
Flow Matching for Few-Trial Neural Adaptation with Stable Latent Dynamics

Puli Wang 1 2 Yu Qi 2 3 Yueming Wang 1 2 Gang Pan 1 2

Abstract

The primary goal of brain-computer interfaces
(BCIs) is to establish a direct linkage between
neural activities and behavioral actions via neu-
ral decoders. Due to the nonstationary property
of neural signals, BCIs trained on one day usu-
ally obtain degraded performance on other days,
hindering the user experience. Existing studies
attempted to address this problem by aligning
neural signals across different days. However,
these neural adaptation methods may exhibit in-
stability and poor performance when only a few
trials are available for alignment, limiting their
practicality in real-world BCI deployment. To
achieve efficient and stable neural adaptation with
few trials, we propose Flow-Based Distribution
Alignment (FDA), a novel framework that utilizes
flow matching to learn flexible neural represen-
tations with stable latent dynamics, thereby fa-
cilitating source-free domain alignment through
likelihood maximization. The latent dynamics
of FDA framework is theoretically proven to be
stable using Lyapunov exponents, allowing for ro-
bust adaptation. Further experiments across multi-
ple motor cortex datasets demonstrate the superior
performance of FDA, achieving reliable results
with fewer than five trials. Our FDA approach
offers a novel and efficient solution for few-trial
neural data adaptation, offering significant po-
tential for improving the long-term viability of
real-world BCI applications.
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1. Introduction
The aim of Brain-computer Interfaces (BCIs) is to establish
a direct link between the brain and external devices, present-
ing great opportunities for improving neural rehabilitation
in individuals with paralysis (Willett et al., 2021; 2023;
Wu et al., 2016; Wang et al., 2023a). However, sustaining
long-term decoding performance in chronic implantation is
challenging, resulting from behavioral variability (Truccolo
et al., 2008), physiological changes (Athalye et al., 2017),
and device degradation (Woeppel et al., 2021). The dynamic
relationship between neural data and behavior necessitates
recalibrating neural representations through adaptation to
ensure high-performance behavioral decoding.

Existing work on neural adaptation (Dabagia et al., 2023)
have focused on latent embeddings and aligned them for
stable long-term neural decoding. For example, linear meth-
ods, such as principal component analysis (PCA) (Degen-
hart et al., 2020), are used for aligning interpretable latent
factors. Non-linear methods based on low-dimensional la-
tent spaces usually have explicit assumptions on the statis-
tical properties of latent variables. NoMAD (Karpowicz
et al., 2022) and the source-free alignment (Vermani et al.,
2024) based on seq-VAEs assume Gaussian posteriors for
the closed-form distribution divergences.

However, these methods may lack stability and efficiency
when only a few trials are available for alignment in real-
world BCI deployment, which requires minimal recalibra-
tion (Karpowicz et al., 2024) over extended periods. For in-
stance, empirical results for two typical methods are shown
in Fig. 1(a). While they achieved reasonable performance
with a substantial number of target trials (∼ 100), they failed
to maintain effective behavioral decoding with fewer than 5
target trials. This issue may be attributed to two main factors.
First, some alignment techniques assume prior distributions
for latent variables to simplify likelihood estimation (Kar-
powicz et al., 2022; Wang et al., 2023b; Vermani et al.,
2024). Nonetheless, this assumption may be invalid when
target trials are limited. NoMAD relies on the closed-form
KL-divergence of Gaussian distributions, which may lead
to negative transfer (Pan & Yang, 2009) in few-trial sce-
narios, as shown in Fig. 1(b)(Left). Second, training of
certain alignment methods, such as Cycle-GAN (Ma et al.,
2023), might be quite unstable with few trials as illustrated
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Figure 1. (a) Average R2 across target sessions for NoMAD and
Cycle-GAN with varying numbers of target trials. (b) Represen-
tative R2 curves of NoMAD and Cycle-GAN on test target trials,
with an aligning ratio of 0.02.

in Fig. 1(b)(Right), due to the discontinuity of divergence
functions (Arjovsky et al., 2017).

