
Under review as submission to TMLR

Constraining Generative Models for Engineering Design with
Negative Data

Anonymous authors
Paper under double-blind review

Abstract
Generative models have recently achieved remarkable success and widespread adoption in
society, yet they still often struggle to generate realistic and accurate outputs. This challenge
extends beyond language and vision into fields like engineering design, where safety-critical
engineering standards and non-negotiable physical laws tightly constrain what outputs are
considered acceptable. In this work, we introduce two approaches to guide models toward
constraint-satisfying outputs using ‘negative data’ – examples of what to avoid. Our negative
data generative models (NDGMs) outperform state-of-the-art NDGMs by 4x in constraint
satisfaction and easily outperform classic generative models using 8x less data in certain
problems. To demonstrate this, we rigorously benchmark our NDGMs against 14 baseline
models across numerous synthetic and real engineering problems, such as ship hulls with
hydrodynamic constraints and vehicle design with impact safety constraints. Our benchmarks
showcase both the best-in-class performance of our new NDGM models and the widespread
dominance of NDGMs over classic generative models in general. In doing so, we advocate
for the more widespread use of NDGMs in engineering design tasks.

1 Introduction

Figure 1: Many real-world data distributions have gaps
in their support caused by constraints. Generative models
classically estimate these distributions using constraint-
satisfying (positive) samples. We analyze training methods
for generative models that additionally leverage constraint-
violating (negative) data to more accurately estimate the
density of in-distribution (positive) data. For example,
by examining bike frames with disconnected components,
a model can better learn to generate geometrically valid
frames.

Generative models have demonstrated impressive
results in vision, language, and speech. However,
even with massive datasets, they struggle with pre-
cision, generating physically impossible, factually
incorrect, or otherwise ‘invalid’ samples. Most users
can easily point to examples: Anatomical inaccura-
cies, imbalanced objects in natural scenes, erroneous
text responses, etc. This invalidity can be thought
of as a form of constraint violation – in the ideal
scenario, generative models would be constrained to
only generate valid samples. While this constraint
violation is a nuisance in image or text synthesis, it
becomes a paramount concern in domains like en-
gineering design with high-stakes (including safety-
critical) constraints. A generative model synthesizing
designs for car or airplane components, for example,
may be subject to geometric restrictions (such as
disconnected or colliding components), functional
requirements (such as load-bearing capacity or max-
imum weight), industry standards, and manufacturing limitations. As generative models are increasingly
applied to engineering problems, their blatant violation of ubiquitous, objective, and non-negotiable constraints
is becoming increasingly problematic.

We hypothesize that challenges with constraint violation in generative models are largely attributable to the
fact that generative models are classically shown only ‘positive’ (constraint-satisfying) data points during
training, and are never exposed to ‘negative’ (constraint-violating) data points to avoid. Completely satisfying
constraints using this training approach is equivalent to learning a binary classification problem with only

1

Under review as submission to TMLR

one class present in the data, a challenging task. Instead, by studying negative data in addition to positive
data, generative models can better avoid constraint-violating samples during generation (Fig. 1). This aligns
with their distribution-matching objective since negative data points should have zero density in the original
real-world distribution that the model is trying to mimic. We will refer to these models as Negative-Data
Generative Models, or NDGMs.

We conceptualize and test two new NDGM formulations. These formulations dominate both simple baselines
and the current state-of-the-art (SOTA) NDGMs on highly non-convex test problems and more complex
engineering problems. In certain tests, our NDGMs generate 4x as many valid (positive) samples as SOTA
models. In benchmarking 16 training formulations over 15 test problems, we additionally identify several
broader conclusions. (1) Unlike our new NDGMs, we find that existing formulations for NDGMs sometimes
fail to surpass simple baselines. In particular, while SOTA models excel in simpler problems, they falls short
of our method in more complex problems. (2) We find that NDGMs in general dominate conventional models.
We therefore advocate for more the widespread use of NDGMs (including existing ones) over vanilla models.
(3) We demonstrate that negative data can be significantly more informative than positive data. In some
problems, we achieve a 40x improvement in constraint satisfaction by augmenting the dataset by 6% using
negative data, indicating that NDGMs often improve sample efficiency over conventional models.
Contributions:

(i) We introduce two “Negative-Data Generative Models” (NDGMs) which tie or outperform the existing
SOTA in constraint satisfaction in all synthetic problems and the five most chellenging engineering
problems tested.

(ii) We curate an extensive set of benchmarks comprised of several synthetic problems and a dozen
engineering tasks, featuring real constraints from engineering standards. We test 16 different NDGM
formulations and baselines on these tests, the largest benchmark of NDGMs to our knowledge.

(iii) We demonstrate that simple baselines dominate conventional generative models in constraint satis-
faction. In fact, we show that the SOTA NDGMs cannot consistently outperform simple baselines
when dealing with fine-grained constraints, even in low-dimensional settings.

(iv) We show that NDGMs can significantly outperform vanilla models using (∼ 90%) less data. We thus
advocate for the more widespread use of NDGMs in engineering tasks over vanilla counterparts.

2 Background
In this section, we discuss constraint satisfaction in generative models and then discuss divergence minimization
in generative models. For more related work, see Appendix A.
2.1 Constraints in Engineering and Design
Constraints are ubiquitous in design. A designer creating ship hulls, for example, must adhere to a medley of
geometric constraints, performance requirements, and safety regulations from authoritative bodies. Generating
constraint-satisfying designs can be exceedingly difficult. As many practitioners turn to data-driven generative
models to tackle engineering problems (Regenwetter et al., 2022a), this difficulty remains (Woldseth et al.,
2022; Regenwetter et al., 2023) (as we demonstrate, even a generative model that sees 30k examples of valid
ship hulls can only generate valid hulls with a 2% success rate).

The overwhelming majority of deep generative models in design do not actively consider constraints (Woldseth
et al., 2022; Regenwetter et al., 2022a), despite constraint satisfaction being an explicit goal in many of the
design problems they address (Oh et al., 2019; Nie et al., 2021; Bilodeau et al., 2022; Chen et al., 2022; Chen
& Fuge, 2019; Cheng et al., 2021). Several engineering design datasets (Regenwetter et al., 2022b; Bagazinski
& Ahmed, 2023; Giannone & Ahmed, 2023; Mazé & Ahmed, 2023) feature constraint-violating designs, and
many others have checks for validity (Whalen et al., 2021; Wollstadt et al., 2022), allowing datasets of invalid
(negative) designs to be generated. In some cases, datasets of positive examples are generated through search
by rejecting and discarding negative samples (Bagazinski & Ahmed, 2023; Regenwetter et al., 2022b), making
negative data essentially free. In any problem where negative data is available or can be generated, NDGMs
can be applied.

2

Under review as submission to TMLR

2.2 Divergence Minimization in Generative Models
Before discussing divergence minimization in NDGMs, we first discuss divergence minimization in conventional
generative models. Let pp(x) be the (positive) data distribution and pθ(x) the distribution sampled by the
generative model. Given N samples from pp(x), the objective of generative modeling is to find a setting
θ∗ of θ, such that, for an appropriate choice of discrepancy measure, p∗

θ ≈ pp. A common choice for this
discrepancy measure is the Kullback–Leibler or KL divergence:

KL[pθ∥pp] =
∫
pθ(x)

[
log pθ(x)

pp(x)

]
dx. (1)

To minimize the discrepancy, we find θ∗ as the solution to the following optimization problem:

θ∗ = arg min
θ

KL[pθ∥pp]. (2)

In practice, direct optimization of equation 2 is often intractable. As such, it is common in deep generative
modeling to learn θ by using either a tractable lower-bound to a slightly different variant of equation 2
(Kingma & Welling, 2013; Burda et al., 2015; Ho et al., 2020; Sønderby et al., 2016) or by using plug-in or
direct estimators of the divergence measure (Casella & Berger, 2002; Sugiyama et al., 2012a; Gutmann &
Hyvärinen, 2010; Srivastava et al., 2017; Goodfellow et al., 2014; Srivastava et al., 2023; Poole et al., 2019). In
both of these cases, under certain conditions, as N → ∞, theoretically, it holds that, θ → θ∗. However, since
N is limited, there remains a finite discrepancy between the model and data distributions. This mismatch
often manifests in pθ allocating high probability mass in regions where pp may not have significant empirical
support. In domains such as engineering design, where invalid (negative) designs tend to be very close to the
valid (positive) designs, this leads to the generation of invalid designs with high probability. This lack of
precision underpins the relatively limited success of deep generative models in the engineering design domain
(Regenwetter et al., 2023).
Divergence minimization in GANs. Generative Adversarial Networks (GANs) (Goodfellow et al., 2014;
Arjovsky et al., 2017; Mohamed & Lakshminarayanan, 2016; Srivastava et al., 2017; Nowozin et al., 2016) are
a powerful framework for generating realistic and diverse data samples. GANs have two main components:
a generator fθ, which generates samples according to the density pθ, and a discriminator fϕ, which is a
binary classifier. The generator learns to generate synthetic data samples by transforming random noise into
meaningful outputs, while the discriminator aims to distinguish between real and generated samples. The
standard GAN loss can be written as:

L(θ, ϕ) = Epp(x)[log fϕ(x)] + Epθ(x)[1 − log(fϕ(xθ))], (3)

Training a GAN involves iterating over minθ maxϕ L(θ, ϕ). GANs can also be interpreted in terms of
estimating the density ratio (Gutmann & Hyvärinen, 2010; Srivastava et al., 2017) between the data and
the generated distribution r(x) = pp(x)/pθ(x). This ratio can be estimated by a discriminative model as
rϕ = fϕ(x)/(1 − fϕ(x)) and rϕ = 1 gives us pθ = pp. The optimal discriminator prediction and generator
distribution are:

fϕ(x) = pp(x)
(pθ(x) + pp(x)) , p

∗
θ(x) = pp(x). (4)

Divergence minimization in other generative models. Many other types of generative models similarly
minimize divergence between pθ and pp. These models include popular likelihood-based models like Variational
Autoencoders (VAEs) (Kingma & Welling, 2013) and Denoising Diffusion Probabilistic Models (DDPMs) (Ho
et al., 2020). We will not discuss the mathematics behind divergence minimization for these likelihood-based
models, but we do benchmark several variants in our results. In general, we refer to unaugmented GANs,
VAEs, and DDPMs as ‘vanilla models’ throughout the paper.
3 Negative-Data Generative Models
In this section, we discuss the NDGM framework. We explain how generative models can be adjusted to
exploit negative data to improve constraint satisfaction. Let pn denote the negative distribution i.e., the
distribution of constraint-violating datapoints. Instead of training using only the positive distribution pp,

3

Under review as submission to TMLR

we now seek to train a generative model using both pp and pn. In this section, we discuss several existing
methods to do so. These methods range from simple baselines like rejection sampling to state-of-the-art
formulations like discriminator overloading.
3.1 Class Conditioning (CC)
One approach to incorporating implicit constraints is through conditioning, which is popular in many
design generation problems (Nie et al., 2021; Behzadi & Ilieş, 2021; Mazé & Ahmed, 2023; Malviya, 2020;
Heyrani Nobari et al., 2021). In conditional modeling, a generative model typically conditions on the constraints
denoted as c and learns a conditional distribution, p(x|c), where x represents the generated output. ‘Off-the-
shelf’ class-conditional models can be simple NDGMs, where the positive and negative data each constitute
one class. During inference, the model attempts to satisfy constraints by generating conditionally positive
samples. Other conditional variants such as auxiliary-classifier GANs (AC-GANs) (Odena et al., 2017) can
also be used. Broadly speaking, the negative data formulation for generative models can be seen as a specific
case of class-conditional generation. However, as we demonstrate in this paper, generic class-conditional
training formulations for generative models are not as effective as specialized NDGMs.
3.2 Pre-Trained Classifier (PC)
One common approach for active constraint satisfaction involves pre-training a supervised model to predict
constraint satisfaction and querying this model during training, inference, or postprocessing. Often, this
model predicts constraint violation likelihood, though it can also predict intermediates that are combined in
a more complex constraint check (Wang et al., 2022). Typically, this classifier fψ learns:

fψ(x) = pn(x)
pn(x) + pp(x) . (5)

This frozen classifier can be incorporated into the training of a generative model by adding an auxiliary loss,
LPC to the generative model’s loss, LGM to calculate a total loss, LTot = LGM + λLPC , as in (Regenwetter
& Ahmed, 2022). Here, λ is some weighting parameter and LPC is expressed as:

LPC = Epθ(x)[log fψ(x)]. (6)

Pre-trained classifiers can also be applied during inference in certain models, such as in diffusion model
guidance (Mazé & Ahmed, 2023; Giannone & Ahmed, 2023). This pre-trained classifier can alternatively be
appended to a vanilla model as a rejection sampling layer – a simple but surprisingly effective baseline. We
abbreviate pre-trained classifier loss, guidance, and rejection sampling as CL, G, and Rej, respectively, in our
testing.
3.3 Discriminator Overloading (DO)
Discriminator overloading is a technique to directly incorporate negative data into GAN model training.
This formulation was proposed in two of the first papers to train a generative model using both positive and
negative data (though we have made slight modifications for generality): Rumi-GAN (Asokan & Seelamantula,
2020) and Negative Data Augmentation GAN (NDA-GAN) (Sinha et al., 2021). We refer to these formulations
as ‘discriminator overloading’ since the discriminator is ‘overloaded’ by learning to discriminate between (1)
positives and (2) fakes or negatives. As such, the discriminator estimates:

fϕ(x) = pp(x)
λpθ(x) + (1 − λ)pn(x) + pp(x) , (7)

with λ being a weighting parameter. As usual, the generator attempts to generate samples that are classified
as real, in this case indicating that they look similar to positive data and dissimilar to negative data. The
loss is expressed as:

L(θ, ϕ) = Epp(x)[log fϕ(x)] + Epθ(x)[1 − log(fϕ(xθ))] + Epn(x)[1 − log(fϕ(x))]. (8)

As we will show, discriminator overloading is effective. However, instead of conflating the negatives and
fakes, we propose two formulations to learn the ratios between the positive, negative, and fake distributions
individually. As we demonstrate, this adjustment yields superior performance.

4

Under review as submission to TMLR

4 Proposed Negative Data Formulation
In this section, we propose several novel formulations for NDGMs. The training pseudocode for each is
included in Appendix C, while more details on the mathematical formulation and derivations are included
in Appendix B. Instead of learning a density ratio between pp and an amalgamation of pn and pθ, as in
discriminator overloading, we instead propose methods to learn pairwise density ratios between the three
distributions. The most straightforward method to do so is with a multi-class discriminator.
4.1 Multi-Class Discriminator (MC)
Noting that multi-class classifiers are strong density ratio estimators (Srivastava et al., 2023), we propose an
NDGM variant using a multi-class discriminator model that learns three classes: positive, negative, and fake.
This discriminator is implicitly estimating all relevant ratios:

fϕ,c(x) = pc(x)
pp(x) + pθ(x) + pn(x) ∀ c ∈ p, n, θ. (9)

However, these ratios are not learned independently. Note that fϕ,p is a reweighted version of Eq. 7. Though
this multi-class formulation is similar to discriminator overloading, instead of showing the discriminator a
weighted amalgamation of fakes and negatives (as in DO), the multi-class discriminator instead treats fakes
and negatives as separate classes, and can potentially refine its knowledge by distinguishing them.
4.2 Double Discriminator (DD)
Though using a single multi-class discriminator to learn pairwise density ratios between pp, pn, and pθ is
simpler, we can also accomplish the task using multiple discriminative models. For example, fϕ can estimate
the ratio pp/pθ (this is a standard GAN discriminator), while fψ estimates pn/pθ. The loss is then expressed
as:

L(θ, ϕ, ψ) = Epp(x)[log fϕ(x)] + Epθ(x)[1 − log(fϕ(xθ))]
− λEpn(x)[log fψ(x)] − λEpθ(x)[1 − log(fψ(xθ))].

