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Abstract— We study the problem of refining satisfiability
bounds for partially-known stochastic systems against planning
specifications defined using syntactically co-safe Linear Temporal
Logic (scLTL). We propose an abstraction-based approach that
iteratively generates high-confidence Interval Markov Decision
Process (IMDP) abstractions of the system from high-confidence
bounds on the unknown component of the dynamics obtained via
Gaussian process regression. In particular, we develop a synthesis
strategy to sample the unknown dynamics by finding paths which
avoid specification-violating states using a product IMDP. We
further provide a heuristic to choose among various candidate
paths to maximize the information gain. Finally, we propose an
iterative algorithm to synthesize a satisfying control policy for
the product IMDP system. We demonstrate our work with a case
study on mobile robot navigation.

I. INTRODUCTION

Abstraction-based approaches for verification and synthesis
of dynamical systems offer computationally tractable methods
for accommodating complex specifications [1]. In particular,
Interval Markov Decision Processes (IMDP) [2], which al-
low for an interval of transition probabilities, provide a rich
abstraction model for stochastic systems. As compared to
stochastic control [3], abstraction-based methods allow for
more complex specifications to be considered and have been
widely used for hybrid stochastic systems [4].

The transition probability intervals in IMDP abstractions
have typically modeled the uncertainty which arises from ab-
stracting the dynamics of continuous states in discrete regions
[5]. However, partially-known stochastic systems, which show
promise for modeling a wide range of real-world systems,
add unknown dynamics which contribute further uncertainty.
Previous works model this uncertainty by assuming that some
prior data on the dynamics are available [6].

The paper [7] is the first to address the problem of modeling
unknown dynamics in stochastic hybrid systems via the use
of IMDP abstraction in combination with Gaussian process
(GP) regression [8]. GP regression can approximate unknown
functions with arbitrary accuracy and also provides bounds on
the approximation uncertainty [9].

The main contribution of this work is to develop a method
for sampling the unknown dynamics of a stochastic system
online in order to reduce abstraction error and increase the
probability of satisfying a syntactically co-safe linear temporal
logic (scLTL) specification [2].

Our goal is to find a control policy which guarantees the
satisfaction of a scLTL specification with sufficient probability.
However, we assume a stochastic noise which creates unavoid-
able perturbation. The system also has unknown dynamics
which we estimate with Gaussian processes. This creates an

estimation error which increases uncertainty in state transitions
and which we aim to reduce by sampling the unknown dynam-
ics. Thus, this paper focuses on the problem of safe learning to
allow online exploration rather than a static planning problem
using previously collected data samples as in [7].

Our approach is as follows. First, we estimate the unknown
dynamics of the system using Gaussian processes and con-
struct a high-confidence IMDP abstraction. We then develop
an algorithm for finding nonviolating cycles in a product IMDP
of the system abstraction combined with a finite automaton
of the scLTL specification which allow the dynamics of the
system to be sampled without violating the specification. We
develop a heuristic for evaluating candidate cycles in order
to maximize the uncertainty reduction gained from sampling.
Finally, we propose an iterative method to sample the state-
space, thereby decreasing the uncertainty of a GP estimation
of the unknown dynamics until a satisfying control policy for
the system can be synthesized or a terminating condition such
as a maximum number of iterations has been reached. We
utilize sparse GPs [10] to improve computational efficiency.
We demonstrate our method on a case study of robotic motion
planning.

II. PROBLEM SETUP

Consider a discrete-time, partially-known system

x[k + 1] = f(x[k]) + u[k] + g(x[k]) + ν[k] (1)

where x ∈ X ⊆ Rn is the system state, u ∈ Rn is the control
action, f(x) is the known dynamics, g(x) is the unknown
dynamics to be learned via GP regression, ν is stochastic noise,
and time is indexed with brackets. This system has applications
in, e.g., biology [11], communications [12], and robotics [13].

