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ABSTRACT

Conditional Flow Matching (CFM) has emerged as a competitive framework for
generative modeling, yet persistent concerns about trajectory crossings and their
impact on gradient variance have influenced the development, of a new frame-
work Rectify Flows. In this work, we rigorously analyze these assumptions
through theoretical and empirical lenses. First, we prove that in high-dimensional
spaces (d > 2), interpolating trajectories between source-target pairs almost
surely never cross—a zero-measure phenomenon contradicting low-dimensional
intuition. Second, we derive closed-form expressions for gradient variance un-
der Gaussian distributions, revealing that suboptimal deterministic couplings (e.g.,
rotation-based pairings) incur dimension-dependent variance scaling. Empirically,
we demonstrate that while 2D rotations inducing crossings amplify gradient noise,
this effect diminishes linearly with dimension rather than abruptly vanishing. We
also identify time-dependent variance patterns (t → 1) uncorrelated with cross-
ings, suggesting additional variance sources in CFM optimization.

1 INTRODUCTION

Diffusion models Sohl-Dickstein et al. (2015); Song et al. (2020); Ho et al. (2020); Song et al.
(2023) have shown great promise in generating images (Ramesh et al., 2022), videos (Ho et al.,
2022), and molecules (Hoogeboom et al., 2022). Data generation typically involves simulating a
stochastic denoising process. To improve efficiency, this stochastic process is often transformed
into an equivalent (marginal preserving) Ordinary Differential Equation (ODE) (Song et al., 2020),
known as the probability flow ODE (PF-ODE).

Simultaneously, a new framework called Conditional Flow Matching (CFM) (Tong et al., 2023;
Lipman et al., 2022) has emerged as a powerful approach to generative modeling, achieving per-
formance comparable to diffusion models for various generation tasks (Davtyan et al., 2023; Zhao
et al., 2024; Kapuśniak et al., 2024; Davis et al., 2024). However, both approaches train a neural
network to approximate the small steps of a transformation, whether stochastic or deterministic.
During training, the network learns to estimate the derivative of a function governing the evolution
of the data, requiring integration during inference to reconstruct the final sample.

As a result, the major challenge in generative modeling is improving the efficiency of these frame-
works by reducing the number of integration steps required during inference. In diffusion models,
this has led to the development of knowledge distillation (e.g. consistency distillation in Song et al.
(2023), progressive distillation in Salimans & Ho (2022)), and for CFM to Rectified Flows in Liu
et al. (2022), to attain faster sampling.

In knowledge distillation-based methods, which currently represent the state-of-the-art in requiring
a low number of steps at inference time (Luhman & Luhman, 2021; Salimans & Ho, 2022; Song
et al., 2023; Zheng et al., 2023), a student model is trained to directly predict the solution of the
PF-ODE.
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Figure 1: Schematic of a three-dimensional loss function LMC(vθ) in grey shading. A) The loss
function is represented for an optimal pairing between the samples X0 and X1. The blue points
representing its positive variance (Var(∇θLMC) > 0) and the arrows represent the noise associated
with the variance. The red point represents the optimal vector fields.

Similarly, in the context of CFM, methods like Rectified Flows as introduced by Liu et al. (2022)
and Liu (2022) aim to enhance the integration process for more efficient sampling by converging
to straighter vector fields, which are easier to integrate over. This is achieved by constructing de-
terministic couplings between the source and target distributions through the simulation of forward
and backward dynamics of the learned vector fields. Although repeated applications of this process
may introduce accumulated error (Liu et al., 2022), Roy et al. (2024) suggest that these couplings
can be optimal for Gaussian-like distributions or exhibit non-crossing behavior, often referred to as
straight trajectories in the literature.

It is assumed in the field that crossing paths (of the interpolant lines between the source and target
distribution) add variance to the Monte Carlo approximated loss function, used for optimization are
closely correlated (Fjelde et al., 2024). In this work, we challenge several prevailing assumptions in
CFM and Rectified Flows:

• We theoretically prove that in high dimensions (d > 2), interpolating trajectories have
zero-measure intersections, refuting concerns about trajectory crossings affecting training
stability in Section 3.

• We derive bounds for the variance of the gradients of the CFM loss function under Gaussian
source and target distributions in Section 4.

• We empirically analyze the correlation between trajectory crossings and gradient variance
in Section 5. In two dimensions, we observe that trajectory crossings indeed affect the vari-
ance; however, as the dimensionality increases, we observe a linear decrease in variance
rather than an abrupt drop, which is supported by our theoretical findings, though not en-
tirely. We also observe that the variance increases as t approaches 1, a phenomenon noted
in Lee et al. (2024). This behavior cannot be explained solely by trajectory crossings, as
the crossing from source to target should be symmetric around t = 1/2.

