity(F t−i→t

warp , Ft) ▷ compute similarity weight
7: Fagg[i]← wt−i→t · F t−i→t

warp ▷ get the features corresponding to the weights
8: M ← CC(Flowt→t−i, F lowt−i→t) ∪M ▷ compute occlusion mask
9: end for

10: Fagg ← SUM(Fagg)
11: Ft ← NCA(Ft, (1−M) · Fwarp)
12: Outputs: Fagg, Ft,M

Algorithm 2 Inference algorithm of occlusion-guided voxel refinement

1: Inputs: Aggregated voxel feature Vagg , current voxel feature Vt, occlusion mask Vmask

2: Initialize weight← 0 with shape as Vt

3: Initialize Vfine ← 0 with shape as Vt

▷ fuse non-occluded regions
4: Vfine ← Vfine + Vagg · (1− Vmask)
5: weight← weight + (1− Vmask)

▷ fuse occluded regions
6: Vfine ← Vfine + Vt

7: weight← weight + 1
▷ normalize result

8: weight← max(weight, 1× 10−6)
9: Vfine ← Vfine/weight

10: Outputs: Refined voxel feature Vfine

B.2 Standard Errors and Standard Deviations Results

We conducted a statistical analysis on the SemanticKITTI validation set and report the weighted
mean IoU (W-mIoU), weighted standard deviation (W-SD), and weighted standard error (W-SE)
across semantic categories. As shown, our method not only achieves the highest mIoU and W-mIoU,
but also demonstrates W-SD and W-SE compared to other strong baselines. This indicates that our
performance improvements are statistically meaningful and stable across classes.

B.3 More Quantitative Results

To provide a more thorough comparison, we provide additional quantitative results of semantic scene
completion on the SemanticKITTI validation set in Table 13. The results further demonstrate the
effectiveness of our approach in enhancing 3D scene perception performance. Compared with the
previous state-of-the-art methods, FlowScene is superior to other HTCL [13] in semantic scene
understanding, with a 1.00% increase in mIoU. In addition, compared with Symphonize [12], huge
improvements are made in both occupancy and semantics. IoU and mIoU enhancement are of great
significance for practical applications. It proves that we are not simply reducing a certain metric to
achieve semantic scene completion.

B.4 Failure Case

We provide two failure cases in Figure 8.

B.5 More Visualizations Results

We show visualization examples on the Semantickitti validation set, as shown in Figure 9. From
left to right are the input image, the corresponding optical flow and occlusion mask, the front view
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Table 11: Reproduce SOTA method using different image encoder.
Method Backbone mIoU(%) Params(M)

MonoScene [2] EfficientNetB7 12.96 132.4
RepViT 12.59 91.0

VoxFormer [17] ResNet50 13.35 57.9
RepViT 13.62 54.7

BRGScene [14] EfficientNetB7 15.43 161.4
RepViT 16.13 120.0

HTCL [13] EfficientNetB7 17.13 181.4
RepViT 16.86 140.0

VLScene [37] EfficientNetB7 17.44 88.8
RepViT 17.83 47.4

Ours
EfficientNetB7 17.63 93.8

ResNet50 16.98 55.6
RepViT 18.13 52.4

Table 12: Standard Errors and Standard Deviations Results

Method mIoU(↑) W-mIoU(↑) W-SD(↓) W-SE(↓)
Ours 17.70 33.11 13.80 6.50
HTCL (ECCV'2024) 17.08 32.64 14.17 6.67
CGFormer (NIPS'2024) 16.63 31.91 14.43 6.80
BRGScene (IJCAI'2024) 15.35 30.22 14.01 6.60
TPVFormer (ICCV'2023) 12.32 24.44 14.34 6.75
MonoScene (CVPR'2022) 11.08 22.58 14.38 6.77

SSC, and the top view SSC. Due to the motion information brought by the optical flow, the location
information of the scene objects is more accurate and the layout is more reasonable. We report the
performance of more visual comparison results on the SemanticKITTI validation set in Figure 10.
We compare with VoxFormer [17] and BRGScene [14]. In general, our method performs more
fine-grained segmentation of the scene and maintains clear segmentation boundaries. For example, in
the segmentation completion result of cars, we predict clear separation of each car. In contrast, other
methods show continuous semantic errors for occluded cars. In addition, our flow can effectively
deal with the problem of mutual occlusion between different objects. Finally, we provide a video in
the appendix to show the performance more intuitively.

C Discussions

C.1 Limitations

Flowscene shows strong performance on the benchmark with an improved number of parameters.
This is beneficial for deploying real-world autonomous driving applications. But the inference time
of the model needs to be improved. While optical flow is effective, it depends on pretrained flow
model, potentially limiting performance in degraded visual conditions.

