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ABSTRACT

Camera pose estimation is a key step in 3D reconstruction and view-synthesis
pipelines. We present a deep, global Structure-from-Motion framework based on
learned view-graph aggregation. Our method employs a permutation-equivariant,
edge-conditioned graph neural network that takes noisy pairwise relative poses as
input and outputs globally consistent camera extrinsics. The network is trained
without ground-truth supervision, relying solely on a relative-pose consistency
objective. This is followed by 3D point triangulation and robust bundle ad-
justment. A fast view re-integration step increases camera coverage by rein-
troducing discarded images. Our approach is efficient, scalable to more than
a thousand images, and robust to graph density. We evaluate our method on
MegaDepth, 1DSfM, Strecha, and BlendedMVS. These experiments demonstrate
that our method achieves superior rotation and translation accuracy compared to
deep track-centric methods while registering more images across many scenes,
and competitive results compared to state-of-the-art classical pipelines, while be-
ing much faster.

1 INTRODUCTION

Camera pose recovery is an essential part of 3D scene reconstruction and view synthesis applica-
tions. Many common Multiview Stereo (MVS) (Seitz et al., 2006; Yao et al., 2018) and view syn-
thesis methods, including Neural Radiance Fields (NeRF) (Mildenhall et al., 2021) and Gaussian
Splatting (GS) (Kerbl et al., 2023) rely on accurate camera poses computed in preprocessing. View
synthesis methods, in particular, have gained much popularity in recent years, as they can produce
novel, realistically looking images and walkthroughs for complex scenes.

Multiview Structure-from-Motion (SfM) techniques provide reliable tools for camera pose recov-
ery. Sequential pipelines, e.g., COLMAP (Schönberger & Frahm, 2016), solve for one camera at
a time, enriching the recovered set of camera poses and 3D points by processing image by image.
These, generally highly accurate techniques, are relatively slow when applied to large collections
of images, and their performance depends on the order in which the images are processed. Projec-
tive factorization techniques (Sturm & Triggs, 1996) simultaneously solve for all cameras and point
tracks. These methods, however, attempt to factor large tensors that include all the track points.

In the past decade, global methods emerged as an alternative to sequential and factorization meth-
ods. Global methods use a technique called motion averaging; given pairwise relative camera mo-
tion measurements, they seek to recover the location and orientation (and possibly also the intrinsic
parameters) of cameras in a global coordinate system. Typically, this is done by solving sepa-
rately for rotations and translations (Moulon et al., 2016; Sweeney et al., 2015), while some recent
works developed techniques for directly averaging essential and fundamental matrices (Kasten et al.,
2019a;b). Global methods can be more efficient than both sequential and factorization-based tech-
niques, as they only solve for pose and therefore do not need to access and manipulate point tracks,
except in the final bundle adjustment (BA) step.

In this paper, we reexamine the use of global SfM through the lens of learned view-graph aggrega-
tion. Specifically, we propose an efficient permutation-equivariant, edge-conditioned graph neural
network (GNN) that takes as input noisy estimates of pairwise relative camera poses associated with
the edges of a view graph, and outputs globally consistent camera extrinsics. The network is trained
without ground-truth supervision using only a relative-pose consistency objective. Unlike existing
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(a) Scene 0023 (b) Scene 0455

Figure 1: 3D reconstructions and recovered camera parameters produced by VGPA on two large
scenes (Nc>1000 images). VGPA registers almost all images and scales to thousand-image collec-
tions, in contrast to existing image-based deep methods (e.g., VGGT, VGGSfM).

deep-based approaches to SfM (Khatib et al., 2025; Moran et al., 2021; Brynte et al., 2023), our
pose regression network does not use point tracks; it does not predict 3D points and does not rely
on a reprojection loss. At test time, we use our network to predict global camera poses. Then, we
improve our camera pose predictions by triangulating point tracks and applying robust BA. Finally,
an optional and efficient view reintegration step is applied to recover cameras that were discarded in
the process by the network, increasing camera coverage.

Our approach is efficient and achieves high accuracy. It copes well with large-scale inputs, includ-
ing ones with more than a thousand images. Moreover, our method is agnostic to the density of the
graph. We obtain comparable performance when constructing the view graph using top-k neigh-
bors retrieved with NetVLAD (Arandjelovic et al., 2016), instead of exhaustive pairwise matching,
despite the large difference in edge density. We note that in the uncalibrated setting, we optimize
jointly for the intrinsics and extrinsics parameters during BA.

We perform an extensive experimental evaluation on challenging datasets, including MegaDepth and
1DSfM. These experiments demonstrate that our learned pose averaging achieves lower camera po-
sition and orientation errors than existing deep track-centric methods while registering more images
on many scenes (Khatib et al., 2025; Moran et al., 2021; Brynte et al., 2023), and is competitive with
strong classical pipelines. Similar results are obtained on smaller calibrated benchmarks for which
ground truth measurements are available (Strecha and BlendedMVS) and on scenes containing chal-
lenging cyclic trajectories, where reprojection-centric methods such as (Khatib et al., 2025; Moran
et al., 2021; Brynte et al., 2023) often struggle.

Below we summarize our contributions.

1. We present VGPA: an efficient, permutation-equivariant GNN for view-graph pose aver-
aging that predicts global camera extrinsics from noisy pairwise estimates.

2. Our method achieves highly accurate camera pose and structure recovery, comparable to
state-of-the-art classical methods while being much faster, and it largely outperforms recent
deep-based methods on large-scale scenes.

3. We train VGPA in a self-supervised manner by enforcing relative-pose consistency only;
structure is recovered via triangulation followed by robust BA.

4. We show robustness to view-graph density, achieving similar accuracy with both exhaus-
tive pairwise matching and sparse top-k NetVLAD graphs, despite large differences in edge
count.

5. Handles unknown intrinsics: VGPA remains accurate when intrinsics are coarsely ini-
tialized and optimized only during BA.

6. We introduce a lightweight technical view re-integration step that optionally improves
camera coverage with minimal runtime overhead.
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2 RELATED WORK

A popular classical method for Structure-from-Motion (SfM) uses an incremental algorithm in
which images are processed one at a time, gradually extending the recovered set of camera poses and
3D structure. (Agarwal et al., 2011; Schönberger & Frahm, 2016; Snavely et al., 2006; Wu, 2013).
While these methods achieve highly accurate reconstruction, they are inefficient when applied to
large image collections, and their results depend on the order in which images are processed.

A second approach uses projective factorization to solve simultaneously for camera pose and 3D
structure on all input images (Sturm & Triggs, 1996; Dai et al., 2010; Lin et al., 2017). This method
uses the observation that point track matrices are rank 4 when the points are scaled properly. Clas-
sical algorithms based on SVD factorization, however, are restricted to uncalibrated settings and do
not handle missing data or outliers. Inspired by these techniques, several recent works train equiv-
ariant network architectures to jointly estimate camera poses and 3D structure from point tracks
(Moran et al., 2021; Brynte et al., 2023; Chen et al., 2024; Khatib et al., 2025). These methods use
either set-of-sets or graph transformer network architectures and are trained with either supervised
or unsupervised data. An inlier/outlier classifier is incorporated for improved robustness (Khatib
et al., 2025). Accurate pose recovery results were achieved with this method. However, it tends to
over-prune valid inliers, leading to occasional registration failures and reduced image coverage.

Our method follows a third approach, commonly referred to as a global approach. Global meth-
ods handle all images simultaneously by applying manifold averaging to ensure the consistency of
pairwise pose relations (rotations and translations) inferred from the essential matrices. Existing
methods commonly solve first for camera orientations, and next for location and scales (Martinec &
Pajdla, 2007; Özyeşil et al., 2017; Sweeney et al., 2015; Moulon et al., 2016). Kasten et al. (2019a;b)
introduced an averaging method for averaging essential and fundamental matrices, solving for all
of these parameters in a single optimization. With the exception of (Pan et al., 2024), these meth-
ods require a separate step of 3D point triangulation. Theia (Sweeney et al., 2015) and the recent
GLOMAP (Pan et al., 2024), in particular, were shown to yield accurate recovery.