These findings concluded that while crossing might be correlated with the variance of gradients there
seem to be other sources for its provenience.

Research Question How is the variance of the gradients correlated with, or bounded by, the in-
cidence of crossing segments with endpoints in pairs of samples drawn from the source and target
distributions?
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2 THEORETICAL BACKGROUND

This section elaborates on the theoretical framework of Conditional Flow Matching (CFM) as in-
troduced by Tong et al. (2023) and Lipman et al. (2022), adhering to their established notation. We
start with a short description of Optimal Transport, followed by CFM, and then by Rectified Flows.

2.1 OPTIMAL TRANSPORT

Optimal Transport (OT) was initially posed as the Monge problem (Monge, 1781), seeking a map
T : Rd → Rd that transports samples X0 (with law π0) into X1 = T (X0) (with law π1), min-
imizing an expected cost E[c(T (X0) − X0)] (Villani et al., 2009). Kantorovitch (1958) relaxed
it by allowing stochastic couplings while preserving the same marginals, commonly referred to as
the Kantorovich problem. If π0 is absolutely continuous, both the Monge and Kantorovich prob-
lems share a deterministic optimal coupling. A time-continuous formulation connects X0 ∼ ρ0 to
X1 ∼ ρ1 via {Xt}t∈[0,1]; for a convex cost, the infimum is attained by a straight-line interpolant
Xt = (1− t)X0 + tX1 (McCann, 1997).

2.2 CONDITIONAL FLOW MATCHING AND RECTIFIED FLOWS

Conditional Flow Matching (CFM) constructs a time-dependent ODE:

dZt = v(Zt, t) dt, Z0 ∼ π0, Z1 ∼ π1, (1)

with v(·, t) learned to align with linear trajectories connecting samples X0 and X1. Minimizing∫ 1

0

E
[
∥X1 −X0 − v(Xt, t)∥2

]
dt, Xt = (1− t)X0 + tX1, (2)

yields v(x, t) = E[X1 − X0 | Xt = x]. In practice, v is parameterized by a neural network and
trained via stochastic gradient descent on (X0, X1) (Tong et al., 2023; Lipman et al., 2022).

Once trained, the ODE dZt = v(Zt, t) dt induces the same marginals as Xt for all t. This flow can
be “rectified” by simulating {Zt}t∈[0,1]; we denote this process as RectFlow(X0, X1), leading to
rectified couplings (Z0, Z1) (Liu et al., 2022).

Are Rectified Couplings Better? It has been shown that a single RectFlow step can transform
random couplings of two Gaussians into an optimal transport (OT) coupling (Roy et al., 2024),
and applying infinitely many RectFlows yields straight (non-crossing) trajectories (Liu et al., 2022).
Empirically, this procedure also exhibits robust performance when combined with additional re-
finements (Lee et al., 2024). The key insight is that simulating the forward dynamics generates
couplings (Z0, Z1) in a continuous vector field whose integrated paths cannot intersect at any time
t, returning more stable couplings. Infinitely many applications of this algorithm can lead some-
times to obtaining optimal pairings, that can happen when the parameterization of the network is
such that it approximates the gradient of a vector field Liu (2022), noise is added to the interpolants
Albergo et al. (2023); Shi et al. (2024); Peluchetti (2023) (eOT), and the network is parametrized to
approximate a convex function Kornilov et al. (2024).

2.3 LOSS AND VARIANCE OF GRADIENTS

Rewriting the CFM objective, from Equation 2:

L(v) = EX0∼π0

[
∥T (X0)−X0 − v(Xt, t)∥2

]
, Xt = (1− t)X0 + t T (X0), (3)

where T is the (deterministic or random) map satisfying T#π0 = π1. A Monte Carlo approximation
uses samples {X(s)

0 }Ss=1:

LMC(v) =
1

S

S∑
s=1

∥∥T (X(s)
0

)
−X

(s)
0 − v

(
X

(s)
t , t

)∥∥2, X
(s)
t = (1− t)X

(s)
0 + t T (X

(s)
0 ). (4)
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This work studies the variance of LMC(vθ), the gradient variance Var[∇θLMC(vθ)], and the gradient
variance Var[∇θLMC(vθ̂)] where v(θ̂) is the optimal vector field, to assess training stability when
T pairs (X0, X1) randomly versus deterministically.

