

000 VGPA: DEEP VIEW-GRAPH POSE AVERAGING FOR 001 STRUCTURE-FROM-MOTION 002

003 **Anonymous authors**

004 Paper under double-blind review

005 ABSTRACT

006 Camera pose estimation is a key step in 3D reconstruction and view-synthesis
007 pipelines. We present a deep, global Structure-from-Motion framework based on
008 learned view-graph aggregation. Our method employs a permutation-equivariant,
009 edge-conditioned graph neural network that takes noisy pairwise relative poses as
010 input and outputs globally consistent camera extrinsics. The network is trained
011 without ground-truth supervision, relying solely on a relative-pose consistency
012 objective. This is followed by 3D point triangulation and robust bundle ad-
013 justment. A fast view re-integration step increases camera coverage by re-in-
014 troducing discarded images. Our approach is efficient, scalable to more than
015 a thousand images, and robust to graph density. We evaluate our method on
016 MegaDepth, 1DSfM, Strecha, and BlendedMVS. These experiments demonstrate
017 that our method achieves superior rotation and translation accuracy compared to
018 deep track-centric methods while registering more images across many scenes,
019 and competitive results compared to state-of-the-art classical pipelines, while be-
020 ing much faster.

021 1 INTRODUCTION

022 Camera pose recovery is an essential part of 3D scene reconstruction and view synthesis applica-
023 tions. Many common Multiview Stereo (MVS) (Seitz et al., 2006; Yao et al., 2018) and view syn-
024 thesis methods, including Neural Radiance Fields (NeRF) (Mildenhall et al., 2021) and Gaussian
025 Splattting (GS) (Kerbl et al., 2023) rely on accurate camera poses computed in preprocessing. View
026 synthesis methods, in particular, have gained much popularity in recent years, as they can produce
027 novel, realistically looking images and walkthroughs for complex scenes.

028 Multiview Structure-from-Motion (SfM) techniques provide reliable tools for camera pose recov-
029 ery. Sequential pipelines, e.g., COLMAP (Schönberger & Frahm, 2016), solve for one camera at
030 a time, enriching the recovered set of camera poses and 3D points by processing image by image.
031 These, generally highly accurate techniques, are relatively slow when applied to large collections
032 of images, and their performance depends on the order in which the images are processed. Projec-
033 tive factorization techniques (Sturm & Triggs, 1996) simultaneously solve for all cameras and point
034 tracks. These methods, however, attempt to factor large tensors that include all the track points.

035 In the past decade, *global methods* emerged as an alternative to sequential and factorization meth-
036 ods. Global methods use a technique called *motion averaging*; given pairwise relative camera mo-
037 tion measurements, they seek to recover the location and orientation (and possibly also the intrinsic
038 parameters) of cameras in a global coordinate system. Typically, this is done by solving sepa-
039 rately for rotations and translations (Moulon et al., 2016; Sweeney et al., 2015), while some recent
040 works developed techniques for directly averaging essential and fundamental matrices (Kasten et al.,
041 2019a;b). Global methods can be more efficient than both sequential and factorization-based tech-
042 niques, as they only solve for pose and therefore do not need to access and manipulate point tracks,
043 except in the final bundle adjustment (BA) step.

044 In this paper, we reexamine the use of global SfM through the lens of *learned view-graph aggrega-
045 tion*. Specifically, we propose an efficient permutation-equivariant, edge-conditioned graph neural
046 network (GNN) that takes as input noisy estimates of pairwise relative camera poses associated with
047 the edges of a view graph, and outputs globally consistent camera extrinsics. The network is trained
048 without ground-truth supervision using only a relative-pose consistency objective. Unlike existing
049

054
055
056
057
058
059
060
061
062
063
064
065

066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: 3D reconstructions and recovered camera parameters produced by VGPA on two large scenes ($N_c > 1000$ images). VGPA registers almost all images and scales to thousand-image collections, in contrast to existing image-based deep methods (e.g., VGGT, VGGSfM).

deep-based approaches to SfM (Khatib et al., 2025; Moran et al., 2021; Brynte et al., 2023), our pose regression network does not use point tracks; it does not predict 3D points and does not rely on a reprojection loss. At test time, we use our network to predict global camera poses. Then, we improve our camera pose predictions by triangulating point tracks and applying robust BA. Finally, an optional and efficient *view reintroduction* step is applied to recover cameras that were discarded in the process by the network, increasing camera coverage.

Our approach is efficient and achieves high accuracy. It copes well with large-scale inputs, including ones with more than a thousand images. Moreover, our method is agnostic to the density of the graph. We obtain comparable performance when constructing the view graph using top- k neighbors retrieved with NetVLAD (Arandjelovic et al., 2016), instead of exhaustive pairwise matching, despite the large difference in edge density. We note that in the uncalibrated setting, we optimize jointly for the intrinsics and extrinsics parameters during BA.

We perform an extensive experimental evaluation on challenging datasets, including MegaDepth and 1DSfM. These experiments demonstrate that our learned pose averaging achieves lower camera position and orientation errors than existing deep track-centric methods while registering more images on many scenes (Khatib et al., 2025; Moran et al., 2021; Brynte et al., 2023), and is competitive with strong classical pipelines. Similar results are obtained on smaller calibrated benchmarks for which ground truth measurements are available (Strecha and BlendedMVS) and on scenes containing challenging cyclic trajectories, where reprojection-centric methods such as (Khatib et al., 2025; Moran et al., 2021; Brynte et al., 2023) often struggle.

Below we summarize our contributions.

1. We present **VGPA**: an efficient, permutation-equivariant GNN for *view-graph pose averaging* that predicts global camera extrinsics from noisy pairwise estimates.
2. Our method achieves highly accurate camera pose and structure recovery, comparable to state-of-the-art classical methods while being much faster, and it largely outperforms recent deep-based methods on large-scale scenes.
3. We train VGPA in a **self-supervised manner by enforcing relative-pose consistency only**; structure is recovered via triangulation followed by robust BA.
4. We show **robustness to view-graph density**, achieving similar accuracy with both exhaustive pairwise matching and sparse top- k NetVLAD graphs, despite large differences in edge count.
5. **Handles unknown intrinsics:** VGPA remains accurate when intrinsics are coarsely initialized and optimized only during BA.
6. We introduce a **lightweight technical view re-integration step** that optionally improves camera coverage with minimal runtime overhead.

108

2 RELATED WORK

109
110
111 A popular classical method for Structure-from-Motion (SfM) uses an incremental algorithm in
112 which images are processed one at a time, gradually extending the recovered set of camera poses and
113 3D structure. (Agarwal et al., 2011; Schönberger & Frahm, 2016; Snavely et al., 2006; Wu, 2013).
114 While these methods achieve highly accurate reconstruction, they are inefficient when applied to
115 large image collections, and their results depend on the order in which images are processed.
116117 A second approach uses projective factorization to solve simultaneously for camera pose and 3D
118 structure on all input images (Sturm & Triggs, 1996; Dai et al., 2010; Lin et al., 2017). This method
119 uses the observation that point track matrices are rank 4 when the points are scaled properly. Clas-
120 sical algorithms based on SVD factorization, however, are restricted to uncalibrated settings and do
121 not handle missing data or outliers. Inspired by these techniques, several recent works train equiv-
122 ariant network architectures to jointly estimate camera poses and 3D structure from point tracks
123 (Moran et al., 2021; Brynte et al., 2023; Chen et al., 2024; Khatib et al., 2025). These methods use
124 either set-of-sets or graph transformer network architectures and are trained with either supervised
125 or unsupervised data. An inlier/outlier classifier is incorporated for improved robustness (Khatib
126 et al., 2025). Accurate pose recovery results were achieved with this method. However, it tends to
127 over-prune valid inliers, leading to occasional registration failures and reduced image coverage.
128129 Our method follows a third approach, commonly referred to as a *global approach*. Global meth-
130 ods handle all images simultaneously by applying manifold averaging to ensure the consistency of
131 pairwise pose relations (rotations and translations) inferred from the essential matrices. Existing
132 methods commonly solve first for camera orientations, and next for location and scales (Martinec &
133 Pajdla, 2007; Özyeşil et al., 2017; Sweeney et al., 2015; Moulon et al., 2016). Kasten et al. (2019a;b)
134 introduced an averaging method for averaging essential and fundamental matrices, solving for all
135 of these parameters in a single optimization. With the exception of (Pan et al., 2024), these meth-
136 ods require a separate step of 3D point triangulation. Theia (Sweeney et al., 2015) and the recent
137 GLOMAP (Pan et al., 2024), in particular, were shown to yield accurate recovery.
138139 Several recent works train networks to solve rotation averaging on the view graph. NeurORA
140 (Purkait et al., 2020) learns to denoise pairwise relative rotations and aggregates them to recover
141 global orientations, while (Li & Ling, 2021) applies message passing on pose graphs to iteratively
142 update node rotations. These methods only address rotation averaging; they are trained on super-
143 vised data and tested in limited settings that do not include cross-dataset generalization. In contrast,
144 our method is trained with unsupervised data and recovers the full camera extrinsics.
145146 Recent learnable SfM methods such as VGGsFm (Wang et al., 2023a), DUST3R (Wang et al.,
147 2023b), and MAST3R (Leroy et al., 2024) are restricted to processing only a small number of
148 input images, whereas Ace-Zero (Brachmann et al., 2024) and FlowMap (Smith et al., 2024) are
149 tailored for video sequences under constant illumination. More recently, VGGT (Wang et al., 2025)
150 introduced an end-to-end transformer that jointly predicts camera poses, dense 3D structure, and
151 point tracks. Although promising, VGGT requires substantial supervised training and is currently
152 restricted to images on the order of ~ 200 . Fast3R (Yang et al., 2025) scales to larger collections but
153 typically attains lower accuracy than VGGT at comparable settings.
154155 In this paper, we introduce a learned view-graph pose averaging module implemented with a
156 permutation-equivariant graph neural network. Trained without ground-truth supervision, our
157 method achieves competitive accuracies at lower runtime than strong global SfM baselines and sur-
158 passes prior deep factorization approaches in both accuracy and camera coverage. It remains robust
159 to heavy outlier contamination in realistic point track data.
160161