This necessitates methods that enable few-trial adaptation
to achieve stable neural representations, thereby sustain-
ing high-performance behavioral decoding over time. To
achieve efficient few-trial neural adaptation, we propose
a novel Flow-Based Distribution Alignment (FDA) frame-
work that leverages recent advances in flow matching (Lip-
man et al., 2023). The FDA method learns stable neural
representations with flexible distributions rather than prior
stationary distributions. Our flow-based learning also en-
ables a source-free alignment through direct likelihood max-
imization that is less sensitive to few-trial scenarios (Wang
et al., 2023b). The latent dynamics of our flow-based trans-
formations are theoretically proven to be stable, based on
Lyapunov exponents. Extensive experiments on multiple
motor cortex datasets confirm the superior performance of
our FDA, achieving a 15% improvement in R2 over exist-
ing methods with fewer than 5 trials. Our FDA approach
establishes an innovative framework for efficient and ro-
bust adaptation in few-trial scenarios, potentially improving
the long-term reliability of real-world BCIs (Dabagia et al.,
2023; Fan et al., 2023; Karpowicz et al., 2024). The main
contributions of this paper are summarized as follows:

• Flow-Based Distribution Alignment (FDA): Flow
matching was first employed to enable efficient few-
trial neural adaptation. Our proposed Flow-Based Dis-
tribution Alignment (FDA) framework learns stable
neural representations, allowing for source-free align-
ment through likelihood maximization.

• Stable Latent Dynamics: The FDA method is demon-
strated to be stable using Lyapunov exponents. This
stability is evident in the tendency of neural representa-
tions to remain within an invariant bounded set (Kolter

& Manek, 2019), enabling robust adaptation.

• Experimental Validation: We extensively validated
our FDA method on several motor cortex datasets (Ma
et al., 2023), achieving reliable decoding with fewer
than five target trials.

2. Related Work
Neural Representation Alignment To address the chal-
lenge of variability in neural recordings, several ap-
proaches (Duan et al., 2023a;b; Qi et al., 2019; Zhu
et al., 2022) have been proposed to enable robust behav-
ioral decoding, including unsupervised alignment of neu-
ral representations (Dabagia et al., 2023). For example,
ADAN (Farshchian et al., 2018) and Cycle-GAN (Ma et al.,
2023) achieved neural alignment by employing adversarial
learning techniques based on raw neural signals. Latent fea-
tures such as low-dimensional neural manifolds (Jude et al.,
2022; Karpowicz et al., 2022; Wang et al., 2023b; Vermani
et al., 2024) were aligned across sessions. As an exam-
ple, ERDiff (Wang et al., 2023b) uses diffusion models and
aligns the target distribution with that extracted from VAEs.
In addition, transformer-based models (Liu et al., 2022; Ye
et al., 2023; Azabou et al., 2023; Zhang et al., 2024; Wang
et al., 2025) can achieve supervised neural alignment on tar-
get downstream tasks via fine-tuning, following pre-training
with self-supervised objectives such as masked reconstruc-
tion. In contrast, our FDA achieves representation learning
entirely through diffusion models, with source-free align-
ment based solely on direct log-likelihood maximization.
In cases with few target trials, alignment approaches that
rely on one-to-one sample mapping tend to fall into subopti-
mal solutions (Courty et al., 2017; Kerdoncuff et al., 2021).
Unlike these methods, likelihood-based alignment is less
sensitive to the number of target trials (Wang et al., 2023b).
Consequently, the FDA achieves efficient alignment in few-
trial scenarios, a challenge that most existing unsupervised
alignment has not effectively addressed.

Normalizing Flows Normalizing flows have been widely
applied in distribution sampling due to their explicit like-
lihood modeling. For example, flow matching (Liu et al.,
2023a; Lipman et al., 2023; Ma et al., 2024) extends diffu-
sion models with continuous normalizing flows for more
flexible diffusion paths. Conditional flow matching (Liu
et al., 2023b) further integrates conditional features to model
conditional distributions. Additional related work is pro-
vided in App. A.4. Unlike those typically used for learning
neural dynamics (Kim et al., 2021), these normalizing flows
are employed for distribution sampling, where only the fi-
nal latent state is taken as the sample. Existing alignment
methods (Gong et al., 2019; Liu et al., 2023a) based on
normalizing flows typically start from the source distribu-
tion and end with the target one. Based on conditional flow
matching, we propose a more efficient strategy in few-trial

2



FDA: Flow Matching for Few-Trial Neural Adaptation with Stable Latent Dynamics

scenarios, which have not been explored in the context of
neural alignment.

3. Methodology
3.1. Problem Formulation

We define the problem of long-term behavioral decoding in
few-trial scenarios based on the unsupervised domain adap-
tation (Long et al., 2013). First, we define the domain D =
{(x1, y1), . . . , (xn, yn)}, where xi(l)(l = 1, 2, . . . ,m) rep-
resents the raw neural signal sample from the l-th channel in
one or more sessions. The short-term context window has a
length of w time points, much smaller than the length of tri-
als, i.e., xi(l) ∈ Rw. The first context window of each trial
begins at the initial time point, while the second window
starts one step later. The temporal evolution of neural dy-
namics is reflected in the shifting of short-term windows. yi
denotes the d-dimensional behavioral label corresponding
to the w-th time step of xi, with yi ∈ Rd. The behavioral
label is assigned at the w-th time step to leverage previous
time steps as contextual information.