Several recent works train networks to solve rotation averaging on the view graph. NeurORA
(Purkait et al., 2020) learns to denoise pairwise relative rotations and aggregates them to recover
global orientations, while (Li & Ling, 2021) applies message passing on pose graphs to iteratively
update node rotations. These methods only address rotation averaging; they are trained on super-
vised data and tested in limited settings that do not include cross-dataset generalization. In contrast,
our method is trained with unsupervised data and recovers the full camera extrinsics.

Recent learnable SfM methods such as VGGSfM (Wang et al., 2023a), DUST3R (Wang et al.,
2023b), and MAST3R (Leroy et al., 2024) are restricted to processing only a small number of
input images, whereas Ace-Zero (Brachmann et al., 2024) and FlowMap (Smith et al., 2024) are
tailored for video sequences under constant illumination. More recently, VGGT (Wang et al., 2025)
introduced an end-to-end transformer that jointly predicts camera poses, dense 3D structure, and
point tracks. Although promising, VGGT requires substantial supervised training and is currently
restricted to images on the order of∼ 200. Fast3R (Yang et al., 2025) scales to larger collections but
typically attains lower accuracy than VGGT at comparable settings.

In this paper, we introduce a learned view-graph pose averaging module implemented with a
permutation-equivariant graph neural network. Trained without ground-truth supervision, our
method achieves competitive accuracies at lower runtime than strong global SfM baselines and sur-
passes prior deep factorization approaches in both accuracy and camera coverage. It remains robust
to heavy outlier contamination in realistic point track data.

3 METHOD

Given a collection of m images of a stationary scene, we assume, as in standard SfM pipelines, that
in preprocessing we extract (1) essential matrices and (2) a collection of point tracks, which will
form the input to our pipeline. Our objective is to recover the camera matrices for all the given
images and a triangulated 3D location for each track. Below, we describe each step in our method.
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Figure 2: Method overview. (1) Preprocessing: estimate pairwise relative poses from essential matrices and
build the view graph; extract point tracks and frozen DINOv2 image descriptors. (2) GNN: a permutation-
equivariant, edge-conditioned GNN aggregates the view graph to produce camera embeddings. (3) Predict
cams: a small head Hcams regresses global extrinsics (Ri, ti) from the embeddings. (4) Triangulation + BA:
using the predicted cameras and the point tracks, we triangulate 3D points and run robust bundle adjustment.

3.1 PREPROCESSING

Denote our input images by I1, ..., Im. Following standard SfM pipelines, we begin by detecting and
matching features across the images using standard algorithms such as SIFT or SuperPoint (DeTone
et al., 2018; Lowe, 2004). We next apply RANSAC (Bolles & Fischler, 1981) and obtain a partial
collection of pairwise essential matrices {Eij}i,j∈[m], denoted by E . Each essential matrix encodes
the relative rotation Rij and translation tij between camera Pi and Pj . We extract the rotation and
translation by decomposing the essential matrix, while enforcing positive depth. Note that tij is
determined at this point only up to scale. These pairwise rotation and translation measurements
serve as input to our pose averaging module.

A second outcome of the procedure above comprises pairs of matched feature points across images.
We next use heuristics (as in, e.g., (Schönberger & Frahm, 2016)) to join such pairs to form longer
tracks. Each track is a set Tk = {xi1,k,xi2,k, ...} with i1, i2, ... ∈ [m], and we assume that Tk
contains the projected locations of a single 3D scene point, denoted Xk, onto Ii1 , Ii2 , .... These
tracks are generally contaminated by small displacement errors (noisy measurements) and outliers.
We will use this collection of point tracks at a later stage to triangulate the 3D structure using the
predicted absolute camera poses.

3.2 NETWORK ARCHITECTURE

Our network applies pose averaging to the view graph. As is shown in Fig. 2, it comprises two
modules: (i) a permutation-equivariant, edge-conditioned GNN that aggregates pairwise relative
poses into camera embeddings; and (ii) a regression head that predicts global camera parameters
from these embeddings.

Pose-averaging GNN. We build a viewing graph G = (V, E) whose nodes index the m images and
whose edges carry relative-pose measurements. For each edge (i, j) ∈ E we define

e
(0)
ij = ϕe

(
[logRRANSAC

ij , tRANSAC
ij ]

)
,

where log : SO(3)→so(3) is the matrix logarithm and tRANSAC
ij ∈S2 is the unit normed-translation

direction recovered from the essential matrix. To inject image-level context, each node vi is initial-
ized with the DINOv2 [CLS] token h

(0)
i computed from image Ii.
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We apply edge-conditioned message passing with degree-normalized mean aggregation:

m̃
(ℓ)
i =

∑
j∈N (i)

ϕm
(
h
(ℓ)
i , h

(ℓ)
j , e

(ℓ)
ij

)
,

m
(ℓ)
i =

1

|N (i)|
m̃

(ℓ)
i ,

h
(ℓ+1)
i = LN

(
h
(ℓ)
i +Drop

(
ψ
(
LN(h

(ℓ)
i ), m

(ℓ)
i

)))
,

for ℓ = 0, . . . , L−1, where ϕm and ψ are MLPs, LN denotes Layer Normalization (Ba et al., 2016),
and Drop denotes Dropout (Srivastava et al., 2014). The network is equivariant to node relabelings
(permutations) of G. The final node embeddings are zi = h

(L)
i .

Pose regression head. The pose regression head obtains as input the per-camera embeddings zi pro-
duced by the pose-averaging GNN. A 3-layer MLP head Hcams maps these embeddings to camera
parameters,

(ti,qi) = Hcams(zi), q̃i ← qi/∥qi∥,
where ti ∈ R3 and q̃i ∈ H is a unit quaternion.

3.3 OUTPUT AND LOSS

Our network predicts them internally calibrated cameras P1, . . . , Pm. Each camera is parameterized
as Pi = [Ri | ti] with Ri ∈ SO(3) and ti ∈ R3; the camera center is −R⊤

i ti.

Training is unsupervised and seeks cameras P1, . . . , Pm that best agree with the pairwise relative-
pose estimates. We therefore minimize a relative-pose consistency objective. Specifically, we use

LRelPose =
1

|E|
∑

(i,j)∈E

dR
(
R̂ij , R

RANSAC
ij

)
+

1

|E|
∑

(i,j)∈E

dt
(
t̂ij , t

RANSAC
ij

)
, (1)

where R̂ij and t̂ij denote the relative rotation and translation estimated from the output cameras Pi

and Pj using
R̂ij = RT

j Ri, t̂ij = RT
j

(
ti − tj

)
, (2)

RRANSAC
ij and tRANSAC

ij are the corresponding rotation and translation obtained with RANSAC in

preprocessing, dR(R1, R2) = arccos
(

trace(R⊤
1 R2)−1
2

)
is the geodesic rotation error, and dt(a,b) =

arccos⟨a,b⟩ measures directional disagreement.

Training protocol. We iterate over all training scenes in each epoch. For each scene, we sample
uniformly s∈ [0.1, 0.2] of the images (without replacement) to form a subgraph. Models are selected
by early stopping on a held-out validation set; we report the checkpoint with the lowest validation
error. Additional details appear in the Appendix.

Inference. On an unseen scene, the model predicts all camera poses in a single forward pass.
We then fine-tune on the target scene with the unsupervised objective (no ground-truth labels) for
Tft = 200 steps. Next, we triangulate using DLT (Hartley & Zisserman, 2003) to recover 3D point
positions from the estimated camera poses and point tracks, and finally perform a robust bundle
adjustment initialized with the camera poses predicted by the network and the triangulated points.