3 INTERPOLATING LINES DON’T CROSS IN HIGHER DIMENSION

The success of the Rectified Flows framework relies on the fact that the couplings (Z0, Z1), obtained
by simulating the dynamics, exhibit non-crossing paths. To critically examine this framework, we
investigate whether interpolating paths theoretically express crossings in higher dimensions. As our
proofs show, the interpolating lines corresponding to the pairings (X0, X1), never cross in dimen-
sions higher than 2. Additionally, we extend our analysis by exploring the variance of gradients in a
simplified setting, specifically in the context of linear transformations and Gaussian distributions.

As mentioned before crossing of interpolant lines is a big part of RectFlow framework. We first
highlight the empirical evidence in Table 1 to motivate our theoretical results. This table shows the
number of intersections for several datasets, starting with a shifted one-dimensional (1D) Gaussian
embedded in two dimensions (leftmost column) and extending to higher-dimensional Gaussians and
real-world data. As can be seen, the number of intersections is equal to the number of lines. This
occurs because the probability of sampling parallel interpolating lines is zero—a fact we will discuss
later. Additionally, the number of intersections occurring at distinct time points ti, tj ∈ (0, 1) is
equal to those occurring at identical time points ti = tj ∈ (0, 1), due to the distributions being
equally spaced from each other. For a Gaussian distribution embedded in a two-dimensional space,
we observe that while intersections still occur at different time points, simultaneous intersections
(i.e., occurring at the same time) drop to zero. This phenomenon will also be explained theoretically.
Finally, moving to the last three columns, we observe that all intersections completely vanish.

Table 1: For the first three columns: Intersection results for 1000 randomly sampled pairs across
various source/target distributions. The analysis spans from the common 1D Gaussian embedded
in 2D space to n-dimensional Gaussian distributions in n-dimensional space. For the last two
columns: Intersections between n-dimensional gaussians and 10000 random samples from CIFAR
and MNIST. Notably, instead of a linear decrease in intersection occurrences over t ∈ (0, 1), we
observed an instantaneous drop to 0.

Source [0,N (0, 1)] N (0, I2) N (0, Id) N (0, I728) N (0, I1024)
Target [5,N (0, 1)] N (5, I2) N (5, Id) for d > 2 MNIST CIFAR10
Intersections for ti, tj ∈ (−∞,∞) 499,500 499,500 0 0 0
Intersections for ti, tj ∈ (0, 1) 247,967 214,091 0 0 0
Intersections for ti = tj = t̂ 247,967 0 0 0 0

The following result explains why the number of interpolating lines is as high as the possible pair-
ings in the first and second columns. The proofs for the following proposition and lemmas are in
Appendix A.1.
Lemma 1. Let x0, x1 ∼ π0, and y0, y1 ∼ π1, where π0, π1 are probability distributions on Rd

admitting a density. Define the linear interpolants li(ti, xi, yi) = (1 − ti)xi + tiyi for i ∈ {0, 1}.
Then for d = 2, the probability that l0 and l1 intersect is 1.

For the remaining cells in the table, which are not zero, in the first column, it is expected that the
intersections for ti, tj ∈ (0, 1) and ti = tj are equal. This is because, for this particular setting of
source and target distributions, all intersections occur when ti = tj . By examining the first axis, we
observe that 0(1− ti) + 5(ti) = 0(1− tj) + 5(tj), which results in the two intersection times being
equal. The number of these intersections is roughly half of the total number of intersections. This is
because, depending on the order in which we sample, the two samples from the target will result in
an intersection about half of the time.

Continuing we explain the drop in zero-measure for the increase in dimensionality for any absolutely
continuous probability measures π0, π1. In the following proposition, we establish that for source
and target distributions supported in Rd, for d > 1 the probability of two interpolating segments
li(x0, x1, ti) = (1 − ti)x0 + tix1 for t ∈ [0, 1] and for i ∈ [0, 1] at any time crossing at ti =
tj = t ∈ [0, 1] is zero. Furthermore, that in higher-dimensional spaces, specifically for π0, π1 ∈ Rd
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with d > 2, such intersections do not occur for any ti, tj ∈ [0, 1]. These results can be intuitively
understood through a well-known theorem which states that the probability of an event confined to
a subspace of lower dimension than the ambient probability space is zero.
Proposition 1. Let x0, x1 ∼ π0(x) and y0, y1 ∼ π1(y), where π0 and π1 are probability distribu-
tions on Rd admitting a density. Let the lines li(xi, yi, ti) = (1− ti)xi + tiyi. For d ≥ 2, the lines
l0 and l1 cross at t = ti = tj ∈ (0, 1) with probability 0. Similarly, for d > 2 the two lines intersect
for ti, tj ∈ (0, 1) with probability 0.

Since the probability of sampling pairs of crossing lines in high dimension has zero measure, the
expected number of crossing lines when sampling more pairs, will of course be zero. In the following
section, we want to explore how is the variance of the gradients affected in general by crossings.