Based on D, we define the source domain DS , consist-
ing of both signals and labels from one or more sessions:
DS = {(xS

1 , y
S
1 ), . . . , (x

S
nS

, ySnS
)}. Similarly, the unla-

beled target domain DT consists of signals from a separate
session: DT = {xT

1 , . . . , x
T
nT

}, where nT ≪ nS , and typi-
cally only contains signals of few trials. For convenience,
we define xS and yS as the random variables representing
neural signals xS

i and their corresponding labels ySi in DS .
Samples xT

j from DT are represented as random variables
xT . We aim to align the distribution of neural represen-
tations from DT with DS with few target trials, reusing
behavioral decoders trained on source behavioral labels yS .

3.2. Overall framework

To obtain efficient and robust adaptation in few-trial sce-
narios, we propose a novel FDA framework that employs
flow matching with stable latent dynamics and achieves
source-free alignment through likelihood maximization.
This framework consists of two phases: pre-training and
fine-tuning, as illustrated in Fig. 2.

During the pre-training phase, we establish a continuous
normalizing flow conditioned on context windows using
DS in a supervised manner. Initial noisy latent states flow
toward the target neural representation for decoding, guided
by short-term context windows from raw neural signals.
There are no prior assumptions on the distribution of neural
representations. The latent dynamics of our FDA are fur-
ther verified to be stable. This stability is ensured by the
Lipschitz continuity of activation functions in MLPs and by
regularizing the drift coefficients of latent states, as detailed
in Theorem 3.1.

As for fine-tuning, we perform unsupervised alignment of
neural representation using few trials from DT . Compared
to some existing flow-based adaptation methods (Gong et al.,
2019; Liu et al., 2023a), FDA allows for alignment with
fewer target trials. Based on the explicit computation of
log-likelihood using the Fokker-Planck Equation, we pro-
pose a novel source-free alignment method through direct
likelihood maximization.

3.2.1. FLOW-BASED REPRESENTATION LEARNING

During the pre-training phase, we propose a novel frame-
work based on flow matching conditioned on context win-
dows. FDA offers several distinct benefits in obtaining
neural representations. First, flow matching imposes fewer
assumptions on the underlying statistics of latent variables,
enabling more flexible modeling of distributions and re-
solving the breakdown of prior assumptions in few-trial
scenarios. Second, our theoretical analysis demonstrates
that the latent dynamics of our flow-based transformations
are stable (Angeli, 2002), which is further validated using
Lyapunov exponents. This stability is manifested in the
tendency of neural representations to stay within an invari-
ant bounded set (Kolter & Manek, 2019), which allows for
efficient and robust alignment for few trials.

Conditional Feature Extraction We begin by extracting
conditional features cSi from context windows xS

i . For spike-
based signals, a single channel usually records neuron-level
activity (Buzsáki, 2004), where the short-term patterns are
relatively limited for similar tasks (Izhikevich et al., 2004).
Moreover, inter-channel relationships in spikes are gener-
ally more stable compared to the temporal patterns, which
often exhibit warping (Williams et al., 2020). The above
observations are validated, as demonstrated in Fig. 5(c).

Based on these observations and inspired by (Liu et al.,
2024), we use short-term temporal patterns of each channel
as tokens, along with their inter-channel relationships for
attention calculation. This approach can flexibly accommo-
date changes in the number of channels, which is quite com-
mon during neuron growth and apoptosis (Degenhart et al.,
2020). Specifically, we feed the raw neural signal sequence
xS
i = [xS

i (1), . . . , x
S
i (m)], containing tokens from m chan-

nels, into a transformer-based network fα (with parameters
α) using the classical sinusoidal positional encoding. After
processing through multi-head self-attention modules and
projection networks, we obtain conditional latent dynamics:
cSi = fα(x

S
i ), where cSi ∈ Rkc . The detailed architecture is

illustrated in App. A.1.

Flow Matching to Neural Representation After extracting
conditional features, we leverage flow matching conditioned
on these features to learn the neural representations for de-
coding. We model the conditional probability pτ (z

S(τ)|cS)
using probability flow ODEs (Song et al., 2021), where
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Figure 2. Two phases of the overall FDA framework: pre-training, which involves conditional feature extraction and flow matching to
neural representation, and fine-tuning, which enables rapid adaptation with few target trials.

zS(τ) ∈ Rkz denotes the latent states at learning time point
τ ∈ [0, 1], where τ is rescaled for more efficient training,
capturing the evolution of zS . Here, cS is the random vari-
able representing conditional features cSi (cS = fα(x

S)).
Typically, the flows are built on the parameterized ϕτ to
transform a simple prior distribution p0 (e.g., a multivariate
Gaussian) into a more complex one p1: pτ = [ϕτ ]∗p0.