4 EXPERIMENTS

4.1 DATASETS

We train our network on scenes from the MegaDepth dataset (Li & Snavely, 2018) and then test it on
a diverse range of real-world scenes that include novel scenes from the MegaDepth dataset as well as
cross-dataset generalization tests on the 1DSfM dataset (Wilson & Snavely, 2014), Strecha (Strecha
et al., 2008), and BlendedMVS (Yao et al., 2020). We refer the reader to the supplementary material
for hyperparameters and further technical details.
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MegaDepth (Li & Snavely, 2018). The MegaDepth dataset includes 196 different outdoor land-
mark scenes curated from the internet. We followed the train/test split as in (Khatib et al., 2025),
including subsampling of scenes with more than 1000 images. In Table 1, above the middle rule are
scenes with fewer than 1000 images, while the scenes below the rule are subsampled.

1DSFM (Wilson & Snavely, 2014). 1DSFM is a collection of diverse urban scenes reconstructed
from community photo collections. We use this dataset to test our method (trained on the MegaDepth
dataset) in cross-dataset generalization experiments, demonstrating large-scale reconstructions in
realistic settings.

Strecha (Strecha et al., 2008). The Strecha dataset consists of five small outdoor scenes (≤ 30
images) and includes ground-truth data acquired with a LIDAR system. We test our method on four
of these five scenes.

BlendedMVS (Yao et al., 2020). The BlendedMVS dataset includes synthetic scenes with textured
meshes rendered and blended to produce color images and depth maps, providing ground truth
camera poses.

Ground truth camera poses. Many challenging datasets, including MegaDepth and 1DSFM, lack
ground truth measurement, and, therefore, as is common in the field, we use camera poses computed
with COLMAP Schönberger & Frahm (2016), a state-of-the-art incremental Structure from Motion
(SfM) method, to generate “ground truth” camera poses. COLMAP is widely used for this purpose
(see Jiang et al. (2013); Wilson & Snavely (2014); Cui & Tan (2015); Ozyesil & Singer (2015);
Brynte et al. (2023); Khatib et al. (2025); Zhang et al. (2024)) due to its accurate and robust perfor-
mance. To evaluate our method with real ground truth, we additionally show results on the smaller
datasets Strecha (Strecha et al., 2008) and BlendedMVS (Yao et al., 2020).

4.2 BASELINES

With the exception of VGGT (Wang et al., 2025), the settings and results for all baselines below
were taken from (Khatib et al., 2025).

RESfM (Khatib et al., 2025). RESfM is a robust deep equivariant SfM model that operates on a
point-track tensor using a sets-of-sets permutation-equivariant architecture. It augments prior equiv-
ariant factorization by adding a multiview inlier/outlier classifier integrated into the same equivariant
backbone and concludes with a robust bundle-adjustment stage.

VGGSfM (Wang et al., 2024) is a differentiable, trainable SfM pipeline.

MASt3R (Leroy et al., 2024). An SfM pipeline that utilizes a global alignment procedure to merge
pairwise pointmap predictions.

Theia (Sweeney et al., 2015). A global SfM pipeline that applies rotation averaging, followed by
translation averaging, and finally 3D point triangulation.

GLOMAP (Pan et al., 2024). A global SfM pipeline that first applies rotation averaging, followed
by an integrated step of translation averaging and point triangulation.

VGGT (Wang et al., 2025). VGGT is a feed-forward, end-to-end multi-view transformer network
that jointly predicts cameras, depth, point maps, and tracks for up to about 200 views. It uses
alternating inter-frame/global attention and is additionally refined with BA.

4.3 METRICS AND EVALUATION

To evaluate our results, we first align the predicted scenes to the ground truth by applying a per-scene
3D similarity transformation. We then compare our camera orientation predictions with the ground
truth ones using angular differences in degrees. We measure differences between our predicted and
ground truth camera locations using the l2 distance. For a fair comparison, both our method and
all the baseline methods (except VGGSfM, VGGT and MAST3R, which are applied directly to
the input images) were run with the same set of point tracks. For all methods, we apply a final
post-processing step of robust bundle adjustment.
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Table 1: MegaDepth experiment. For each scene, we show the number of input images (denoted Nc) and
the fraction of outliers. For each model, we show the number of images used for reconstruction (denoted Nr)
and mean values of the rotation (in degrees) and translation errors. (Above the middle rule are Group 1 scenes
with < 1000 images; below are Group 2 scenes with > 1000 images, subsampled to 300 for testing.) Winning
results are marked in bold and underlined. Yellow represents the best result among the deep-based algorithms
and green among the classical algorithms.

Scene Nc Outliers% Ours RESfM Theia GLOMAP
Nr Rot Trans Nr Rot Trans Nr Rot Trans Nr Rot Trans

0238 522 44.6% 488 4.50 0.686 283 2.61 0.325 506 1.21 0.334 499 0.74 0.349
0060 528 41.6% 518 0.07 0.014 503 0.29 0.029 525 0.85 0.124 522 0.11 0.048
0197 870 40.7% 641 1.28 0.271 667 4.22 0.333 855 1.16 0.227 814 0.43 0.129
0094 763 40.1% 663 0.66 0.101 537 3.77 0.750 742 0.75 0.160 717 0.88 3.907
0265 571 38.8% 345 2.93 0.998 346 1.25 0.389 554 5.83 2.216 558 7.46 2.839
0083 635 31.3% 614 0.06 0.005 596 0.64 0.058 632 0.37 0.372 614 0.08 0.016
0076 558 30.5% 543 0.09 0.016 524 0.37 0.094 549 0.78 0.120 541 0.17 0.042
0185 368 30.0% 358 0.10 0.022 350 0.06 0.010 365 0.41 0.094 365 0.16 0.051
0048 512 24.2% 500 0.29 0.026 474 4.69 0.178 507 0.41 0.105 506 0.15 0.224
0024 356 23.0% 313 3.38 0.772 309 2.03 0.398 355 0.56 0.219 339 0.15 0.104
0223 214 17.0% 208 2.75 0.195 204 3.76 0.510 212 3.34 0.519 214 1.75 0.275
5016 28 16.9% 28 0.08 0.015 28 0.12 0.016 28 0.10 0.061 28 0.08 0.046
0046 440 14.6% 439 0.54 0.071 399 0.95 0.043 434 0.25 0.112 440 0.03 0.007

1001 285 43.9% 265 1.89 3.840 251 1.70 0.661 276 7.97 4.014 281 4.56 3.817
0231 296 42.2% 261 0.24 0.030 246 0.84 0.065 286 1.37 0.322 279 0.73 0.134
0411 299 29.9% 270 0.12 0.018 273 0.13 0.020 293 0.39 0.196 269 0.19 0.148
0377 295 27.5% 232 0.30 0.035 210 0.29 0.018 269 1.13 0.205 268 0.65 0.237
0102 299 25.8% 297 0.18 0.031 284 0.28 0.059 294 2.31 0.698 293 0.15 0.101
0147 298 24.6% 282 1.99 0.153 207 4.62 0.325 284 6.36 0.934 290 6.75 3.542
0148 287 24.6% 211 0.93 0.037 197 0.60 0.035 275 13.98 1.558 283 22.73 2.646
0446 298 22.1% 292 0.22 0.019 288 0.72 0.046 289 1.23 0.391 296 0.20 0.071
0022 297 21.2% 277 0.29 0.044 274 0.29 0.039 296 0.58 0.160 281 0.22 0.087
0327 298 21.0% 291 0.12 0.014 271 0.26 0.090 288 1.27 0.360 290 15.54 2.035
0015 284 20.6% 243 0.52 0.058 215 1.04 0.167 244 2.21 0.389 274 0.28 0.095
0455 298 19.8% 290 0.39 0.078 293 0.68 0.105 294 0.77 0.159 298 0.35 0.064
0496 297 19.2% 279 0.37 0.033 281 0.35 0.055 285 1.40 0.550 291 0.44 0.303
1589 299 17.4% 296 0.11 0.010 290 0.14 0.019 288 0.82 0.193 299 0.07 0.041
0012 299 16.3% 295 0.63 0.071 287 0.40 0.027 129 1.04 0.318 295 0.51 0.121
0019 299 15.4% 291 0.37 0.020 250 0.06 0.008 271 0.81 0.250 296 0.09 0.025
0063 293 14.5% 268 0.18 0.025 262 0.46 0.048 268 0.92 0.605 288 0.32 0.100
0130 285 14.4% 199 5.12 0.618 192 0.20 0.023 187 1.20 0.349 281 2.00 0.909
0080 284 12.9% 162 0.58 0.109 139 0.59 0.096 278 2.62 0.868 283 1.92 0.237
0240 298 11.9% 295 0.64 3.479 275 3.13 0.265 278 1.31 0.470 294 0.39 0.135
0007 290 11.7% 283 1.53 0.150 172 0.91 0.041 277 1.24 0.174 290 0.19 0.035