(10)

Here, λ ∈ [0, 1] is a tuning parameter adjusting the weight of the negative data’s contribution to the loss and
avoiding instability. Optimal discriminators learn:

fϕ(x) = pp(x)
(pθ(x) + pp(x)) , fψ(x) = pn(x)

(pθ(x) + pn(x)) . (11)

The rationale behind the double discriminator algorithm is intuitive when viewed as an expansion of a vanilla
GAN. The generator now wants its samples to be classified as positive by the original discriminator and not
be classified as negative by the extra discriminator.

This simple double discriminator variant is benchmarked in the appendix (abbreviated DD-a). In practice,
however, we find that an alternate formulation that combines this simple two-discriminator concept with
discriminator overloading (DO) works better in many cases (we call this DD in the main paper and DD-b
in the appendix). As we show in Appendix B, this alternative formulation has a mathematical basis that
directly relates to the original GAN training objective.

The alternative formulation consists of the classic discriminator, fϕ estimating pp/pθ and an overloaded
discriminator, fψ estimating (pp + pθ)/pn. The total loss function is then expressed as:

L(θ, ϕ, ψ) = Epp(x)[log fϕ(x)] + Epθ(x)[1 − log(fϕ(xθ))]
+ λEpp(x)[log fψ(x)] + λEpθ(x)[log fψ(xθ)] + λEpn(x)[1 − log(fψ(x))].

(12)

Once again, λ is a weighting parameter modulating the contribution of the negative data. Appendix B
contains more detailed derivations and comparisons to similar formulatiuons. For more details on the training
algorithms, see Appendix C.
5 Experiments
We now present experiments on (i) 2D densities, where we benchmark 16 different model including ours,
the SOTA, baseline NDGMs, and vanilla models; (ii) 9 diverse engineering tasks with different levels of
complexity, and (iii) a block stack problem where we investigate multiple detailed constraints. For more
experiments on 2D densities, engineering tasks, and block stacks, see Appendices D, G, and F. For additional
experiments on diversity-augmented generation, see Appendix E.

5

Under review as submission to TMLR

5.1 Negative Data for Densities with Constraints
We first showcase our approach using two easy-to-visualize but highly non-convex 2D test problems. Problem
1 is an adaptation of a classic multi-modal test problem made significantly more challenging with the addition
of small negative regions in the centers of each mode. Problem 2 is a simple uniform distribution with
many discontinuous circular regions of invalidity in a grid pattern. 10k positive and negative data points
are randomly sampled, as shown in Figures 5a and 5b. Architecture and training details are included in
Appendix D.

(a) Positive Data (b) Negative Data (c) GAN (d) GAN-MC (Ours) (e) GAN-DD (Ours)

Figure 2: Generated Distributions from several generative models on two highly non-convex test problems (Problem
1 on top, Problem 2 on the bottom). Positive data points and samples are shown in blue and negative ones in black.
Our proposed NDGM models (GAN-MC, GAN-DD) generate significantly fewer negative samples.

Table 1: Mean scores across two highly non-convex test
problems. The best result is in bold. The next two best
are underlined. Both of the formulations we propose (GAN-
MC, GAN-DD) outperform the previous state-of-the-art
(GAN-DO) in all metrics. Each model is tested three times
for each of the two toy densities.

Model Invalidity (%) ↓ MMD (10−3) ↓ F1 ↑
VAE 12.2 3.19 0.89
VAE-CC 14.6 3.13 0.88
VAE-CL 0.29 5.06 0.86
VAE-Rej 1.30 4.25 0.90
DDPM 7.74 3.83 0.91
DDPM-CL 9.41 3.60 0.90
DDPM-G 5.20 4.19 0.89
DDPM-Rej 1.11 3.65 0.90
GAN 6.22 4.96 0.84
GAN-CC 6.20 4.75 0.90
GAN-AC 2.87 3.16 0.94
GAN-CL 0.31 2.30 0.95
GAN-Rej 0.43 4.88 0.86
GAN-DO (SOTA) 0.46 4.33 0.93
GAN-MC (Ours) 0.30 2.26 0.94
GAN-DD (Ours) 0.28 2.03 0.95

Models. We test 16 variants of GAN, VAE, and
DDPM models. Among these are: Vanilla mod-
els (GAN, VAE, DDPM), trained only on positive
data; Class conditional models (GAN-CC, VAE-CC)
trained on both datasets in a binary class condi-
tional setting as in Sec 3.1; Models augmented with
a frozen pre-trained classifier to steer models during
training though a classification loss (GAN-CL, VAE-
CL, DDPM-CL); DDPM with pre-trained classifier
guidance only during inference (DDPM-G); Vanilla
models trained on only positive data, but augmented
with a rejection sampling layer using a frozen clas-
sifier pre-trained on both positive and negative data
(GAN-Rej, VAE-Rej, DDPM-Rej); Auxiliary Classi-
fier GAN (GAN-AC); GAN with discriminator over-
loading as in NDA-GANs (Sinha et al., 2021) and
Rumi-GANs (Asokan & Seelamantula, 2020) (GAN-
DO). Our multi-class-discriminator GAN (Sec. 4.1)
(GAN-MC); Our GAN variant with two discrimina-
tors (Sec. 4.2) (GAN-DD); GAN-DD-a is included
in Appendix D.3.

Metrics. We score each model on three metrics. 1)
Invalidity – the fraction of generated samples that violate the constraints (negative samples). 2) Maximum
Mean Discrepancy (MMD), a common distributional similarity metric. 3) F1 score for generative models, as
proposed in (Sajjadi et al., 2018). We present an expanded study with more metrics in Appendix D.3.

6

Under review as submission to TMLR

Results. Figure 5 plots the datasets and the generated distributions of several select models (vanilla GAN
and the two NDGMs we propose). Our GAN-MC, and GAN-DD variants both achieve near-perfect constraint
satisfaction compared to the vanilla model. Plots for all 16 models are included in Appendix D.3.

Table 1 presents scores across all models (expanded tables included in Appendix D.3). Both our GAN-
MC and GAN-DD variants score within the top three models for each of the metrics. Furthermore, they
both outperform GAN-DO, the previous state-of-the-art formulation in every metric. Note that GAN-DO
underperforms certain baselines, such as training with a frozen classifier loss (GAN-CL). In general, most
NDGM baselines like classifier loss (-CL) and rejection sampling (-Rej) significantly outperform vanilla models.
In all, our proposed GAN-MC and GAN-DD models achieve the highest performance across all metrics.
5.2 How Much Negative Data is Enough?
Table 2: Comparison of invalidity metric for NDGM models trained with different numbers of positive datapoints
(Np) and negative datapoints (Nn). NDGMs can generate many times fewer constraint-violating samples, even when
trained on orders of magnitude less data. A GAN-DD is benchmarked when Nn > 0, otherwise a vanilla GAN is
benchmarked. Scores are averaged over four instantiations. Lower is better.

(a) Models

Negative
Samples

GAN 0
GAN-DD 1K
GAN-DD 4K
GAN-DD 16K

(b) Problem 1

Positive Samples
1K 4K 16K

10.3% 10.0% 12.3%
0.6% 0.3% 0.3%
0.2 % 0.3% 0.4%
0.2 % 0.1% 0.3%

(c) Problem 2

Positive Samples
1K 4K 16K

2.4% 2.3% 5.9%
0.8% 0.6% 0.6%
0.2% 0.3% 0.5%
0.2% 0.2% 0.1%

In the realm of generative models, it is theoretically possible to exactly recover the underlying data distribution,
px, when provided with an infinite amount of data, model capacity, and computational resources. However,
in practical scenarios where data throughput and computing are not only finite but limited, like engineering
design and scientific research, simply increasing the volume of data is not a viable strategy to improve
constraint satisfaction. Fortunately, we find that NDGMs can be significantly more data-efficient than vanilla
generative models. In Table 2, we present empirical evidence to support our arguments. By solely increasing
the amount of positive data without incorporating negative data (first row - vanilla GAN), we observed
no reduction in invalidity metric, despite a 16x increase in positive data. Conversely, when we introduce a
modest proportion of negative data (6% – Nn = 1K, Np = 16K), we can achieve a 10-40x reduction in the
rate of invalid sample generation. Furthermore, we can even remove much of the positive data with only
minor performance drops. Notably, even with 1k positive and 1k negative data points, NDGMs generate
7-20x fewer invalid samples compared to models trained on 16K positive data points. These experiments
demonstrate that NDGMs can significantly (7-20x) outperform vanilla models using a fraction (13%) of the
data. Importantly, practitioners seeking to improve their generative models may achieve much more value by
collecting negative data, rather than additional positive data.
5.3 Handling Connectivity and Stability Constraints

A

B

C

A

B

C

A

C

B

Connected & Stable Unstable Disconnected

𝜖!"

𝜖#$

Figure 3: Overview of constraints in stacked blocks prob-
lem. Our goal is to generate valid stacks of blocks (left)
that are (I) connected and (II) stable. Stacks that violate
either the connectivity or stability constraint are considered
invalid.

Block-stacking problems have long been studied as
a case study in ‘intuitive physics’ (Battaglia et al.,
2013; Riochet et al., 2020), on which many predictive
and generative computational approaches have been
tested (Hamrick et al., 2018; Smith et al., 2019b).
In this study, we address an intuitive block-stacking
problem featuring connectivity and stability con-
straints. These constraints are reflective of common
engineering constraints related to interfacing of me-
chanical components and assembly-level functional
requirements. Therefore, the block stacking prob-
lem is a representative, yet intuitive case study for

7

Under review as submission to TMLR

engineering applications. The constraints are defined as follows: (i) connectivity: Blocks must stack
without floating or intersecting up to a prescribed tolerance, and (ii) stability: Any block (or sub-stack)
must overlap with its support in such a way that its ‘center of mass’ falls in the supporting blocks’ area.
Therefore, the positive data consists of stable & connected stacks, while the negative data consists of unstable
& connected, stable & disconnected, and unstable & disconnected stacks.

Table 3: Constraint satisfaction on block stacking problem.
Blocks are floating or intersecting if the distance between
their touching edges is larger than 0.9 mm (the minimum
distance between constraints in the negative data is 1 mm).
b: base block; m: middle block; t: top block. For floating
yb < ym and for intersecting yb > ym.

Metrics GAN GAN-DO GAN-DD
↓ Median(|y1

b − y0
m|) 2.78 mm 5.12 mm 0.54 mm

↓ Median(|y1
m − y0

t |) 2.12 mm 1.91 mm 0.83 mm

↓ Floating(yb,ym) 20.44 % 14.47 % 13.78 %
↓ Floating(ym,yt) 38.04 % 20.73 % 13.94 %
↓ Intersect(yb,ym) 64.59 % 77.20 % 0.00 %
↓ Intersect(ym,yt) 43.80 % 54.82 % 30.79 %
↑ Connected(yb,ym) 14.96 % 8.32 % 86.21 %
↑ Connected(ym,yt) 18.15 % 24.44 % 55.26 %
↑ Connected & Stable 3.28 % 8.85 % 36.02 %

Fulfilling Constraints. We train a vanilla model
using only the positive data, and two NDGMs: a
GAN-DO (as in (Sinha et al., 2021) and (Asokan
& Seelamantula, 2020)) and our proposed GAN-DD,
which leverages Eq. 12. We test on 20 splits (1000
samples each) and report scores in Table 3, where
we break down constraint satisfaction into individual
scores. GAN-DD outperforms the base model and
the GAN-DO by a large margin in most constraint-
satisfaction scores, with fewer intersecting and float-
ing blocks, and in particular on global connectiv-
ity between boxes, indicating that the GAN-DD
approach is effective in improving constraint satis-
faction in situations where precision is important.
Factoring in stability, we see an even larger gap be-
tween the baselines and our model, emphasizing the
challenges in fulfilling multiple sets of fine-grained
constraints. These experiments are reported in Ap-
pendix F, alongside more visualizations.

Figure 4: Block placement by NDGM (w/ negative) vs
vanilla model (w/o negative). The two vertical grey lines
indicate the acceptable tolerance such that the constraints
are considered satisfied. Our GAN-DD greatly reduces the
overlap or air gap between blocks compared to a GAN,
demonstrating its aptitude for constraint satisfaction.

We also plot the distance distribution between blocks
with and without negative data (Fig. 4). In the ab-
sence of negative data, the relative placement of
blocks is much less precise, resulting in significant
overlap (negative distance values) or gaps (positive
distance values). When leveraging negative data,
even when the constraints are not fulfilled, the er-
rors have a much smaller magnitude, providing ad-
ditional qualitative evidence of the effectiveness and
importance of using negative data for fine-grained
constraint satisfaction.
5.4 Negative Data in Engineering Tasks
Generative models are commonly use to tackle en-
gineering problems with constraints (Oh et al., 2019;
Nie et al., 2021), but are often criticized for their
inability to satisfy them (Woldseth et al., 2022; Re-
genwetter et al., 2023). To assess how our NDGMs
fare in real engineering problems, we next bench-
mark the same 16 methods as in Sec. 5.1 on a dozen
diverse engineering tasks, which are discussed in de-
tail in Appendix G. These problems span numerous
engineering disciplines including assorted industrial
design tasks (compression spring, gearbox, heat exchanger, pressure vessel), structural and material design
tasks (Ashby chart, cantilever beam, reinforced concrete, truss, welded beam), and several complex high-level
design problems: Ship hulls with hydrodynamic constraints; bike frames with loading requirements; automobile
chassis with performance requirements in impact testing. A variety of constraints are applied, including
engineering standards from authoritative bodies like the American Concrete Institute (ACI), the American
Society of Mechanical Engineers (ASME), and the European Enhanced Vehicle-Safety Committee (EEVC).

8

Under review as submission to TMLR

Table 4: Constraint Satisfaction on 9 Engineering Bench-
marks. Percentage (%) of generated samples violating con-
straints is shown. Best is bolded. Smaller (↓) is better.
Scores are averaged over three instantiations. Problems
are sorted by the invalidity of the baseline GAN model.
Our GAN-MC outperforms GAN-DO on problems that the
vanilla GAN struggles with (i.e. hard engineering problems
where NDGMs are especially needed).

Dataset GAN GAN-DO GAN-MC
Compression Spring 2.01 0.31 0.55
Ashby Chart 2.35 2.24 3.22
Pressure Vessel 2.64 0.05 0.38
Welded Beam 2.86 0.64 1.25
Bike Frame 6.02 7.32 5.89
Heat Exchanger 7.75 6.41 4.64
Cantilever Beam 8.22 5.27 4.67
Car Impact 10.43 6.00 5.33
Ship Hull 98.0 96.4 94.3

We include the scores across the same 16 models
tested in Sec. 5.1, all 12 engineering problems, and a
larger set of metrics in Appendix G. Shown in Fig. 4
are invalidity scores over a subset of models and
problems (problems where a vanilla model is already
> 99% successful in generating positive samples are
considered to be ‘solved’ and are only shown in Ap-
pendix G). The median score over three training runs
is shown. In every problem, either the discriminator
overloading GAN (GAN-DO) or our multiclass dis-
criminator model (GAN-MC) are the top performers,
indicating that negative data GANs significantly out-
perform the vanilla GAN. However, on the problems
where the vanilla model struggles, our GAN-MC
model outperforms GAN-DO. Specifically, GAN-DO
is only the top performer on problems where the
vanilla model is already at least 97% successful in
generating positive samples. Poor validity scores
are expected on the ship hull dataset because most
constraints are not represented in the negative data (thus, for the majority of constraints, NDGMs have no
natural advantage over vanilla models). However GAN-MC still manages to generate valid designs at 2.8x the
rate of the GAN and over 1.6x the rate of GAN-DO. Notably, simple baselines (rejection sampling, classifier
loss) also perform much better than vanilla models, as demonstrated in Appendix G. Additionally, we find that
likelihood-based models outperform GANs in constraint satisfaction but lag behind in distributional similarity
in many problems. All in all, NDGMs display a widespread dominance over their vanilla counterparts across
a variety of engineering tasks, with our proposed GAN-MC excelling in more challenging ones.
5.5 Negative Data in High-Dimensional Problems

(a) Positive (b) Negative

Figure 5: Examples of Positive and Negative Topologies.