3 METHOD

162 Given a collection of m images of a stationary scene, we assume, as in standard SfM pipelines, that
163 in preprocessing we extract (1) essential matrices and (2) a collection of point tracks, which will
164 form the input to our pipeline. Our objective is to recover the camera matrices for all the given
165 images and a triangulated 3D location for each track. Below, we describe each step in our method.
166

Figure 2: Method overview. (1) *Preprocessing*: estimate pairwise relative poses from essential matrices and build the view graph; extract point tracks and frozen DINOV2 image descriptors. (2) *GNN*: a permutation-equivariant, edge-conditioned GNN aggregates the view graph to produce camera embeddings. (3) *Predict cams*: a small head H_{cams} regresses global extrinsics (R_i, t_i) from the embeddings. (4) *Triangulation + BA*: using the predicted cameras and the point tracks, we triangulate 3D points and run robust bundle adjustment.

3.1 PREPROCESSING

Denote our input images by I_1, \dots, I_m . Following standard SfM pipelines, we begin by detecting and matching features across the images using standard algorithms such as SIFT or SuperPoint (DeTone et al., 2018; Lowe, 2004). We next apply RANSAC (Bolles & Fischler, 1981) and obtain a partial collection of pairwise essential matrices $\{E_{ij}\}_{i,j \in [m]}$, denoted by \mathcal{E} . Each essential matrix encodes the relative rotation R_{ij} and translation t_{ij} between camera P_i and P_j . We extract the rotation and translation by decomposing the essential matrix, while enforcing positive depth. Note that t_{ij} is determined at this point only up to scale. These pairwise rotation and translation measurements serve as input to our pose averaging module.

A second outcome of the procedure above comprises pairs of matched feature points across images. We next use heuristics (as in, e.g., (Schönberger & Frahm, 2016)) to join such pairs to form longer tracks. Each track is a set $T_k = \{\mathbf{x}_{i_1,k}, \mathbf{x}_{i_2,k}, \dots\}$ with $i_1, i_2, \dots \in [m]$, and we assume that T_k contains the projected locations of a single 3D scene point, denoted \mathbf{X}_k , onto I_{i_1}, I_{i_2}, \dots . These tracks are generally contaminated by small displacement errors (noisy measurements) and outliers. We will use this collection of point tracks at a later stage to triangulate the 3D structure using the predicted absolute camera poses.

3.2 NETWORK ARCHITECTURE

Our network applies *pose averaging* to the view graph. As is shown in Fig. 2, it comprises two modules: (i) a permutation-equivariant, edge-conditioned GNN that aggregates pairwise relative poses into camera embeddings; and (ii) a regression head that predicts global camera parameters from these embeddings.

Pose-averaging GNN. We build a viewing graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ whose nodes index the m images and whose edges carry relative-pose measurements. For each edge $(i, j) \in \mathcal{E}$ we define

$$\mathbf{e}_{ij}^{(0)} = \phi_e([\log R_{ij}^{\text{RANSAC}}, \mathbf{t}_{ij}^{\text{RANSAC}}]),$$

where $\log : SO(3) \rightarrow \mathfrak{so}(3)$ is the matrix logarithm and $\mathbf{t}_{ij}^{\text{RANSAC}} \in \mathbb{S}^2$ is the *unit normed*-translation direction recovered from the essential matrix. To inject image-level context, each node v_i is initialized with the DINOV2 [CLS] token $\mathbf{h}_i^{(0)}$ computed from image I_i .

216 We apply edge-conditioned message passing with degree-normalized mean aggregation:
 217

$$\begin{aligned} \tilde{\mathbf{m}}_i^{(\ell)} &= \sum_{j \in \mathcal{N}(i)} \phi_m(\mathbf{h}_i^{(\ell)}, \mathbf{h}_j^{(\ell)}, \mathbf{e}_{ij}^{(\ell)}), \\ \mathbf{m}_i^{(\ell)} &= \frac{1}{|\mathcal{N}(i)|} \tilde{\mathbf{m}}_i^{(\ell)}, \\ \mathbf{h}_i^{(\ell+1)} &= \text{LN}\left(\mathbf{h}_i^{(\ell)} + \text{Drop}(\psi(\text{LN}(\mathbf{h}_i^{(\ell)}), \mathbf{m}_i^{(\ell)}))\right), \end{aligned}$$

225 for $\ell = 0, \dots, L-1$, where ϕ_m and ψ are MLPs, LN denotes Layer Normalization (Ba et al., 2016),
 226 and Drop denotes Dropout (Srivastava et al., 2014). The network is equivariant to node relabelings
 227 (permutations) of \mathcal{G} . The final node embeddings are $\mathbf{z}_i = \mathbf{h}_i^{(L)}$.

228 **Pose regression head.** The pose regression head obtains as input the per-camera embeddings \mathbf{z}_i pro-
 229 duced by the pose-averaging GNN. A 3-layer MLP head H_{cams} maps these embeddings to camera
 230 parameters,

$$(\mathbf{t}_i, \mathbf{q}_i) = H_{\text{cams}}(\mathbf{z}_i), \quad \tilde{\mathbf{q}}_i \leftarrow \mathbf{q}_i / \|\mathbf{q}_i\|,$$

232 where $\mathbf{t}_i \in \mathbb{R}^3$ and $\tilde{\mathbf{q}}_i \in \mathbb{H}$ is a unit quaternion.
 233

234 3.3 OUTPUT AND LOSS

236 Our network predicts the m internally calibrated cameras P_1, \dots, P_m . Each camera is parameterized
 237 as $P_i = [R_i \mid \mathbf{t}_i]$ with $R_i \in SO(3)$ and $\mathbf{t}_i \in \mathbb{R}^3$; the camera center is $-R_i^\top \mathbf{t}_i$.
 238

239 Training is unsupervised and seeks cameras P_1, \dots, P_m that best agree with the pairwise relative-
 240 pose estimates. We therefore minimize a relative-pose consistency objective. Specifically, we use

$$\mathcal{L}_{\text{RelPose}} = \frac{1}{|\mathcal{E}|} \sum_{(i,j) \in \mathcal{E}} d_R(\hat{R}_{ij}, R_{ij}^{\text{RANSAC}}) + \frac{1}{|\mathcal{E}|} \sum_{(i,j) \in \mathcal{E}} d_t(\hat{\mathbf{t}}_{ij}, \mathbf{t}_{ij}^{\text{RANSAC}}), \quad (1)$$

244 where \hat{R}_{ij} and $\hat{\mathbf{t}}_{ij}$ denote the relative rotation and translation estimated from the output cameras P_i
 245 and P_j using

$$\hat{R}_{ij} = R_j^T R_i, \quad \hat{\mathbf{t}}_{ij} = R_j^T (\mathbf{t}_i - \mathbf{t}_j), \quad (2)$$

248 R_{ij}^{RANSAC} and $\mathbf{t}_{ij}^{\text{RANSAC}}$ are the corresponding rotation and translation obtained with RANSAC in
 249 preprocessing, $d_R(R_1, R_2) = \arccos\left(\frac{\text{trace}(R_1^\top R_2) - 1}{2}\right)$ is the geodesic rotation error, and $d_t(\mathbf{a}, \mathbf{b}) =$
 250 $\arccos\langle \mathbf{a}, \mathbf{b} \rangle$ measures directional disagreement.
 251

252 **Training protocol.** We iterate over all training scenes in each epoch. For each scene, we sample
 253 uniformly $s \in [0.1, 0.2]$ of the images (without replacement) to form a subgraph. Models are selected
 254 by early stopping on a held-out validation set; we report the checkpoint with the lowest validation
 255 error. Additional details appear in the Appendix.

256 **Inference.** On an *unseen* scene, the model predicts all camera poses in a single forward pass.
 257 We then fine-tune on the target scene with the unsupervised objective (no ground-truth labels) for
 258 $T_{\text{ft}} = 200$ steps. Next, we triangulate using DLT (Hartley & Zisserman, 2003) to recover 3D point
 259 positions from the estimated camera poses and point tracks, and finally perform a robust bundle
 260 adjustment initialized with the camera poses predicted by the network and the triangulated points.
 261

262 4 EXPERIMENTS

264 4.1 DATASETS

266 We train our network on scenes from the MegaDepth dataset (Li & Snavely, 2018) and then test it on
 267 a diverse range of real-world scenes that include novel scenes from the MegaDepth dataset as well as
 268 cross-dataset generalization tests on the 1DSfM dataset (Wilson & Snavely, 2014), Strecha (Strecha
 269 et al., 2008), and BlendedMVS (Yao et al., 2020). We refer the reader to the supplementary material
 for hyperparameters and further technical details.

270 **MegaDepth (Li & Snavely, 2018).** The MegaDepth dataset includes 196 different outdoor land-
 271 mark scenes curated from the internet. We followed the train/test split as in (Khatib et al., 2025),
 272 including subsampling of scenes with more than 1000 images. In Table 1, above the middle rule are
 273 scenes with fewer than 1000 images, while the scenes below the rule are subsampled.