4.4 RESULTS

Our results on the MegaDepth and 1DSfM test sets and comparisons to baselines are shown in
Tables 1 and 2, respectively. For each scene, we also report the number of input images (Nc), the
fraction of outlier track points, and compare our VGPA method against the baselines in terms of
number of registered images, mean rotation error (in degrees), translation error, and runtime.

Across both benchmarks, VGPA outperforms the deep factorization baseline RESfM on most scenes,
achieving lower rotation and translation errors. Compared to classical pipelines, VGPA is compet-
itive with Theia and GLOMAP, and often surpasses them on both metrics. In terms of coverage,
VGPA registers a larger fraction of images than RESfM, though typically fewer than GLOMAP.

Table 2: 1DSFM experiment. For each scene, we show the number of input images (denoted Nc) and the
fraction of outliers. For each model, we show the number of images used for reconstruction (Nr) and mean
values of the rotation (in degrees) and translation errors. Winning results are marked in bold and underlined.
Yellow represents the best result among the deep-based algorithms and green among the classical algorithms.

Scene Nc Outliers%
Ours RESFM Theia GLOMAP

Nr Rot Trans Nr Rot Trans Nr Rot Trans Nr Rot Trans
Alamo 573 32.6% 509 1.50 0.342 484 3.66 0.515 553 4.42 1.433 557 2.45 1.520
Ellis Island 227 25.1% 214 0.27 0.077 214 0.82 0.122 213 5.01 1.527 219 0.58 0.155

Madrid Metropolis 333 39.4% 295 1.47 0.136 244 8.42 0.827 - - - 320 1.22 0.242

Montreal Notre Dame 448 31.7% 425 0.34 0.073 346 2.82 0.352 422 4.47 1.285 444 0.60 0.211

NYC Library 330 33.6% 285 1.20 0.422 224 3.96 0.429 314 4.06 1.141 323 0.58 0.189

Notre Dame 549 35.6% 519 0.64 0.065 517 1.20 0.231 534 3.70 0.828 543 2.73 0.389

Piazza del Popolo 336 33.1% 315 4.42 0.710 249 2.20 0.186 325 3.31 1.053 331 0.80 0.188

Tower of London 467 27.0% 454 0.78 0.073 94 0.67 0.026 448 6.61 1.189 466 0.81 0.138

Vienna Cathedral 824 31.4% 753 19.28 1.285 479 1.52 0.112 772 12.25 1.663 822 2.00 2.414
Yorkminster 432 29.0% 403 1.38 0.144 331 14.54 1.468 390 8.35 1.916 418 0.95 0.316

Following Khatib et al. (2025), we evaluate VGPA on the smaller Strecha and BlendedMVS bench-
marks, which provide ground-truth camera poses. As shown in Table 3, VGPA is consistently more
accurate than image-based deep baselines (VGGSfM, MASt3R, and VGGT), which typically do not
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scale to the larger datasets considered, and it performs on par with classical pipelines (including
Theia, COLMAP, and GLOMAP).

Table 3: Strecha & BlendedMVS datasets. For each scene we list the number of input images (Nc) and
outlier fraction. For each method we report the number of registered images (Nr), mean rotation error (deg),
translation error, and runtime (s). Best is bold, second best is underlined.

Scene Nc Out.% Ours VGGT MASt3R VGGSfM Theia COLMAP GLOMAP
Nr Rot Trans Time Nr Rot Trans Time Nr Rot Trans Time Nr Rot Trans Time Nr Rot Trans Time Nr Rot Trans Time Nr Rot Trans Time

Strecha
entry-P10 10 4.8 10 0.004 0.0005 10.0 10 0.079 0.033 16.5 10 0.442 0.055 19 10 0.165 0.056 10.3 10 0.024 0.008 0.9 10 0.023 0.007 36.0 10 0.187 0.026 12.5
fountain-P11 11 1.4 11 0.012 0.0005 14.7 11 0.034 0.019 12.2 11 0.160 0.026 22 11 0.172 0.016 15.4 11 0.027 0.002 1.5 11 0.027 0.003 37.0 11 0.194 0.022 38.6
Herz-Jesus-P8 8 1.8 8 0.009 0.0010 7.4 8 0.032 0.011 12.7 8 0.363 0.037 16 8 0.206 0.042 8.7 8 0.025 0.005 0.6 8 0.026 0.004 22.0 8 0.091 0.015 5.0
Herz-Jesus-P25 25 2.8 25 0.010 0.0003 12.5 25 0.048 0.007 31.9 25 0.869 0.057 81 25 0.158 0.046 19.6 25 0.026 0.006 2.4 25 0.028 0.006 60.0 25 0.138 0.013 76.6

BlendedMVS
scene0 75 2.0 74 0.019 0.0011 136 75 0.041 0.017 108 75 0.501 0.191 516 75 0.045 0.0106 61 75 0.009 0.0017 49 75 0.006 0.0005 106 75 0.007 0.0016 198
scene1 51 1.4 51 0.341 0.0342 38 51 0.101 0.050 41 51 0.919 0.173 1017 51 0.098 0.0112 32 51 0.029 0.0099 18 51 0.007 0.0003 67 51 0.024 0.0102 117
scene2 33 2.2 33 0.008 0.0004 19 33 0.230 0.022 52 33 1.972 0.130 117 33 0.227 0.0180 30 33 0.045 0.0098 15 33 0.003 0.0002 55 33 0.025 0.0060 87
scene3 66 8.8 66 0.006 0.0065 65 66 0.353 0.014 276 66 0.927 0.045 815 66 0.372 0.0174 52 66 0.019 0.0018 21 66 0.004 0.0002 128 66 0.008 0.0017 392

Robustness to view-graph density. We train VGPA using relative poses obtained from exhaustive
pairwise matching. At test time, we vary the sparsity of the view graph by using NetVLAD retrieval
to connect each image only to its top-k nearest neighbors. As shown in Table 4, VGPA maintains
accuracy comparable to the exhaustive graph while using far fewer edges. Its performance changes
only slightly across a wide range of k, as long as the graph remains sufficiently connected.

Postprocessing (view re-integration). Since our pipeline may discard some images during the BA
stage, we attempt to re-register these views in postprocessing using a lightweight add-back loop.
Unregistered views are ranked by connectivity (e.g., number of 2D–3D matches) with the current
point cloud. For each candidate, we estimate its pose from the available 2D–3D correspondences
and refine it with a short local BA applied to its neighboring views. The process repeats until no
further views can be added. Table 8 in the appendix compares Ours and Ours + post-processing
in terms of Nr, mean rotation error (deg), and mean translation error, showing that the add-back
step increases the number of registered cameras with minimal runtime overhead (about 1 second per
added view).