Assumption 1: 1) Each dimension νi[k], i = 1, . . . , n of ν,
is an independent, zero mean random variable with stationary,
symmetric, and unimodal distribution ρνi

and is σνi
-sub-

Gaussian, i.e., the distribution tail decays at least as fast as
a Gaussian random variable with variance σ2

νi
.

2) Given a data set D = {(zj , yj)}mj=1 where yj is an
observation of g(zj) perturbed by σνi

-sub-Gaussian noise, it
is possible to construct an estimate ĝD(x) of g and bound
the estimation error between g(x) and ĝD(x) by some high-
confidence bound γD(x). Thus,

gD− (x) = ĝD(x)− γD(x), gD+ (x) = ĝD(x) + γD(x) (2)

are high-confidence bounds on g, i.e., gD− (x) ≤ g(x) ≤ gD+ (x)
with high confidence. For simplicity, we drop the superscript
D when the dataset is clear.



Assumption 2: The state-space X is bounded and is parti-
tioned into hyper-rectangular regions {Xq}q∈Q defined as

Xq = {x | aq ≤ x ≤ bq} ⊂ X, (3)

where the inequality is taken elementwise for lower and upper
bounds aq, bq ∈ Rn and Q is a finite index set of the regions.
Each region has a center cq = (aq + bq)/2. Additionally, the
system possesses a labeling function L which maps hyper-
rectangular regions to observations O.

Define feedback controllers Kq(· ; ĝ) : X −→ X as

Kq(x; ĝ) = cq − f(x)− ĝ(x). (4)

The choice u[k] = Kq′(x[k]; ĝ) thus produces a control
action which compensates for the known and estimated dy-
namics to reach the center of region Xq′ , although the actual
state update will be perturbed as shown in Figure 1.

Our ultimate goal is to apply a sequence of feedback
controllers so that the resulting sequence of observations
satisfies a control objective specified as a syntactically co-safe
LTL (scLTL) formula over the observations O.

Definition 1 (Syntactically co-safe LTL [2, Def. 2.3]): A
syntactically co-safe linear temporal logic (scLTL) formula ϕ
over a set of observations O is recursively defined as

ϕ = ⊤ | o | ¬o | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ⃝ ϕ | ϕ1Uϕ2 | ♢ϕ

where o ∈ O is an observation and ϕ, ϕ1, and ϕ2 are scLTL
formulas. We define the next operator ⃝ as meaning that ϕ
will be satisfied in the next state transition, the until operator
U as meaning that the system satisfies ϕ1 until it satisfies ϕ2,
and the eventually operator ♢ as ⊤Uϕ.

ScLTL formulas are characterized by the property that
they are satisfied in finite time. It is well-known that scLTL
satisfaction can be checked using a finite state automaton:

Definition 2 (Finite State Automaton [2, Def. 2.4]): A
finite state automaton (FSA) is a tuple A = (S, s0, O, δ, F ),
where

• S is a finite set of states,
• s0 ∈ S is the initial state,
• O is the input alphabet, which corresponds to observa-

tions from the scLTL specification,
• δ : S ×O −→ S is a transition function, and
• F ⊆ S is the set of accepting (final) states.

A sequence of inputs (a word) from O is said to be accepted by
an FSA if it ends in an accepting state. A scLTL formula can
always be translated into a FSA that accepts all and only those
words satisfying the formula. We use scLTL specifications
in this paper because they are well-suited to robotic motion
planning tasks which are satisfied in finite time. Additionally,
the simpler structure of an FSA as opposed to the Büchi
and Rabin automata of general LTL enables the methods we
propose below.

Definition 3 (Interval Markov Decision Process): An
Interval Markov Decision Process (IMDP) is a tuple
I = (Q,A, Ť , T̂ , Q0, O, L) where:

• Q is a finite set of states,
• A is a finite set of actions,
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Fig. 1. Feedback controller and calculation of transition probabilities. The
controller targets the center of state X2. The uncertainty in ĝ(x) creates
a nondeterministic region of transition (brown rectangle). The maximum
probability of transitioning to state X3 is found by centering stochastic
noise at the point xmax closest to state X3 (green point) and calculating
the probability that the noise reaches state X3. The minimum probability of
transitioning to state X3 under this controller is given likewise by centering
stochastic noise at the point xmin furthest from X3 (red point).