4 VARIANCE OF GRADIENTS AND CROSSINGS

In the following subsections, we will study the impact that the choice of pairing has on the variance
of the gradients. We will first discuss the impact that deterministic pairings have on the gradients.
A common misconception is that deterministic pairings are generally beneficial. We demonstrate,
in this context, that they can also be detrimental by introducing a transformation (a rotation matrix)
that has the potential to maximize the number of crossings at time t = 1/2. Simultaneously, we will
study the variance expressed by Optimal Transport (OT) couplings, both around the optimal vector
field and around any arbitrary vector field.

Figure 2: Gradient variance for various rotation
matrices and random pairing. For a 180◦ rotation,
we observe a peak around t = 1

2
. Notably, for

angles greater than 120◦, higher variance is expe-
rienced than with random pairing.

In this section, we study two deterministic couplings
between two Gaussians: N (0, Id) and N (µ,Md),
where Md is a symmetric and positive definite ma-
trix. Since we know that the optimal coupling is
given by TOT (X0) = M

1/2
d X0 + µ, we can analyze

the variance of the vector fields as they learn from
these pairings. We then introduce a second transfor-
mation, which is still deterministic but far from op-
timal, namely TrOT (X0) = M

1/2
d RαX0+µ, where

Rα is a rotation matrix that rotates X0 around the
origin by an angle of α◦ degrees. Since the rotation
matrix will cause the interpolating lines to intersect,
we aim to observe the effect of these intersections
on the variance of the gradients. As it can be seen
in Figure 2 at 180o we have the most variance, fact
which we also observe in our theoretical results. The
proofs for the following proposition and lemmas can
be found in Appendix A.2.
Proposition 2. Let π0 ∼ N (0, Id), and π1 ∼
N (µ,Md), where Md is positive definite and symmetric matrix. Let the following deterministic
maps:

TOT (x0) = M
1/2
d x0 + µ = x1, and TrOT (x0) = M

1/2
d Rx0 + µ = x1. (5)

Let the linear transformation vθ,Θ with be vθ,Θ(xt, t) = Θ[xt, t] + θ, where [, ] is concatenation.
Let:

LOT
MC (Θ,θ) =

1

N

∑
∥TOT (X0)−X0 − vΘ,θ(Xt, t)∥2, (6)

LrOT
MC (Θ,θ) =

1

N
∥TrOT (X0)−X0 − vΘ,θ(Xt, t)∥2, . (7)

Then for optimal (Θ̂, θ̂) we have:

Var[∇θL
OT
MC (Θ̂, θ̂)] = 0, Var[∇θL

rOT
MC (Θ̂, θ̂)] =

4

N
(1⊤(M

1/2
d R−R)(M

1/2
d R−R)⊤1⊤),

(8)
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Var[∇ΘLOT
MC (Θ̂, θ̂)] = 0, and Var[∇ΘLrOT

MC (Θ̂, θ̂)] =
8

N
tr((M1/2(R− I))2). (9)

Remark 1. First of all, a variance of 0 at the optimal parameters for optimal pairings is expected.
It is also worth noting that the higher the values in Md, and the higher the trace of the values in
Md, the higher the variance of the gradients. However, in practice, one usually standardizes their
target distribution. For tr(Md) = d, we observe that R plays a significant role in the bounding.
For a rotation transformation, when R = −Id (i.e., a 180◦ rotation, with the maximal intersection
number at t = 1/2), and Md = Id, the gradient variance is given by Var(∇θL

rOT
MC (θ)) = 16d

N , and
Var(∇ΘL

rOT
MC (θ)) = 24d

N .

A key takeaway from this subsection is that, for this simple deterministic pairing, the variance of the
gradients scales with the dimensionality, the complexity of the rotation (i.e., how many dimensions
it collapses and the extent of line intersections), and the variance of the target distribution.

5 NEURAL NETWORK SIMULATIONS

In this section, we extend our previous analysis by parameterizing the vector field with a neural net-
work. In particular, we employ a three-layer multi-layer perceptron (MLP) with a hidden dimension
of 64 and SELU activations. Our experimental investigation is designed to address the following
questions:

• Deterministic and Optimal T : How does high variance in the target distribution affect the
gradient variance for optimal pairings? Additionally, how do batch size and dimensionality
influence the gradient variance around the optimum when the target distribution is shifted?

• Random T : To what extent does the complexity of the target distribution influence the
results, and how does the gradient variance scale with respect to dimensionality and batch
size?

• Deterministic but Non-optimal T : How is the network affected by trajectory crossings
induced by a rotation matrix?