For adaptation to the supervised training on DS , we set p0 as
a standard multivariate Gaussian distribution, i.e., zS(0) ∼
N (0, I). The target distribution p1, representing the desired
neural representation for behavioral decoding, is defined by
the random variable zS(1) = ηyS , where η ∈ Rkz×d is
pre-defined with Xavier initialization and remains the same
across sessions. This distribution is denoted as q(zS(1)),
with η∗ ∈ Rd×kz as the generalized inverse of η, which
serves as weights of the linear decoder G and also satisfies
η∗η = Id. In the detailed implementation, the flow ϕτ of
pτ (z

S(τ)|cS) is optimized following the objectives used
by conditional flow matching. A neural network vθ (with
parameters θ) is utilized to parameterize the vector field of
zS(τ), allowing for its evolution as follows:

dzS(τ)

dτ
= vθ(z

S(τ), fα(x
S), τ). (1)

Based on Eq. (1), the evolution of pτ (z
S(τ)|cS) during

learning process follows the Fokker-Planck Equation:

∂pτ (z
S(τ)|cS)
∂τ

= −∇·
(
pτ (z

S(τ)|cS) vθ(zS(τ), fα(xS), τ)
)
.

(2)

Existing work (Liu et al., 2023b) indicates that the network
vθ can be optimized via matching the vector field provided
by vθ with a predefined vector field u(τ). To enhance the
efficiency in learning and distribution alignment of neural
representation, we set the flow path over our learning pro-
cess as a linear interpolation between the start zS(0) and
the end zS(1):

zS(τ) = (1− τ)zS(0) + τzS(1). (3)

The corresponding vector field of Eq. (3) is u(τ) = zS(1)−
zS(0). Based on these, the training objective function

Lcfm(α, θ) can be defined as below:

Lcfm(α, θ) = Eτ,p(zS(0)),q(zS(1))∥∥vθ(zS(τ), fα(xS), τ)− (zS(1)− zS(0))
∥∥ , (4)

where zS(0) ∼ N (0, I), zS(1) = ηyS , and ∥·∥ denotes the
ℓ2 norm. vθ only consists of multilayer perceptron (MLP)
layers with residual connections, and its detailed architec-
ture is provided in App. A.1. More intuitively, we provided
a visualization of the flow matching process in Fig. 3. Our
FDA learns latent variables from neural signals in a coarse-
to-fine manner, differing from conventional one-step ex-
traction. The stable latent dynamics of the learning process
ensure that latent factors with similar labels flow toward con-
sistent neural representations, even when guided by shifted
neural recordings. Empirical validation through zero-shot
transfer performance in Table S8 further demonstrates the
benefits of this stability.
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Figure 3. Intuitive visualization of our flow matching process. Our
process transforms noisy variables z(0) into an ideal neural rep-
resentation z(1), guided by conditional features c derived from
neural signals. Meanwhile, the corresponding distribution p0 is
transformed into p1. To learn this process, we parameterize the
velocity field vθ of z, which determines the moving velocity and
direction of z at a specific learning time point τ .

Theoretical Analysis on Latent Dynamics Our flow-based
neural representation learning forms a dynamic process, be-
ginning with noisy latent states and ending with the desired
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neural representation. We further found that the latent dy-
namics of this transformation process are stable (Angeli,
2002), which is ensured by two key factors. First, the veloc-
ity field in flow matching is constructed using MLPs with
Lipschitz-continuous activation functions. These functions
ensure that latent state deviations remain stable under ex-
ternal input constraints, as shown in Eq. (7) and Eq. (21).
Second, the scale coefficient γS , which controls the shift
of z in predicting the velocity field as defined in Eq. (14),
is regularized to ensure that the ratio of latent state devia-
tions between successive time steps remains below 1. This
results in a geometric sequence with a ratio less than 1, caus-
ing latent states to gradually converge to similar ones, as
presented in Eq. (6) and Eq. (22).

Consider any two signal samples xS
i and xS

j from DS , with
corresponding conditional features cSi and cSj , and their la-
tent states zSi (τ) and zSj (τ). We then analyze the upper
bound of the distance

∥∥zSi (τ)− zSj (τ)
∥∥ based on the Euler

sampling method. We summarize the verification in Theo-
rem 3.1 below. Detailed proof can be found in App. A.2.