• Ť , T̂ : Q×A×Q′ −→ [0, 1] are lower and upper bounds,
respectively, on the transition probability from state q ∈
Q to state q′ ∈ Q under action α ∈ A,

• Q0 ⊆ Q is a set of initial states,
• O is a finite set of atomic propositions or observations,
• L : Q −→ O is a labeling function.

The set of actions A corresponds to the set of all valid
feedback controllers for the system. We do not assume that
all actions are available at each state. Therefore, each state
has a subset A(q) ⊆ A of available actions.

Definition 4 (High-Confidence IMDP Abstraction):
Consider stochastic system (1), partitions (3), and the family
of feedback controllers (4) where ĝ(x) is an estimate of
g(x). Further, suppose that g−(x) and g+(x) are high-
confidence bounds on ĝ(x) which satisfy (2). Then, an
IMDP I = (Q,A, Ť , T̂ , Q0, O, L) is a high-confidence IMDP
abstraction of (1), if:

• The set of states Q for the abstraction is the index set of
partitions, i.e. partition Xq is abstracted as state q, and
the set of observations O and labeling function L for the
abstraction are the same as for the system,

• For all q ∈ Q, the set of actions A(q) is the set of one-
step reachable regions at q under its feedback controllers,

• For all q ∈ Q and all αq∗ ∈ A(q):

Ť (q, αq∗ , q
′) ≤ (5)

min
x∈Xq

min
g−(x)≤w≤g+(x)

Pν(f(x) + w +Kq∗(x; ĝ) + ν ∈ Xq′),

T̂ (q, αq∗ , q
′) ≥ (6)

max
x∈Xq

max
g−(x)≤w≤g+(x)

Pν(f(x) + w +Kq∗(x; ĝ) + ν ∈ Xq′)

where Pν denotes probability with respect to ν.
Verification and synthesis problems for IMDP systems eval-

uated against scLTL specifications are often solved using graph
theoretic methods on a product IMDP:

Definition 5 (PIMDP): Let I = (Q,A, Ť , T̂ , Q0, O, L) be
an IMDP and A = (S, s0, O, δ, F ) be an FSA. The product



IMDP (PIMDP) is defined as a tuple P = I ⊗ A =
(Q× S,A, Ť ′, T̂ ′, Q× s0, F

′), where
• Ť ′ : (q, s)×A× (q′, s′) := Ť (q, α, q′) if s′ ∈ δ(s, L(q))

and 0 otherwise
• T̂ ′ : (q, s)×A× (q′, s′) := T̂ (q, α, q′) if s′ ∈ δ(s, L(q))

and 0 otherwise
• (q0, δ(s0, L(q0))) ∈ (Q × S) is a set of initial states of

I ⊗ A, and
• F ′ = Q× F is the set of accepting (final) states.
We can now formulate our proposed problem:
Problem 1: Design an iterative algorithm to sample and

learn the unknown dynamics of system (1) without violating
the scLTL specification ϕ and synthesize a control policy
which satisfies ϕ with some desired threshold probability or
prove that no such control policy exists.
To solve this problem, we construct a high-confidence IMDP
abstraction of the system (1) using a GP estimation of the
unknown dynamics. We then formulate a method to sample the
state-space without violating the specification, updating the GP
estimation until a satisfying control policy can be synthesized.

III. ABSTRACTION OF SYSTEM AS IMDP
In this section, we detail our approach to abstracting a

system of the form (1) into a high-confidence IMDP.
We first need to determine an approximation of g(x), the

unknown dynamics. At each time step of system (1), we know
x[k + 1], f(x[k]), and u[k]. Therefore, we can define

y[k] = x[k + 1]− f(x[k])− u[k] = g(x[k]) + ν[k].