5.1 DETERMINISTIC AND OPTIMAL T

Figure 3: Variance of the gradient norm for op-
timal transport between two normal distributions,
N (0, Id) and N (5, var × Id). The decrease of the
gradient variance is linear in dimension and expo-
nential in the increase in the variance of the target
distribution.

In this subsection, we investigate how the vari-
ance in the target distribution affects the vari-
ance of the gradient norm around the opti-
mally learned neural network. Since we are re-
stricted to optimal pairings, we study this be-
havior exclusively between Gaussian distribu-
tions, which are the only ones for which opti-
mal pairings are known. Accordingly, we con-
sider a source distribution N (0, Id) and a target
distribution N (5, var×Id) across increasing di-
mensions.

As seen in Figure 3, the variance of the gradi-
ents increases significantly with the variance of
the target distribution. Another notable obser-
vation is that for optimal pairings, the variance
of the gradients around the optimum appears
to decrease with increasing dimension. This
is unusual; for instance, in Proposition 2, the
variance of the gradients is expected to increase
with dimension. Therefore, this must be a neu-
ral network-specific behavior.

From Figure 4a, we observe that the variance of
the gradient norm decreases linearly in dimension.
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(a) Comparison of the effects of dimension in-
crease variance of gradients for optimal T .

(b) Comparison of the effects of dimension in-
crease variance of gradients for random T .

Figure 4: As dimension increases the variance decreases, linearly for optimal T , and exponentially
for random T . This could be explained by our theoretical findings.

5.2 RANDOM T

Figure 5: Variance of the gradient norm as the
complexity of the distribution increases for ran-
dom pairings. As the dimensionality of the data
increases, the gradient norm decreases. Interest-
ingly, the complexity of the data (measured in the
number of medians the gaussian mixture has) does
not appear to significantly influence the final re-
sult.

The source distribution is N (0, Id), and the tar-
get distribution is a standardized Gaussian mix-
ture. We investigate how the number of modes
(representing the complexity of the dataset),
batch sizes, and the dimensionality of the
dataset interplay with the values of interest.

We believe that the exponential decrease in the
variance of gradient norms around the opti-
mum with increasing dimensionality is a phe-
nomenon that is difficult to explain, as il-
lustrated in Figures 4 and 5. In contrast,
the observed linear decrease with batch size
is expected. Another notable observation is
that the complexity of the standardized tar-
get—measured by the number of medians
present—does not significantly increase the dif-
ficulty for the network to learn the target.

5.3 DETERMINISTIC
BUT NON-OPTIMAL T

This experiment explores a simplified setting to
study the variance of the loss function. We de-
fine the transformation as T (X0) = (X0+5)×
Rotation Matrix(α),

where θ denotes the rotation angle. As shown in Figure 6, the loss variance peaks when the rotation
angle is maximal. Notably, the learned pairing appears to be closer to the optimal pairing than to the
rotated pairing, as exemplified by the 90◦ rotation.

Neural Network Experiment Conclusion: A key takeaway from this section, and a potential
area for further research, is the decreasing behavior of gradient variance with the dimensionality of
the space, which occurs for both optimal and random pairings. For random pairing, this could be
explained by the lack of intersections between interpolant lines in high dimensions, but for now, this
remains a hypothesis.

6 CONCLUSION

In this work, we investigated the theoretical and empirical properties of Conditional Flow Matching
(CFM) with a focus on trajectory crossings and gradient variance. We demonstrated that in high-
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(a) α = 0◦, low variance (b) α = 90◦, low variance (c) α = 180◦, high variance

Figure 6: Variance analysis for different rotation angles. The variance in the 180◦ rotation case (c)
is very high, but the paings seem to be close to optimal. Interestingly, while the 90◦ rotation (b)
results in a rotated target distribution.

dimensional spaces (d > 2), interpolating trajectories have zero-measure intersections, addressing
concerns about trajectory crossings affecting training stability. Furthermore, we provided theoretical
bounds on the variance of gradients under Gaussian source and target distributions and analyzed how
these variances evolve in different pairing scenarios.

Our empirical findings support the theoretical results, showing that interpolating lines rarely in-
tersect in high dimensions and that variance in gradient norms behaves unexpectedly for different
conditions. Specifically, we observed an exponential decrease in gradient variance with increasing
dimensionality, a phenomenon that remains an open question for further investigation. Additionally,
we studied how deterministic and random pairings impact gradient variance, revealing that sub-
optimal deterministic couplings, such as those induced by rotation matrices, significantly increase
gradient variance. This serves as a response to recent speculations on the impact crossings have on
variance gradient (Fjelde et al., 2024), and on the quality of generated couplings (Roy et al., 2024).