Having tested a variety of tabular engineering prob-
lems, we next consider whether our proposed meth-
ods can translate to higher-dimensional image do-
mains such as images. We examine a common engi-
neering design problem known as topology optimiza-
tion (TO), which seeks to optimally distribute mate-
rial in a spatial domain to achieve a certain objective
(often minimizing mechanical compliance) (Sigmund
& Maute, 2013). Simply put, TO is often used to
create structures with high rigidity and low weight.
The use of generative models for TO is very popu-
lar (Shin et al., 2023), but existing methods have
been criticized for significant shortcomings (Wold-
seth et al., 2022) related to constraint satisfaction, such as generated topologies not being fully connected.
Disconnected topologies tend to be highly sub-optimal and are impractical to fabricate.

Table 5: Constraint Satisfaction on Topology Optimization Problem. Best is bolded. Our GAN-MC outperforms
GAN, both generating fewer invalid designs and generating designs with less severe constraint violations. However, the
quality of the negative data has a significant impact on GAN-MC’s performance. When trained on “harder” negative
data (rejected samples from a vanilla model), it performs better than when trained on “easier” procedurally-generated
negative data.

Invalidity (%) ↓ Invalidity (Pixels) ↓
GAN 36.3 1.28
GAN-MC (Synthetic negative data) 24.4 0.38
GAN-MC (Rejected negative data) 16.0 0.29

9

Under review as submission to TMLR

To address this, we train NDGMs using disconnected topologies as negative data, using the classification
guidance dataset from (Mazé & Ahmed, 2023). This dataset features procedurally-generated synthetic
negatives with artificially-added floating components. We also replace the negatives in the dataset with
disconnected topologies generated by a vanilla GAN trained on the positive data. These rejected negatives
are “harder” negatives (closer to the positive distribution) and are hence more informative than the synthetic
negatives. In evaluating models, we measure the proportion of generated topologies with disconnected
components, as well as the average number of disconnected pixels in each generated topology. A vanilla GAN
generates many more invalid topologies than either GAN-MC variant. As expected, the stronger negatives
generated through rejection sampling result in superior performance. Compared to the stronger GAN-MC,
the vanilla GAN generates 2.3x as many invalid topologies and violates constraints by 4.4x the severity.
Additional details are included in Appendix H.
6 Discussion & Conclusion
Deconflating fakes and negatives. We presented two new NDGM formulations which separately estimate
several density ratios to better learn a true data distribution, rather than conflating fakes and negatives as
done in the current SOTA. Our models dominate in highly non-convex 2D problems and outperform baselines
in the 5 most challenging engineering problems tested. Our methods also excel in a block stacking problem,
generating 11x and 4x more valid stacks than vanilla models and the previous SOTA, respectively. Finally,
our methods outperform baselines by 4x in an image-based topology optimization problem.

GANs versus diffusion models using negative data. Despite the growing popularity of diffusion
models, GANs remain state of the art in many engineering design problems. Having benchmarked DDPMs
in several of the problems tested, we find this statement to hold true in the context of NDGMs. Although
negative-data-augmented DDPMs surpassed our GAN models in some metrics, this typically came at the
expense of others. Conversely, GANs outperformed across all metrics in several problems (Sec. 5.1, for
example). We look forward to future research which advances the capabilities of negative data diffusion
models and makes them more viable in engineering design.

NDGMs are underutilized. We believe NDGMs are underutilized in engineering design. This assertion is
substantiated by several observations: 1) The widespread use of vanilla models in engineering design (Re-
genwetter et al., 2022a). 2) The relatively low cost of collecting negative data versus positive data in many
engineering contexts. 3) The overwhelming dominance of NDGMs over vanilla models in our engineering
benchmarks. 4) The data-efficiency improvements we demonstrated using negative data. Though our methods
achieved SOTA performance in many problems, even the simple baseline NDGMs that we tested significantly
outperform their vanilla counterparts. Therefore, we generally advocate for the increased use of NDGMs in
engineering design.

Generating high-quality negative data. Selecting strategies to generate negative data is an important
research question. In the final case study on topology optimization, rejection sampling resulted in “stronger”
negative data than the procedural generation method. It also required access to an oracle (constraint
evaluator), which may be unavailable or prohibitively expensive in some applications. However, there are
not always cheap, viable procedural generation approaches for negative data either. Effective negative data
generation remains largely problem-dependent and the relative quality of negative data generation approaches
is not necessarily straightforward. We anticipate that domain-agnostic methods to generate high-quality
negative data could pair well with NDGMs and expand their impact.
Limitations. As we demonstrate, NDGMs are sensitive to the quality of their negative training data.
Although negative data is often cheaper than positive data in engineering design problems, generating
high-quality negative data may be challenging in some domains. In other domains, sourcing any kind of
negative data may be impossible. In domains where high-quality negative data is unavailable, NDGMs will
naturally be impractical.

Conclusion. In this paper, we presented two new Negative-Data Generative Models (NDGMs). We
demonstrated that these models outperform more than a dozen other formulations in extensive benchmarks
across several test problems and a dozen real engineering problems. We displayed that simple baseline
NDGMs also achieve strong performance compared to vanilla models, demonstrating the general potency of
NDGMs. Notably, we showed that NDGMs can often be much more data-efficient than classic models.

10

Under review as submission to TMLR

References
Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In

International conference on machine learning, ICML’17, pp. 214–223. PMLR, JMLR.org, 2017.

Siddarth Asokan and Chandra Seelamantula. Teaching a gan what not to learn. Advances in Neural
Information Processing Systems, 33:3964–3975, 2020.

Noah J Bagazinski and Faez Ahmed. Ship-d: Ship hull dataset for design optimization using machine learning.
arXiv preprint arXiv:2305.08279, 2023.

Peter W Battaglia, Jessica B Hamrick, and Joshua B Tenenbaum. Simulation as an engine of physical scene
understanding. Proceedings of the National Academy of Sciences, 110(45):18327–18332, 2013.

Mohammad Mahdi Behzadi and Horea T. Ilieş. GANTL: Toward Practical and Real-Time Topology
Optimization With Conditional Generative Adversarial Networks and Transfer Learning. Journal of
Mechanical Design, 144(2), 12 2021. ISSN 1050-0472. doi: 10.1115/1.4052757. URL https://doi.org/10.
1115/1.4052757. 021711.

Martin Philip Bendsøe and Noboru Kikuchi. Generating optimal topologies in structural design using a
homogenization method. Computer Methods in Applied Mechanics and Engineering, 71(2):197–224, 11
1988. ISSN 00457825. doi: 10.1016/0045-7825(88)90086-2. URL https://linkinghub.elsevier.com/
retrieve/pii/0045782588900862.

Camille Bilodeau, Wengong Jin, Tommi Jaakkola, Regina Barzilay, and Klavs F Jensen. Generative models
for molecular discovery: Recent advances and challenges. Wiley Interdisciplinary Reviews: Computational
Molecular Science, 12(5):e1608, 2022.

Ramin Bostanabad, Yichi Zhang, Xiaolin Li, Tucker Kearney, L Catherine Brinson, Daniel W Apley,
Wing Kam Liu, and Wei Chen. Computational microstructure characterization and reconstruction: Review
of the state-of-the-art techniques. Progress in Materials Science, 95:1–41, 2018.

Andrew Brock, Theodore Lim, James Millar Ritchie, and Nick Weston. Context-aware content generation
for virtual environments. In International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference, volume 50084, pp. V01BT02A045. American Society of Mechanical
Engineers, 2016.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. arXiv preprint
arXiv:1509.00519, 2015.

Ruijin Cang, Hechao Li, Hope Yao, Yang Jiao, and Yi Ren. Improving direct physical properties prediction
of heterogeneous materials from imaging data via convolutional neural network and a morphology-aware
generative model. Computational Materials Science, 150:212–221, 2018.

George Casella and Roger L. Berger. Statistical Inference. Duxbury, Pacific Grove, CA, 2002.

Michael Chang, Alyssa L Dayan, Franziska Meier, Thomas L Griffiths, Sergey Levine, and Amy Zhang. Neural
constraint satisfaction: Hierarchical abstraction for combinatorial generalization in object rearrangement.
arXiv preprint arXiv:2303.11373, 2023.

Hongrui Chen and Xingchen Liu. Geometry enhanced generative adversarial networks for random heteroge-
neous material representation. In International Design Engineering Technical Conferences and Computers
and Information in Engineering Conference, IDETC-21, Virtual, Online, Aug 2021. ASME.

Qiuyi Chen, Jun Wang, Phillip Pope, Wei Chen, and Mark Fuge. Inverse design of two-dimensional airfoils
using conditional generative models and surrogate log-likelihoods. Journal of Mechanical Design, 144(2):
021712, 2022.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. In International conference on machine learning, pp. 1597–1607. PMLR,
2020.

11

https://doi.org/10.1115/1.4052757
https://doi.org/10.1115/1.4052757
https://linkinghub.elsevier.com/retrieve/pii/0045782588900862
https://linkinghub.elsevier.com/retrieve/pii/0045782588900862

Under review as submission to TMLR

Wei Chen and Faez Ahmed. Mo-padgan: Reparameterizing engineering designs for augmented multi-objective
optimization. Applied Soft Computing, 113:107909, 2021a.

Wei Chen and Faez Ahmed. Padgan: Learning to generate high-quality novel designs. Journal of Mechanical
Design, 143(3):031703, 2021b.

Wei Chen and Mark Fuge. Béziergan: Automatic generation of smooth curves from interpretable low-
dimensional parameters. arXiv preprint arXiv:1808.08871, 2018.

Wei Chen and Mark Fuge. Synthesizing designs with interpart dependencies using hierarchical generative
adversarial networks. Journal of Mechanical Design, 141(11):111403, 2019.

Wei Chen, Kevin Chiu, and Mark Fuge. Aerodynamic design optimization and shape exploration using
generative adversarial networks. In AIAA Scitech 2019 Forum, pp. 2351, 2019.

Yu Cheng, Yongshun Gong, Yuansheng Liu, Bosheng Song, and Quan Zou. Molecular design in drug discovery:
a comprehensive review of deep generative models. Briefings in bioinformatics, 22(6):bbab344, 2021.

Kristy Choi, Chenlin Meng, Yang Song, and Stefano Ermon. Density ratio estimation via infinitesimal
classification. In International Conference on Artificial Intelligence and Statistics, pp. 2552–2573. PMLR,
2022.

Matthew Dering, James Cunningham, Raj Desai, Michael A Yukish, Timothy W Simpson, and Conrad S
Tucker. A physics-based virtual environment for enhancing the quality of deep generative designs. In
International Design Engineering Technical Conferences and Computers and Information in Engineering
Conference, volume 51753, pp. V02AT03A015. American Society of Mechanical Engineers, 2018.

Shrinath Deshpande and Anurag Purwar. Computational creativity via assisted variational synthesis of
mechanisms using deep generative models. Journal of Mechanical Design, 141(12), 2019.

Shrinath Deshpande and Anurag Purwar. An Image-Based Approach to Variational Path Synthesis of
Linkages. Journal of Computing and Information Science in Engineering, 21(2), 10 2020. ISSN 1530-9827.
doi: 10.1115/1.4048422. URL https://doi.org/10.1115/1.4048422. 021005.

Nikolaos Dionelis, Sotirios A Tsaftaris, and Mehrdad Yaghoobi. Omasgan: Out-of-distribution minimum
anomaly score gan for anomaly detection. In 2022 Sensor Signal Processing for Defence Conference (SSPD),
pp. 1–5. IEEE, 2022.

Mohamed Elfeki, Camille Couprie, Morgane Riviere, and Mohamed Elhoseiny. Gdpp: Learning diverse
generations using determinantal point processes. In International conference on machine learning, pp.
1774–1783. PMLR, 2019.

Cristóbal Esteban, Stephanie L Hyland, and Gunnar Rätsch. Real-valued (medical) time series generation
with recurrent conditional gans. arXiv preprint arXiv:1706.02633, 2017.

Amir Hossein Gandomi and Xin-She Yang. Benchmark problems in structural optimization. In Computational
optimization, methods and algorithms, pp. 259–281. Springer, 2011.

Amir Hossein Gandomi, Xin-She Yang, and Amir Hossein Alavi. Mixed variable structural optimization
using firefly algorithm. Computers & Structures, 89(23-24):2325–2336, 2011.

Giorgio Giannone and Faez Ahmed. Diffusing the optimal topology: A generative optimization approach. In
International Design Engineering Technical Conferences and Computers and Information in Engineering
Conference, volume 87301, pp. V03AT03A012. American Society of Mechanical Engineers, 2023.

Giorgio Giannone, Akash Srivastava, Ole Winther, and Faez Ahmed. Aligning optimization trajectories with
diffusion models for constrained design generation. Advances in Neural Information Processing Systems,
36, 2024.

12

https://doi.org/10.1115/1.4048422

Under review as submission to TMLR

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural information processing
systems, NIPS’14, pp. 2672–2680, Cambridge, MA, USA, 2014. MIT Press.

Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation principle for
unnormalized statistical models. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pp. 297–304. JMLR Workshop and Conference Proceedings, 2010.

Jessica B Hamrick, Kelsey R Allen, Victor Bapst, Tina Zhu, Kevin R McKee, Joshua B Tenenbaum, and
Peter W Battaglia. Relational inductive bias for physical construction in humans and machines. arXiv
preprint arXiv:1806.01203, 2018.

Amin Heyrani Nobari, Wei (Wayne) Chen, and Faez Ahmed. RANGE-GAN: Design Synthesis Under
Constraints Using Conditional Generative Adversarial Networks. Journal of Mechanical Design, pp. 1–16,
09 2021. ISSN 1050-0472. doi: 10.1115/1.4052442. URL https://doi.org/10.1115/1.4052442.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing
Systems, volume 33, pp. 6840–6851. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.

Fergus Imrie, Anthony R Bradley, Mihaela van der Schaar, and Charlotte M Deane. Deep generative models
for 3d linker design. Journal of chemical information and modeling, 60(4):1983–1995, 2020.

Cole Jetton, Matthew Campbell, and Christopher Hoyle. Constraining the Feasible Design Space in Bayesian
Optimization With User Feedback. Journal of Mechanical Design, 146(4):041703, 11 2023. ISSN 1050-0472.
doi: 10.1115/1.4063906. URL https://doi.org/10.1115/1.4063906.

Mahmut Kaya and Hasan Şakir Bilge. Deep metric learning: A survey. Symmetry, 11(9):1066, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

Jin-Woong Lee, Nam Hoon Goo, Woon Bae Park, Myungho Pyo, and Kee-Sun Sohn. Virtual microstructure
design for steels using generative adversarial networks. Engineering Reports, 3(1):e12274, 2021.

Baotong Li, Congjia Huang, Xin Li, Shuai Zheng, and Jun Hong. Non-iterative structural topology
optimization using deep learning. Computer-Aided Design, 115:172–180, 2019. ISSN 0010-4485. doi:
https://doi.org/10.1016/j.cad.2019.05.038. URL https://www.sciencedirect.com/science/article/
pii/S001044851930185X.

Runze Li, Yufei Zhang, and Haixin Chen. Learning the aerodynamic design of supercritical airfoils through
deep reinforcement learning. AIAA Journal, pp. 1–14, 2021.