274 **1DSFM (Wilson & Snavely, 2014).** 1DSFM is a collection of diverse urban scenes reconstructed
 275 from community photo collections. We use this dataset to test our method (trained on the MegaDepth
 276 dataset) in cross-dataset generalization experiments, demonstrating large-scale reconstructions in
 277 realistic settings.

278 **Strecha (Strecha et al., 2008).** The Strecha dataset consists of five small outdoor scenes (≤ 30
 279 images) and includes ground-truth data acquired with a LIDAR system. We test our method on four
 280 of these five scenes.

281 **BlendedMVS (Yao et al., 2020).** The BlendedMVS dataset includes synthetic scenes with textured
 282 meshes rendered and blended to produce color images and depth maps, providing ground truth
 283 camera poses.

285 **Ground truth camera poses.** Many challenging datasets, including MegaDepth and 1DSFM, lack
 286 ground truth measurement, and, therefore, as is common in the field, we use camera poses computed
 287 with COLMAP Schönberger & Frahm (2016), a state-of-the-art incremental Structure from Motion
 288 (SfM) method, to generate “ground truth” camera poses. COLMAP is widely used for this purpose
 289 (see Jiang et al. (2013); Wilson & Snavely (2014); Cui & Tan (2015); Ozyesil & Singer (2015);
 290 Brynte et al. (2023); Khatib et al. (2025); Zhang et al. (2024)) due to its accurate and robust perfor-
 291 mance. To evaluate our method with real ground truth, we additionally show results on the smaller
 292 datasets Strecha (Strecha et al., 2008) and BlendedMVS (Yao et al., 2020).

294 4.2 BASELINES

296 With the exception of VGGT (Wang et al., 2025), the settings and results for all baselines below
 297 were taken from (Khatib et al., 2025).

299 **RESfM (Khatib et al., 2025).** RESfM is a robust deep equivariant SfM model that operates on a
 300 point-track tensor using a sets-of-sets permutation-equivariant architecture. It augments prior equiv-
 301 ariant factorization by adding a multiview inlier/outlier classifier integrated into the same equivariant
 302 backbone and concludes with a robust bundle-adjustment stage.

303 **VGGSfM (Wang et al., 2024)** is a differentiable, trainable SfM pipeline.

304 **MASt3R (Leroy et al., 2024).** An SfM pipeline that utilizes a global alignment procedure to merge
 305 pairwise pointmap predictions.

307 **Theia (Sweeney et al., 2015).** A global SfM pipeline that applies rotation averaging, followed by
 308 translation averaging, and finally 3D point triangulation.

309 **GLOMAP (Pan et al., 2024).** A global SfM pipeline that first applies rotation averaging, followed
 310 by an integrated step of translation averaging and point triangulation.

311 **VGGT (Wang et al., 2025).** VGGT is a feed-forward, end-to-end multi-view transformer network
 312 that jointly predicts cameras, depth, point maps, and tracks for up to about 200 views. It uses
 313 alternating inter-frame/global attention and is additionally refined with BA.

316 4.3 METRICS AND EVALUATION

318 To evaluate our results, we first align the predicted scenes to the ground truth by applying a per-scene
 319 3D similarity transformation. We then compare our camera orientation predictions with the ground
 320 truth ones using angular differences in degrees. We measure differences between our predicted and
 321 ground truth camera locations using the l_2 distance. For a fair comparison, both our method and
 322 all the baseline methods (except VGGSfM, VGGT and MAST3R, which are applied directly to
 323 the input images) were run with the same set of point tracks. For all methods, we apply a final
 324 post-processing step of robust bundle adjustment.

324 **Table 1: MegaDepth experiment.** For each scene, we show the number of input images (denoted N_c) and
 325 the fraction of outliers. For each model, we show the number of images used for reconstruction (denoted N_r)
 326 and mean values of the rotation (in degrees) and translation errors. (Above the middle rule are Group 1 scenes
 327 with < 1000 images; below are Group 2 scenes with > 1000 images, subsampled to 300 for testing.) Winning
 328 results are marked in bold and underlined. Yellow represents the best result among the deep-based algorithms
 329 and green among the classical algorithms.

330	Scene	N_c	Outliers%	Ours			RESfM			Theia			GLOMAP		
				N_r	Rot	Trans	N_r	Rot	Trans	N_r	Rot	Trans	N_r	Rot	Trans
331	0238	522	44.6%	488	4.50	0.686	283	2.61	<u>0.325</u>	506	1.21	0.334	499	0.74	0.349
332	0060	528	41.6%	518	0.07	<u>0.014</u>	503	0.29	0.029	525	0.85	0.124	522	0.11	0.048
333	0197	870	40.7%	641	1.28	<u>0.271</u>	667	4.22	0.333	855	1.16	0.227	814	0.43	<u>0.129</u>
334	0094	763	40.1%	663	0.66	<u>0.101</u>	537	3.77	0.750	742	0.75	0.160	717	0.88	3.907
335	0265	571	38.8%	345	2.93	0.998	346	1.25	<u>0.389</u>	554	5.83	2.216	558	7.46	2.839
336	0083	635	31.3%	614	0.06	<u>0.005</u>	596	0.64	0.058	632	0.37	0.372	614	0.08	0.016
337	0076	558	30.5%	543	0.09	<u>0.016</u>	524	0.37	0.094	549	0.78	0.120	541	0.17	0.042
338	0185	368	30.0%	358	0.10	0.022	350	0.06	<u>0.010</u>	365	0.41	0.094	365	0.16	0.051
339	0048	512	24.2%	500	0.29	<u>0.026</u>	474	4.69	0.178	507	0.41	0.105	506	0.15	0.224
340	0024	356	23.0%	313	3.38	0.772	309	2.03	<u>0.398</u>	355	0.56	0.219	339	0.15	<u>0.104</u>
341	0223	214	17.0%	208	2.75	<u>0.195</u>	204	3.76	0.510	212	3.34	0.519	214	1.75	0.275
342	5016	28	16.9%	28	0.08	<u>0.015</u>	28	0.12	0.016	28	0.10	0.061	28	0.08	0.046
343	0046	440	14.6%	439	0.54	0.071	399	0.95	<u>0.043</u>	434	0.25	0.112	440	0.03	<u>0.007</u>
344	1001	285	43.9%	265	1.89	3.840	251	1.70	<u>0.661</u>	276	7.97	4.014	281	4.56	3.817
345	0231	296	42.2%	261	0.24	<u>0.030</u>	246	0.84	0.065	286	1.37	0.322	279	0.73	0.134
346	0411	299	29.9%	270	0.12	<u>0.018</u>	273	0.13	0.020	293	0.39	0.196	269	0.19	0.148
347	0377	295	27.5%	232	0.30	0.035	210	0.29	<u>0.018</u>	269	1.13	0.205	268	0.65	0.237
348	0102	299	25.8%	297	0.18	<u>0.031</u>	284	0.28	0.059	294	2.31	0.698	293	0.15	<u>0.101</u>
349	0147	298	24.6%	282	1.99	<u>0.153</u>	207	4.62	0.325	284	6.36	0.934	290	6.75	3.542
350	0148	287	24.6%	211	0.93	0.037	197	0.60	<u>0.035</u>	275	13.98	1.558	283	22.73	2.646
351	0446	298	22.1%	292	0.22	<u>0.019</u>	288	0.72	0.046	289	1.23	0.391	296	0.20	0.071
352	0022	297	21.2%	277	0.29	0.044	274	0.29	<u>0.039</u>	296	0.58	0.160	281	0.22	0.087
353	0327	298	21.0%	291	0.12	<u>0.014</u>	271	0.26	0.090	288	1.27	0.360	290	15.54	2.035
354	0015	284	20.6%	243	0.52	<u>0.058</u>	215	1.04	0.167	244	2.21	0.389	274	0.28	0.095
355	0455	298	19.8%	290	0.39	0.078	293	0.68	0.105	294	0.77	0.159	298	0.35	<u>0.064</u>
356	0496	297	19.2%	279	0.37	<u>0.033</u>	281	0.35	0.055	285	1.40	0.550	291	0.44	0.303
357	1589	299	17.4%	296	0.11	<u>0.010</u>	290	0.14	0.019	288	0.82	0.193	299	0.07	0.041
358	0012	299	16.3%	295	0.63	0.071	287	0.40	<u>0.027</u>	129	1.04	0.318	295	0.51	0.121
359	0019	299	15.4%	291	0.37	0.020	250	0.06	<u>0.008</u>	271	0.81	0.250	296	0.09	0.025
360	0063	293	14.5%	268	0.18	<u>0.025</u>	262	0.46	0.048	268	0.92	0.605	288	0.32	0.100
361	0130	285	14.4%	199	5.12	0.618	192	0.20	<u>0.023</u>	187	1.20	0.349	281	2.00	0.909
362	0080	284	12.9%	162	0.58	0.109	139	0.59	<u>0.096</u>	278	2.62	0.868	283	1.92	0.237
363	0240	298	11.9%	295	0.64	3.479	275	3.13	0.265	278	1.31	0.470	294	0.39	<u>0.135</u>
364	0007	290	11.7%	283	1.53	0.150	172	0.91	0.041	277	1.24	0.174	290	0.19	<u>0.035</u>

4.4 RESULTS

Our results on the MegaDepth and 1DSfM test sets and comparisons to baselines are shown in Tables 1 and 2, respectively. For each scene, we also report the number of input images (N_c), the fraction of outlier track points, and compare our VGPA method against the baselines in terms of number of registered images, mean rotation error (in degrees), translation error, and runtime.