C.2 Future Works

Semantic scene completion in multi-camera settings is also worth attention, which is our future work.
Meanwhile, the legal challenges of autonomous driving as well as privacy and data security risks
are still topics of debate. Finally, the robustness of semantic scene completion is also an issue worth
exploring.

C.3 Broader Impacts

FlowScene enhances 3D geometry perception by aligning temporal features through optical flow
information, thereby improving the ability of temporal semantic scene completion. This work has a
non-obvious negative social impact.
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Table 13: Quantitative results on the SemanticKITTI validation set. The best and the second best
results are in bold and underlined, respectively.
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MonoScene [2] CVPR’2022 S 36.86 56.52 26.72 14.27 0.46 14.09 23.26 6.98 0.61 0.45 1.48 17.89 2.81 29.64 1.86 1.20 0.00 5.84 4.14 2.25 11.08
TPVFormer [9] CVPR’2023 S 35.61 56.50 25.87 20.60 0.85 13.88 23.81 8.08 0.36 0.05 4.35 16.92 2.26 30.38 0.51 0.89 0.00 5.94 3.14 1.52 11.36
OccFormer[47] ICCV’2023 S 36.50 58.85 26.88 19.61 0.31 14.40 25.09 25.53 0.81 1.19 8.52 19.63 3.93 32.62 2.78 2.82 0.00 5.61 4.26 2.86 13.46
Symphonize [12] CVPR’2024 S 41.92 56.37 27.58 15.28 0.95 21.64 28.68 20.44 2.54 2.82 13.89 25.72 6.60 30.87 3.52 2.24 0.00 8.40 9.57 5.76 14.89
VoxFormer-T[17] CVPR’2023 T 44.15 53.57 26.52 19.69 0.42 19.54 26.54 7.26 1.28 0.56 7.81 26.10 6.10 33.06 1.93 1.97 0.00 7.31 9.15 4.94 13.35
H2GFormer [39] AAAI’2024 T 44.69 57.00 29.37 21.74 0.34 20.51 28.21 6.80 0.95 0.91 9.32 27.44 7.80 36.26 1.15 0.10 0.00 7.98 9.88 5.81 14.29
HASSC [38] CVPR’2024 T 44.58 55.30 29.60 25.90 11.30 23.10 23.00 2.90 1.90 1.50 4.90 24.80 9.80 26.50 1.40 3.00 0.00 14.30 7.00 7.10 14.74
HTCL [13] ECCV’2024 T 45.51 63.70 32.48 23.27 0.14 24.13 34.30 20.72 3.99 2.80 11.99 26.96 8.79 37.73 2.56 2.70 0.00 11.22 11.49 6.95 17.13

Ours T 45.01 63.72 32.10 22.20 1.31 25.63 33.33 33.47 2.36 5.09 16.99 26.35 8.68 36.73 3.79 1.92 0.00 12.05 11.65 7.05 18.13

Ground Truth FlowSceneImage

Figure 8: Failure cases.

Front ViewFlow&Mask Top ViewInput Images

Figure 9: Qualitative results on the SemanticKITTI validation set.
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OursBRGScene Ground TruthVoxFormer-T

Figure 10: Qualitative results on the SemanticKITTI validation set.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have described our contributions and scope explicitly in both the abstract
and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We describe our limitations in the section "Discussions" in our appendix text.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided implementation details in our "Experiments" section. More-
over, the source code will be released upon acceptance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The source code will be released upon acceptance. One can easily repro-
duce our results after preparing the SemanticKITTI and SSCBench-KITTI-360 datasets as
required.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, our training/test details are detailedly presented in our "Experimental
Setup" section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars are not reported because it would be too computationally expensive
in this paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computation resources are detailed in the "Experimental Setup" section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work adheres to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the societal impacts of our work in the "Discussions" section in the
appendix

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The involved data/models does not pose a high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: In our paper, we primarily engage with public datasets, we have cited them
properly and set the license in the website of the OpenReview.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

27

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Methodology
	Preliminary
	Overview
	Optical Flow Estimation
	Flow-Guided Temporal Aggregation
	Occlusion-Guided Voxel Refinement
	Training Loss

	Experiments
	Main Results
	Analysis of Static and Dynamic Objects
	Ablation Studies

	Conclusion
	Experimental Setup
	More Results
	Reproduce SOTA Method using Different Image Encoder
	Standard Errors and Standard Deviations Results
	More Quantitative Results
	Failure Case
	More Visualizations Results

	Discussions
	Limitations
	Future Works
	Broader Impacts