Xiang Li, Shaowu Ning, Zhanli Liu, Ziming Yan, Chengcheng Luo, and Zhuo Zhuang. Designing phononic
crystal with anticipated band gap through a deep learning based data-driven method. Computer Methods
in Applied Mechanics and Engineering, 361:112737, 2020.

Siyan Liu, Zhi Zhong, Ali Takbiri-Borujeni, Mohammad Kazemi, Qinwen Fu, and Yuhao Yang. A case study
on homogeneous and heterogeneous reservoir porous media reconstruction by using generative adversarial
networks. Energy Procedia, 158:6164–6169, 2019.

Zhaocheng Liu, Lakshmi Raju, Dayu Zhu, and Wenshan Cai. A hybrid strategy for the discovery and design
of photonic structures. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 10(1):
126–135, 2020.

Manoj Malviya. A systematic study of deep generative models for rapid topology optimization. 2020.

13

https://doi.org/10.1115/1.4052442
https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://doi.org/10.1115/1.4063906
https://www.sciencedirect.com/science/article/pii/S001044851930185X
https://www.sciencedirect.com/science/article/pii/S001044851930185X

Under review as submission to TMLR

F. Mazé and F. Ahmed. Diffusion models beat gans on topology optimization. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), Washington, DC, 2023. URL https://arxiv.org/abs/2208.
09591.

Olof Mogren. C-rnn-gan: Continuous recurrent neural networks with adversarial training. arXiv preprint
arXiv:1611.09904, 2016.

Shakir Mohamed and Balaji Lakshminarayanan. Learning in implicit generative models. arXiv preprint
arXiv:1610.03483, 2016.

Lukas Mosser, Olivier Dubrule, and Martin J Blunt. Reconstruction of three-dimensional porous media using
generative adversarial neural networks. Physical Review E, 96(4):043309, 2017.

Ramaravind K Mothilal, Amit Sharma, and Chenhao Tan. Explaining machine learning classifiers through
diverse counterfactual explanations. In Proceedings of the 2020 conference on fairness, accountability, and
transparency, pp. 607–617, 2020.

Zhenguo Nie, Tong Lin, Haoliang Jiang, and Levent Burak Kara. Topologygan: Topology optimization using
generative adversarial networks based on physical fields over the initial domain. Journal of Mechanical
Design, 143(3):031715, 2021.

Amin Heyrani Nobari, Wei Chen, and Faez Ahmed. Pcdgan: A continuous conditional diverse generative
adversarial network for inverse design. arXiv preprint arXiv:2106.03620, 2021.

Amin Heyrani Nobari, Wei Chen, and Faez Ahmed. Range-constrained generative adversarial network:
Design synthesis under constraints using conditional generative adversarial networks. Journal of Mechanical
Design, 144(2), 2022.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers using
variational divergence minimization. Advances in neural information processing systems, 29, 2016.

Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with auxiliary classifier
gans. In International conference on machine learning, pp. 2642–2651. PMLR, 2017.

Sangeun Oh, Yongsu Jung, Ikjin Lee, and Namwoo Kang. Design automation by integrating generative
adversarial networks and topology optimization. In International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference, volume 51753, pp. V02AT03A008. American
Society of Mechanical Engineers, 2018.

Sangeun Oh, Yongsu Jung, Seongsin Kim, Ikjin Lee, and Namwoo Kang. Deep generative design: Integration
of topology optimization and generative models. Journal of Mechanical Design, 141(11), 2019.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive coding.
arXiv preprint arXiv:1807.03748, 2018.

Wamiq Para, Shariq Bhat, Paul Guerrero, Tom Kelly, Niloy Mitra, Leonidas J Guibas, and Peter Wonka.
Sketchgen: Generating constrained cad sketches. Advances in Neural Information Processing Systems, 34:
5077–5088, 2021.

Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex Alemi, and George Tucker. On variational bounds of
mutual information. In International Conference on Machine Learning, pp. 5171–5180. PMLR, 2019.

Sharad Rawat and MH Herman Shen. Application of adversarial networks for 3d structural topology
optimization. Technical report, SAE Technical Paper, 2019.

Lyle Regenwetter and Faez Ahmed. Design target achievement index: A differentiable metric to enhance
deep generative models in multi-objective inverse design. In International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference, volume 86236, pp. V03BT03A046.
American Society of Mechanical Engineers, 2022.

14

https://arxiv.org/abs/2208.09591
https://arxiv.org/abs/2208.09591

Under review as submission to TMLR

Lyle Regenwetter, Brent Curry, and Faez Ahmed. BIKED: A dataset and machine learning benchmarks for
data-driven bicycle design. In International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference, IDETC-21, Virtual, Online, Aug 2021. ASME.

Lyle Regenwetter, Amin Heyrani Nobari, and Faez Ahmed. Deep generative models in engineering design: A
review. Journal of Mechanical Design, 144(7):071704, 2022a.

Lyle Regenwetter, Colin Weaver, and Faez Ahmed. Framed: Data-driven structural performance analysis of
community-designed bicycle frames, 2022b.

Lyle Regenwetter, Akash Srivastava, Dan Gutfreund, and Faez Ahmed. Beyond statistical similarity:
Rethinking metrics for deep generative models in engineering design. arXiv preprint arXiv:2302.02913,
2023.

Benjamin Rhodes, Kai Xu, and Michael U Gutmann. Telescoping density-ratio estimation. Advances in
neural information processing systems, 33:4905–4916, 2020.

Ronan Riochet, Mario Ynocente Castro, Mathieu Bernard, Adam Lerer, Rob Fergus, Véronique Izard, and
Emmanuel Dupoux. Intphys: A framework and benchmark for visual intuitive physics reasoning. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2020.

Stuart J Russell. Artificial intelligence a modern approach. Pearson Education, Inc., 2010.

Mikael Sabuhi, Ming Zhou, Cor-Paul Bezemer, and Petr Musilek. Applications of generative adversarial
networks in anomaly detection: a systematic literature review. Ieee Access, 9:161003–161029, 2021.

Mehdi SM Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, and Sylvain Gelly. Assessing generative
models via precision and recall. Advances in neural information processing systems, 31, 2018.

Ari Seff, Wenda Zhou, Nick Richardson, and Ryan P Adams. Vitruvion: A generative model of parametric
cad sketches. arXiv preprint arXiv:2109.14124, 2021.

Shashank Sharma and Anurag Purwar. Path synthesis of defect-free spatial 5-ss mechanisms using machine
learning. In International Design Engineering Technical Conferences and Computers and Information in
Engineering Conference, volume 83990, pp. V010T10A034. American Society of Mechanical Engineers,
2020.

Conner Sharpe and Carolyn Conner Seepersad. Topology design with conditional generative adversarial
networks. In International Design Engineering Technical Conferences and Computers and Information in
Engineering Conference, volume 59186, pp. V02AT03A062. American Society of Mechanical Engineers,
2019.

Seungyeon Shin, Dongju Shin, and Namwoo Kang. Topology optimization via machine learning and deep
learning: A review. Journal of Computational Design and Engineering, 10(4):1736–1766, 2023.

Dule Shu, James Cunningham, Gary Stump, Simon W Miller, Michael A Yukish, Timothy W Simpson, and
Conrad S Tucker. 3d design using generative adversarial networks and physics-based validation. Journal of
Mechanical Design, 142(7):071701, 2020.

Ole Sigmund and Kurt Maute. Topology optimization approaches: A comparative review. Structural and
Multidisciplinary Optimization, 48(6):1031–1055, 2013. ISSN 1615-147X. doi: 10.1007/s00158-013-0978-6.

Abhishek Sinha, Kumar Ayush, Jiaming Song, Burak Uzkent, Hongxia Jin, and Stefano Ermon. Negative
data augmentation. arXiv preprint arXiv:2102.05113, 2021.

Kevin Smith, Lingjie Mei, Shunyu Yao, Jiajun Wu, Elizabeth Spelke, Josh Tenenbaum, and Tomer Ullman.
Modeling expectation violation in intuitive physics with coarse probabilistic object representations. Advances
in neural information processing systems, 32, 2019a.

15

Under review as submission to TMLR

Kevin A. Smith, Lingjie Mei, Shunyu Yao, Jiajun Wu, Elizabeth S. Spelke, Joshua B. Tenenbaum, and
Tomer David Ullman. Modeling expectation violation in intuitive physics with coarse probabilistic object
representations. In Neural Information Processing Systems, 2019b.

Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther. Ladder variational
autoencoders. In Advances in neural information processing systems, pp. 3738–3746, 2016.

Akash Srivastava, Lazar Valkov, Chris Russell, Michael U. Gutmann, and Charles Sutton. Veegan: Reducing
mode collapse in gans using implicit variational learning. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 30, pp. 3308–3318. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/
2017/file/44a2e0804995faf8d2e3b084a1e2db1d-Paper.pdf.

Akash Srivastava, Seungwook Han, Kai Xu, Benjamin Rhodes, and Michael U. Gutmann. Estimating the
density ratio between distributions with high discrepancy using multinomial logistic regression. Transactions
on Machine Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/forum?id=
jM8nzUzBWr.

Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori. Density ratio estimation in machine learning.
Cambridge University Press, 2012a.

Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori. Density ratio estimation in machine learning.
Cambridge University Press, 2012b.

Ren Kai Tan, Nevin L Zhang, and Wenjing Ye. A deep learning–based method for the design of microstructural
materials. Structural and Multidisciplinary Optimization, 61(4):1417–1438, 2020.

Yingheng Tang, Keisuke Kojima, Toshiaki Koike-Akino, Ye Wang, Pengxiang Wu, Mohammad Tahersima,
Devesh Jha, Kieran Parsons, and Minghao Qi. Generative deep learning model for a multi-level nano-optic
broadband power splitter. In 2020 Optical Fiber Communications Conference and Exhibition (OFC), pp.
1–3. IEEE, 2020.

Sofia Valdez, Carolyn Seepersad, and Sandilya Kambampati. A framework for interactive structural design
exploration. In International Design Engineering Technical Conferences and Computers and Information
in Engineering Conference, IDETC-21, Virtual, Online, Aug 2021. ASME.

Jun Wang, Wei Wayne Chen, Daicong Da, Mark Fuge, and Rahul Rai. Ih-gan: A conditional generative model
for implicit surface-based inverse design of cellular structures. Computer Methods in Applied Mechanics
and Engineering, 396:115060, 2022.

Liwei Wang, Yu-Chin Chan, Faez Ahmed, Zhao Liu, Ping Zhu, and Wei Chen. Deep generative modeling for
mechanistic-based learning and design of metamaterial systems. Computer Methods in Applied Mechanics
and Engineering, 372:113377, 2020.

Eamon Whalen, Azariah Beyene, and Caitlin Mueller. Simjeb: simulated jet engine bracket dataset. In
Computer Graphics Forum, volume 40, pp. 9–17. Wiley Online Library, 2021.

Rebekka V Woldseth, Niels Aage, J Andreas Bærentzen, and Ole Sigmund. On the use of artificial neural
networks in topology optimisation. Structural and Multidisciplinary Optimization, 65(10):294, 2022.

Patricia Wollstadt, Mariusz Bujny, Satchit Ramnath, Jami J Shah, Duane Detwiler, and Stefan Menzel.
Carhoods10k: An industry-grade data set for representation learning and design optimization in engineering
applications. IEEE Transactions on Evolutionary Computation, 26(6):1221–1235, 2022.

Tianju Xue, Thomas J Wallin, Yigit Menguc, Sigrid Adriaenssens, and Maurizio Chiaramonte. Machine
learning generative models for automatic design of multi-material 3d printed composite solids. Extreme
Mechanics Letters, 41:100992, 2020.

Xin-She Yang and Amir Hossein Gandomi. Bat algorithm: a novel approach for global engineering optimization.
Engineering computations, 29(5):464–483, 2012.

16

https://proceedings.neurips.cc/paper/2017/file/44a2e0804995faf8d2e3b084a1e2db1d-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/44a2e0804995faf8d2e3b084a1e2db1d-Paper.pdf
https://openreview.net/forum?id=jM8nzUzBWr
https://openreview.net/forum?id=jM8nzUzBWr

Under review as submission to TMLR

Zijiang Yang, Xiaolin Li, L Catherine Brinson, Alok N Choudhary, Wei Chen, and Ankit Agrawal. Microstruc-
tural materials design via deep adversarial learning methodology. Journal of Mechanical Design, 140(11),
2018.

Emre Yilmaz and Brian German. Conditional generative adversarial network framework for airfoil inverse
design. In AIAA aviation 2020 forum, pp. 3185, 2020.

Yonggyun Yu, Taeil Hur, Jaeho Jung, and In Gwun Jang. Deep learning for determining a near-optimal
topological design without any iteration. Structural and Multidisciplinary Optimization, 59(3):787–799,
2019.

Muhammad Zaigham Zaheer, Jin-ha Lee, Marcella Astrid, and Seung-Ik Lee. Old is gold: Redefining the
adversarially learned one-class classifier training paradigm. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 14183–14193, 2020.

Hui Zhang, Lei Yang, Changjian Li, Bojian Wu, and Wenping Wang. Scaffoldgan: Synthesis of scaffold
materials based on generative adversarial networks. Computer-Aided Design, 138:103041, 2021. ISSN
0010-4485. doi: https://doi.org/10.1016/j.cad.2021.103041. URL https://www.sciencedirect.com/
science/article/pii/S001044852100052X.

Wentai Zhang, Zhangsihao Yang, Haoliang Jiang, Suyash Nigam, Soji Yamakawa, Tomotake Furuhata,
Kenji Shimada, and Levent Burak Kara. 3d shape synthesis for conceptual design and optimization using
variational autoencoders. In International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference, volume 59186, pp. V02AT03A017. American Society of Mechanical
Engineers, 2019.

17

https://www.sciencedirect.com/science/article/pii/S001044852100052X
https://www.sciencedirect.com/science/article/pii/S001044852100052X

Under review as submission to TMLR

A Related Work
Constraints in Engineering Problems. Generally, we can categorize the constraint information of
engineering problems into four types (Regenwetter et al., 2023).

(i) No Constraint Information: No information about constraints is given or can be collected, and
learning constraints is typically infeasible or extremely challenging in a finite data regime.

(ii) ‘Negative’ Dataset of Invalid Designs: A collection of constraint-violating negative designs is available.
Our method leverages such negative data to learn a constraint-satisfying generative model. The value
of negative data is largely governed by their relative difficulty. Hard negatives fall near the positive
data manifold, while easy negatives lie deep within constrain-violating regions.

(iii) Constraint Check: A black-box ‘oracle’ that determines whether a design satisfies constraints is
available. This check may be computationally expensive, limiting its use.

(iv) Closed-form Constraints: An inexpensive closed-form constraint is available. In such scenarios, direct
optimization is often favored over generative models in design problems. In other cases, constraint-
enforcing rules can be built into the model structure, an approach used in some generative models
for molecular design (Cheng et al., 2021; Imrie et al., 2020).

We note that each level of constraint information is strictly more informative than the previous. In this paper,
we focus on the scenario in which a limited dataset of negative samples is available (ii) or can be generated
using an oracle (iii), but closed-form constraints are not available. This scenario is common in applications
such as structural design, mobility design (e.g., cars, bikes, ships, airplanes), and material synthesis.