Across both benchmarks, VGPA outperforms the deep factorization baseline RESfM on most scenes, achieving lower rotation and translation errors. Compared to classical pipelines, VGPA is competitive with Theia and GLOMAP, and often surpasses them on both metrics. In terms of coverage, VGPA registers a larger fraction of images than RESfM, though typically fewer than GLOMAP.

Table 2: **1DSfM experiment.** For each scene, we show the number of input images (denoted N_c) and the fraction of outliers. For each model, we show the number of images used for reconstruction (N_r) and mean values of the rotation (in degrees) and translation errors. Winning results are marked in bold and underlined. Yellow represents the best result among the deep-based algorithms and green among the classical algorithms.

366	Scene	N_c	Outliers%	Ours			RESfM			Theia			GLOMAP		
				N_r	Rot	Trans	N_r	Rot	Trans	N_r	Rot	Trans	N_r	Rot	Trans
367	Alamo	573	32.6%	509	1.50	<u>0.342</u>	484	3.66	0.515	553	4.42	1.433	557	2.45	1.520
368	Ellis Island	227	25.1%	214	0.27	<u>0.077</u>	214	0.82	0.122	213	5.01	1.527	219	0.58	0.155
369	Madrid Metropolis	333	39.4%	295	1.47	<u>0.136</u>	244	8.42	0.827	-	-	-	320	1.22	0.242
370	Montreal Notre Dame	448	31.7%	425	0.34	<u>0.073</u>	346	2.82	0.352	422	4.47	1.285	444	0.60	0.211
371	NYC Library	330	33.6%	285	1.20	0.422	224	3.96	0.429	314	4.06	1.141	323	0.58	<u>0.189</u>
372	Notre Dame	549	35.6%	519	0.64	<u>0.065</u>	517	1.20	0.231	534	3.70	0.828	543	2.73	0.389
373	Piazza del Popolo	336	33.1%	315	4.42	0.710	249	2.20	<u>0.186</u>	325	3.31	1.053	331	0.80	0.188
374	Tower of London	467	27.0%	454	0.78	0.073	94	0.67	<u>0.026</u>	448	6.61	1.189	466	0.81	0.138
375	Vienna Cathedral	824	31.4%	753	19.28	1.285	479	1.52	<u>0.112</u>	772	12.25	1.663	822	2.00	2.414
376	Yorkminster	432	29.0%	403	1.38	<u>0.144</u>	331	14.54	1.468	390	8.35	1.916	418	0.95	0.316

Following Khatib et al. (2025), we evaluate VGPA on the smaller Strecha and BlendedMVS benchmarks, which provide ground-truth camera poses. As shown in Table 3, VGPA is consistently more accurate than image-based deep baselines (VGGSfM, MAST3R, and VGGT), which typically do not

scale to the larger datasets considered, and it performs on par with classical pipelines (including Theia, COLMAP, and GLOMAP).

Table 3: Strecha & BlendedMVS datasets. For each scene we list the number of input images (N_c) and outlier fraction. For each method we report the number of registered images (N_r), mean rotation error (deg), translation error, and runtime (s). Best is **bold**, second best is underlined.

Scene	N_c	Out.%	Ours	VGGSfM			Theia			COLMAP			GLOMAP					
				N_r	Rot	Trans	N_r	Rot	Trans	N_r	Rot	Trans	N_r	Rot	Trans	N_r	Rot	Trans
Strecha																		
entry-P10	10	4.8	10 0.004 <u>0.0005</u> <u>10.0</u>	10	0.079	0.033	16.5	10	0.442	0.055	19	10	0.165	0.056	10.3	10	0.024	0.008
fountain-P11	11	1.4	11 0.012 <u>0.0005</u> <u>14.7</u>	11	0.034	0.019	<u>12.2</u>	11	0.160	0.026	22	11	0.172	0.016	15.4	11	<u>0.027</u> <u>0.002</u>	1.5
Herz-Jesus-P8	8	1.8	8 0.009 <u>0.0016</u> <u>7.4</u>	8	0.032	0.011	12.7	8	0.363	0.037	16	8	0.206	0.042	8.7	8	<u>0.025</u> <u>0.005</u>	0.4
Herz-Jesus-P25	25	2.8	25 0.010 <u>0.0003</u> <u>12.5</u>	25	0.048	0.007	31.9	25	0.869	0.057	81	25	0.158	0.046	19.6	25	<u>0.026</u> <u>0.006</u>	2.4
BlendedMVS																		
scene0	75	2.0	74 0.019 <u>0.0011</u> <u>136</u>	75	0.041	0.017	108	75	0.501	0.191	516	75	0.045	0.0106	<u>61</u>	75	0.009	0.0017
scene1	51	1.4	51 0.341 0.0342 <u>38</u>	51	0.101	0.050	41	51	0.919	0.173	1017	51	0.098	0.0112	<u>32</u>	51	0.029	0.0099
scene2	33	2.2	33 <u>0.008</u> <u>0.0004</u> <u>19</u>	33	0.230	0.022	52	33	1.972	0.130	117	33	0.227	0.0180	30	33	0.045	0.0098
scene3	66	8.8	66 <u>0.006</u> <u>0.0065</u> <u>65</u>	66	0.353	0.014	276	66	0.927	0.045	815	66	0.372	0.0174	<u>52</u>	66	0.019	0.0018

Robustness to view-graph density. We train VGPA using relative poses obtained from **exhaustive** pairwise matching. At test time, we vary the sparsity of the view graph by using NetVLAD retrieval to connect each image only to its top- k nearest neighbors. As shown in Table 4, VGPA maintains accuracy comparable to the exhaustive graph while using far fewer edges. Its performance changes only slightly across a wide range of k , as long as the graph remains sufficiently connected.

Postprocessing (view re-integration). Since our pipeline may discard some images during the BA stage, we attempt to re-register these views in postprocessing using a lightweight add-back loop. Unregistered views are ranked by connectivity (e.g., number of 2D–3D matches) with the current point cloud. For each candidate, we estimate its pose from the available 2D–3D correspondences and refine it with a short local BA applied to its neighboring views. The process repeats until no further views can be added. Table 8 in the appendix compares *Ours* and *Ours + post-processing* in terms of N_r , mean rotation error (deg), and mean translation error, showing that the add-back step increases the number of registered cameras with minimal runtime overhead (about 1 second per added view).

Uncalibrated image collections. Table 5 compares two settings: (i) using ground-truth intrinsics and (ii) starting from an approximate calibration (f_x, f_y proportional to image size, principal point at the image center) and optimizing intrinsics jointly with the extrinsics during bundle adjustment. While self-calibration incurs a small accuracy drop relative to ground-truth intrinsics, VGPA remains competitive and maintains high performance.

Qualitative results. Figure 1 shows 3D reconstructions and camera parameters obtained by VGPA for two scenes with more than 1,000 images; in both scenes we register almost all images. These results demonstrate that our method produces superior reconstructions and effectively handles outliers compared to the baselines. Moreover, VGPA is not limited by the number of images, unlike image-based deep methods such as VGG and VGGSfM. Additional qualitative results are provided in the Appendix.

Runtime. Table 6 reports runtimes on the identical point tracks produced by our preprocessing. VGPA is substantially faster than COLMAP, GLOMAP, and Theia, and remains competitive in throughput. Importantly, these gains come without sacrificing reconstruction quality: VGPA

Table 4: Robustness to graph density. For each scene we list the number of input images (N_c). Our default setting uses *Exhaustive SIFT*, and we also report results with *NetVLAD@K + SIFT* for different values of K . For all methods, we show the number of registered images (N_r), mean rotation error (deg), and mean translation error.

Scene	N_c	Ours (Exhaustive SIFT)			NetVLAD@20			NetVLAD@30			NetVLAD@40		
		N_r	Rot	Trans	N_r	Rot	Trans	N_r	Rot	Trans	N_r	Rot	Trans
Alamo	573	509	1.5	0.34	533	1.29	0.77	525	1.29	0.56	525	1.32	1.23
Ellis Island	227	214	0.27	0.08	219	0.24	0.07	218	0.266	0.08	218	0.28	0.08
Madrid Metropolis	333	295	1.47	0.14	312	2.82	0.20	303	2.34	0.28	309	2.39	0.11

432 **Table 5: Impact of Camera Intrinsic (Known vs. Estimated).** For each scene, we report the number of
 433 input images (N_c) and the outlier fraction. We compare our method with known intrinsics vs. without intrinsics
 434 (optimized) and report N_r , mean rotation error (deg), and mean translation error. Best results are in **bold**.
 435

Scene	N_c	Out.%	Ours (w/ intrinsics)			Ours (w/o intrinsics)		
			N_r	Rot	Trans	N_r	Rot	Trans
<i>BlendedMVS scenes (shared intrinsics)</i>								
scene0	75	2.0	74	0.019	0.0011	74	0.019	0.0019
scene1	51	1.4	51	0.341	0.0342	51	0.338	0.0400
scene2	33	2.2	33	0.008	0.0004	33	0.025	0.0049
scene3	66	8.8	66	0.006	0.0065	66	0.010	0.0014
<i>MegaDepth scenes (not shared intrinsics)</i>								
0012	299	16.3	295	0.63	0.071	293	0.70	0.235
0024	365	23.0	313	3.38	0.772	298	0.80	0.384
0048	486	24.3	500	0.29	0.026	486	0.68	0.128
0083	635	31.3	614	0.06	0.005	601	0.56	0.219