Then, we construct a Gaussian process estimation ĝ(x) for
g(x) by considering a dataset of samples (x[k], y[k]).

Definition 6 (Gaussian Process Regression): Gaussian
Process (GP) regression models a function gi : Rn → R as a
distribution with covariance κ : Rn × Rn −→ R>0. Assume
a dataset of m samples D = {(zj , yji )}j∈{1,...,m}, where
zj ∈ Rn is the input and yji is an observation of gi(z

j)
under Gaussian noise with variance σ2

νi
. Let K ∈ Rm×m be

a matrix defined elementwise by Kjℓ = κ(zj , zℓ) and for
z ∈ Rn, let k(z) = [κ(z, z1) κ(z, z2) . . . κ(z, zm)]T ∈ Rm.
Then, the predictive distribution of gi at a test point z is the
conditional distribution of gi given D, which is Gaussian
with mean µgi,D and variance σ2

gi,D
given by

µgi,D(z) = k(z)T (K + σ2
νi
Im)−1Y (7)

σ2
gi,D(z) = κ(z, z)− k(z)T (K + σ2

νi
Im)−1k(z), (8)

where Im is the identity and Y =
[
y1i y2i . . . ymi

]T
.

In practice, GP regression has a complexity of O(m3). To
mitigate this, we use sparse Gaussian process regression [10]:

Definition 7 (Sparse Gaussian Process Regression): A
sparse Gaussian process uses a set Dη = {(zj , yji )}j∈{1,...,η}
to approximate a GP of a larger dataset D. Given inducing
points {zj}j∈{1,...,η} with Yη =

[
y1i y2i . . . yηi

]T
and

covariance matrix Aη , the predictive distribution of the
unknown function gi has mean µgi,Dη

and variance σ2
gi,Dη

µgi,Dη (z) = kη(z)
T (Kη + σ2

νi
Iη)

−1Yη

σ2
gi,Dη

(z) = κ(z, z)− kη(z)
TK−1

η (Kη −Aη)K
−1
η kη(z)

where Kη ∈ Rη×η is a matrix defined elementwise by
Kη,jℓ = κ(zj , zℓ) for all z ∈ Dη . For z ∈ Rn, let
kη(z) = [κ(z, z1) κ(z, z2) . . . κ(z, zη)]T ∈ Rη . The param-
eters {zj}j∈{1,...,η}, {yji }j∈{1,...,η}, and Aη are optimized to
minimize the Kullback-Leibler divergence (evaluated at the
inducing points) between N (µgi,Dη , σ

2
gi,Dη

), the posterior of
gi under the sparse GP; and p(gi|Y ), the posterior of gi under
a GP with the full dataset D. We refer the reader to [10] for
a detailed treatment of sparse Gaussian process theory. The
computational complexity of sparse GP regression is O(mη2),
so by fixing η the algorithm is linear in m. We note that sparse
GP regression introduces error into the estimation; however, in
practice this error does not affect the validity of our methods.
Given some dataset D, we construct an estimation of the
unknown dynamics independently in each coordinate and
determine high-confidence bounds on the estimation error

ĝDi (x) := µgi,D(x),

γi(x) := βσgi,D(x) ≥ |gi(x)− ĝDi (x)|

for each i = 1, . . . , n. We also determine high-confidence
lower and upper bounds on g(x) as

g−(x) = ĝD(x)− βσg,D(x), g+(x) = ĝD(x) + βσg,D(x)

The parameter β is calculated as

β =

(
σν√

1 + (2/m)
(Bi + σν

√
2(γm

k + 1 + log
1

δ
))

)
(9)

for noise σν-sub-Gaussian, m the number of GP samples,
high-confidence parameter δ, information gain constant γm

k ,
and RKHS constant Bi as detailed in Lemma 1, [7]. Note
that the same parameter βσg,D is used to determine high-
confidence bounds on both the estimation error and g(x) itself.
For each region q in the state-space, we select a high-
confidence error bound for the unknown dynamics as