Theorem 3.1. Let the total number of sampling steps in
Euler’s method be T . At the n-th step, the time point is
τn = n

T . At this point, the distance between any two latent
states zSi (τn) and zSj (τn) corresponding to signal samples
xS
i and xS

j satisfies the following inequality:

∥zSi (τn)− zSj (τn)∥ ≤
hz

(
∥zSi (0)− zSj (0)∥, n

)
+ hc

(
∥cSi − cSj ∥

)
, (5)

where hz : R≥0 × Z≥0 → R≥0 is a decreasing function
with respect to n, given by:

hz

(
∥zSi (0)− zSj (0)∥, n

)
= (Kγ)

n ∥zSi (0)−zSj (0)∥, (6)

with 0 < Kγ < 1. Moreover, hc : R≥0 → R≥0 satisfies
hc

(
∥cSi − cSj ∥

)
→ ∞ as ∥cSi − cSj ∥ → ∞. The function

hc

(
∥cSi − cSj ∥

)
can be expressed as:

hc

(
∥cSi − cSj ∥

)
=

(
n−1∑
a=1

(Kγ)
a

)
Kg∥wβ∥∥cSi −cSj ∥, (7)

where Kg is the Lipschitz constant of activation functions
in the network vθ, and wβ represents the weights used for
computing shift coefficients (Ma et al., 2024) in vθ.

3.2.2. RAPID ADAPTATION WITH FEW TARGET TRIALS

During the fine-tuning phase, the pre-trained flow network
vθ is fixed, while the conditional feature extractor fα is
fine-tuned, aligning the distribution of neural representation
z(1). The flow path is approximated as a straight line, al-
lowing us to obtain the final latent states in a single step for
decoding. This significantly simplifies the explicit compu-
tation of likelihood functions, which ERDiff (Wang et al.,

2023b) finds challenging. Therefore, unlike ERDiff, which
maximize the lower bound of log-likelihood, we propose a
direct log-likelihood maximization approach that achieves
source-free unsupervised alignment with few trials.

Source-Free Alignment via Likelihood Maximization
(FDA-MLA) A notable advantage of flow matching is its
explicit modeling of likelihood. Meanwhile, distribution
alignment based on minimizing Kullback–Leibler (KL) di-
vergences can be seen as maximizing the likelihood in
DT (Kingma et al., 2019). Moreover, our FDA does not di-
rectly rely on source samples, making it suitable for privacy-
sensitive data like neural recordings, enabling source-free
unsupervised alignment.

Specifically, let the signal samples in DT be denoted by
the random variable xT , with the corresponding conditional
feature cT = fα(x

T ) and the latent embedding zT (1) for
decoding. In this context, aligning the final latent state of
flow between DS and DT can be achieved by minimizing
the KL divergence. This can be accomplished by fine-tuning
the parameters α of conditional feature extractor fα:

min
α

DKL
(
p1(z

S(1)|fα(xS)) ∥ p1(z
T (1)|fα(xT ))

)
≈ max

α
log p1(z

T (1)|fα(xT )). (8)

Since minimizing KL divergences can be approximated as
maximizing log-likelihood functions, we can reformulate
the above objective function as maximizing the likelihood
based on p1(z

T (1)|fα(xT )), which reduces dependence on
DS . Furthermore, our pre-defined flow path is approximated
as a straight line, the neural representation can be sampled
using the one-step Euler method. This also simplifies the
computation of likelihood functions for target conditional
probabilities.

Taking one-step Euler sampling as an example, the likeli-
hood of this conditional probability can be explicitly ex-
pressed via the change of variables formula (Chen et al.,
2018) as:

log p1(z
T (1)|fα(xT )) = log p0(z

T (0)|fα(xT ))

− log

∣∣∣∣det(∂vθ(z
T (0), 0, fα(x

T ))

∂zT (0)

)∣∣∣∣ . (9)

Considering that log p0(zT (0)|fα(xT )) is independent of α,
the objective function maxα Lmla(α) can be approximately
rewritten as below through target neural signals xT

j :

max
α

 nT∑
j=1

− log

∣∣∣∣∣det
(
∂vθ(z

T
j (0), 0, fα(x

T
j ))

∂zTj (0)

)∣∣∣∣∣
 ,

(10)

where zTj (1) = vθ(z
T
j (0), 0, fα(x

T
j )).
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More generally, alternative sampling methods can employ
the unbiased Hutchinson-trace estimator (Hutchinson, 1989)
to estimate the divergence in Eq. (2), facilitating effective
alignment through likelihood maximization. Detailed com-
putations are provided in App. A.3.