444 achieves accuracy and coverage comparable to classical pipelines, demonstrating that learned view-
 445 graph pose averaging is efficient at scale.
 446

448 **Table 6: Runtime.** Given the same point tracks, we compare the runtime of our proposed method (VGPA) to
 449 RESfM and classical methods, including COLMAP, Theia, and GLOMAP.
 450

Scene	N_c	Outliers%	Ours			RESfM			COLMAP			Theia			GLOMAP		
			Total (Mins)	N_r	$N_r/t \uparrow$												
Alamo	573	32.6	4.4	509	116.2	17.2	484	28.2	83.7	568	6.8	13.4	553	41.4	40.0	557	13.9
Ellis Island	227	25.1	1.1	214	194.4	2.8	214	75.9	14.9	223	15.0	1.1	213	193.6	7.7	219	28.6
Madrid Metropolis	333	39.4	1.7	295	172.5	5.8	244	42.1	25.1	323	12.9	—	—	—	7.1	320	45.2
Montreal Notre Dame	448	31.7	2.8	425	151.8	6.1	346	56.7	35.9	447	12.5	3.7	422	114.6	13.5	444	32.9
Notre Dame	549	35.6	2.9	519	179.5	22.2	517	23.3	72.6	546	7.5	11.6	534	46.0	21.1	543	25.8
NYC Library	330	33.6	1.3	285	212.7	4.0	224	55.7	26.6	330	12.4	1.5	314	204.2	7.3	323	44.5
Piazza del Popolo	336	33.1	1.1	315	277.6	2.7	249	92.6	9.6	334	34.9	3.0	325	108.8	5.9	331	56.0
Tower of London	467	27.0	3.3	454	137.6	5.9	94	15.9	65.0	467	7.2	3.1	448	142.5	23.5	466	19.8
Vienna Cathedral	824	31.4	7.5	753	101.0	23.9	479	20.0	98.9	824	8.3	11.2	772	68.8	41.6	822	19.8
Yorkminster	432	29.0	2.9	403	140.5	7.7	331	42.9	31.4	419	13.3	2.9	390	135.3	14.8	418	28.2
<i>Mean</i>	—	—	2.9	417	168.4	9.8	318	45.3	46.4	448	13.1	5.7	441	117.2	18.2	444	31.5

460 **Ablations.** Ablations confirm that each core component of our method is critical. Removing subset
 461 sampling substantially increases both rotation and translation errors, showing its importance for
 462 robustness. Excluding DINO appearance cues or reducing the number of GNN layers also leads to
 463 a modest decline. Most importantly, fine-tuning yields a large improvement, reducing both rotation
 464 and translation errors to their lowest values. See Table 7, where we report errors *before* the final BA
 465 refinement.

466 Table 7: Ablation study reporting mean rotation and translation errors *before* final BA refinement.
 467

	Mean Rotation Error (↓)	Mean Translation Error (↓)
Ours w/o subset sampling	12.9	2.5
Ours w/o image features	9.8	2.2
Ours w/ 2 layers	10.1	2.2
Ours (base model)	9.5	2.1
Proposed (with fine-tuning)	1.9	0.5

5 CONCLUSION

478 We present VGPA, an unsupervised deep *pose-averaging* network for multiview SfM. The design
 479 includes a permutation-equivariant pose-averaging module that enforces consistency of pairwise
 480 rotations and translation directions while incorporating image-level context. Additional 3D point
 481 triangulation and robust BA refinement ensure high accuracy and recover the 3D structure. Across
 482 challenging benchmarks (including MegaDepth, 1DSfM), VGPA outperforms deep methods and
 483 remains competitive with strong classical pipelines while maintaining high camera coverage. It is
 484 also *fast*: on the same point tracks, VGPA is substantially faster than COLMAP and GLOMAP,
 485 and modestly faster than Theia, while scaling to large image collections. A lightweight view re-
 486 integration sweep reintroduces part of the few remaining discarded views with negligible overhead.

486 REFERENCES
487

488 Sameer Agarwal, Keir Mierle, and Others. Ceres solver. <http://ceres-solver.org>.

489 Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Simon, Brian Curless, Steven M Seitz, and
490 Richard Szeliski. Building rome in a day. *Communications of the ACM*, 54(10):105–112, 2011.

491

492 Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pajdla, and Josef Sivic. Netvlad: Cnn ar-
493 chitecture for weakly supervised place recognition. In *Proceedings of the IEEE conference on*
494 *computer vision and pattern recognition*, pp. 5297–5307, 2016.

495 Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. *arXiv preprint*
496 *arXiv:1607.06450*, 2016.

497

498 Robert C Bolles and Martin A Fischler. A ransac-based approach to model fitting and its application
499 to finding cylinders in range data. In *IJCAI*, volume 1981, pp. 637–643, 1981.

500

501 Eric Brachmann, Jamie Wynn, Shuai Chen, Tommaso Cavallari, Áron Monszpart, Daniyar Tur-
502 mukhambetov, and Victor Adrian Prisacariu. Scene coordinate reconstruction: Posing of image
503 collections via incremental learning of a relocalizer. *arXiv preprint arXiv:2404.14351*, 2024.

504

505 Lucas Brynte, José Pedro Iglesias, Carl Olsson, and Fredrik Kahl. Learning structure-from-motion
506 with graph attention networks. *arXiv preprint arXiv:2308.15984*, 2023.

507

508 Zequan Chen, Jianping Li, Qusheng Li, Bisheng Yang, and Zhen Dong. Deepaat: Deep automated
509 aerial triangulation for fast uav-based mapping, 2024.

510

511 Zhaopeng Cui and Ping Tan. Global structure-from-motion by similarity averaging. In *Proceedings*
512 *of the IEEE International Conference on Computer Vision*, pp. 864–872, 2015.

513

514 Yuchao Dai, Hongdong li, and Mingyi He. Element-wise factorization for n-view projective recon-
515 struction. pp. 396–409, 09 2010. ISBN 978-3-642-15560-4. doi: 10.1007/978-3-642-15561-1_
516 29.

517

518 Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Superpoint: Self-supervised interest
519 point detection and description. In *Proceedings of the IEEE conference on computer vision and*
520 *pattern recognition workshops*, pp. 224–236, 2018.

521

522 Richard Hartley and Andrew Zisserman. *Multiple view geometry in computer vision*. Cambridge
523 university press, 2003.

524

525 Nianjuan Jiang, Zhaopeng Cui, and Ping Tan. A global linear method for camera pose registration.
In *Proceedings of the IEEE international conference on computer vision*, pp. 481–488, 2013.

526

527 Yoni Kasten, Amnon Geifman, Meirav Galun, and Ronen Basri. Algebraic characterization of
528 essential matrices and their averaging in multiview settings. In *Proceedings of the IEEE/CVF*
529 *International Conference on Computer Vision*, pp. 5895–5903, 2019a.

530

531 Yoni Kasten, Amnon Geifman, Meirav Galun, and Ronen Basri. Gpsfm: Global projective sfm
532 using algebraic constraints on multi-view fundamental matrices. In *Proceedings of the IEEE/CVF*
533 *Conference on Computer Vision and Pattern Recognition*, pp. 3264–3272, 2019b.

534

535 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
536 ting for real-time radiance field rendering. *ACM Trans. Graph.*, 42(4):139–1, 2023.

537

538 Fadi Khatib, Yoni Kasten, Dror Moran, Meirav Galun, and Ronen Basri. Resfm: Robust deep
539 equivariant structure from motion. In *The Thirteenth International Conference on Learning Rep-
540 resentations*, 2025.

541

542 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*
543 *arXiv:1412.6980*, 2014.

544

545 Vincent Leroy, Yohann Cabon, and Jérôme Revaud. Grounding image matching in 3d with mast3r.
546 *arXiv preprint arXiv:2406.09756*, 2024.

540 Xinyi Li and Haibin Ling. Pogo-net: Pose graph optimization with graph neural networks. In
 541 *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 5895–5905, 2021.
 542

543 Zhengqi Li and Noah Snavely. Megadepth: Learning single-view depth prediction from internet
 544 photos. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 545 2041–2050, 2018.

546 Yang Lin, Li Yang, Zhouchen Lin, Tong Lin, and Hongbin Zha. Factorization for projective and
 547 metric reconstruction via truncated nuclear norm. In *2017 International Joint Conference on*
 548 *Neural Networks (IJCNN)*, pp. 470–477, 2017. doi: 10.1109/IJCNN.2017.7965891.

549 David G Lowe. Distinctive image features from scale-invariant keypoints. *International journal of*
 550 *computer vision*, 60(2):91–110, 2004.

552 Daniel Martinec and Tomas Pajdla. Robust rotation and translation estimation in multiview recon-
 553 struction. In *2007 IEEE Conference on Computer Vision and Pattern Recognition*, pp. 1–8. IEEE,
 554 2007.

555 Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
 556 Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. *Communications*
 557 *of the ACM*, 65(1):99–106, 2021.

559 Dror Moran, Hodaya Koslowsky, Yoni Kasten, Haggai Maron, Meirav Galun, and Ronen Basri.
 560 Deep permutation equivariant structure from motion. In *Proceedings of the IEEE/CVF Interna-*
 561 *tional Conference on Computer Vision*, pp. 5976–5986, 2021.

562 Pierre Moulon, Pascal Monasse, Romuald Perrot, and Renaud Marlet. Openmvg: Open multiple
 563 view geometry. In *International Workshop on Reproducible Research in Pattern Recognition*, pp.
 564 60–74. Springer, 2016.