γi(q) = max
x∈Xq

γi(x)

In practice, we compute this bound by sampling γi(x)
throughout the state-space, introducing a trade-off between
approximation error and computation complexity. We now
construct transition probability intervals assuming that the
high-confidence bounds on unknown dynamics always hold:

Theorem 1 (Construction of Transition Probabilities):
Consider q, q′ ∈ Q and action αq∗ ∈ A(q). Lower bound Ť
and upper bound T̂ transition probabilities from q to q′ under
αq∗ are given by

Ť (q, αq∗ , q
′) =

n∏
i=1

∫ b′i

a′
i

ρνi
(z − xmin,i(q, αq∗ , q

′))dz, (10)

T̂ (q, αq∗ , q
′) =

n∏
i=1

∫ b′i

a′
i

ρνi(z − xmax,i(q, αq∗ , q
′))dz, (11)

where xmin,i is the i-th coordinate of xmin and similarly for
xmax,i, we recall ρνi

is the probability density function of the



stochastic noise νi, and a′ and b′ are the lower and upper
boundary points for region q′. We define xmin and xmax as

xmin(q, αq∗ , q
′) = argmax

x∈X
||x− cq′ ||1 (12)

s.t. cq∗ − γ(q) ≤ x ≤ cq∗ + γ(q),

xmax(q, αq∗ , q
′) = argmin

x∈X
||x− cq′ ||1 (13)

s.t. cq∗ − γ(q) ≤ x ≤ cq∗ + γ(q),

where || · ||1 is the 1-norm and γ(q) is a high-confidence error
bound on the unknown dynamics satisfying Assumption 1.
Then, the transition probability bounds (10)–(11) satisfy the
constraints for high-confidence IMDP abstractions in (5)–(6).
Proof: The righthand side of the bound in equation (5) can
be rewritten as

min
x∈Xq

min
g−(x)≤w
≤g+(x)

Pν(f(x) + w +Kq∗(x; ĝ) + ν ∈ Xq′) (14)

= min
x∈Xq

min
g−(x)≤w≤g+(x)

Pν(cq∗ + w − ĝ(x) + ν ∈ q′) (15)

= min
x∈Xq

min
−γ(x)≤ω≤γ(x)

Pν(cq∗ + ω + ν ∈ Xq′) (16)

= min
x∈Xq

min
−γ(x)≤ω
≤γ(x)

n∏
i=1

Pνi(cq∗,i + ωi + νi ∈ [aq′,i, bq′,i]) (17)

= min
x∈Xq

n∏
i=1

min
−γi(x)≤ωi

≤γi(x)

Pνi
(cq∗,i + ωi + νi ∈ [aq′,i, bq′,i])

(18)

≥
n∏

i=1

min
−γi(q)≤ωi

≤γi(q)

Pνi
(cq∗,i + ωi + νi ∈ [aq′,i, bq′,i]) (19)

where (14) is the righthand side of (5); (15) follows after
expanding the feedback controller expression Kq∗(x; ĝ) using
(4) and simplifying; (16) follows by assumption of high-
confidence error bound γ(x) and the definition of g−(x) and
g+(x) from Assumption 1 and taking ω = w − ĝ(x); (17)
follows by assumption that each νi is independent and Pνi

denotes probability with respect to νi, where we recall that
aq′ and bq′ are the lower and upper corners of the region Xq′ ,
and aq′,i is the i-th coordinate of aq′ and similarly for cq∗,i
and bq′,i; (18) follows from the fact that the hyper-rectangular
constraint −γ(x) ≤ ω ≤ γ(x) is equivalent to independent
constraint −γi(x) ≤ ωi ≤ γi(x) along each coordinate; and
(19) follows from the definition γi(q) = maxx∈Xq