Maximum Mean Discrepancy Alignment (FDA-MMD)
For a fair comparison with alignment methods using source
data, we also employ a strategy that minimizes MMD (Max-
imum Mean Discrepancy) distances to align the represen-
tation distributions of our flow-based learning. Taking one-
step Euler sampling as an example, the objective function
minα Lmmd(α) for aligning final states z(1) based on DT is
as follows:

min
α

∥∥∥∥∥∥ 1

nS

nS∑
i=1

φ(zSi (1))−
1

nT

nT∑
j=1

φ(zTj (1))

∥∥∥∥∥∥
H

, (11)

where zSi (1) = vθ(z
S
i (0), 0, fα(x

S
i )), and zTj (1) =

vθ(z
T
j (0), 0, fα(x

T
j )). Here, H represents the reproducing

kernel Hilbert space (RKHS), and φ is the feature mapping
function in that space, and we utilize a Gaussian kernel to
compute the inner product of features.

Algorithm 1 Flow-Based Dynamical Alignment (FDA)
1: Input: source domain DS ; target domain DT ; alignment

method align m; pre-defined η;
2: Output: conditional feature extractor fα; continuous normal-

izing flow network vθ
3: Initialize fα, vθ
4: Pre-training phase:
5: for iter = 1 to npre−train do
6: Sample τ , zS(0) ∼ N (0, I), xS , zS(1) = ηyS ;
7: Update fα, vθ by Lcfm(α, θ);
8: end for
9: Fine-tuning phase:

10: for iter = 1 to nfine−tune do
11: if align m is FDA-MMD: then
12: Sample xS , zS(0) ∼ N (0, I) and xT , zT (0) ∼

N (0, I); Update fα by Lmmd(α);
13: else if align m is FDA-MLA: then
14: Sample xT , zT (0) ∼ N (0, I); Update fα by Lmla(α);
15: end if
16: end for
17: return fα, vθ .

3.3. Overall Learning Algorithm

The overall learning algorithm is illustrated in Algorithm 1.
During the pre-training phase, we perform supervised opti-
mization of the conditional feature extractor fα and the flow
network vθ using DS , with the objective function Lcfm(α, θ).
In the fine-tuning phase, the parameter θ is fixed, and few
trials from DT are utilized to fine-tune α based on either
Lmmd(α) or Lmla(α), as described in Sec. 3.2.2. Further
training details are provided in App. B.2.

4. Experiments and Results
4.1. Experimental Setup

Datasets We employed three distinct datasets of extracellu-
lar neural recordings from the primary motor cortex (M1)
of non-human primates (Ma et al., 2023). Additional infor-
mation about the datasets can be found in App. B.1.
Center-Out Reaching (CO-C&CO-M). Monkeys C and
M engaged in a center-out reaching task, where each trial
required them to move to one of eight randomized targets,
earning a reward for successful reaching.
Random-Target (RT-M). Monkey M performed a random-
target task, reaching for three sequentially presented targets
at random locations. Each trial started at the workspace
center, with a 2.0-second limit to reach each target.
Data Preprocess and Spilt We extracted trials from the
’go cue time’ to the ’trial end’. The data was then times-
tamped and smoothed for firing rates in 50 ms bins. Sessions
containing approximately 200 trials, along with 2D cursor
velocity labels, were used as DS for pre-training, while a
separate session without labels was used as DT for fine-
tuning. For few-trial alignment, we used the target ratio r to
evaluate the number of target trials from all recorded ones,
typically setting r to 0.02, 0.03, 0.04, and 0.06, with 0.02
corresponding to no more than 5 trials. Considering the
increased randomness in few-trial selections, we pre-train
our FDA using 5 different random seeds and fine-tune it on
25 different random selections of few trials. The decoded
cursor velocity is evaluated using R2 scores, with results
averaged over different selections and five pre-training pro-
cesses. Additional experimental details and hyper-parameter
settings can be found in App. B.2.

4.2. Comparative Study

Baselines The following approaches were utilized as base-
lines for comparative experiments, with further implementa-
tion details provided in App. B.3.
LSTM(Hochreiter, 1997): Unaligned LSTMs were used as
baseline decoders to assess the challenges of alignment.
CEBRA(Schneider et al., 2023): CEBRA served as an ad-
vanced tool for discovering generalizable latent structures
across datasets and subjects without alignment.
ERDiff(Wang et al., 2023b): ERDiff employed diffusion
models to reconstruct spatio-temporal structures and aligned
them with latent dynamics derived from VAEs.
NoMAD(Karpowicz et al., 2022): NoMAD utilizied
LFADS (Pandarinath et al., 2018) to capture neural pop-
ulation dynamics and performed alignment.
Cycle-GAN(Ma et al., 2023): Cycle-GAN directly aligned
full-dimensional raw signals at each time step through an
adversarial approach.
Considering that NoMAD and ERDiff are both generative
models, we included an additional reconstruction term in our
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Table 1. Comparison of R2 values (in %) of baselines and FDA on CO-M and RT-M datasets(r = 0.02).
Data Session LSTM CEBRA ERDiff NoMAD Cycle-GAN FDA-MLA FDA-MMD