566 Onur Ozyesil and Amit Singer. Robust camera location estimation by convex programming. In
 567 *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 2674–
 568 2683, 2015.

569 Onur Özyeşil, Vladislav Voroninski, Ronen Basri, and Amit Singer. A survey of structure from
 570 motion*. *Acta Numerica*, 26:305–364, 2017.

571 Linfei Pan, Dániel Baráth, Marc Pollefeys, and Johannes L Schönberger. Global structure-from-
 572 motion revisited. In *European Conference on Computer Vision (ECCV)*, 2024.

574 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 575 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
 576 performance deep learning library. *Advances in neural information processing systems*, 32, 2019.

577 Pulak Purkait, Tat-Jun Chin, and Ian Reid. Neurora: Neural robust rotation averaging. In *European*
 578 *conference on computer vision*, pp. 137–154. Springer, 2020.

580 Johannes Lutz Schönberger and Jan-Michael Frahm. Structure-from-motion revisited. In *Confer-*
 581 *ence on Computer Vision and Pattern Recognition (CVPR)*, 2016.

583 Steven M Seitz, Brian Curless, James Diebel, Daniel Scharstein, and Richard Szeliski. A comparison
 584 and evaluation of multi-view stereo reconstruction algorithms. In *2006 IEEE computer society*
 585 *conference on computer vision and pattern recognition (CVPR'06)*, volume 1, pp. 519–528. IEEE,
 2006.

587 Cameron Smith, David Charatan, Ayush Tewari, and Vincent Sitzmann. Flowmap: High-quality
 588 camera poses, intrinsics, and depth via gradient descent. *arXiv preprint arXiv:2404.15259*, 2024.

589 Noah Snavely, Steven M Seitz, and Richard Szeliski. Photo tourism: exploring photo collections in
 590 3d. In *ACM siggraph 2006 papers*, pp. 835–846. 2006.

592 Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
 593 Dropout: a simple way to prevent neural networks from overfitting. *The journal of machine*
learning research, 15(1):1929–1958, 2014.

594 Christoph Strecha, Wolfgang Von Hansen, Luc Van Gool, Pascal Fua, and Ulrich Thoennessen. On
 595 benchmarking camera calibration and multi-view stereo for high resolution imagery. In *2008*
 596 *IEEE conference on computer vision and pattern recognition*, pp. 1–8. Ieee, 2008.

597

598 Peter Sturm and Bill Triggs. A factorization-based algorithm for multi-image projective structure
 599 and motion. In *European conference on computer vision*, pp. 709–720. Springer, 1996.

600 Christopher Sweeney, Tobias Hollerer, and Matthew Turk. Theia: A fast and scalable structure-
 601 from-motion library. In *Proceedings of the 23rd ACM international conference on Multimedia*,
 602 pp. 693–696, 2015.

603

604 Jianyuan Wang, Nikita Karaev, Christian Rupprecht, and David Novotny. Visual geometry grounded
 605 deep structure from motion. *arXiv preprint arXiv:2312.04563*, 2023a.

606 Jianyuan Wang, Nikita Karaev, Christian Rupprecht, and David Novotny. Vggsfm: Visual geometry
 607 grounded deep structure from motion. In *Proceedings of the IEEE/CVF Conference on Computer*
 608 *Vision and Pattern Recognition*, pp. 21686–21697, 2024.

609

610 Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David
 611 Novotny. Vggt: Visual geometry grounded transformer. In *Proceedings of the Computer Vision*
 612 *and Pattern Recognition Conference*, pp. 5294–5306, 2025.

613 Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris Chidlovskii, and Jerome Revaud. Dust3r: Ge-
 614 ometric 3d vision made easy. *arXiv preprint arXiv:2312.14132*, 2023b.

615

616 Kyle Wilson and Noah Snavely. Robust global translations with 1dsfm. In *Computer Vision–ECCV*
 617 *2014: 13th European Conference, Zurich, Switzerland, September 6–12, 2014, Proceedings, Part*
 618 *III 13*, pp. 61–75. Springer, 2014.

619 Changchang Wu. Towards linear-time incremental structure from motion. In *2013 International*
 620 *Conference on 3D Vision-3DV 2013*, pp. 127–134. IEEE, 2013.

621

622 Jianing Yang, Alexander Sax, Kevin J Liang, Mikael Henaff, Hao Tang, Ang Cao, Joyce Chai,
 623 Franziska Meier, and Matt Feiszli. Fast3r: Towards 3d reconstruction of 1000+ images in one
 624 forward pass. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp.
 625 21924–21935, 2025.

626 Yao Yao, Zixin Luo, Shiwei Li, Tian Fang, and Long Quan. Mvsnet: Depth inference for unstruc-
 627 tured multi-view stereo. In *Proceedings of the European conference on computer vision (ECCV)*,
 628 pp. 767–783, 2018.

629 Yao Yao, Zixin Luo, Shiwei Li, Jingyang Zhang, Yufan Ren, Lei Zhou, Tian Fang, and Long Quan.
 630 Blendedmvs: A large-scale dataset for generalized multi-view stereo networks. In *Proceedings of*
 631 *the IEEE/CVF conference on computer vision and pattern recognition*, pp. 1790–1799, 2020.

632

633 Jason Y Zhang, Amy Lin, Moneish Kumar, Tzu-Hsuan Yang, Deva Ramanan, and Shubham Tul-
 634 siani. Cameras as rays: Pose estimation via ray diffusion. In *International Conference on Learn-
 635 ing Representations (ICLR)*, 2024.

636

637

638

639

640

641

642

643

644

645

646

647

648
649

APPENDIX

650
651

A QUALITATIVE RESULTS

652
653654
655656
657658
659660
661662
663664
665666
667668
669670
671672
673674
675676
677678
679680
681682
683684
685686
687688
689690 Figure 3: Example reconstructions from the proposed VGPA on various datasets.
691
692
693
694
695
696
697
698
699
700
701

702 USE OF LARGE LANGUAGE MODELS (LLMs)
703704 We used a large language model (ChatGPT) solely for language polishing, i.e., improving grammar,
705 clarity, and style of sentences.
706707 B IMPLEMENTATION DETAILS
708710 **Code and data.** Our code and preprocessed data will be made publicly available.
711712 **Framework.** We train and evaluate on NVIDIA A100 GPUs (80 GB). The implementation uses
713 PyTorch (Paszke et al., 2019) and the Adam optimizer (Kingma & Ba, 2014) with gradient normal-
714 ization.
715716 **Training.** Each epoch iterates over all training scenes. For every scene, we uniformly sample
717 (without replacement) 10%–20% of the images to form the training subgraph. A held-out validation
718 set is used for early stopping. Validation and test evaluations use the complete view graph. Training
719 on MegaDepth takes approximately 8 hours on a single A100. We fix the random seed to 20.
720720 **Architecture details.** The encoder uses 3 edge-conditioned message passing layers with 256 chan-
721 nels (nodes and edges) and ReLU activations. The camera head H_{cams} is a 3-layer MLP with 256
722 channels.
723723 **Hyperparameter search.** We sweep over (1) learning rate $\{10^{-2}, 10^{-3}, 10^{-4}\}$, (2) network width
724 $\{128, 256, 512\}$ for the encoder and heads, and (3) number of layers $\{2, 3, 4, 5\}$.
725726 **Bundle adjustment.** We use Ceres Solver Agarwal et al. with a Huber loss (scale 0.1) for robust-
727 ness, following Khatib et al. (2025). In each BA round, we cap the number of iterations at 300 or
728 stop earlier on convergence.
729730 C CONSTRUCTING POINT TRACKS
731732 We follow the preprocessing in Khatib et al. (2025) to construct point tracks; see their Appendix for
733 full details.
734735 D PERFORMANCE OF OTHER DEEP-BASED METHODS ON THE 1DSFM
736 DATASET
737738 As shown in the table below, all three 3D geometric foundation models perform poorly on the
739 1DSfM dataset, in contrast to our method.
740741 **Table 8: Deep-based methods on the 1DSfM dataset.** For each scene we list the number of input images
742 (N_c). For each deep model (TTT3R, CUT3R, FAST3R) we report the mean rotation error (degrees) and mean
743 translation error. Best results are bold and underlined.
744

Scene	N_c	TTT3R		CUT3R		FAST3R	
		Rot	Trans	Rot	Trans	Rot	Trans
Alamo	573	<u>16.08</u>	<u>3.650</u>	22.32	4.266	40.37	3.990
Ellis Island	227	<u>8.85</u>	<u>2.333</u>	12.53	3.171	11.74	3.201
Madrid Metropolis	333	<u>14.83</u>	<u>2.258</u>	18.81	3.189	67.37	3.574
Montreal Notre Dame	448	13.25	<u>1.230</u>	16.12	2.134	<u>10.79</u>	2.052
NYC Library	330	<u>7.67</u>	<u>1.656</u>	10.26	1.912	11.90	2.408
Notre Dame	549	<u>11.88</u>	<u>1.430</u>	15.33	1.694	16.44	2.241
Piazza del Popolo	336	23.13	<u>2.063</u>	<u>22.63</u>	2.092	32.48	2.568
Tower of London	467	<u>29.69</u>	3.647	29.85	<u>3.607</u>	59.53	3.658
Vienna Cathedral	824	43.76	2.978	41.58	2.802	<u>29.49</u>	<u>2.561</u>
Yorkminster	432	<u>16.45</u>	<u>2.223</u>	23.00	2.992	20.26	2.463

756 **E ADDITIONAL RESULTS**
 757

758 Here we present the view re-integration results (Table 9). Tables 11 and 10 report the AUC (Area
 759 Under the recall Curve) scores—computed from the maximum of the relative rotation and translation
 760 errors between every image pair—across different thresholds (in degrees), for both the MegaDepth
 761 and 1DSfM experiments. Tables 12 and 13 report the corresponding median errors for the two
 762 datasets.