Uncalibrated image collections. Table 5 compares two settings: (i) using ground-truth intrinsics
and (ii) starting from an approximate calibration (fx,fy proportional to image size, principal point
at the image center) and optimizing intrinsics jointly with the extrinsics during bundle adjustment.
While self-calibration incurs a small accuracy drop relative to ground-truth intrinsics, VGPA remains
competitive and maintains high performance.

Qualitative results. Figure 1 shows 3D reconstructions and camera parameters obtained by VGPA
for two scenes with more than 1,000 images; in both scenes we register almost all images. These
results demonstrate that our method produces superior reconstructions and effectively handles out-
liers compared to the baselines. Moreover, VGPA is not limited by the number of images, unlike
image-based deep methods such as VGGT and VGGSfM. Additional qualitative results are provided
in the Appendix.

Runtime. Table 6 reports runtimes on the identical point tracks produced by our preprocess-
ing. VGPA is substantially faster than COLMAP, GLOMAP, and Theia, and remains competitive
in throughput. Importantly, these gains come without sacrificing reconstruction quality: VGPA

Table 4: Robustness to graph density. For each scene we list the number of input images (Nc). Our default
setting uses Exhaustive SIFT, and we also report results with NetVLAD@K + SIFT for different values of K.
For all methods, we show the number of registered images (Nr), mean rotation error (deg), and mean translation
error.

Scene Nc
Ours (Exhaustive SIFT) NetVLAD@20 NetVLAD@30 NetVLAD@40
Nr Rot Trans Nr Rot Trans Nr Rot Trans Nr Rot Trans

Alamo 573 509 1.5 0.34 533 1.29 0.77 525 1.29 0.56 525 1.32 1.23
Ellis Island 227 214 0.27 0.08 219 0.24 0.07 218 0.266 0.08 218 0.28 0.08
Madrid Metropolis 333 295 1.47 0.14 312 2.82 0.20 303 2.34 0.28 309 2.39 0.11
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Table 5: Impact of Camera Intrinsics (Known vs. Estimated). For each scene, we report the number of
input images (Nc) and the outlier fraction. We compare our method with known intrinsics vs. without intrinsics
(optimized) and report Nr , mean rotation error (deg), and mean translation error. Best results are in bold.

Scene Nc Out.% Ours (w/ intrinsics) Ours (w/o intrinsics)
Nr Rot Trans Nr Rot Trans

BlendedMVS scenes (shared intrinsics)
scene0 75 2.0 74 0.019 0.0011 74 0.019 0.0019
scene1 51 1.4 51 0.341 0.0342 51 0.338 0.0400
scene2 33 2.2 33 0.008 0.0004 33 0.025 0.0049
scene3 66 8.8 66 0.006 0.0065 66 0.010 0.0014

MegaDepth scenes (not shared intrinsics)
0012 299 16.3 295 0.63 0.071 293 0.70 0.235
0024 365 23.0 313 3.38 0.772 298 0.80 0.384
0048 486 24.3 500 0.29 0.026 486 0.68 0.128
0083 635 31.3 614 0.06 0.005 601 0.56 0.219

achieves accuracy and coverage comparable to classical pipelines, demonstrating that learned view-
graph pose averaging is efficient at scale.

Table 6: Runtime. Given the same point tracks, we compare the runtime of our proposed method (VGPA) to
RESfM and classical methods, including COLMAP, Theia, and GLOMAP.

Scene Nc Outliers%
Ours RESfM COLMAP Theia GLOMAP

Total (Mins) Nr Nr/t ↑ Total (Mins) Nr Nr/t ↑ Total (Mins) Nr Nr/t ↑ Total (Mins) Nr Nr/t ↑ Total (Mins) Nr Nr/t ↑
Alamo 573 32.6 4.4 509 116.2 17.2 484 28.2 83.7 568 6.8 13.4 553 41.4 40.0 557 13.9
Ellis Island 227 25.1 1.1 214 194.4 2.8 214 75.9 14.9 223 15.0 1.1 213 193.6 7.7 219 28.6
Madrid Metropolis 333 39.4 1.7 295 172.5 5.8 244 42.1 25.1 323 12.9 – – – 7.1 320 45.2
Montreal Notre Dame 448 31.7 2.8 425 151.8 6.1 346 56.7 35.9 447 12.5 3.7 422 114.6 13.5 444 32.9
Notre Dame 549 35.6 2.9 519 179.5 22.2 517 23.3 72.6 546 7.5 11.6 534 46.0 21.1 543 25.8
NYC Library 330 33.6 1.3 285 212.7 4.0 224 55.7 26.6 330 12.4 1.5 314 204.2 7.3 323 44.5
Piazza del Popolo 336 33.1 1.1 315 277.6 2.7 249 92.6 9.6 334 34.9 3.0 325 108.8 5.9 331 56.0
Tower of London 467 27.0 3.3 454 137.6 5.9 94 15.9 65.0 467 7.2 3.1 448 142.5 23.5 466 19.8
Vienna Cathedral 824 31.4 7.5 753 101.0 23.9 479 20.0 98.9 824 8.3 11.2 772 68.8 41.6 822 19.8
Yorkminster 432 29.0 2.9 403 140.5 7.7 331 42.9 31.4 419 13.3 2.9 390 135.3 14.8 418 28.2

Mean – – 2.9 417 168.4 9.8 318 45.3 46.4 448 13.1 5.7 441 117.2 18.2 444 31.5

Ablations. Ablations confirm that each core component of our method is critical. Removing subset
sampling substantially increases both rotation and translation errors, showing its importance for
robustness. Excluding DINO appearance cues or reducing the number of GNN layers also leads to
a modest decline. Most importantly, fine-tuning yields a large improvement, reducing both rotation
and translation errors to their lowest values. See Table 7, where we report errors before the final BA
refinement.

Table 7: Ablation study reporting mean rotation and translation errors before final BA refinement.

Mean Rotation Error (↓) Mean Translation Error (↓)

Ours w/o subset sampling 12.9 2.5
Ours w/o image features 9.8 2.2
Ours w/ 2 layers 10.1 2.2
Ours (base model) 9.5 2.1

Proposed (with fine-tuning) 1.9 0.5

5 CONCLUSION

We present VGPA, an unsupervised deep pose-averaging network for multiview SfM. The design
includes a permutation-equivariant pose-averaging module that enforces consistency of pairwise
rotations and translation directions while incorporating image-level context. Additional 3D point
triangulation and robust BA refinement ensure high accuracy and recover the 3D structure. Across
challenging benchmarks (including MegaDepth, 1DSfM), VGPA outperforms deep methods and
remains competitive with strong classical pipelines while maintaining high camera coverage. It is
also fast: on the same point tracks, VGPA is substantially faster than COLMAP and GLOMAP,
and modestly faster than Theia, while scaling to large image collections. A lightweight view re-
integration sweep reintroduces part of the few remaining discarded views with negligible overhead.
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Vincent Leroy, Yohann Cabon, and Jérôme Revaud. Grounding image matching in 3d with mast3r.
arXiv preprint arXiv:2406.09756, 2024.

10

http://ceres-solver.org


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xinyi Li and Haibin Ling. Pogo-net: Pose graph optimization with graph neural networks. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 5895–5905, 2021.

Zhengqi Li and Noah Snavely. Megadepth: Learning single-view depth prediction from internet
photos. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
2041–2050, 2018.

Yang Lin, Li Yang, Zhouchen Lin, Tong Lin, and Hongbin Zha. Factorization for projective and
metric reconstruction via truncated nuclear norm. In 2017 International Joint Conference on
Neural Networks (IJCNN), pp. 470–477, 2017. doi: 10.1109/IJCNN.2017.7965891.