γi(x).
Now, because the probability distribution for each random

variable νi is assumed unimodal and symmetric, Pνi(cq∗,i +
ωi+νi ∈ [aq′,i, bq′,i]) is minimized when the distance between
(cq∗,i + ωi) and the midpoint of [aq′,i, bq′,i] is maximized,
i.e., when |cq∗,i + ωi − cq′,i| is maximized, subject to the
constraint −γi(q) ≤ ωi ≤ γi(q). Substituting x = cq∗ + ω,
and observing that ∥x − cq′∥1 =

∑n
i=1 |xi − cq′,i|, this is

exactly the maximizing point specified by xmin(q, αq∗ , q
′) in

(12). Thus, the expression in (19) is equivalent to
n∏

i=1

Pνi
(xmin,i(q, αq∗ , q

′) + νi ∈ [aq′,i, bq′,i]), (20)

which in turn is equivalent to the righthand side of (10), estab-
lishing the bound in (5). An analogous argument establishes
that (11) satisfies (6).

We construct a high-confidence IMDP abstraction of the
system using the hyper-rectangular partition regions as states,
high-confidence bounds on the unknown dynamics obtained
via GP regression, and transition probability intervals calcu-
lated using Theorem 1, solving the first part of Problem 1.

IV. SAFE SAMPLING OF PIMDP

A. Probability of Satisfaction Calculation

Given a high-confidence IMDP abstraction of the system
and a FSA of a desired scLTL specification, we construct a
PIMDP using Definition 5. We first introduce the concept of
control policies and adversaries:

Definition 8 (Control Policy): A control policy π ∈ Π of a
PIMDP is a mapping (Q×S)+ −→ A, where (Q×S)+ is the
set of finite sequences of states of the PIMDP.

Definition 9 (PIMDP Adversary): Given a PIMDP state
(q, s) and action α, an adversary ξ ∈ Ξ is an assignment
of transition probabilities T ′

ξ to all states (q′, s′) such that

Ť ′((q, s), α, (q′, s′)) ≤ T ′
ξ((q, s), α, (q

′, s′))

≤ T̂ ′((q, s), α, (q′, s′)).

In particular, we use a minimizing adversary, which realizes
transition probabilities such that the probability of satisfying
the specification is minimal, and a maximizing adversary,
which maximizes the probability of satisfaction.
To find safe sampling cycles in the PIMDP, we calculate

P̌max((q, s)|=ϕ) = max
π∈Π

min
ξ∈Ξ

P (w |=ϕ | π, ξ, w[0] = (q, s)),

which is the probability that a random path w starting at
PIMDP state (q, s) satisfies the scLTL specification ϕ under a
maximizing control policy π and minimizing adversary ξ.

Additionally, we will also use the best case probability of
satisfaction under a maximizing control policy and adversary:

P̂max((q, s)|=ϕ) = max
π∈Π

max
ξ∈Ξ

P (wi |=ϕ | π, ξ, w[0] = (q, s))

To calculate these probabilities, we use a value iteration
method proposed in Section V, [14].

B. Nonviolating Sub-Graph Generation

We note that scLTL specifications may generate FSA states
which are absorbing and non-accepting, i.e., it is impossible
to satisfy the specification once one of these states is reached.
Such states may also exist in PIMDP constructions even
without appearing in the corresponding FSA. We define these
states as those which have zero probability of satisfying the
scLTL specification under any control policy and adversary:

Failure States = {(q, s) ∈ Q× S | P̂max((q, s) |= ϕ) = 0}.

We can then define a notion of specification nonviolation:
Definition 10 (Nonviolating PIMDP): A PIMDP P is non-

violating with respect to a scLTL specification ϕ if there exists
no failure states in P .



Our algorithm for calculating a nonviolating PIMDP is as
follows. We first initialize a set of failure states. Then, we
loop through all non-failure states and prune actions which
have nonzero upper-bound transition probability to failure
states. We check if this pruning has left any states with no
available actions, designating these also as failure states to
prune. The process continues until no new failure states are
found. Our nonviolating sub-graph is the set of all unpruned
states with their remaining actions. All algorithm psuedocodes
are available in the appendix of an extended version of this
paper, posted on arXiv1.