763 **Table 9: MegaDepth: Effect of View Re-Integration.** We report the number of input images (N_c), outlier
 764 fraction, registered images (N_r), and mean rotation and translation errors for our method (*Ours*) and with the
 765 add-back step (*Ours + Post-Processing*).
 766

Scene	N_c	Outliers%	N_r	Ours		Ours + post-processing	
				Rot	Trans	N_r	Rot
0238	522	44.6%	488	4.50	0.686	511	4.43
0060	528	41.6%	518	0.07	0.014	526	0.08
0197	870	40.7%	641	1.28	0.271	749	1.33
0094	763	40.1%	663	0.66	0.101	708	1.24
0265	571	38.8%	345	2.93	0.998	476	3.50
0083	635	31.3%	614	0.06	0.005	628	0.07
0076	558	30.5%	543	0.09	0.016	553	0.11
0185	368	30.0%	358	0.10	0.022	364	0.11
0048	512	24.2%	500	0.29	0.026	507	0.29
0024	356	23.0%	313	3.38	0.772	342	3.39
0223	214	17.0%	208	2.75	0.195	213	3.56
5016	28	16.9%	28	0.08	0.015	28	0.08
0046	440	14.6%	439	0.54	0.071	440	0.54
							0.071
1001	285	43.9%	265	1.89	3.840	274	1.86
0231	296	42.2%	261	0.24	0.030	271	0.45
0411	299	29.9%	270	0.12	0.018	289	0.13
0377	295	27.5%	232	0.30	0.035	253	0.32
0102	299	25.8%	297	0.18	0.031	299	0.18
0148	287	24.6%	211	0.93	0.037	225	2.28
0147	298	24.6%	282	1.99	0.153	292	1.98
0446	298	22.1%	292	0.22	0.019	297	0.24
0022	297	21.2%	277	0.29	0.044	287	0.29
0327	298	21.0%	291	0.12	0.014	293	0.12
0015	284	20.6%	243	0.52	0.058	255	0.68
0455	298	19.8%	290	0.39	0.078	298	0.52
0496	297	19.2%	279	0.37	0.033	290	0.38
1589	299	17.4%	296	0.11	0.010	298	0.11
0012	299	16.3%	295	0.63	0.071	298	1.04
0019	299	15.4%	291	0.37	0.020	297	0.52
0063	293	14.5%	268	0.18	0.025	274	0.20
0130	285	14.4%	199	5.12	0.618	207	4.97
0080	284	12.9%	162	0.58	0.109	164	0.61
0240	298	11.9%	295	0.64	3.479	297	0.64
0007	290	11.7%	283	1.53	0.150	287	1.51
							0.148

789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809

810
 811 Table 10: **1DSFM experiment (AUC)**. For each scene, we list the number of input images (N_c) and the fraction
 812 of outliers. For each model, we report the AUC values at different error thresholds (in degrees). Winning results
 813 are marked in **bold and underlined**.

814 Scene	N_c	Outliers%	Ours					Theia					GLOMAP				
			@1	@3	@5	@10	@30	@1	@3	@5	@10	@30	@1	@3	@5	@10	@30
815 Alamo	573	32.6%	0.444	0.623	0.676	0.730	0.804	0.002	0.037	0.093	0.228	0.499	0.092	0.346	0.482	0.647	0.833
816 Ellis Island	227	25.1%	0.399	0.739	0.832	0.908	0.962	0.000	0.006	0.023	0.120	0.440	0.071	0.371	0.539	0.729	0.901
817 Madrid Metropolis	333	39.4%	0.564	0.731	0.788	0.845	0.914	0.014	0.135	0.241	0.406	0.650	0.163	0.502	0.626	0.750	0.876
818 Montreal Notre Dame	448	31.7%	0.532	0.788	0.853	0.908	0.952	0.001	0.028	0.093	0.263	0.553	0.090	0.390	0.549	0.724	0.890
819 NYC Library	330	33.6%	0.577	0.777	0.839	0.899	0.954	0.006	0.080	0.161	0.307	0.566	0.142	0.494	0.634	0.778	0.910
820 Notre Dame	549	35.6%	0.425	0.684	0.782	0.872	0.950	0.015	0.158	0.293	0.487	0.726	0.101	0.419	0.566	0.719	0.864
821 Piazza del Popolo	336	33.1%	0.422	0.553	0.598	0.643	0.699	0.025	0.140	0.226	0.368	0.608	0.203	0.524	0.648	0.775	0.899
822 Tower of London	467	27.0%	0.437	0.675	0.757	0.833	0.901	0.002	0.039	0.093	0.209	0.474	0.114	0.453	0.600	0.750	0.897
823 Vienna Cathedral	824	31.4%	0.291	0.414	0.449	0.483	0.521	0.000	0.001	0.008	0.049	0.269	0.053	0.346	0.499	0.664	0.846
824 Yorkminster	432	29.0%	0.507	0.763	0.834	0.899	0.954	0.000	0.011	0.038	0.115	0.357	0.104	0.427	0.600	0.765	0.905
825 Mean	451	31.9%	0.460	0.675	0.741	0.802	0.861	0.007	0.064	0.127	0.255	0.514	0.113	0.427	0.574	0.730	0.882

824 Table 11: **MegaDepth experiment (AUC)**. For each scene, we show the number of input images (N_c) and
 825 the fraction of outliers. For each model, we report the AUC values at different error thresholds (in degrees).
 826 Winning results are marked in **bold and underlined**.

827 Scene	N_c	Outliers%	Ours					Theia					GLOMAP				
			@1	@3	@5	@10	@30	@1	@3	@5	@10	@30	@1	@3	@5	@10	@30
828 0238	522	44.6%	0.322	0.449	0.503	0.559	0.748	0.063	0.338	0.495	0.679	0.863	0.298	0.552	0.653	0.761	0.884
829 0060	528	41.6%	0.807	0.904	0.932	0.959	0.982	0.300	0.592	0.702	0.811	0.912	0.676	0.847	0.893	0.933	0.969
830 0197	870	40.7%	0.297	0.411	0.524	0.697	0.881	0.086	0.338	0.505	0.693	0.872	0.555	0.752	0.817	0.879	0.940
831 0094	763	40.1%	0.708	0.851	0.890	0.926	0.959	0.325	0.610	0.708	0.807	0.904	0.468	0.696	0.772	0.846	0.921
832 0265	571	38.8%	0.000	0.005	0.063	0.309	0.900	0.001	0.005	0.037	0.267	0.000	0.000	0.001	0.009	0.165	
833 0083	635	31.3%	0.885	0.954	0.969	0.981	0.992	0.504	0.748	0.817	0.883	0.948	0.765	0.901	0.935	0.964	0.987
834 0076	558	30.5%	0.747	0.879	0.915	0.950	0.980	0.133	0.450	0.599	0.754	0.897	0.510	0.753	0.830	0.902	0.963
835 0185	368	30.0%	0.821	0.910	0.930	0.951	0.973	0.285	0.627	0.742	0.846	0.937	0.641	0.839	0.889	0.933	0.970
836 0048	512	24.2%	0.843	0.934	0.955	0.974	0.988	0.397	0.690	0.785	0.873	0.949	0.698	0.864	0.907	0.945	0.975
837 0024	356	23.0%	0.508	0.687	0.740	0.785	0.821	0.153	0.424	0.555	0.709	0.873	0.362	0.619	0.719	0.827	0.931
838 0223	214	17.0%	0.592	0.781	0.836	0.886	0.926	0.014	0.182	0.342	0.551	0.783	0.330	0.601	0.703	0.807	0.908
839 5016	28	16.9%	0.790	0.896	0.928	0.959	0.984	0.413	0.707	0.793	0.876	0.952	0.508	0.770	0.835	0.899	0.959
840 0046	440	14.6%	0.934	0.971	0.979	0.985	0.989	0.530	0.793	0.861	0.918	0.965	0.896	0.962	0.977	0.988	0.996
841 0099	299	47.4%	0.256	0.530	0.638	0.757	0.878	0.011	0.082	0.172	0.348	0.619	0.526	0.707	0.769	0.835	0.909
842 1001	285	43.9%	0.046	0.232	0.347	0.495	0.690	0.000	0.000	0.001	0.005	0.051	0.000	0.001	0.003	0.020	0.132
843 0231	296	42.2%	0.608	0.822	0.883	0.934	0.975	0.063	0.304	0.467	0.655	0.842	0.417	0.678	0.762	0.843	0.921
844 0411	299	29.9%	0.699	0.870	0.914	0.949	0.979	0.188	0.469	0.600	0.753	0.902	0.379	0.633	0.727	0.828	0.928
845 0377	295	27.5%	0.770	0.887	0.916	0.940	0.961	0.198	0.471	0.596	0.736	0.883	0.567	0.754	0.824	0.889	0.941
846 0102	299	25.8%	0.774	0.897	0.931	0.961	0.985	0.169	0.384	0.474	0.596	0.785	0.547	0.735	0.805	0.876	0.946
847 0147	298	24.6%	0.731	0.844	0.873	0.903	0.935	0.055	0.324	0.468	0.618	0.771	0.000	0.000	0.000	0.000	0.000
848 0148	287	24.6%	0.681	0.819	0.859	0.903	0.948	0.049	0.199	0.280	0.376	0.499	0.296	0.422	0.472	0.529	0.591
849 0446	298	22.1%	0.671	0.845	0.892	0.936	0.972	0.053	0.303	0.460	0.646	0.840	0.465	0.717	0.799	0.876	0.947
850 0022	297	21.2%	0.704	0.878	0.921	0.958	0.986	0.194	0.502	0.631	0.767	0.900	0.473	0.717	0.797	0.875	0.949
851 0327	298	21.0%	0.589	0.686	0.710	0.761	0.872	0.040	0.359	0.538	0.722	0.884	0.474	0.631	0.683	0.733	0.776
852 0015	284	20.6%	0.780	0.888	0.917	0.942	0.965	0.134	0.359	0.478	0.617	0.784	0.572	0.775	0.839	0.899	0.950
853 0455	298	19.8%	0.739	0.864	0.897	0.925	0.955	0.209	0.513	0.644	0.779	0.905	0.584	0.798	0.862	0.920	0.966
854 0496	297	19.2%	0.739	0.879	0.916	0.950	0.977	0.080	0.348	0.498	0.671	0.849	0.441	0.697	0.786	0.871	0.942
855 1589	299	17.4%	0.670	0.860	0.912	0.952	0.980	0.157	0.385	0.489	0.621	0.797	0.583	0.746	0.812	0.885	0.951
856 0012	299	16.3%	0.810	0.900	0.922	0.943	0.961	0.087	0.359	0.499	0.663	0.840	0.645	0.834	0.887	0.934	0.971
857 0104	284	16.2%	0.575	0.667	0.693	0.716	0.735	0.127	0.328	0.430	0.538	0.642	0.445	0.592	0.634	0.674	0.717
858 0019	299	15.4%	0.817	0.901	0.924	0.948	0.969	0.243	0.536	0.649	0.764	0.888	0.740	0.884	0.924	0.960	0.986
859 0063	293	14.5%	0.692	0.814	0.846	0.877	0.949	0.106	0.376	0.526	0.704	0.879	0.460	0.724	0.805	0.885	0.956
860 0130	285	14.4%	0.631	0.744	0.776	0.802	0.830	0.057	0.282	0.424	0.604	0.828	0.347	0.479	0.549	0.666	0.835
861 0080	284	12.9%	0.753	0.890	0.923	0.952	0.980	0.034	0.154	0.278	0.448	0.720	0.259	0.384	0.512	0.733	0.905
862 0240	298	11.9%	0.683	0.843	0.890	0.934	0.972	0.141	0.405	0.536	0.698	0.867	0.368	0.613	0.709	0.815	0.923
863 0007	290	11.7%	0.803	0.893	0.917	0.938	0.963	0.069	0.415	0.591	0.761	0.902	0.659	0.829	0.881	0.931	