Further Research To extend this work, we plan to generalize the variance results from Section 4
to more sophisticated target distributions. Specifically, we aim to: (1) Analyze neural parame-
terizations where vθ is implemented as an MLP rather than linear transformation, (2) Establish
dimension-dependent variance bounds for arbitrary couplings T , and (3) Formalize the relationship
between gradient variance decay and trajectory non-crossing in high dimensions

We hypothesize that MLP-based analyses could explain the exponential variance reduction observed
empirically (Figure 5) through the lens of implicit regularization in overparameterized networks.
Furthermore, we aim to connect these variance properties to our theoretical results on measure-
theoretic trajectory non-crossing in Rd (Proposition 1).

8



Published as a workshop paper at DeLTa Workshop (ICLR 2025)

REFERENCES

Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

Oscar Davis, Samuel Kessler, Mircea Petrache, Ismail Ilkan Ceylan, Michael Bronstein, and
Avishek Joey Bose. Fisher flow matching for generative modeling over discrete data. arXiv
preprint arXiv:2405.14664, 2024.

Aram Davtyan, Sepehr Sameni, and Paolo Favaro. Efficient video prediction via sparsely condi-
tioned flow matching. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 23263–23274, 2023.

Tor Fjelde, Emile Mathieu, and Vincent Dutordoir. An introduction to flow matching, January 2024.
URL https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. Advances in Neural Information Processing Systems, 35:1–13,
2022.

Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffu-
sion for molecule generation in 3d. In International conference on machine learning, pp. 8867–
8887. PMLR, 2022.

Leonid Kantorovitch. On the translocation of masses. Management science, 5(1):1–4, 1958.
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A APPENDIX

A.1 INTERSECTION PROOFS

Lemma 1. Let x0, x1 ∼ N (0, Id), and y0, y1 ∼ p(x), where p(x) is a probability distribution on
Rd admitting a density. Define the linear interpolants li(t) = (1− t)xi + tyi for i ∈ {0, 1}. Then:

• For d = 2, the probability that l0 and l1 intersect is 1.

• For d ≥ 3, the probability that l0 and l1 intersect is 0.

Proof. Throughout this proof, we use the following theorem: Let X be a random variable with a
continuous probability distribution in Rn, and let A be a lower-dimensional subset of Rn.

Since P admits a density, it follows that it is absolutely continuous wrt to the Lebesgue measure λ
then as λ(A) = 0 by absolute continuity, we have that P(X ∈ A) = 0.

For d = 2, the lines l0(t) and l1(t) lie in the same plane. This implies three possibilities: the lines
are either parallel, intersect for t ∈ [0, 1], or intersect for t /∈ [0, 1]. The probability that the two
lines are parallel is zero because

P(l0(t) ∥ l1(t)) = P(y1 ∈ A) = 0,

where A is the line through y0 that is parallel to l0. Hence, the two lines intersect with probabil-
ity 1. However, whether the intersection occurs within t ∈ [0, 1] depends on the start and target
distributions.

For d ≥ 3, two lines intersect only if they are coplanar. However, in dimensions d ≥ 3, the event that
the two lines lie in the same plane requires that their spans are constrained to a lower-dimensional
subspace (a plane) in Rd. Since the set of coplanar configurations corresponds to a subset of Rd

with dimension 2, the probability of this event is 0, as stated above.

Therefore, for d ≥ 3, the probability of l0(t) and l1(t) intersecting is 0.

Lemma 2. Let x0, x1 ∼ π0(x) and y0, y1 ∼ π1(y), where π0 and π1 are probability distributions
in Rd admitting a density, with d ≥ 2. The lines li(t) = (1 − t)xi + tyi, for t ∈ (0, 1), intersect at
t = t̂ with probability zero.

Proof. Suppose the lines l0(t) and l1(t) intersect at some t = t̂ ∈ (0, 1). This implies

l0(t̂) = l1(t̂),

which expands to
(1− t̂)x0 + t̂y0 = (1− t̂)x1 + t̂y1.

Rearranging terms, we find

y1 =
1− t̂

t̂
(x0 − x1) + y0.

To compute the probability of such an intersection, note that y1 must lie exactly on the affine sub-
space defined by the above equation, which is a one-dimensional line segment in Rd.

The joint probability of the points (x0, x1, y0, y1) can be written as

P(l0(t) intersects l1(t) for t ∈ (0, 1)) = P(x0, x1, y0) · P(y1 =
1− t̂

t̂
(x0 − x1) + y0 | x0, x1, y0).