C
O

-M

Day 0 74.18±4.90 79.24±1.38 82.71±2.82 79.77±4.50 77.06±2.21 84.79±0.91 84.79±0.91
Day 8 −118.53±98.70 −51.92±12.51 −0.14±60.88 15.32±11.96 14.25±10.29 23.79±8.71 45.23±4.44
Day 14 −63.85±19.96 −1.77±7.03 −47.41±25.37 43.49±5.03 14.20±11.21 50.15±4.85 55.90±3.17
Day 15 −712.91±316.04 −83.24±15.03 −49.80±19.89 20.26±7.52 9.77±6.36 43.59±3.69 49.55±3.41
Day 22 −88.57±58.85 −21.10±7.01 −15.20±43.59 −7.71±39.52 14.10±5.22 33.98±7.39 27.35±7.34
Day 24 −39.52±86.25 −10.28±3.35 −0.02±36.96 18.43±26.58 −3.14±14.96 48.86±4.58 51.28±2.53
Day 25 −253.83±270.30 −64.67±16.20 −0.24±35.31 28.49±8.43 15.30±4.99 31.74±7.31 36.79±4.12
Day 28 −107.64±124.47 −35.95±10.54 −9.79±40.68 32.68±3.98 0.35±14.38 53.27±7.55 54.87±4.40
Day 29 −206.99±117.46 −64.32±15.75 −32.77±21.99 −37.13±69.37 16.32±2.99 36.16±9.21 41.26±5.70
Day 31 −63.01±40.94 −81.41±21.04 −0.01±40.86 34.60±8.21 0.96±6.68 56.50±3.92 57.10±3.24
Day 32 −417.39±295.63 −40.10±16.67 −7.58±34.99 28.52±4.68 6.18±13.31 40.49±5.69 44.66±4.41

R
T-

M

Day 0 72.91±1.40 74.86±1.03 76.98±2.62 74.71±2.87 85.19±2.36 86.95±1.59 86.95±1.59
Day 1 63.15±3.11 65.97±2.38 −0.62±0.05 58.72±19.32 32.38±2.33 71.83±3.90 74.32±2.25
Day 38 −20.62±32.46 21.34±6.71 −18.38±25.62 25.87±10.12 21.55±3.36 55.05±2.65 55.39±2.80
Day 39 −86.31±47.86 −36.86±25.62 −8.36±17.92 −6.25±11.77 −2.46±5.32 38.28±6.13 40.44±7.31
Day 40 −8.36±17.70 2.63±20.16 −0.46±0.07 −3.51±12.01 22.02±11.65 32.16±8.95 39.85±3.27
Day 52 3.12±11.68 30.50±6.94 −16.06±30.33 33.32±16.90 10.29±12.86 43.35±4.80 44.99±4.96
Day 53 −43.50±50.26 42.33±4.84 −9.82±17.83 19.22±13.62 20.70±1.85 49.60±2.53 50.03±4.44
Day 67 −148.64±98.52 25.09±13.79 −22.98±35.64 20.97±20.44 25.65±1.59 42.06±6.29 50.29±1.07
Day 69 −110.99±93.95 −38.82±29.41 −0.33±0.02 −67.12±7.16 −5.99±27.79 29.52±7.31 39.19±4.07
Day 77 −448.21±98.67 −53.79±21.04 −3.52±6.53 −31.65±16.18 −1.68±18.81 16.19±9.43 16.67±9.32
Day 79 −226.00±135.06 −47.01±13.77 1.22±3.10 13.01±22.32 10.53±3.33 39.29±6.86 38.99±5.70

method for a fair comparison and observed results similar to
FDA without that regularization, as shown in Fig. 5(c)(FDA-
re). Thus, we omitted the reconstruction term in the final
version. Moreover, for fairness, the pre-training of NoMAD
and ERDiff involved joint training of their generative mod-
els and behavioral decoders, while CEBRA was trained
simultaneously on time and behavioral labels.