Density Ratio Estimation. Density Ratio Estimation (DRE) (Sugiyama et al., 2012b) is a critical
technique in machine learning, particularly when evaluating distributions is not feasible or is computationally
expensive (Mohamed & Lakshminarayanan, 2016). DRE techniques are heavily employed for generative
modeling and score matching estimation (Goodfellow et al., 2014; Gutmann & Hyvärinen, 2010; Srivastava
et al., 2023; Choi et al., 2022). In the context of GANs (Goodfellow et al., 2014; Arjovsky et al., 2017; ?),
the DRE methodology forms the underlying basis for their operation. A well-known technique for DRE
is probabilistic classification Sugiyama et al. (2012b), where a binary classifier is used to learn the ratio.
However, accurate DRE from finite samples can be challenging, especially in high dimensions. To overcome this
challenge, prior works have employed a divide-and-conquer approach. An example of this is the Telescoping
Density Ratio Estimation (TRE) method (Gutmann & Hyvärinen, 2010; Rhodes et al., 2020), which divides
the problem into a sequence of easier DRE sub-problems. Despite its success, there are limitations to this
approach, especially when the number of intermediate bridge distributions is increased. Noise contrastive
estimator (NCE (Gutmann & Hyvärinen, 2010)) and hybrid generative models (Srivastava et al., 2023; 2017;
Rhodes et al., 2020) are also based on the density ratio as underlying methodology, providing a flexible
paradigm for large scale generative modeling.

Generative Models for Engineering Design. Generative models have recently seen extensive use in
design generation tasks (Regenwetter et al., 2022a). Generative Adversarial Nets, for example, have seen
extensive use in many applications. In Topology Optimization, GANs (Li et al., 2019; Rawat & Shen, 2019;
Oh et al., 2018; 2019; Sharpe & Seepersad, 2019; Nie et al., 2021; Yu et al., 2019; Valdez et al., 2021) are
often used to create optimal topologies, bypassing the need for iterative solvers like SIMP. In computational
materials design GANs (Tan et al., 2020; Yang et al., 2018; Zhang et al., 2021; Mosser et al., 2017; Lee et al.,
2021; Liu et al., 2019), VAEs (Cang et al., 2018; Li et al., 2020; Liu et al., 2020; Wang et al., 2020; Xue et al.,
2020; Tang et al., 2020; Chen & Liu, 2021), and other models are used to generate synthetic data to better
learn process-structure-property relations (Bostanabad et al., 2018). A variety of generative models have
been applied to 2D shape synthesis problems (Yilmaz & German, 2020; Chen & Fuge, 2018; Chen et al., 2019;
Chen & Fuge, 2019; Nobari et al., 2022; Li et al., 2021; Dering et al., 2018), such as airfoil design, and 3D
shape synthesis problems (Shu et al., 2020; Nobari et al., 2022; Brock et al., 2016; Zhang et al., 2019) such as
mechanical component synthesis in engineering design. Finally, generative models have been proposed as
a method to tackle various miscellaneous product and machine design tasks (Deshpande & Purwar, 2019;
Sharma & Purwar, 2020; Regenwetter et al., 2021; Deshpande & Purwar, 2020).

18

Under review as submission to TMLR

Constraint Satisfaction in Machine Learning. From a general point of view, Constraint Satisfaction
Problems (CSPs) have been long studied in computer science and optimization about optimal allocation,
graph search, games, and path planning (Russell, 2010). However, such constraints are mostly related to
algorithmic complexity and memory allocation. In generative design (Regenwetter et al., 2022a; Sigmund
& Maute, 2013), constraint satisfaction has a different goal because we want to obtain a design with high
performance but at the same time achieve diversity (distribution coverage) leveraging a probabilistic model.
Recently, Neural Constraint Satisfaction (Chang et al., 2023) has been proposed to deal with objects in a
scene to solve intuitive physics problems (Smith et al., 2019a; Hamrick et al., 2018). In the CAD domain,
structured models to handle constraints have been proposed (Seff et al., 2021; Para et al., 2021). Conditional
generative models have been proposed for structural topology optimization (Nie et al., 2021), leveraging
physical fields (Nie et al., 2021; Mazé & Ahmed, 2023), dense approximations (Giannone & Ahmed, 2023),
and trajectory alignment (Giannone et al., 2024) for high-quality candidate generation. These approaches
rely on explicit constraint satisfaction. Instead, we focus on implicit constraint satisfaction, leveraging a
dataset of invalid configurations to enhance the model capacity to generate valid designs.

Anomaly Detection. Anomaly detection attempts to solve a one-class classification problem (anomalous
vs not) (Sabuhi et al., 2021), much like constraint handling in generative models (positive vs negative).
Several approaches have generated synthetic negative data as a stand-in for anomalies to train models (Zaheer
et al., 2020; Dionelis et al., 2022). However, unlike anomaly detection, active constraint handling focuses on
training a generative model to avoid negative samples, rather than simply identifying them. Furthermore, the
point of training on negative data is to avoid the challenging one-class classification problem. Negative data
has also been studied in the context of retrieval, using triplet losses Kaya & Bilge (2019) and contrastive
estimators (Gutmann & Hyvärinen, 2010) for representation learning Oord et al. (2018); Chen et al. (2020).

19

Under review as submission to TMLR

B Negative Data Derivations& Density Ratio
Let pn denote the negative distribution i.e., the distribution of constraint-violating datapoints. Instead of
training using only the positive distribution pp, we now seek to train a generative model pθ using both pp
and pn. Assuming mutual absolute continuity of pp, pθ and pn, and starting from first principles, we can now
re-write Eq. 2 as:

arg min
θ

∫
pθ(x) [log pθ(x) − log pp(x)] dx

= arg min
θ

∫
pθ(x)

[
log pθ(x) − log pp(x) +

(
log pn(x)

pn(x)

)]
dx

= arg min
θ

∫
pθ(x)

[
log pθ(x)

pn(x) − log pp(x)
pn(x)

]
dx. (13)

While the solution for Eq. 13 is the same as the solution for equation 2 i.e. pθ∗ = pp, the model is now
directly incentivized to allocate the same amount of probability mass to the samples from pn as does the
data distribution pp. This ensures that when trained using finite N , the model does not allocate high
probability mass to invalid samples. In other words, training under Eq. 13 encourages the model to minimize
its discrepancy with respect to pp such that its discrepancy with respect to pn matches exactly that of pp
and pn. Another important benefit of the reformulation in Eq. 13 is that in cases where sampling from pn is
inexpensive (such as in the engineering design domain), the sample efficiency of the model with respect to
samples from pp improves as shown in the next section.
B.1 Double Discriminator (DD) Formulation
We now re-write Eq. 13 using the equivalent formulation:

arg min
θ

∫
pθ(x)

(
1
2

[
log pθ(x)

pn(x) − log pp(x)
pn(x)

]
+ 1

2

[
log pθ(x)

pp(x)

])
d x. (14)

Our goal is to minimize the Kullback-Leibler (KL) divergence between our model pθ(x) and the actual
distribution pp(x), while simultaneously distancing our model pθ(x) from any invalid designs represented by
pn(x). Given that we lack access to the explicit functional form of this distribution, we employ density ratio
estimation Sugiyama et al. (2012b); Srivastava et al. (2023) as a means of model learning.

In particular, we use fϕ to estimate r(pp, pθ) = pp(x)
pθ(x) , fψ to estimate r(pθ, pn) = pθ(x)

pn(x) , and fξ to estimate

r(pp, pn) = pp(x)
pn(x) .

Leveraging the connection between density ratio and probabilistic classification (Sugiyama et al., 2012b), we
can write (assuming balanced classes):

r(x) = pp(x)
pn(x) = pp(y|x)

pn(y|x) = pp(y|x)
1 − pp(y|x) , (15)

where given a sample x, pp(y|x) represents the probability of it being a valid design, whereas pn(y|x) signifies
the probability of it constituting an invalid design within the framework of a binary classifier. Notice that
pn(y|x) = 1 − pp(y|x). We can apply the same reasoning to the other two ratios.

In situations where pp(x) and pn(x) cannot be quickly evaluated but we can easily collect samples from them,
we can resort to directly estimating the ratios rϕ, rψ, rξ using discriminative models to estimate the class
probability. This approach is facilitated by employing the following identity:

pp(y|x) = σ(log r(x)). (16)

20

Under review as submission to TMLR

We see that there is a direct correspondence between the density ratio of the two distributions and the valid
class probability. The following is a natural parameterization for the density ratio estimators:

fϕ(x; pp, pθ) = σ(log rϕ(x))
fψ(x; pθ, pn) = σ(log rψ(x))
fξ(x; pp, pn) = σ(log rξ(x)),

(17)

to estimate the class probability or equivalenty fϕ(x) = log rϕ(x) to estimate the logits. Learning the density
ratio estimators can be performed by binary cross-entropy:

Fϕ(x; θ) = Epp(x) log [fϕ(x)] + Epθ(x) log [1 − fϕ(x)]
= Epp(x) log [σ(log rϕ(x))] + Epθ(x) log [1 − σ(log rϕ(x))] .

(18)

The density ratio can be estimated by sampling from pp(x) and pθ(x), and subsequently learning a discrim-
inator fϕ using these samples. In practice, pθ is learned leveraging adversarial training Goodfellow et al.
(2014) and an auxiliary set of classifiers to push away samples from pn. Additionally, we use parameter
sharing between fψ and fξ to help the discriminator learn the difference between valid and invalid samples
early during training.

max
ϕ

Fϕ(x; θ)

max
ψ,ξ

Fψ(x; θ) + Fξ(x; θ)

min
θ

Fϕ(x; θ) − Fψ,ξ(x; θ).

(19)

By employing this formulation during training, we strive to push rϕ towards 1, thereby maximizing entropy,
while encouraging rψ and rξ to be large and equal, consequently minimizing entropy. It is crucial to note that
in the absence of parameter sharing, it is not strictly necessary to jointly train Fξ. If we manage to learn
a robust model using ϕ and θ, then pθ approximates pp, and we can confidently rely on Fψ for constraint
satisfaction.

Nonetheless, based on empirical evidence, we observed improved performance and training stability, particularly
during the early training stage, when we shared weights and supplied the auxiliary discriminator with valid
and generated samples. This procedure assists the discriminator ϕ in differentiating invalid from generated
samples while simultaneously situating the generated samples within the validity region.

By implementing this method, we learn a generative model that produces samples closely aligned with the
training distribution of valid samples and distant from the invalid distribution. This yields a generative model
that respects constraints – the same GAN-DD-b model presented in the main paper. See Algorithm 3 for
training details.

The alternate double discriminator formulation (GAN-DD-a) is a variant of this approach:

arg min
θ

∫
pθ(x)

(
−λ

[
log pθ(x)

pn(x)

]
+

[
log pθ(x)

pp(x)

])
dx. (20)

Given suitable values of λ, we can effectively learn a generative model and aptly differentiate the generated
samples from invalid data. Upon testing this formulation with 2D densities, we also observed promising
results in terms of both coverage and constraint satisfaction, which resulted in a significant reduction in the
number of invalid samples—approximately by an order of magnitude. See Algorithm 2 for training details.
B.2 Multi-Class Discriminator (MC) Formulation
Noting that multi-class classifiers are strong density ratio estimators (Srivastava et al., 2023), we also propose
a variant using a multiclass discriminator model. By defining a single multiclass classifier fϕ and assigning
pseudo-labels 2 to invalid, 1 to valid, and 0 to generated samples, we can write:

FMC
ϕ (x; θ) = Epp(x) log [fϕ(x)] + Epn(x) log [fϕ(x)] + Epθ(x) log [fϕ(x)] , (21)

21

Under review as submission to TMLR

where we assume one-hot-encoding for the classes and cross-entropy loss as a scoring mechanism. We can
then maximize this loss with respect to ϕ, learning good discriminators between valid, invalid, and generated.
and minimize it with respect to θ. Given that we are using a single classifier, the discriminator is implicitly
estimating all the relevant ratios (Srivastava et al., 2023). Pushing the generated samples close to valid will
also push them far from invalid samples. We experiment with this formulation on the 2d densities with
good results. However, when in the presence of more complex distributions and constraints variety, it is
reasonable to allocate different levels of capacity for model learning and constraint satisfaction, using different
discriminators. Additionally, when we want to generalize our methods to generative models other than GANs,
like DDPM, it makes sense to instantiate a separate classifier for guidance with the only focus on fulfilling
the constraints. See Algorithm 1 for training details.
B.3 Comparison to AC-GAN
Since our double-descriminator variant has two discriminative models, including one that learns to distinguish
positive and negative samples, it bears a superficial similarity to AC-GANs (Odena et al., 2017) applied to
binary class-conditional problems. In this section, we demonstrate that GAN-DD is distinct from AC-GANs.
Consider an AC-GAN model applied as an NDGM. AC-GAN trains two discriminative models which share
some weights, fϕ and fψ, which learn two ratios:

rϕ(x) = preal(x)
pθ(x) (22)

rψ(x) = pp(x)
pn(x) (23)

An important observation is that AC-GAN’s “real” class consists of the full distribution across all classes,
hence is comprised of both positive and negative data: preal(x) = pp(x) + pn(x).

The optimal discriminators now learn:

fϕ(x) = pp(x) + pn(x)
pp(x) + pn(x) + pθ(x) (24)

fψ(x) = pp(x)
pp(x) + pn(x) (25)

Here α is a parameter determined by the ratio of the classes. Assuming perfect discriminators, the generator
loss is then expressed as:

L(θ, ϕ, ψ) = Epp(x)+pn(x)[log fψ(x)] + Epθ(x)[1 − log fψ(xθ)]
−Epp(x)+pn(x)[log(fϕ(x))] − Epθ(x)[log(fϕ(xθ))]

= Epθ(x)

[
log pp(xθ)

pp(xθ) + pn(xθ)
−

[
1 − log pp(xθ) + pn(xθ)

pp(xθ) + pn(xθ) + pθ(xθ)

]] (26)

In contrast, the GAN-MC formulation’s discriminator learns three density ratios. One of these is the reciprocal
of rϕ (eq. 22).

rζ,θ(x) = pθ(x)
pp(x) + pn(x) (27)

However, the ratio that is actually used for generator training is a different ratio:

rζ,p(x) = pp(x)
pn(x) + pθ(x) (28)

This leads an optimal discriminator to learn:

fζ,p(x) = pp(x)
pp(x) + pn(x) + pθ(x) (29)

22

Under review as submission to TMLR

Assuming the discriminator is perfectly optimal, the generator optimizes:

L(θ, ζ) = Epp(xθ)[log fζ,p(xθ)] = Epp(xθ)

[
log pp(xθ)

pp(xθ) + pn(xθ) + pθ(xθ)

]
. (30)

This is indeed equivalent to eq. 26, indicating that AC-GAN can also function as an NDGM. However, it
is critical to observe that this equivalence is contingent on perfect discriminative models. It does not
indicate that the methods are equivalent. In fact, it can be easily seen that many of the other NDGMs tested
in the paper (simple baselines, existing NDGMs, etc.) have this exact final loss, contingent on perfect models.
The difference in performance between different adversarial NDGM formulations arises from the difference in
discriminator training and discriminative performance.

23

Under review as submission to TMLR

C Pseudocode
Psuedocode for the multiclass discriminator (GAN-MC) and double discriminator variants (GAN-DD-a, GAN-
DD-b) are shown below. Diversity loss is included, and is discussed in section E. For non-diversity-augmented
variants, γ is set to 0.