C. Candidate Cycle Selection
Now that we have a nonviolating sub-graph of our PIMDP,

we want to select a path which we can take in order to sample
the state-space indefinitely while maximizing the information
gain of our Gaussian process. To do this, we first recall the
concept of maximal end components [15]:

Definition 11 (End Component [15]): An end component
of a finite PIMDP P is a pair (T , Act) with T ⊆ (Q × S)
and Act : T → A such that

• ∅ ≠ Act(q, s) ⊆ A(q) for all states (q, s) ∈ T ,
• (q, s) ∈ T and α ∈ Act(q, s) implies {(q′, s′) ∈

T | T̂ (q, α, q′)) > 0, s′ ∈ δ(s, L(q))} ⊆ T ,
• The digraph G(T ,Act) induced by (T , Act) is strongly

connected.
Definition 12 (Maximal End Component (MEC) [15]):

An end component (T , Act) of a finite PIMDP P is
maximal if there is no end component (T ∗, Act∗)
such that (T , Act) ̸= (T ∗, Act∗) and T ⊆ T ∗ and
Act(q, s) ⊆ Act∗(q, s) for all (q, s) ∈ T .

PIMDP abstractions have the property that any infinite path
will eventually stay in a single MEC. We propose the following
heuristic in order to select a MEC to cycle within. First,
we calculate P̌max from our initial state to each candidate
MEC. We reject any MEC which we cannot reach with
probability 1, or, in case no MECs can be reached with
probability 1, we immediately select the MEC with the highest
reachability probability. If multiple candidate MECs remain,
we then calculate the Gaussian process covariance κ(cq, cq∗)
between the centers of the IMDP states q in each remaining
candidate MEC and the accepting IMDP state q∗. We sum the
covariances for all states in each MEC and select the MEC
with the highest total covariance score, which corresponds to
maximum information gain [16], defined as reduction of GP
uncertainty at the accepting state. We generate a control policy
by selecting the actions at each state which give the maximum
probability of reaching the MEC. Once in the MEC, we use
a controller which cycles through the available actions.

By applying the algorithms detailed above to calculate a
non-violating PIMDP and MEC, we generate a control policy
which samples the state-space indefinitely without violating
the specification, solving the second part of Problem 1.

D. Iterative Sampling Algorithm
We now detail our complete method to solve Problem 1.

Given a scLTL specification ϕ which we want to satisfy

1https://arxiv.org/abs/2202.01358
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Fig. 2. State-space of the case study. The initial region is labeled with ”Init”,
the (green) target region is labeled with ”Goal”, and the (red) hazard regions
are labeled with ”Haz”. States that eventually enter the safe cycle are blue,
and the number in the region indicates the iteration of the algorithm at which
the state enters the safe cycle. States which are not numbered do not enter
the safe cycle. The yellow trace is an example of a sampling run.

with probability Psat, we construct a PIMDP using a high-
confidence IMDP abstraction of the system in Eq. (1) and
an FSA which models ϕ. Then, we calculate reachability
probabilities under a minimizing adversary P̌max from the
initial states in the PIMDP to the accepting states. If P̌max ≥
Psat, then the control policy selects the actions which produce
P̌max at each state and the problem is solved. Otherwise, we
calculate a control policy to sample the state-space without
violating the specification ϕ using the methods in previous
sections. We follow the calculated control policy for a prede-
termined number of steps and sample the unknown dynamics
at each step. We batch update the GP with the data collected,
reconstruct transition probability intervals for each state, and
recalculate reachability probabilities P̌max for our initial states.
If P̌max ≥ Psat, a satisfying control policy is found; otherwise,
we repeat the process above. Our iterative algorithm ends
when P̌max ≥ Psat; the GP approximation has low enough
uncertainty to know that a successful control policy cannot
be synthesized, i.e., when the reachability probability P̂max

under a maximizing adversary is less than the desired Psat; or
a maximum number of iterations has been reached.