Since π1(y) is continuous and differentiable, the probability density of y1 lying on any lower-
dimensional subspace (e.g., a line segment) in Rd, with d > 2, is zero. Therefore,

P(y1 =
1− t̂

t̂
(x0 − x1) + y0 | x0, x1, y0) = 0,

which implies
P(l0(t) intersects l1(t) at t = t̂ for t ∈ (0, 1)) = 0.

Hence, the lines l0(t) and l1(t) intersect with probability zero for t ∈ (0, 1).

11
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Lemma 3. Let x0, x1 ∼ π0(x) and y0, y1 ∼ π1(y), where π0 and π1 are continuous and differen-
tiable probability distributions in Rd, with d > 2. The lines li(ti) = (1−ti)xi+tiyi, for ti ∈ (0, 1),
intersect at with probability zero.

Proof. The proof of this lemma is similar to the previous one, with the mention of now what will
happen in the end is that y1 will be conditioned to belong on a 2 dimensional probability space for
0 ≤ t0, t1 ≤ 1, which never happens in a probability space with higher dimension. Suppose the
lines l0(t0) and l1(t1) intersect at some t0 = t̂0, t1 = t̂1fort0, t1 ∈ (0, 1). This implies

l0(t̂0) = l1(t̂1),

which expands to
(1− t̂0)x0 + t̂0y0 = (1− t̂1)x1 + t̂1y1.

Rearranging terms, we find

y1 =
(1− t̂0)x0 − (1− t̂1)x1 + t̂0y0

t̂1
.

which for t̂0, t̂1 ∈ (0, 1) we have that y1 would belong to a 2D surface. Just like before we have:

P(l0(t0) intersects l1(t1) for t̂i ∈ (0, 1)) = P(x0, x1, y0)·

P
(
y1 =

(1− t̂0)x0 − (1− t̂1)x1 + t̂0y0

t̂1

∣∣∣∣x0, x1, y0

)
= 0.

Proposition 1. Let x0, x1 ∼ π0(x) and y0, y1 ∼ π1(y), where π0 and π1 is a probability distribution
on Rd admitting a density. Let the lines li(xi, yi, ti) = (1− ti)xi + tiyi. For d ≥ 2, the lines l0 and
l1 cross at t = ti = tj ∈ (0, 1) with probability 0. Similarly, for d > 2 the two lines intersect for
ti, tj ∈ (0, 1) with probability 0.

Proof. Follows by Lemmas 2, 3.

A.2 VARIANCE PROOFS

Lemma 4. Let π0 ∼ N (0, Id), and π1 ∼ N (µ, Id). Let T0 be a deterministic optimal transport
map with T0(x0) = x0 + µ = x1, and T1(x0) = Rx0 + µ = x1 be another deterministic, but not
optimal transport map, with R a rotation matrix that rotates the reference distribution. Let the v be
v(xt,θ,Θ) = v̂(x0,θ,Θ) = Θx0 + θ, so just a linear transformation. Let:

LOT
MC (Θ,θ)] =

1

N
∥T0(X

(n)
0 )−X

(n)
0 − vΘ,θ(X

(n)
0 )∥2, (10)

LrOT
MC (Θ,θ)] =

1

N
∥T1(X

(n)
0 )−X

(n)
0 − vΘ,θ(X

(n)
0 )∥2, . (11)

Then for optimal (Θ̂, θ̂) = (0, µ) we have:

Var[∇θL
OT
MC (Θ̂, θ̂)] = 0, and Var[∇θL

rOT
MC (Θ̂, θ̂)] =

4

N
1⊤(R− Id)(R− Id)

⊤1. (12)

Proof. First since the transport map is linear (maybe we can sonider something a bit more interesting
than same variance) we can write the loss

Var
[
∇Θi

1

N

∑
[||µ−ΘX

(n)
0 − θ||2]

]
(13)

= Var
[
− 2

N

∑
X⊤

0 (µ−ΘX
(n)
0 − θ)

]
(14)
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Where we have used that :

∇Θi [ΘX
(n)
0 ]i = ∇ΘiΘ

⊤
i X

(n)
0 = X

(n)
0 (15)

and for the bias we have

Var
[
∇θ

1

N

∑
[||µ−ΘX

(n)
0 − θ||2]

]
(16)

= Var
[
− 2

N

∑
1⊤(µ−ΘX

(n)
0 − θ)

]
(17)

=
4Var[1⊤ΘX

(n)
0 ]

N
=

4

N
1⊤ΘΘ⊤1 (18)

For rotation

Var
[
∇θ

1

N

∑
[||(R− I)X0 + µ−ΘX

(n)
0 − θ||2]

]
(19)

= Var
[
− 2

N

∑
1⊤((R− I)X0 + µ−ΘX

(n)
0 − θ)

]
(20)

= Var[1⊤(R− I −Θ)X
(n)
0 ] (21)

=
4

N
(1⊤ΘΘ⊤1+ 1⊤Θ(R− I)⊤1+ 1⊤(R− I)Θ⊤1+ 1⊤(R− I)(R− I)⊤1), (22)

As we don’t need to apply any linear transformation to X for the optimal parameters, because X is
already a Gaussian distribution N (0, Id). Therefore, we only need to learn the shift parameter θ.
This means that the optimal transport map’s parameter matrix Θ is simply the zero matrix, 0.