Algorithm 1 GAN-MC Training Procedure
while step ≤ nsteps do

Sample Pbatch ∼ Pdataset and Nbatch ∼ Ndataset
Sample ϵ ∼ N(0, 1)
Gbatch = Generator(ϵ)
DP
preds = Discriminator(Pbatch)

DN
preds = Discriminator(Nbatch)

DG
preds = Discriminator(Gbatch)

loss_fn = CategoricalCrossEntropy()
D_loss = loss_fn(DG

preds, 0) + loss_fn(DP
preds, 1) + loss_fn(DN

preds, 2)
Diversity_loss = DPP(Gbatch)
G_loss = loss_fn(DG

preds, 1) + γ · Diversity_loss
Optimize(Discriminator, D_loss)
Optimize(Generator, G_loss)
step = step+ 1

end while

Algorithm 2 GAN-DD-a Training Procedure
while step ≤ nsteps do

Sample Pbatch ∼ Pdataset and Nbatch ∼ Ndataset
Sample ϵ ∼ N(0, 1)
Gbatch = Generator(ϵ)
DP
preds = Discriminator(Pbatch)

DG
preds = Discriminator(Gbatch)

AIpreds = Aux_Discriminator(Nbatch)
AGpreds = Aux_Discriminator(Gbatch)
loss_fn = BinaryCrossEntropy()
D_loss = loss_fn(DG

preds, 0) + loss_fn(DP
preds, 1)

A_loss = loss_fn(AGpreds, 0) + loss_fn(ANpreds, 1)
Diversity_loss = DPP(Gbatch)
G_loss = loss_fn(DG

preds, 1) - λ · loss_fn(AGpreds, 1) + γ · Diversity_loss
Optimize(Discriminator, D_loss)
Optimize(Aux_Discriminator, A_loss)
Optimize(Generator, G_loss)
step = step+ 1

end while

24

Under review as submission to TMLR

Algorithm 3 GAN-DD-b Training Procedure
while step ≤ nsteps do

Sample Pbatch ∼ Pdataset and Nbatch ∼ Ndataset
Sample ϵ ∼ N(0, 1)
Gbatch = Generator(ϵ)
DP
preds = Discriminator(Pbatch)

DG
preds = Discriminator(Gbatch)

APpreds = Aux_Discriminator(Pbatch)
ANpreds = Aux_Discriminator(Nbatch)
AGpreds = Aux_Discriminator(Gbatch)
loss_fn = BinaryCrossEntropy()
D_loss = loss_fn(DG

preds, 0) + loss_fn(DP
preds, 1)

A_loss = 0.5 · loss_fn(AGpreds, 0) + 0.5 · loss_fn(APpreds, 0) + loss_fn(ANpreds, 1)
Diversity_loss = DPP(Gbatch)
G_loss = loss_fn(DG

preds, 1) + β · loss_fn(AGpreds, 1) + γ · Diversity_loss
Optimize(Discriminator, D_loss)
Optimize(Aux_Discriminator, A_loss)
Optimize(Generator, G_loss)
step = step+ 1

end while

25

Under review as submission to TMLR

D 2D Densities
D.1 2D Datasets and Test Problems
We discuss more details on the 2D datasets presented in Sec. 5.1.
D.1.1 2D Problem 1
This problem is labeled Problem 1 in the main paper. Data points are randomly sampled from one of six
modes, each of which is a regular 2D gaussian. Distribution centers are spaced at an equal radius. Points in
a close proximity to the center of any of the distribution are labeled as negatives and others are labeled as
positives. Sampling is performed until 10k positive samples and 10k negative samples are acquired and excess
of the oversampled class are discarded.
D.1.2 2D Problem 2
This problem is labeled Problem 2 in the main paper. Datapoints are uniformly sampled. A square grid of
‘centerpoints’ is overlaid over the distribution. Any datapoint in a close enough proximity to a ‘centerpoint’
is considered negative, while any others are considered positive. Sampling is performed until 10k positive
samples and 10k negative samples are acquired and excess of the oversampled class are discarded.
D.2 Setup and Training
All tested networks (encoder, decoder, generator, DDPM noise model, auxiliary discriminator) are deep
networks with two hidden layers of 400 neurons each and ReLU activations. A batch size of 256 is used
throughout. Models are trained using the Adam optimizer (Kingma & Ba, 2014) with a learning rate 3e−4,
5e−4, and 1e−3 for GANs, VAEs, and DDPMs respectively. Models are trained for 3500 epochs. The noise
dimension for the GAN is set at 2, while the latent dimension for the VAE is set at 16. The VAE’s KL
divergence loss term is weighted at 0.05. The VAE’s auxiliary classifier is pretrained and the validity weight
parameter λ is set at 0.2. The GAN’s validity weight parameter λ is set at 0.4.
D.3 Additional Results
We include a set of results on 2D density experiments expanding on our results from the main paper.
Discriptions of the models can be found in the main paper. Mean scores and standard deviations are reported
over 3 instantiations in Table 6.

Evaluation Metrics. We utilize several of the metrics proposed in (Regenwetter et al., 2023) for constraint-
satisfaction and distributional similarity in generative models. To measure performance, we calculate several
scores obtained from precision-recall curves (Sajjadi et al., 2018), including F1, F0.1, F10, and the area under
the curve (abv. AUC-PR). F0.1 roughly captures coverage (the degree to which the generated distribution
covers the span of the dataset), while F10 roughly captures precision (not straying beyond the boundaries
of the data). F1 and AUC-PR roughly serve to assess overall distributional similarity. We calculate the
mean distance to the nearest dataset point for each generated sample as another simple estimate for accuracy
(abv. NDP). Similarly, we calculate the mean distance to the nearest generated sample for each point in the
dataset (abv. NGS) as a simple estimate for coverage. Finally, we calculate Maximum mean Discrepancy and
proportion of invalid generated samples (abv. Validity).

26

Under review as submission to TMLR

Table 6: Extended results for 2D density experiments. Mean scores and standard deviations over three instantiations
are shown. Best models are determined using a two-sample t-test with 95% confidence and boldfaced. Our models
(GAN-DD, GAN-MC, GAN-RM) surpass the previous state of the art (GAN-DO) in most metrics.

Metric: Validity ↓ MMD ↓ NDS ↓ NGS ↓ F1 ↑ F10 ↑ F0.1 ↑ AUC-PR ↑
Problem 1

GAN 0.093±0.028 0.008±0.002 0.018±0.002 0.027±0.003 0.725±0.022 0.968±0.010 0.931±0.051 0.800±0.035
GAN-CC 0.074±0.018 0.005±0.002 0.016±0.000 0.020±0.007 0.821±0.071 0.982±0.008 0.947±0.062 0.876±0.097
GAN-CL 0.005±0.005 0.003±0.001 0.014±0.001 0.014±0.000 0.943±0.013 0.997±0.001 0.996±0.000 0.990±0.003
GAN-Rej 0.008±0.005 0.010±0.003 0.015±0.001 0.021±0.003 0.751±0.035 0.971±0.005 0.925±0.025 0.822±0.045
VAE 0.134±0.013 0.004±0.000 0.033±0.001 0.013±0.000 0.828±0.000 0.932±0.005 0.988±0.001 0.888±0.004
VAE-CC 0.191±0.025 0.004±0.000 0.030±0.002 0.026±0.002 0.800±0.013 0.943±0.004 0.986±0.002 0.874±0.012
VAE-CL 0.001±0.001 0.005±0.000 0.030±0.001 0.039±0.004 0.828±0.009 0.925±0.007 0.988±0.002 0.881±0.010
VAE-Rej 0.024±0.010 0.006±0.001 0.031±0.002 0.017±0.004 0.826±0.013 0.924±0.006 0.989±0.001 0.872±0.011
DDPM 0.083±0.003 0.002±0.000 0.018±0.000 0.010±0.000 0.912±0.003 0.994±0.000 0.997±0.000 0.978±0.001
DDPM-CL 0.120±0.004 0.002±0.000 0.019±0.000 0.010±0.000 0.893±0.005 0.995±0.000 0.995±0.000 0.973±0.002
DDPM-G 0.038±0.000 0.003±0.000 0.038±0.000 0.010±0.000 0.867±0.003 0.981±0.001 0.995±0.000 0.947±0.002
DDPM-Rej 0.012±0.006 0.002±0.000 0.017±0.000 0.010±0.000 0.895±0.007 0.994±0.001 0.996±0.000 0.972±0.003
GAN-DO 0.004±0.001 0.005±0.002 0.014±0.000 0.015±0.001 0.912±0.013 0.992±0.001 0.993±0.004 0.974±0.008
GAN-MC 0.005±0.001 0.003±0.001 0.016±0.000 0.018±0.002 0.915±0.023 0.991±0.002 0.993±0.001 0.976±0.010
GAN-DD-a 0.004±0.005 0.002±0.000 0.015±0.001 0.015±0.003 0.924±0.036 0.994±0.003 0.986±0.016 0.973±0.027
GAN-DD-b 0.002±0.000 0.002±0.000 0.016±0.002 0.015±0.002 0.928±0.015 0.992±0.005 0.995±0.001 0.983±0.008

Problem 2

GAN 0.018±0.007 0.002±0.000 0.022±0.001 0.020±0.000 0.964±0.004 0.998±0.000 0.998±0.000 0.996±0.001
GAN-CC 0.041±0.011 0.002±0.001 0.024±0.001 0.022±0.003 0.959±0.012 0.997±0.001 0.997±0.001 0.994±0.003
GAN-CL 0.006±0.004 0.002±0.000 0.022±0.000 0.021±0.001 0.958±0.007 0.997±0.001 0.997±0.000 0.994±0.002
GAN-Rej 0.003±0.002 0.002±0.000 0.021±0.000 0.020±0.000 0.969±0.002 0.998±0.000 0.998±0.001 0.997±0.000
VAE 0.104±0.002 0.002±0.000 0.029±0.000 0.018±0.000 0.960±0.002 0.998±0.000 0.998±0.000 0.995±0.000
VAE-CC 0.101±0.003 0.002±0.000 0.029±0.000 0.018±0.000 0.958±0.003 0.997±0.000 0.998±0.000 0.995±0.000
VAE-CL 0.005±0.001 0.005±0.001 0.023±0.000 0.050±0.004 0.901±0.021 0.993±0.001 0.991±0.003 0.969±0.009
VAE-Rej 0.004±0.001 0.002±0.000 0.022±0.000 0.018±0.001 0.972±0.003 0.998±0.000 0.998±0.001 0.997±0.000
DDPM 0.068±0.006 0.006±0.001 0.026±0.000 0.017±0.000 0.907±0.005 0.995±0.000 0.995±0.001 0.974±0.003
DDPM-CL 0.069±0.005 0.005±0.000 0.026±0.000 0.017±0.000 0.911±0.002 0.995±0.000 0.995±0.000 0.975±0.002
DDPM-G 0.065±0.002 0.005±0.000 0.026±0.000 0.017±0.000 0.907±0.001 0.994±0.001 0.995±0.000 0.973±0.000
DDPM-Rej 0.006±0.004 0.005±0.000 0.022±0.000 0.017±0.000 0.914±0.006 0.995±0.000 0.995±0.001 0.977±0.003
GAN-DO 0.004±0.002 0.003±0.001 0.022±0.000 0.025±0.001 0.948±0.012 0.997±0.001 0.996±0.001 0.991±0.003
GAN-MC 0.002±0.001 0.002±0.000 0.022±0.000 0.027±0.002 0.953±0.013 0.997±0.001 0.997±0.001 0.993±0.004
GAN-DD-a 0.003±0.001 0.003±0.001 0.022±0.000 0.022±0.002 0.949±0.004 0.997±0.000 0.997±0.001 0.992±0.001
GAN-DD-b 0.004±0.001 0.002±0.001 0.022±0.000 0.022±0.000 0.962±0.008 0.997±0.001 0.997±0.001 0.995±0.002

27

Under review as submission to TMLR

(a) Positive Data (b) Negative Data (c) GAN (d) GAN-CC (e) GAN-CL

(f) GAN-Rej (g) GAN-DO (h) GAN-MC (ours) (i) GAN-DD-a (ours) (j) GAN-DD-b (ours)

Figure 6: Extended Results on 2 toy 2D densities. Positive and Negative Datasets are shown in the first two panes,
respectively. Valid (positive) generated samples are colored blue, while invalid (negative) generated samples are
colored black. Constraint-satisfying regions are indicated in the background of plots in blue, while constraint-violating
regions are colored white.

28

Under review as submission to TMLR

(a) VAE (b) VAE-CC (c) VAE-CL (d) VAE-Rej

(e) DDPM (f) DDPM-G (g) DDPM-CL (h) DDPM-Rej

Figure 7: Extension of Figure 6.

29

Under review as submission to TMLR

E Encouraging Diverse Generation in NDGMs
NDGMs tend to have high precision, but may struggle with recall. This tendancy arises because a conservative
NDGM will avoid fringe regions of the distribution, resulting in incomplete coverage. One approach to
improve recall is to explicitly encourage diversity of generated samples. Diversity is often a desired goal in
generative modeling for engineering design applications (Chen & Ahmed, 2021b;a; Regenwetter & Ahmed,
2022; Regenwetter et al., 2023). As (Chen & Ahmed, 2021b) and (Chen & Ahmed, 2021a) note, incorporating
diversity can also help models generalize and avoid mode collapse. Diversity was first explicitly incorporated
into deep generative models for design engineering in (Chen & Ahmed, 2021b) using a Determinantal Point
Process (DPP). Determinantal Point Process (DPP)-based diversity measures have been used in a variety of
generative applications in design (Chen & Ahmed, 2021b; Nobari et al., 2021) and elsewhere (Elfeki et al.,
2019; Mothilal et al., 2020).

The DPP loss is calculated using a positive semi-definite DPP kernel S. Entries of this matrix are calculated
using some modality- and problem-dependent similarity kernel, such as the Euclidean distance kernel. The
(i, j)th element of S can be expressed in terms of the similarity kernel k and samples xi and xj as:

Si,j = k(xi, xj),

and the loss as:

Ldiv = − 1
B

logdet(S) = − 1
B

B∑
i=1

log λi,

where λi is the i-th eigenvalue of L and B is the number of samples in the batch. The loss is incorporated by
appending it to the overall loss term of the generative model LGM

Ltot = LGM + γ Ldiv

Adding this loss can help the generative model achieve better coverage, an observation supported by our
experiments below.
E.1 Methodology
We train a GAN-DD-a, a GAN-DD-b, and a GAN-MC model, each augmented with a diversity weight, as
indicated in Sec C. These models are labeled GAN-DD-a-DA, GAN-DD-b-DA, and GAN-MC-DA, respectively.
To demonstrate that other models can be similarly augmented with diversity, we also train a VAE-CL with
diversity (VAE-CL-DA). Diversity weight γ is set at 0.7 for GANs and 0.05 for VAEs. Architecture, dataset,
and training parameters are unchanged from Appendix D.2.
E.2 Results
Table 7 shows scores over a variety of distributional similarity metrics and validity. The diversity-augmented
double discriminator GAN variant is the strongest performer across most objectives. Plots of generated
distributions are included in Figure 8. Visually, diversity-augmented models better distribute samples over
the distribution, but sometimes generate more negative samples. We also include a percentage differences
between diversity-augmented (DA) NDGMs and their non-DA counterparts in Table 8. Diversity improves
the double discriminator (GAN-DD) variant on most metrics. However, the GAN-MC and VAE-CL models
mainly improve only in recall-related scores (NGS, F0.1), while suffering in others, most notably validity.

30

Under review as submission to TMLR

Table 7: Table showing scores over various vanilla models, NDGMs, and Diversity-Augmented (DA) NDGMs across
a variety of distributional similarity metrics and validity metric.