David G Lowe. Distinctive image features from scale-invariant keypoints. International journal of
computer vision, 60(2):91–110, 2004.

Daniel Martinec and Tomas Pajdla. Robust rotation and translation estimation in multiview recon-
struction. In 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE,
2007.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

Dror Moran, Hodaya Koslowsky, Yoni Kasten, Haggai Maron, Meirav Galun, and Ronen Basri.
Deep permutation equivariant structure from motion. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 5976–5986, 2021.

Pierre Moulon, Pascal Monasse, Romuald Perrot, and Renaud Marlet. Openmvg: Open multiple
view geometry. In International Workshop on Reproducible Research in Pattern Recognition, pp.
60–74. Springer, 2016.

Onur Ozyesil and Amit Singer. Robust camera location estimation by convex programming. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2674–
2683, 2015.

Onur Özyeşil, Vladislav Voroninski, Ronen Basri, and Amit Singer. A survey of structure from
motion*. Acta Numerica, 26:305–364, 2017.
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APPENDIX

A QUALITATIVE RESULTS

Figure 3: Example reconstructions from the proposed VGPA on various datasets.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

USE OF LARGE LANGUAGE MODELS (LLMS)

We used a large language model (ChatGPT) solely for language polishing, i.e., improving grammar,
clarity, and style of sentences.

B IMPLEMENTATION DETAILS

Code and data. Our code and preprocessed data will be made publicly available.

Framework. We train and evaluate on NVIDIA A100 GPUs (80 GB). The implementation uses
PyTorch (Paszke et al., 2019) and the Adam optimizer (Kingma & Ba, 2014) with gradient normal-
ization.

Training. Each epoch iterates over all training scenes. For every scene, we uniformly sample
(without replacement) 10%–20% of the images to form the training subgraph. A held-out validation
set is used for early stopping. Validation and test evaluations use the complete view graph. Training
on MegaDepth takes approximately 8 hours on a single A100. We fix the random seed to 20.

Architecture details. The encoder uses 3 edge-conditioned message passing layers with 256 chan-
nels (nodes and edges) and ReLU activations. The camera head Hcams is a 3-layer MLP with 256
channels.

Hyperparameter search. We sweep over (1) learning rate {10−2, 10−3, 10−4}, (2) network width
{128, 256, 512} for the encoder and heads, and (3) number of layers {2, 3, 4, 5}.
Bundle adjustment. We use Ceres Solver Agarwal et al. with a Huber loss (scale 0.1) for robust-
ness, following Khatib et al. (2025). In each BA round, we cap the number of iterations at 300 or
stop earlier on convergence.

C CONSTRUCTING POINT TRACKS

We follow the preprocessing in Khatib et al. (2025) to construct point tracks; see their Appendix for
full details.

D PERFORMANCE OF OTHER DEEP-BASED METHODS ON THE 1DSFM
DATASET

As shown in the table below, all three 3D geometric foundation models perform poorly on the
1DSfM dataset, in contrast to our method.

Table 8: Deep-based methods on the 1DSfM dataset. For each scene we list the number of input images
(Nc). For each deep model (TTT3R, CUT3R, FAST3R) we report the mean rotation error (degrees) and mean
translation error. Best results are bold and underlined.

Scene Nc
TTT3R CUT3R FAST3R

Rot Trans Rot Trans Rot Trans

Alamo 573 16.08 3.650 22.32 4.266 40.37 3.990
Ellis Island 227 8.85 2.333 12.53 3.171 11.74 3.201
Madrid Metropolis 333 14.83 2.258 18.81 3.189 67.37 3.574
Montreal Notre Dame 448 13.25 1.230 16.12 2.134 10.79 2.052
NYC Library 330 7.67 1.656 10.26 1.912 11.90 2.408
Notre Dame 549 11.88 1.430 15.33 1.694 16.44 2.241
Piazza del Popolo 336 23.13 2.063 22.63 2.092 32.48 2.568
Tower of London 467 29.69 3.647 29.85 3.607 59.53 3.658
Vienna Cathedral 824 43.76 2.978 41.58 2.802 29.49 2.561
Yorkminster 432 16.45 2.223 23.00 2.992 20.26 2.463
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E ADDITIONAL RESULTS

Here we present the view re-integration results (Table 9). Tables 11 and 10 report the AUC (Area
Under the recall Curve) scores—computed from the maximum of the relative rotation and translation
errors between every image pair—across different thresholds (in degrees), for both the MegaDepth
and 1DSfM experiments. Tables 12 and 13 report the corresponding median errors for the two
datasets.

Table 9: MegaDepth: Effect of View Re-Integration. We report the number of input images (Nc), outlier
fraction, registered images (Nr), and mean rotation and translation errors for our method (Ours) and with the
add-back step (Ours + Post-Processing).

Scene Nc Outliers% Ours Ours + post-processing
Nr Rot Trans Nr Rot Trans

0238 522 44.6% 488 4.50 0.686 511 4.43 0.681
0060 528 41.6% 518 0.07 0.014 526 0.08 0.016
0197 870 40.7% 641 1.28 0.271 749 1.33 0.291
0094 763 40.1% 663 0.66 0.101 708 1.24 0.134
0265 571 38.8% 345 2.93 0.998 476 3.50 1.077
0083 635 31.3% 614 0.06 0.005 628 0.07 0.007
0076 558 30.5% 543 0.09 0.016 553 0.11 0.018
0185 368 30.0% 358 0.10 0.022 364 0.11 0.022
0048 512 24.2% 500 0.29 0.026 507 0.29 0.026
0024 356 23.0% 313 3.38 0.772 342 3.39 0.781
0223 214 17.0% 208 2.75 0.195 213 3.56 0.289
5016 28 16.9% 28 0.08 0.015 28 0.08 0.015
0046 440 14.6% 439 0.54 0.071 440 0.54 0.071

1001 285 43.9% 265 1.89 3.840 274 1.86 3.938
0231 296 42.2% 261 0.24 0.030 271 0.45 0.061
0411 299 29.9% 270 0.12 0.018 289 0.13 0.021
0377 295 27.5% 232 0.30 0.035 253 0.32 0.036
0102 299 25.8% 297 0.18 0.031 299 0.18 0.031
0148 287 24.6% 211 0.93 0.037 225 2.28 0.229
0147 298 24.6% 282 1.99 0.153 292 1.98 0.153
0446 298 22.1% 292 0.22 0.019 297 0.24 0.021
0022 297 21.2% 277 0.29 0.044 287 0.29 0.044
0327 298 21.0% 291 0.12 0.014 293 0.12 0.014
0015 284 20.6% 243 0.52 0.058 255 0.68 0.111
0455 298 19.8% 290 0.39 0.078 298 0.52 0.092
0496 297 19.2% 279 0.37 0.033 290 0.38 0.035
1589 299 17.4% 296 0.11 0.010 298 0.11 0.010
0012 299 16.3% 295 0.63 0.071 298 1.04 0.122
0019 299 15.4% 291 0.37 0.020 297 0.52 0.026
0063 293 14.5% 268 0.18 0.025 274 0.20 0.026
0130 285 14.4% 199 5.12 0.618 207 4.97 0.622
0080 284 12.9% 162 0.58 0.109 164 0.61 0.126
0240 298 11.9% 295 0.64 3.479 297 0.64 3.485
0007 290 11.7% 283 1.53 0.150 287 1.51 0.148
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Table 10: 1DSfM experiment (AUC). For each scene, we list the number of input images (Nc) and the fraction
of outliers. For each model, we report the AUC values at different error thresholds (in degrees). Winning results
are marked in bold and underlined.