For the optimal coupling, the variance of the gradients around the optimal parameters is 0, indicating
no variation. However, for the case involving the rotated transport map, the variance of the gradients
is scales with the rotation, and it peaks at 180o, when the number of crossings at time t = 1/2 is
maximal (all lines cross).

Proposition 2. Let π0 ∼ N (0, Id), and π1 ∼ N (µ,Md), where Md is positive definite and sym-
metric matrix. Let the following deterministic optimal maps with:

T0(x0) = Gx0 + µ = x1, and T1(x0) = GRx0 + µ = x1, (23)

with G = M
1/2
d which is positive definite and maybe symmetric. Let the v from Equations ?? be

v(xt,θ,Θ) = v̂(x0,θ,Θ) = Θx0 + θ, so just a linear transformation. Let:

LOT
MC (Θ,θ) =

1

N

∑
∥T0(X0)−X0 − vΘ,θ(X0)∥2, (24)

LrOT
MC (Θ,θ) =

1

N
∥T1(X0)−X0 − vΘ,θ(X0)∥2, . (25)

Then for optimal (Θ̂, θ̂) = (G− I, µ) we have:

Var[∇θL
OT
MC (Θ̂, θ̂)] = 0, and Var[∇θL

rOT
MC (Θ̂, θ̂)] =

4

N
(1⊤(GR−R)(GR−R)⊤1⊤),

(26)

and,

Var[∇ΘLOT
MC (Θ̂, θ̂)] = 0, and Var[∇ΘLrOT

MC (Θ̂, θ̂)] =
8

N
tr((G(R− I))2). (27)
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Proof. For T0, we have almost just like before:

Var
[
∇θ

1

N

∑
[||(GX

(n)
0 −X

(n)
0 + µ−ΘX

(n)
0 − θ||2]

]
(28)

= Var
[
− 2

N

∑
1⊤(µ+ (G−Θ− I)X

(n)
0 − θ)

]
(29)

=
4

N
Var[1⊤(G−Θ− I)X

(n)
0 ] =

4

N
1⊤(G−Θ− I)(G−Θ− I)⊤1 (30)

Var
[
∇Θi

1

N

∑
[||(GX

(n)
0 −X

(n)
0 − µ−ΘX

(n)
0 − θ||2]

]
(31)

= Var
[
− 2

N

∑
X⊤

0 (µ+ (G− I −Θ)X
(n)
0 − θ)

]
(32)

Note that the optimal our vector field is optimal when Θ̂ = G− I , and θ̂ = µ. Then we have:

V ar[∇θLMC(v(Θ̂, θ̂, X0))] = 0, (33)

and,

V ar[∇ΘLOT
MC(v(Θ̂, θ̂, X0))] =

4

N
Var[X⊤

0 (µ− θ̂)] =
4||µ− θ̂||2

N
= 0. (34)

For rotation we have:

Var
[
∇θ

1

N

∑
[||(GRX

(n)
0 −X

(n)
0 − µ−ΘX

(n)
0 − θ||2]

]
(35)

= Var
[
− 2

N

∑
1⊤(µ+ (GR−Θ− I2)X

(n)
0 − θ)

]
(36)

=
4

N
Var[1⊤(G−Θ− I2)X

(n)
0 ] = (37)

and at the optima,

4

N
Var(1⊤(GR−R)X0) =

4

N
(1⊤(GR−R)(GR−R)⊤1⊤) (38)

For variance of the Θ around the optima, we have:

V ar[∇ΘLrOT
MC (Θ̂, θ̂))] =

4

N
Var[X⊤

0 G(R− I)X0] =
8

N
tr((M1/2(R− I))2). (39)

The last equality comes from the variance of a quadratic form for Gaussian random vectors, that is
if we have X ∼ N (0, Id).

A.3 OTHER EXPERIMENTS
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(a) Comparison of the effects of batch size in-
crease variance of gradients for optimal T .

(b) Comparison of the effects of batch size in-
crease variance of gradients for random T .

Figure 7: As dimension increases the variance decreases, linearly for optimal T , and linearly for
random T .
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