Validity ↓ MMD ↓ NDS ↓ NGS ↓ F1 ↑ F10 ↑ F0.1 ↑ AUC-PR ↑
GAN-Vanilla 0.0622 0.0050 0.0199 0.0241 0.8417 0.9845 0.9807 0.9006
GAN-DD-a (ours) 0.0028 0.0022 0.0184 0.0177 0.9435 0.9960 0.9970 0.9918
GAN-DD-a-DA (ours) 0.0023 0.0025 0.0182 0.0156 0.9556 0.9970 0.9974 0.9937
GAN-DD-b (ours) 0.0028 0.0020 0.0188 0.0183 0.9491 0.9959 0.9964 0.9813
GAN-DD-b-DA (ours) 0.0026 0.0022 0.0191 0.0176 0.9514 0.9972 0.9963 0.9828
GAN-MC (ours) 0.0030 0.0023 0.0190 0.0220 0.9357 0.9941 0.9950 0.9854
GAN-MC-DA (ours) 0.0054 0.0022 0.0200 0.0170 0.9351 0.9949 0.9958 0.9848
VAE-Vanilla 0.1223 0.0032 0.0309 0.0158 0.8942 0.9662 0.9931 0.9431
VAE-CL 0.0029 0.0051 0.0261 0.0456 0.8619 0.9579 0.9895 0.9226
VAE-CL-DA 0.0035 0.0055 0.0295 0.0340 0.8608 0.9571 0.9925 0.9190

Table 8: Table showing percantage (%) differences between diversity-augmented (DA) NDGMs and their non-DA
counterparts. Improvements are bolded. For objectives that are maximized at 1 (F1, F0.1, F10, AUC-PR), we
calculate percentage difference as (snew − sold)/(1 − sold).

Percent (%) Difference Validity ↓ MMD ↓ NDS ↓ NGS ↓ F1 ↑ F10 ↑ F0.1 ↑ AUC-PR ↑
GAN-DD-a-DA (vs. GAN-DD-a) -14.5 13.3 -0.8 -11.4 21.4 24.9 13.5 23.6
GAN-DD-b-DA (vs. GAN-DD-b) -7.27 8.9 1.6 -3.5 4.6 32.0 -1.7 16.7
GAN-MC-DA (vs. GAN-MC) 81.7 -1.2 5.2 -22.6 -1.0 14.3 14.9 -4.5
VAE-CL-DA (vs. VAE-CL) 22.8 8.3 13.1 -25.5 -0.8 -1.9 28.6 -4.7

31

Under review as submission to TMLR

(a) GAN (b) GAN-DD-a (c) GAN-DD-a-DA (d) GAN-DD-b (e) GAN-DD-b-DA

(f) GAN-MC (g) GAN-MC-DA (h) VAE (i) VAE-CL (j) VAE-CL-DA

Figure 8: Results demonstrating diversity-augmented (DA) NDGMs on two toy 2D densities. Positive and negative
datasets are shown in the first two panes, respectively. Valid (positive) generated samples are colored blue, while
invalid (negative) generated samples are colored black. Constraint-satisfying regions are indicated in the background
of plots in blue, while constraint-violating regions are colored white. Diversity-augmented (DA) NDGMs achieve much
better recall than their non-DA counterparts, though occasionally generate more negative samples. Our models are
bolded.

32

Under review as submission to TMLR

F Block Stacking: Details and Additional Experiments
F.1 Training and Dataset Details
For GAN-DO, we select λ = 0.75 as the best-performing hyperparameter. For GAN-DD, we select λ = 0.5 as
the best-performing hyperparameter. We also benchmark an autoregressive GAN model (GAN-AR) (Mogren,
2016; Esteban et al., 2017). The architecture, dataset, and training details are shown below.

Table 9: Relevant Hyperparameters for block stacking models. C: connectivity. S: stability. FM: floating material.
VFE: volume fraction error. CE: compliance error.

GAN-DO/GAN-DD GAN-AR
Dimension 12 12
Valid Set 10K 10K
Invalid Set 10K 10K
Evaluation Set 1K 1K
Constraints C+S C+S
Generator MLP (16-32-12) LSTM (64-12)
Discriminator MLP (128-64-32-1) MLP (128-64-32-1)
Batch size 200 200
Iterations 30K 50K
Learning rate 1e−3 1e−3

Optimizer Adam Adam

Example positive and negative configurations from the dataset are visualized in Sec. F.3 and F.4
F.2 Fulfilling Multiple Sets of Constraints
We consider the more challenging problem where stacks must simultaneously satisfy connectivity and stablility
constraints. S-C is used as positive data while the S-D, U-C, and U-D are pooled to constitute the negative
data. Results are summarized in the lower half of Tables 11 and 12. We see that models trained using
only positive data perform poorly in constraint satisfaction scores across the board. Autoregressive models
(GAN-AR, (Mogren, 2016; Esteban et al., 2017)) tend to work better than standard GAN (second row)
but still fall behind compared to GAN-DD. GAN-DD connects and stabilizes an order of magnitude more
configurations than the GAN (fifth row) training on only positive (connected and balanced) configurations.
Interestingly, GAN-AR (sixth row) and GAN-DO (seventh row) can achieve high scores on connectivity, with
GAN-DO performing better than GAN-DD. However, when the model is challenged to fulfill both constraints,
GAN-AR generates almost exclusively invalid configurations, and GAN-DO satisfies all constraints less than
1/4 as frequently as the GAN-DD, even if presented with the same amount of positive and negative data. We
note that the benefits of negative data only extend to constraints that were included in the negative data. As
shown in the upper half of Table 11, models trained on the relaxed case, including GAN-DD (fourth row)
struggle to satisfy constraints not represented in the negative dataset since they do not see representative
examples of unstable configurations in negative data.

33

Under review as submission to TMLR

Table 10: Base model vs Negative Data model trained with negative data. We test on 20 splits (1000 samples each)
and evaluate metrics that quantify precision and constraint satisfaction. We consider boxes floating or intersecting if
the distance between the points is larger than 0.9 units (the minimum distance between constraints in the negative
data is 1 unit). b: base block; m: middle block; t: top block. For floating yb < ym and for intersecting yb > ym.

Metrics GAN (w/o Negative) GAN-DO (w/ Negative) GAN-DD (w/ Negative)
↓ median(|y1

b − y0
m|) 2.78 ± 0.26 u 5.12 ± 0.37 u 0.54 ± 0.03 u

↓ median(|y1
m − y0

t |) 2.12 ± 0.22 u 1.91 ± 0.22 u 0.83 ± 0.05 u
↓ no-overlap(xb,xm) 0.41 ± 0.64 % 12.85 ± 3.41 % 1.82 ± 0.79 %
↓ no-overlap(xm,xt) 0.31 ± 0.66 % 17.89 ± 3.70 % 3.90 ± 2.01 %
↓ floating(yb,ym) 20.44 ± 3.73 % 14.47 ± 2.83 % 13.78 ± 4.07 %
↓ floating(ym,yt) 38.04 ± 4.49 % 20.73 ± 4.11 % 13.94 ± 2.17 %
↓ intersect(yb,ym) 64.59 ± 4.10 % 77.20 ± 3.97 % 0.00 ± 0.00 %
↓ intersect(ym,yt) 43.80 ± 4.47 % 54.82 ± 5.01 % 30.79 ± 4.05 %
↑ connected(yb,ym) 14.96 ± 3.04 % 8.32 ± 2.11 % 86.21 ± 4.07 %
↑ connected(ym,yt) 18.15 ± 3.06 % 24.44 ± 3.22 % 55.26 ± 4.05 %

Table 11: Overview of block stacking results. The upper half of the table shows results when the stability constraint
is ignored during training (and unstable configurations are not designated as negative data to GAN-DO and GAN-DD).
When stability is not considered during training, no generative models can reliably fulfill the stability constraint. The
lower half shows results where both disconnected stacks and unstable stacks are considered negative (and are provided
to GAN-DO and GAN-DD). GAN-DD improves constraint satisfaction by an order of magnitude over most baselines.

Positive Data Negative Data Metrics
Connected Stable Disconnected Unstable Stability ↑ Connectivity ↑ Both ↑

GAN ✓ ✗ ✗ ✗ 2.44 % 2.80 % 0.19 %
GAN-AR ✓ ✗ ✗ ✗ 0.085 % 13.23 % 0.00 %
GAN-DO ✓ ✗ ✓ ✗ 0.39 % 6.39 % 0.00 %
GAN-DD (ours) ✓ ✗ ✓ ✗ 3.75 % 45.30 % 1.03 %
GAN ✓ ✓ ✗ ✗ 83.20 % 4.83 % 3.28 %
GAN-AR ✓ ✓ ✗ ✗ 32.16 % 8.12 % 0.07 %
GAN-DO ✓ ✓ ✓ ✓ 84.65 % 12.63 % 8.85 %
GAN-DD (ours) ✓ ✓ ✓ ✓ 70.35 % 41.10 % 36.02 %

Table 12: Handling Multiple Sets of Constraints. Positive data is connected (constraint set I) and stable (constraint
set II). Negative data is composed of two negative sets: Connected-Unstable and Disconnected-Stable.

GAN (w/o Negative) GAN-DD (w/ Negative)
↑ Connected(yb, ym) (Ia) 21.13 ± 3.04 100 ± 0.00
↑ Connected(ym, yt) (Ib) 22.68 ± 3.06 41.10 ± 4.79
↑ Stable (II) 83.20 ± 4.09 70.35 ± 3.72
↑ Connected (I) 4.83 ± 1.72 (-88.24 %) 41.10 ± 4.80
↑ Connected and Stable (I and II) 3.28 ± 1.34 (- 90.89 %) 36.02 ± 3.88

34

Under review as submission to TMLR

Table 13: Overview. Using negative data improves constraint satisfaction by an order of magnitude. “Pseudo-
balanced” stacks would be stable if the other constraints were satisfied.

Positive Negative Metrics
Connected Balanced Disconnected Unbalanced Pseudo-Balanced ↑ Balanced ↑ Connected ↑

Positive Set ✓ ✗ ✗ ✗ 2.50 % - 100.00 %
Positive Set ✓ ✓ ✗ ✗ 0.00 % 100.00 % 100.00 %
Negative Set ✗ ✗ ✓ ✗ 0.00 % 100.00 % 0.00 %
Negative Set ✗ ✗ ✗ ✓ 2.50 % 0.00 % 100.00 %

35

Under review as submission to TMLR

F.3 Training Set - Positive

Figure 9: Positive Data for Constraint I. Example of positive configurations for constraints I (connection).
Blocks fulfilling only the connection constraints (I). Specifically, the blocks are stacked one on top of each other
without any floating or intersection but in general in unstable configurations. This means that the blocks in the data
are arranged in a way that satisfies certain rules or criteria, such as not being allowed to float (i.e., not being fully
supported by the blocks below) or intersecting (i.e., overlapping with other blocks).

Figure 10: Positive Data for Constraints I+II. Example of positive configurations for constraints I (connection)
and II (stability). Blocks fulfilling both constraints connection constraints (I). Specifically, the blocks are stacked one
on top of each other without any floating or intersection in a stable configuration. This means that the blocks in the
data are arranged in a way that satisfies certain rules or criteria, such as not being allowed to float (i.e., not being
fully supported by the blocks below) or intersecting (i.e., overlapping with other blocks) and having an internal center
of mass.

36

Under review as submission to TMLR

F.4 Training Set - Negative

Figure 11: Negative Data. Example of negative data for block stacking. The negative data consists of two
categories: hard-negative (top) and easy-negative (bottom). The top section of the figure contains examples of hard
negative, which are generated by violating the constraints of the block stacking problem by a small degree (1 to 5
units). The constraints include the requirement that the blocks should not intersect or float above each other. These
hard-negatives are designed to be challenging for the model to learn from, as they are close to satisfying the constraints
but still violate them. The bottom section of the figure contains examples of easy-negative, which are generated by
violating the constraints by a large degree (1 to 20 units). These examples are easier for the model to learn from, as
the violations are more pronounced and easier to detect.

37

Under review as submission to TMLR

F.5 Samples

Figure 12: GAN Samples. Samples from a model trained only on positive data. The model generates reasonable
samples but in most cases, the constraints are not satisfied. Precision at the boundary is challenging to enforce.

Figure 13: GAN-DD Samples with Negative Constraints I. Samples from a model trained on positive and
negative data for constraint I (connection) using our divergence formulation. The model generates reasonable samples
and in most cases the connectivity constraints are satisfied. The model can generate blocks that do not intersect and
float (up to a small tolerance of 0.9 u). However, because we do not rely on negative data for constraint II (stability),
the generated samples do not fulfill this second set of constraints, and the generated blocks are connected but in
general unstable. Precision at the boundary is enforced better than training only on positive data.

38

Under review as submission to TMLR

Figure 14: GAN-DD Samples with Negative Constraints I+II. Samples from a model trained on positive and
negative data for constraint I (connection) and constraint II (stability) using our divergence formulation. The model
generates reasonable samples and in most cases the connectivity constraints are satisfied and the blocks are stacked
in a stable configuration. The model can generate blocks that do not intersect and float (up to a small tolerance
of 0.9 u) and the center of mass is internal to the structure. Because we rely on negative data for constraint I and
II (connectivity and stability), the generated samples do fulfill both sets of constraints, and the generated blocks
are connected and stable. Precision at the boundary is enforced better than training only on positive data. This
visualization corroborates the need for negative designs when dealing with constraint satisfaction in generative models.

39

Under review as submission to TMLR

G Assorted Engineering Problems
G.1 Datasets and Problems
In this section, we present details on the 12 engineering problems and datasets used for benchmarking.
G.1.1 Ashby Chart
Taken from (Jetton et al., 2023), this problem explores physically feasible combinations of material properties,
according to known physical materials from an Ashby chart. The constraint function is a combination of
an analytical constraint and a lookup from an Ashby chart. Material properties considered are density,
yield strength, and Young’s modulus. Material classes included are foams, natural materials, polymers,
composites, ceramics, and metals. 1k positive samples and 1k negative samples are selected using uniform
random sampling.
G.1.2 Bike Frame
The FRAMED dataset (Regenwetter et al., 2022b) is comprised of 4292 in-distribution (positive) human-
designed bicycle frame models. FRAMED also contains 3242 constraint-violating (negative) designs, some
of which were human-designed and some of which were synthesized by generative models. FRAMED also
contains 10095 generative model-synthesized valid designs that are not assumed to be in-distribution and
are thus unused in this benchmark. Constraints are comprised of a set of empirical geometric checks and a
black-box 3D reconstruction check. Constraints are unified using an all-or-nothing approach. Validity scores
on this dataset are only evaluated using empirical checks.
G.1.3 Cantilever Beam
This problem considers the design of a five-component stepped cantilever beam. The thickness and height of
each of the five components are the design variables, while the lengths of each component are given (fixed).
Taken from (Gandomi & Yang, 2011), this problem has numerous geometric constraints and an overall
constraint limiting the total deflection allowed by the design under a simple concentrated load at the tip
of the beam. The optimization objective is not utilized. 1k positive samples and 1k negative samples are
selected using uniform random sampling.
G.1.4 Car Impact
This problem quantifies the performance of a car design under a side impact scenario based on European
Enhanced Vehicle-Safety Committee (EEVC) procedures (Gandomi et al., 2011). The car chassis is represented
by 11 design parameters. Several critical deflection, load, and velocity thresholds are specified over several
components of a crash dummy, constituting 10 constraints. The optimization objective is not utilized. 1k
positive samples and 1k negative samples are selected using uniform random sampling.
G.1.5 Compression Spring
This problem, taken from (Gandomi & Yang, 2011), centers around the design of a helical compression spring
parameterized over coil diameter, wire diameter, and number of spring coils. A constraint on free length
and a constraint on displacement under a compressive load are specified. The optimization objective is not
utilized. 1k positive samples and 1k negative samples are selected using uniform random sampling.
G.1.6 Gearbox
This gearbox (speed-reducer) design problem, taken from (Gandomi & Yang, 2011) features 7 parameters
describing key geometric components like shaft diameters, number of teeth on gears, and face width of gears.
Nine constraints are given, spanning considerations like bending stress on gear teeth, transverse stress and
deflection on shafts, and surface stresses. The optimization objective is not utilized. 1k positive samples and
1k negative samples are selected using uniform random sampling.
G.1.7 Heat Exchanger
This problem, sourced from (Yang & Gandomi, 2012) considers the design of a heat exchanges, involving
eight design parameters and six constraints focused on geometric validity. The optimization objective is not
utilized. 1k positive samples and 1k negative samples are selected using uniform random sampling.
G.1.8 Pressure Vessel
This cylindrical pressure vessel design problem is taken from (Gandomi & Yang, 2011). The pressure vessel is
parametrized according to four parameters, namely the cylinder thickness, spherical head thickness, inner
radius, and cylinder length. Four geometric and structural constraints are specified in accordance with