Scene Nc Outliers%
Ours Theia GLOMAP

@1 @3 @5 @10 @30 @1 @3 @5 @10 @30 @1 @3 @5 @10 @30
Alamo 573 32.6% 0.444 0.623 0.676 0.730 0.804 0.002 0.037 0.093 0.228 0.499 0.092 0.346 0.482 0.647 0.833

Ellis Island 227 25.1% 0.399 0.739 0.832 0.908 0.962 0.000 0.006 0.023 0.120 0.440 0.071 0.371 0.539 0.729 0.901
Madrid Metropolis 333 39.4% 0.564 0.731 0.788 0.845 0.914 0.014 0.135 0.241 0.406 0.650 0.163 0.502 0.626 0.750 0.876
Montreal Notre Dame 448 31.7% 0.532 0.788 0.853 0.908 0.952 0.001 0.028 0.093 0.263 0.553 0.090 0.390 0.549 0.724 0.890
NYC Library 330 33.6% 0.577 0.777 0.839 0.899 0.954 0.006 0.080 0.161 0.307 0.566 0.142 0.494 0.634 0.778 0.910
Notre Dame 549 35.6% 0.425 0.684 0.782 0.872 0.950 0.015 0.158 0.293 0.487 0.726 0.101 0.419 0.566 0.719 0.864
Piazza del Popolo 336 33.1% 0.422 0.553 0.598 0.643 0.699 0.025 0.140 0.226 0.368 0.608 0.203 0.524 0.648 0.775 0.899

Tower of London 467 27.0% 0.437 0.675 0.757 0.833 0.901 0.002 0.039 0.093 0.209 0.474 0.114 0.453 0.600 0.750 0.897
Vienna Cathedral 824 31.4% 0.291 0.414 0.449 0.483 0.521 0.000 0.001 0.008 0.049 0.269 0.053 0.346 0.499 0.664 0.846

Yorkminster 432 29.0% 0.507 0.763 0.834 0.899 0.954 0.000 0.011 0.038 0.115 0.357 0.104 0.427 0.600 0.765 0.905

Mean 451 31.9% 0.460 0.675 0.741 0.802 0.861 0.007 0.064 0.127 0.255 0.514 0.113 0.427 0.574 0.730 0.882

Table 11: MegaDepth experiment (AUC). For each scene, we show the number of input images (Nc) and
the fraction of outliers. For each model, we report the AUC values at different error thresholds (in degrees).
Winning results are marked in bold and underlined.

Scene Nc Outliers%
Ours Theia GLOMAP

@1 @3 @5 @10 @30 @1 @3 @5 @10 @30 @1 @3 @5 @10 @30
0238 522 44.6% 0.322 0.449 0.503 0.559 0.748 0.063 0.338 0.495 0.679 0.863 0.298 0.552 0.653 0.761 0.884

0060 528 41.6% 0.807 0.904 0.932 0.959 0.982 0.300 0.592 0.702 0.811 0.912 0.676 0.847 0.893 0.933 0.969
0197 870 40.7% 0.297 0.411 0.524 0.697 0.881 0.086 0.338 0.505 0.693 0.872 0.555 0.752 0.817 0.879 0.940

0094 763 40.1% 0.708 0.851 0.890 0.926 0.959 0.325 0.610 0.708 0.807 0.904 0.468 0.696 0.772 0.846 0.921
0265 571 38.8% 0.000 0.005 0.015 0.063 0.309 0.000 0.001 0.005 0.037 0.267 0.000 0.000 0.001 0.009 0.165
0083 635 31.3% 0.885 0.954 0.969 0.981 0.992 0.504 0.748 0.817 0.883 0.948 0.765 0.901 0.935 0.964 0.987
0076 558 30.5% 0.747 0.879 0.915 0.950 0.980 0.133 0.450 0.599 0.754 0.897 0.510 0.753 0.830 0.902 0.963
0185 368 30.0% 0.821 0.910 0.930 0.951 0.973 0.285 0.627 0.742 0.846 0.937 0.641 0.839 0.889 0.933 0.970
0048 512 24.2% 0.843 0.934 0.955 0.974 0.988 0.397 0.690 0.785 0.873 0.949 0.698 0.864 0.907 0.945 0.975
0024 356 23.0% 0.505 0.687 0.740 0.785 0.821 0.153 0.424 0.555 0.709 0.873 0.362 0.619 0.719 0.827 0.931

0223 214 17.0% 0.592 0.781 0.836 0.886 0.926 0.014 0.182 0.342 0.551 0.783 0.330 0.601 0.703 0.807 0.908
5016 28 16.9% 0.790 0.896 0.928 0.959 0.984 0.413 0.707 0.793 0.876 0.952 0.508 0.770 0.835 0.899 0.959
0046 440 14.6% 0.934 0.971 0.979 0.985 0.989 0.530 0.793 0.861 0.918 0.965 0.896 0.962 0.977 0.988 0.996

0099 299 47.4% 0.256 0.530 0.638 0.757 0.878 0.011 0.082 0.172 0.348 0.619 0.526 0.707 0.769 0.835 0.909

1001 285 43.9% 0.046 0.232 0.347 0.495 0.690 0.000 0.000 0.001 0.005 0.051 0.000 0.001 0.003 0.020 0.132
0231 296 42.2% 0.608 0.822 0.883 0.934 0.975 0.063 0.304 0.467 0.655 0.842 0.417 0.678 0.762 0.843 0.921
0411 299 29.9% 0.699 0.870 0.914 0.949 0.979 0.188 0.469 0.600 0.753 0.902 0.379 0.633 0.727 0.828 0.928
0377 295 27.5% 0.770 0.887 0.916 0.940 0.961 0.198 0.471 0.596 0.736 0.883 0.567 0.754 0.824 0.889 0.941
0102 299 25.8% 0.774 0.897 0.931 0.961 0.985 0.169 0.384 0.474 0.596 0.785 0.547 0.735 0.805 0.876 0.946
0147 298 24.6% 0.731 0.844 0.873 0.903 0.935 0.055 0.324 0.468 0.618 0.771 0.000 0.000 0.000 0.000 0.000
0148 287 24.6% 0.681 0.819 0.859 0.903 0.948 0.049 0.199 0.280 0.376 0.499 0.296 0.422 0.472 0.529 0.591
0446 298 22.1% 0.671 0.845 0.892 0.936 0.972 0.053 0.303 0.460 0.646 0.840 0.465 0.717 0.799 0.876 0.947
0022 297 21.2% 0.704 0.878 0.921 0.958 0.986 0.194 0.502 0.631 0.767 0.900 0.473 0.717 0.797 0.875 0.949
0327 298 21.0% 0.589 0.686 0.710 0.761 0.872 0.040 0.359 0.538 0.722 0.884 0.474 0.631 0.683 0.733 0.776
0015 284 20.6% 0.780 0.888 0.917 0.942 0.965 0.134 0.359 0.478 0.617 0.784 0.572 0.775 0.839 0.899 0.950
0455 298 19.8% 0.739 0.864 0.897 0.925 0.955 0.209 0.513 0.644 0.779 0.905 0.584 0.798 0.862 0.920 0.966

0496 297 19.2% 0.739 0.879 0.916 0.950 0.977 0.080 0.348 0.498 0.671 0.849 0.441 0.697 0.786 0.871 0.942
1589 299 17.4% 0.670 0.860 0.912 0.952 0.980 0.157 0.385 0.489 0.621 0.797 0.583 0.746 0.812 0.885 0.951
0012 299 16.3% 0.810 0.900 0.922 0.943 0.961 0.087 0.359 0.499 0.663 0.840 0.645 0.834 0.887 0.934 0.971

0104 284 16.2% 0.575 0.667 0.693 0.716 0.735 0.127 0.328 0.430 0.538 0.642 0.445 0.592 0.634 0.674 0.717
0019 299 15.4% 0.817 0.901 0.924 0.948 0.969 0.243 0.536 0.649 0.764 0.888 0.740 0.884 0.924 0.960 0.986