864

Table 12: **MegaDepth experiment.** For each scene, we show the number of input images (denoted N_c) and the fraction of outliers. For each model, we show the number of images used for reconstruction (denoted N_r) and **median** values of the rotation (in degrees) and translation errors. (Above the middle rule are Group 1 scenes with < 1000 images; below are Group 2 scenes with > 1000 images, subsampled to 300 for testing.) Winning results are marked in bold and underlined. Yellow represents the best result among the deep-based algorithms and green among the classical algorithms.

Scene	N_c	Outliers%	Ours			RESfM			Theia			GLOMAP		
			N_r	Rot	Trans	N_r	Rot	Trans	N_r	Rot	Trans	N_r	Rot	Trans
0238	522	44.6%	488	1.62	0.123	283	0.72	0.043	506	0.54	0.109	499	0.22	0.043
0060	528	41.6%	518	0.02	0.004	503	0.14	0.011	525	0.26	0.039	522	0.04	0.012
0197	870	40.7%	641	0.96	0.125	667	2.06	0.133	855	0.77	0.118	814	0.13	0.016
0094	763	40.1%	663	0.26	0.019	537	0.38	0.015	742	0.21	0.033	717	0.20	1.957
0265	571	38.8%	345	1.75	0.445	346	0.74	0.209	554	4.11	1.651	558	6.66	1.889
0083	635	31.3%	614	0.03	0.002	596	0.15	0.009	632	0.15	0.013	614	0.04	0.007
0076	558	30.5%	543	0.04	0.005	524	0.11	0.010	549	0.44	0.058	541	0.08	0.017
0185	368	30.0%	358	0.04	0.004	350	0.04	0.006	365	0.31	0.037	365	0.11	0.012
0048	512	24.2%	500	0.11	0.005	474	2.16	0.098	507	0.21	0.020	506	0.06	0.007
0024	356	23.0%	313	1.57	0.087	309	0.58	0.046	355	0.24	0.091	339	0.07	0.045
0223	214	17.0%	208	1.07	0.047	204	1.56	0.078	212	0.89	0.152	214	0.41	0.046
5016	28	16.9%	28	0.04	0.003	28	0.10	0.005	28	0.07	0.019	28	0.04	0.016
0046	440	14.6%	439	0.05	0.002	399	0.78	0.028	434	0.16	0.016	440	0.02	0.002
1001	285	43.9%	265	0.66	2.698	251	1.41	0.276	276	4.85	2.893	281	3.29	2.645
0231	296	42.2%	261	0.07	0.007	246	0.38	0.014	286	0.58	0.072	279	0.20	0.021
0411	299	29.9%	270	0.07	0.009	273	0.07	0.009	293	0.19	0.079	269	0.09	0.036
0377	295	27.5%	232	0.09	0.005	210	0.28	0.014	269	0.29	0.075	268	0.23	0.021
0102	299	25.8%	297	0.06	0.006	284	0.07	0.007	294	1.03	0.114	293	0.04	0.013
0147	298	24.6%	282	0.80	0.030	207	2.07	0.088	284	1.10	0.064	290	1.78	2.056
0148	287	24.6%	211	0.43	0.018	197	0.54	0.024	275	3.01	0.301	283	3.09	1.301
0446	298	22.1%	292	0.10	0.005	288	0.41	0.013	289	0.61	0.073	296	0.14	0.020
0022	297	21.2%	277	0.12	0.009	274	0.13	0.011	296	0.28	0.065	281	0.08	0.023
0327	298	21.0%	291	0.05	0.004	271	0.11	0.006	288	0.73	0.087	290	7.14	0.333
0015	284	20.6%	243	0.15	0.009	215	0.27	0.021	244	0.42	0.084	274	0.11	0.014
0455	298	19.8%	290	0.11	0.007	293	0.18	0.010	294	0.36	0.047	298	0.14	0.017
0496	297	19.2%	279	0.15	0.007	281	0.13	0.006	285	0.61	0.080	291	0.16	0.028
1589	299	17.4%	296	0.03	0.002	290	0.08	0.003	288	0.32	0.057	299	0.03	0.007
0012	299	16.3%	295	0.10	0.006	287	0.39	0.023	129	0.56	0.092	295	0.20	0.017
0019	299	15.4%	291	0.17	0.007	250	0.04	0.004	271	0.31	0.030	296	0.04	0.004
0063	293	14.5%	268	0.05	0.004	262	0.26	0.013	268	0.45	0.063	288	0.17	0.017
0130	285	14.4%	199	2.71	0.089	192	0.10	0.005	187	0.63	0.072	281	0.94	0.535
0080	284	12.9%	162	0.25	0.009	139	0.27	0.010	278	1.84	0.335	283	1.71	0.169
0240	298	11.9%	295	0.10	3.371	275	1.56	0.090	278	0.47	0.057	294	0.17	0.041
0007	290	11.7%	283	0.40	0.022	172	0.23	0.010	277	0.69	0.071	290	0.06	0.006

901

902

903

Table 13: **1DSFM experiment.** For each scene, we show the number of input images (denoted N_c) and the fraction of outliers. For each model, we show the number of images used for reconstruction (N_r) and **median** values of the rotation (in degrees) and translation errors. Winning results are marked in bold and underlined. Yellow represents the best result among the deep-based algorithms and green among the classical algorithms.

Scene	N_c	Outliers%	Ours			RESfM			Theia			GLOMAP		
			N_r	Rot	Trans	N_r	Rot	Trans	N_r	Rot	Trans	N_r	Rot	Trans
Alamo	573	32.6%	509	0.42	0.018	484	0.97	0.037	553	2.29	0.539	557	0.61	0.144
Ellis Island	227	25.1%	214	0.16	0.033	214	0.32	0.036	213	3.85	0.712	219	0.46	0.087
Madrid Metropolis	333	39.4%	295	0.27	0.016	244	4.42	0.193	-	-	-	320	0.53	0.096
Montreal Notre Dame	448	31.7%	425	0.16	0.020	346	1.00	0.056	422	2.63	0.808	444	0.40	0.158
NYC Library	330	33.6%	285	0.58	0.038	224	1.48	0.074	314	1.65	0.360	323	0.46	0.075
Notre Dame	549	35.6%	519	0.29	0.012	517	0.55	0.025	534	1.54	0.133	543	1.15	0.130
Piazza del Popolo	336	33.1%	315	2.11	0.120	249	0.80	0.034	325	1.15	0.342	331	0.28	0.084
Tower of London	467	27.0%	454	0.23	0.011	94	0.48	0.012	448	3.23	0.527	466	0.42	0.071
Vienna Cathedral	824	31.4%	753	11.78	0.527	479	0.48	0.016	772	9.32	0.838	822	0.61	0.206
Yorkminster	432	29.0%	403	0.62	0.022	331	4.67	0.299	390	4.26	0.948	418	0.60	0.069