40

Under review as submission to TMLR

American Society of Mechanical Engineers (ASME) design codes. The optimization objective is not utilized.
1k positive samples and 1k negative samples are selected using uniform random sampling.
G.1.9 Reinforced Concrete
Taken from (Gandomi & Yang, 2011), this problem centers around the design of a simply supported concrete
beam under a simple distributed load case. The beam is parameterized using a cross sectional area, base
length, and height and is subject to a safety requirement indicated in the American Concrete Institute (ACI)
319-77 code. The optimization objective is not utilized. 1k positive samples and 1k negative samples are
selected using uniform random sampling.
G.1.10 Ship Hull
The SHIPD Dataset (Bagazinski & Ahmed, 2023) is comprised of 30k valid (positive) ship hull designs
and 20k invalid (negative) ship hull designs. The SHIPD dataset includes numerous constraints spanning
geometric rules and functional performance targets, focusing on various types of hydrodynamic performance.
G.1.11 Truss
Taken from (Yang & Gandomi, 2012), this truss design problem considers the design of a three-beam truss
parameterized by the length length of two of the beams (symmetry specifies the length of the third). The
system is subject to one geometric constraint and two maximum stress constraints. 1k positive samples and
1k negative samples are selected using uniform random sampling.
G.1.12 Welded Beam
Taken from (Gandomi & Yang, 2011), this problem concerns a cantilever beam welded to a flat surface under
a simple concentrated load at the tip of the beam. The beam is parametrized using a weld thickness, welded
joint length, beam thickness, and beam width. Five structural constraints are given, specifying a maximum
shear stress, bending stress, buckling load, and deflection, as well as a geometric constraint on the beam.
The optimization objective is not utilized. 1k positive samples and 1k negative samples are selected using
uniform random sampling.
G.2 Training and Architecture Details
We train the same 16 models tested on the 2D test problems. Model details are the same as described in D.2.
Models trained on “bike frame” and “ship hull” are trained for 2000 epochs (since the datasets are larger)
and models trained on the other 10 problems are trained for 5000 epochs.
G.3 Metrics
We measure validity, maximum mean discrepancy (MMD), and F1 score, as discussed in Sec. 5.1 of the main
paper.
G.4 Extended Results and Discussion
Included in Tables 14 to 19 are Validity, MMD, and F1 scores for both adversarial and likelihood-based
models for the 12 engineering problems. Several key takeaways can be extracted:

• NDGMs achieve significantly better validity scores than vanilla models.

• Likelihood models generally achieve better validity scores, lower MMD scores, and similar F1 scores.

• Vanilla GANs generally achieve better MMD scores than negative data GANs. This trend is not
mirrored in likelihood-based models.

• As discussed in the main paper, discriminator overloading (GAN-DO) and multiclass discriminator
(GAN-MC) GANs are dominant in validity metric.

• VAE with classifier loss (VAE-CL) is dominant in validity metric.

We stress that these takeaways are highly dataset dependent and should not be taken as general analysis of
models from a standpoint of broad applicability. Underscoring this point: The models that perform best
in these engineering-related tests are not the same models that perform best on the non-convex 2D test
problems nor the block-stacking problem. Many of these engineering problems are fairly convex, lending
themselves to different optimal models.

41

Under review as submission to TMLR

Table 14: Validity scores for adversarial models on engineering problems. Best is bolded and next two best are
underlined. Lower (↓) is better. Median scores over three runs are reported.

GAN GAN-CC GAN-CL GAN-Rej GAN-DO GAN-D2 GAN-MC GAN-RM
Ashby Chart 2.35 3.05 0.87 4.12 1.28 3.76 3.17 2.37
Bike Frame 4.98 14.28 3.08 6.05 5.11 3.18 1.09 2.91
Cantilever Beam 8.22 7.13 6.54 5.42 5.97 6.39 4.53 6.23
Compression Spring 2.23 3.73 2.26 1.22 0.31 2.63 0.18 2.49
Car Impact 10.43 10.72 7.55 8.67 5.89 8.23 4.67 8.26
Gearbox 0.57 1.48 0.19 0.12 0.01 0.09 0.09 0.14
Heat Exchanger 8.65 5.98 7.47 10.09 6.23 9.09 4.86 8.56
Pressure Vessel 2.84 2.69 0.58 0.73 0.01 1.05 0.42 1.45
Reinforced Concrete 0.66 2.25 0.58 0.33 0.03 0.49 0.28 0.55
Ship Hull 97.44 96.85 97.37 86.69 96.67 98.82 96.51 99.74
Truss 0.04 0.34 0.09 0.06 0 0 0.73 0
Welded Beam 2.5 2.73 2.18 1.85 0.63 1.95 0.66 1.63

Table 15: Validity scores for likelihood-based models on engineering problems. Best is bolded and next two best
are underlined. Lower (↓) is better. Median scores over three runs are reported.

VAE VAE-CC VAE-CL VAE-Rej DDPM DDPM-CL DDPM-G DDPM-Rej
Ashby Chart 0.45 NA 0.33 0.51 1.77 1.66 13.93 1.89
Bike Frame 0.88 NA 0.73 0.63 0.86 1.52 2.46 0.83
Cantilever Beam 1.02 1.1 0.54 1.1 1.3 1.14 2.07 1.56
Compression Spring 0.34 0.39 0.14 0.22 1.28 11.32 3.07 1.32
Car Impact 1.42 1.35 0.39 1.09 1.86 2.58 2.72 1.94
Gearbox 0.15 0.02 0.01 0 0.08 0.02 0.12 0.01
Heat Exchanger 1.24 1.71 1.15 1.41 1.95 2.7 3.53 2.2
Pressure Vessel 0.26 0.16 0.05 0.06 0.7 0.67 0.95 0.52
Reinforced Concrete 0.12 0.15 0.01 0.08 0.37 0.36 0.5 0.42
Ship Hull 0 31.76 0 0 85.37 84.76 91.2 84.76
Truss 0.08 0.01 0.01 0.01 0.3 0.19 0.58 0.13
Welded Beam 0.41 0.28 0.08 0.16 1.01 1.25 1.51 0.63

Table 16: MMD scores for adversarial models on engineering problems. Best is bolded and next two best are
underlined. Lower (↓) is better. Median scores over three runs are reported.

GAN GAN-CC GAN-CL GAN-Rej GAN-DO GAN-D2 GAN-MC GAN-RM
Ashby Chart 1.255 1.996 2.212 1.304 1.516 1.607 1.441 1.309
Bike Frame 14.88 98.26 20.70 16.40 29.07 15.52 55.95 18.73
Cantilever Beam 2.642 2.511 2.898 2.948 3.170 2.639 3.402 2.596
Compression Spring 1.446 1.673 1.198 1.480 1.133 1.497 1.529 1.567
Car Impact 3.165 2.556 2.716 3.395 2.991 2.612 3.440 2.674
Gearbox 2.005 3.037 2.301 1.895 4.741 2.318 3.663 2.570
Heat Exchanger 2.411 3.479 2.174 2.102 3.295 2.269 4.860 2.359
Pressure Vessel 1.714 1.891 2.363 1.724 6.658 1.947 3.019 1.719
Reinforced Concrete 1.182 1.615 1.525 1.456 3.584 1.624 1.795 1.946
Ship Hull 5.320 19.76 6.542 4.506 8.588 8.998 6.029 12.47
Truss 1.026 1.506 1.006 1.310 1.575 3.375 8.552 4.739
Welded Beam 1.675 2.306 1.632 1.384 4.575 1.799 3.687 2.651

42

Under review as submission to TMLR

Table 17: MMD scores for likelihood-based models on engineering problems. Best is bolded and next two best are
underlined. Lower (↓) is better. Median scores over three runs are reported.

VAE VAE-CC VAE-CL VAE-Rej DDPM DDPM-CL DDPM-G DDPM-Rej
Ashby Chart 3.240 NA 3.343 3.018 10.86 10.45 8.643 10.25
Bike Frame 42.76 NA 53.74 49.18 2.479 2.494 2.499 2.487
Cantilever Beam 5.870 5.631 5.858 5.583 4.401 4.497 3.809 4.288
Compression Spring 3.203 2.725 3.079 2.810 20.46 21.41 20.28 20.78
Car Impact 4.756 4.951 5.145 4.565 3.943 3.956 3.334 3.845
Gearbox 5.450 5.468 6.055 5.771 3.276 3.551 4.333 3.499
Heat Exchanger 6.962 6.389 7.075 6.729 6.677 6.787 4.500 6.835
Pressure Vessel 3.931 4.056 4.223 3.897 6.593 7.107 8.043 7.165
Reinforced Concrete 3.095 3.673 3.786 3.473 10.93 10.46 12.66 10.88
Ship Hull 1001 32.66 1001 1001 2.135 2.133 2.132 2.134
Truss 1.604 1.610 1.416 1.502 9.985 9.535 30.25 10.11
Welded Beam 4.539 4.011 4.577 4.261 7.722 8.442 9.185 8.456

Table 18: F1 scores for adversarial models on engineering problems. Best is bolded and next two best are underlined.
Higher (↑) is better. Median scores over three runs are reported.

GAN GAN-CC GAN-CL GAN-Rej GAN-DO GAN-D2 GAN-MC GAN-RM
Ashby Chart 0.967 0.947 0.951 0.963 0.963 0.960 0.960 0.964
Bike Frame 0.684 0.214 0.663 0.675 0.253 0.666 0.506 0.692
Cantilever Beam 0.940 0.938 0.930 0.934 0.914 0.924 0.914 0.937
Compression Spring 0.953 0.956 0.957 0.954 0.958 0.959 0.955 0.949
Car Impact 0.927 0.930 0.931 0.922 0.934 0.936 0.897 0.928
Gearbox 0.945 0.930 0.941 0.954 0.903 0.943 0.939 0.947
Heat Exchanger 0.942 0.929 0.948 0.954 0.929 0.948 0.894 0.942
Pressure Vessel 0.957 0.942 0.943 0.962 0.904 0.955 0.944 0.946
Reinforced Concrete 0.964 0.952 0.956 0.960 0.932 0.959 0.951 0.956
Ship Hull 0.043 0.012 0.020 0.054 0.044 0.026 0.053 0.019
Truss 0.958 0.946 0.954 0.954 0.937 0.888 0.869 0.891
Welded Beam 0.958 0.937 0.967 0.968 0.921 0.954 0.927 0.939

Table 19: F1 scores for likelihood-based models on engineering problems. Best is bolded and next two best are
underlined. Higher (↑) is better. Median scores over three runs are reported.

VAE VAE-CC VAE-CL VAE-Rej DDPM DDPM-CL DDPM-G DDPM-Rej
Ashby Chart 0.953 NA 0.953 0.950 0.859 0.855 0.876 0.856
Bike Frame 0.899 NA 0.897 0.890 0.780 0.778 0.786 0.754
Cantilever Beam 0.966 0.958 0.958 0.959 0.935 0.939 0.929 0.928
Compression Spring 0.946 0.957 0.954 0.956 0.795 0.785 0.795 0.794
Car Impact 0.955 0.960 0.947 0.958 0.938 0.939 0.927 0.938
Gearbox 0.958 0.965 0.963 0.963 0.969 0.968 0.863 0.965
Heat Exchanger 0.965 0.952 0.962 0.963 0.899 0.902 0.871 0.879
Pressure Vessel 0.956 0.960 0.954 0.959 0.887 0.884 0.872 0.884
Reinforced Concrete 0.946 0.945 0.953 0.940 0.846 0.851 0.837 0.848
Ship Hull 0.033 0.906 0.033 0.034 0.879 0.887 0.871 0.873
Truss 0.952 0.959 0.961 0.948 0.876 0.880 0.793 0.874
Welded Beam 0.953 0.956 0.954 0.956 0.875 0.866 0.867 0.870

43

Under review as submission to TMLR

H Details on Topology Optimization Experiments
In this appendix, we include extra details on the datasets, models, training, and results of the topology
optimization (TO) experiments.
H.1 Dataset Details
The GAN was trained exclusively on 32436 valid (connected) topologies generated through iterative optimiza-
tion (SIMP) (Bendsøe & Kikuchi, 1988). The GAN-MC variants are trained on a medley of disconnected
topologies generated by iterative optimization (2564), and either procedurally-generated synthetic topologies
(35000) or GAN-generated disconnected topologies (92307). Synthetic topologies were sourced directly from
the classification dataset of (Mazé & Ahmed, 2023). The GAN used to generate disconnected topologies for
rejection was the exact GAN benchmarked in the paper. Topologies were checked for continuity and rejected
samples were added to the negative dataset. All positive and negative data was multiplied by 8 using simple
data augmentation consisting of rotation and flips before training any model. The various data sources are
visualized below

Figure 15: Visualization of positive data and various sources of negative data used to train GAN and GAN-MC on
TO problems.

H.2 Model Details
The model architectures of the GAN and GAN-MC are identical except for the final output dimension of
the descriminator. Both generator and descriminator are simple 5-layer convolutional neural networks. The
generator has 3.6M parameters, while the discriminator has 2.8M parameters. For more architectural details,
we refer the reader to the codebase. The latent dimension is 100, batch size is 128, and learning rate for both
models is 2e-4, using the adam optimizer.

44

Under review as submission to TMLR

H.3 Visualization
We visualize several samples generated by GAN and GAN-MC, annotating constraint violations. Note that
several violations are circled in some topologies. Each floating section contributes to the pixel count invalidity
score, but is not double-counted for binary invalidity score. The topologies generated by GAN-MC have
visibly fewer invalidities compared to the topologies generated by the GAN.

Figure 16: Topologies generated by GAN with constraint violations annotated.

Figure 17: Topologies generated by GAN-MC trained on rejected negative data with constraint violations annotated.

45

	Introduction
	Background
	Constraints in Engineering and Design
	Divergence Minimization in Generative Models

	Negative-Data Generative Models
	Class Conditioning (CC)
	Pre-Trained Classifier (PC)
	Discriminator Overloading (DO)

	Proposed Negative Data Formulation
	Multi-Class Discriminator (MC)
	Double Discriminator (DD)

	Experiments
	Negative Data for Densities with Constraints
	How Much Negative Data is Enough?
	Handling Connectivity and Stability Constraints
	Negative Data in Engineering Tasks
	Negative Data in High-Dimensional Problems

	Discussion & Conclusion
	Related Work
	Negative Data Derivations& Density Ratio
	Double Discriminator (DD) Formulation
	Multi-Class Discriminator (MC) Formulation
	Comparison to AC-GAN

	Pseudocode
	2D Densities
	2D Datasets and Test Problems
	2D Problem 1
	2D Problem 2

	Setup and Training
	Additional Results

	Encouraging Diverse Generation in NDGMs
	Methodology
	Results

	Block Stacking: Details and Additional Experiments
	Training and Dataset Details
	Fulfilling Multiple Sets of Constraints
	Training Set - Positive
	Training Set - Negative
	Samples

	Assorted Engineering Problems
	Datasets and Problems
	Ashby Chart
	Bike Frame
	Cantilever Beam
	Car Impact
	Compression Spring
	Gearbox
	Heat Exchanger
	Pressure Vessel
	Reinforced Concrete
	Ship Hull
	Truss
	Welded Beam

	Training and Architecture Details
	Metrics
	Extended Results and Discussion

	Details on Topology Optimization Experiments
	Dataset Details
	Model Details
	Visualization