V. CASE STUDY

Suppose we have a mobile robot in a 2D state-space with
position x ∈ X := [0, 5]2 ⊂ R2. The state-space is partitioned
into a set of 25 hyper-rectangular regions corresponding to
IMDP states. The dynamics of the robot are

x[k + 1] = x[k] + u[k] + g(x[k]) + v (21)

where g(x) models the unknown effect of the slope of the
terrain. The control action u is generated by the family of
controllers in Section II where the set of available target
regions are those left, right, above, or below each region.

Within the state-space, we have one goal region with the
atomic proposition Goal and a set of hazard regions labeled
with Haz. These yield the scLTL specification

ϕ1 = ¬Haz U Goal. (22)

An illustration of the state-space is shown in Figure ??.
We choose a low-dimensional case study in order to illustrate
our methodology. Future works will refine our algorithms on
applications with higher-dimensional state-spaces.



The true g(x) is sampled from two randomly generated
Gaussian processes (one for each dimension) with bounded
support [−0.4, 0.4] and squared exponential kernel κ,

κ(x, x′) = σ2
ge

− (x−x′)2

2l2 . (23)

We choose hyperparameters σg = 0.45 and l = 1.75.
We estimate the unknown dynamics with two sparse Gaus-

sian processes with the same kernel as the true dynamics. We
sample the GPs at 100 points in each region to determine
error bounds. We set the number of inducing points η = 250
and choose our high-confidence-bound parameter β = 2. Each
iteration of the algorithm takes 250 steps, so the total number
of data samples m is the number of iterations times 250. Our
stochastic noise ν is independently drawn from two truncated
Gaussian distributions, one for each dimension, and both with
σν = 0.1 and bounded support [−0.2, 0.2].

We next apply the iterative algorithm described in Section
IV-D, setting the desired probability of satisfying the spec-
ification to 1. Our algorithm successfully finds a satisfying
feedback control strategy in an average of 15 iterations (cal-
culated over 10 runs). The algorithm is implemented in Python
on a 2.5 GHz Intel Core i9 machine with 16 GB of RAM and
a Nvidia RTX 3060 GPU, and requires on average 1 minute
14 seconds to complete.

Figure ?? depicts the expansion of the safe cycle used to
sample the state-space. Initially, only the left two columns of
states are safe and reachable. As the algorithm progresses,
more states and actions are added to the safe cycle, moving
the system closer to the goal until the unknown dynamics can
be estimated with enough certainty to achieve a probability of
satisfying the specification of 1.

The left plot in Figure 3 depicts the total transition proba-
bility uncertainty for the system after each iteration

Tunc,total =
∑
q∈Q

∑
α∈A(q)

∑
q′∈Q

T̂ (q, α, q′)− Ť (q, α, q′). (24)

The right plot in Figure 3 shows the probability of satisfying
the specification after each iteration.

VI. CONCLUSION

In this work, we developed a method to safely learn un-
known dynamics for a system motivated by the robotic motion-
planning problem. Our approach uses an IMDP abstraction
of the system and a finite state automaton of scLTL speci-
fications. We designed an algorithm for finding nonviolating
paths within a product IMDP construction which can be used
to sample the state-space and construct a Gaussian process
approximation of unknown dynamics. We then detailed an
algorithm to iteratively sample the state-space to improve the
probability of satisfying a desired specification and demon-
strated its use with a case study of robot navigation. Our
approach can be used with any system for which a high-
confidence IMDP abstraction can be constructed as well as
any objective which can be written as a scLTL specification.
Future work will apply these methods to models of bipedal
walking robots utilizing region-based motion planning [13].
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Fig. 3. The left plot shows the total uncertainty in transition probability
intervals after each iteration of the algorithm, and the right plot shows the
probability of satisfying the specification after each iteration. Results are
plotted over 10 runs of the algorithm. The uncertainty decreases as more data
samples are collected, and likewise the probability of satisfaction increases
once the safe cycle has expanded close enough to the goal.
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