0063 293 14.5% 0.692 0.814 0.846 0.877 0.949 0.106 0.376 0.526 0.704 0.879 0.460 0.724 0.805 0.885 0.956

0130 285 14.4% 0.631 0.744 0.776 0.802 0.830 0.057 0.282 0.424 0.604 0.828 0.347 0.479 0.549 0.666 0.835

0080 284 12.9% 0.753 0.890 0.923 0.952 0.980 0.034 0.154 0.278 0.448 0.720 0.259 0.384 0.512 0.733 0.905
0240 298 11.9% 0.683 0.843 0.890 0.934 0.972 0.141 0.405 0.536 0.698 0.867 0.368 0.613 0.709 0.815 0.923
0007 290 11.7% 0.803 0.893 0.917 0.938 0.963 0.069 0.415 0.591 0.761 0.902 0.659 0.829 0.881 0.931 0.974

Mean 364 25.4% 0.652 0.780 0.820 0.863 0.915 0.157 0.399 0.518 0.654 0.806 0.471 0.653 0.716 0.783 0.852
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Table 12: MegaDepth experiment. For each scene, we show the number of input images (denoted Nc) and
the fraction of outliers. For each model, we show the number of images used for reconstruction (denoted Nr)
and median values of the rotation (in degrees) and translation errors. (Above the middle rule are Group 1
scenes with < 1000 images; below are Group 2 scenes with > 1000 images, subsampled to 300 for testing.)
Winning results are marked in bold and underlined. Yellow represents the best result among the deep-based
algorithms and green among the classical algorithms.

Scene Nc Outliers%
Ours RESfM Theia GLOMAP

Nr Rot Trans Nr Rot Trans Nr Rot Trans Nr Rot Trans
0238 522 44.6% 488 1.62 0.123 283 0.72 0.043 506 0.54 0.109 499 0.22 0.043

0060 528 41.6% 518 0.02 0.004 503 0.14 0.011 525 0.26 0.039 522 0.04 0.012

0197 870 40.7% 641 0.96 0.125 667 2.06 0.133 855 0.77 0.118 814 0.13 0.016

0094 763 40.1% 663 0.26 0.019 537 0.38 0.015 742 0.21 0.033 717 0.20 1.957
0265 571 38.8% 345 1.75 0.445 346 0.74 0.209 554 4.11 1.651 558 6.66 1.889
0083 635 31.3% 614 0.03 0.002 596 0.15 0.009 632 0.15 0.013 614 0.04 0.007

0076 558 30.5% 543 0.04 0.005 524 0.11 0.010 549 0.44 0.058 541 0.08 0.017

0185 368 30.0% 358 0.04 0.004 350 0.04 0.006 365 0.31 0.037 365 0.11 0.012

0048 512 24.2% 500 0.11 0.005 474 2.16 0.098 507 0.21 0.020 506 0.06 0.007

0024 356 23.0% 313 1.57 0.087 309 0.58 0.046 355 0.24 0.091 339 0.07 0.045

0223 214 17.0% 208 1.07 0.047 204 1.56 0.078 212 0.89 0.152 214 0.41 0.046

5016 28 16.9% 28 0.04 0.003 28 0.10 0.005 28 0.07 0.019 28 0.04 0.016

0046 440 14.6% 439 0.05 0.002 399 0.78 0.028 434 0.16 0.016 440 0.02 0.002

1001 285 43.9% 265 0.66 2.698 251 1.41 0.276 276 4.85 2.893 281 3.29 2.645

0231 296 42.2% 261 0.07 0.007 246 0.38 0.014 286 0.58 0.072 279 0.20 0.021

0411 299 29.9% 270 0.07 0.009 273 0.07 0.009 293 0.19 0.079 269 0.09 0.036

0377 295 27.5% 232 0.09 0.005 210 0.28 0.014 269 0.29 0.075 268 0.23 0.021

0102 299 25.8% 297 0.06 0.006 284 0.07 0.007 294 1.03 0.114 293 0.04 0.013

0147 298 24.6% 282 0.80 0.030 207 2.07 0.088 284 1.10 0.064 290 1.78 2.056
0148 287 24.6% 211 0.43 0.018 197 0.54 0.024 275 3.01 0.301 283 3.09 1.301
0446 298 22.1% 292 0.10 0.005 288 0.41 0.013 289 0.61 0.073 296 0.14 0.020

0022 297 21.2% 277 0.12 0.009 274 0.13 0.011 296 0.28 0.065 281 0.08 0.023

0327 298 21.0% 291 0.05 0.004 271 0.11 0.006 288 0.73 0.087 290 7.14 0.333
0015 284 20.6% 243 0.15 0.009 215 0.27 0.021 244 0.42 0.084 274 0.11 0.014

0455 298 19.8% 290 0.11 0.007 293 0.18 0.010 294 0.36 0.047 298 0.14 0.017

0496 297 19.2% 279 0.15 0.007 281 0.13 0.006 285 0.61 0.080 291 0.16 0.028

1589 299 17.4% 296 0.03 0.002 290 0.08 0.003 288 0.32 0.057 299 0.03 0.007

0012 299 16.3% 295 0.10 0.006 287 0.39 0.023 129 0.56 0.092 295 0.20 0.017

0019 299 15.4% 291 0.17 0.007 250 0.04 0.004 271 0.31 0.030 296 0.04 0.004

0063 293 14.5% 268 0.05 0.004 262 0.26 0.013 268 0.45 0.063 288 0.17 0.017

0130 285 14.4% 199 2.71 0.089 192 0.10 0.005 187 0.63 0.072 281 0.94 0.535
0080 284 12.9% 162 0.25 0.009 139 0.27 0.010 278 1.84 0.335 283 1.71 0.169

0240 298 11.9% 295 0.10 3.371 275 1.56 0.090 278 0.47 0.057 294 0.17 0.041

0007 290 11.7% 283 0.40 0.022 172 0.23 0.010 277 0.69 0.071 290 0.06 0.006

Table 13: 1DSFM experiment. For each scene, we show the number of input images (denoted Nc) and the
fraction of outliers. For each model, we show the number of images used for reconstruction (Nr) and median
values of the rotation (in degrees) and translation errors. Winning results are marked in bold and underlined.
Yellow represents the best result among the deep-based algorithms and green among the classical algorithms.

Scene Nc Outliers%
Ours RESfM Theia GLOMAP

Nr Rot Trans Nr Rot Trans Nr Rot Trans Nr Rot Trans
Alamo 573 32.6% 509 0.42 0.018 484 0.97 0.037 553 2.29 0.539 557 0.61 0.144

Ellis Island 227 25.1% 214 0.16 0.033 214 0.32 0.036 213 3.85 0.712 219 0.46 0.087

Madrid Metropolis 333 39.4% 295 0.27 0.016 244 4.42 0.193 - - - 320 0.53 0.096

Montreal Notre Dame 448 31.7% 425 0.16 0.020 346 1.00 0.056 422 2.63 0.808 444 0.40 0.158

NYC Library 330 33.6% 285 0.58 0.038 224 1.48 0.074 314 1.65 0.360 323 0.46 0.075

Notre Dame 549 35.6% 519 0.29 0.012 517 0.55 0.025 534 1.54 0.133 543 1.15 0.130

Piazza del Popolo 336 33.1% 315 2.11 0.120 249 0.80 0.034 325 1.15 0.342 331 0.28 0.084

Tower of London 467 27.0% 454 0.23 0.011 94 0.48 0.012 448 3.23 0.527 466 0.42 0.071

Vienna Cathedral 824 31.4% 753 11.78 0.527 479 0.48 0.016 772 9.32 0.838 822 0.61 0.206

Yorkminster 432 29.0% 403 0.62 0.022 331 4.67 0.299 390 4.26 0.948 418 0.60 0.069
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