𝑅
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Figure 4. (a) The maximum Lyapunov exponent (MLE) λ on CO-
M and RT-M datasets. Dots represent the average MLE across five
random runs of pre-training for each individual source session. Bar
charts denote average MLE across sessions. (b) Comparison of R2

scores for cross-session decoding (r = 0.02) with two sessions in
DS . (c) Comparison of average R2 scores across target sessions
for baselines and FDA under varying r.
Cross-session Performance Evaluation We first validated
the cross-session performance of FDA with few trials. We
conducted experiments with DS containing only one session.
The average R2 scores, using Day0 as the source session and
a target ratio r of 0.02, are presented in Table 1(CO-M &
RT-M) and App. C.1.2(CO-C). FDA-MLA and FDA-MMD
outperformed other methods across most sessions with few

trials. LSTM and CEBRA (without alignment) often yielded
negative scores, emphasizing the need of alignment. Cycle-
GAN and NoMAD performed much worse than reported in
their original papers due to the scarcity of target trials, as
shown in Fig. S5. ERDiff often experienced early stopping
caused by gradient explosions in few-trial scenarios with its
latest release, leading to performance degradation. Though
FDA-MLA performed worse than FDA-MMD overall, this
difference is understandable given that it is source-free.

We also performed comparisons with the two best baselines,
NoMAD and Cycle-GAN. As shown in Fig. 4(c), FDA
achieved a higher average R2 across different values of r,
demonstrating its efficient adaptation in few-trial scenarios.
When r increased to approximately 0.3 (∼ 60 trials), FDA’s
performance became comparable to that of Cycle-GAN and
NoMAD, as shown in Fig. S5. The overall performance
of FDA across all sessions with few trials (r = 0.02) is
presented in Fig. S3, demonstrating its consistently effective
adaptation. Moreover, as presented in Fig. 4(b), FDA-MMD
outperformed NoMAD and Cycle-GAN when DS contained
two sessions. We also found that FDA can achieve better
adaptation in few-trial scenarios with more sessions in DS .
Additional results can be found in App. C.1.2.

Empirical Analysis on Latent Dynamics To analyze the
stability of latent dynamics in our flow-based transfor-
mations, we measured the maximum Lyapunov exponent
(MLE) λ of zS(τ) after pre-training on DS . Notice that
the value of λ was computed as described in (Wolf et al.,
1985), with a non-positive λ typically indicating dynami-
cal stability. More detailed information on λ are available
in App. B.5. Since MLE operates on sequential variables,
we compared our λ with those derived from sequential la-
tent factors (ERDiff & NoMAD). The results are presented
in Fig. 4(a) and App. C.1.1. Nearly all MLEs achieved by
FDA are non-positive (CO-M: 55/55, RT-M: 52/55), indi-
cating greater stability compared to the selected baselines.
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(a) (b) (c)

Figure 5. (a) R2 for FDA-t, FDA-g, FDA-c, and FDA-MMD on CO-M (Day31) and RT-M (Day52) with r = 0.02. FDA-t extracted
and aligned features solely using the transformer-based fα without flows. FDA-g aligned z(1) using Cycle-GAN, and FDA-c aligned
the distribution of c instead of z(1). (b) R2 (Left) and the corresponding negative log likelihood (NLL) (Right) on CO-M (Day29) and
RT-M (Day52) by FDA-MLA with various target ratios r. (c) Comparison of average R2 scores, achieved by FDA-a, FDA-m, FDA-v,
FDA-p, FDA-re, FDA-MLA, and FDA-MMD. Dots represent R2 values for individual session(r = 0.02). Bar charts denote average
R2 across sessions. We employed FDA-v and FDA-p as variants utilizing VP and GVP flow paths, respectively. FDA-a and FDA-m
employ transformers with temporal correlation attention and MLPs as conditional extractors, respectively. FDA-re includes an additional
reconstruction term to regularize the learned neural representations.

The three exceptions have MLEs below 1e-3, which can
be considered approximately stable. Therefore, we con-
clude that the latent dynamics of our FDA method remain
stable. Although ERDiff also employs a flow-based frame-
work, its reliance on prior statistical assumptions and path
implementation via transformers may compromise the sta-
bility of latent dynamics. FDA resolve this issue through
learning without specific statistical assumptions via condi-
tional flow matching. Our path implementation with simple
residual MLPs also facilitates stability regularization, as
demonstrated in Eq. (21). We further analyze the benefits of
our representation learning based on stable latent dynamics
via the zero-shot cross-session performance. As shown in
Table S8, FDA achieved better performance than the best
two baselines without alignment.

Table 2. Comparison of average R2 scores (%) across sessions for
FDA-al, FDA-sc, and FDA-MMD on the CO-M and RT-M datasets
(r = 0, 0.02).

Data r FDA-al FDA-sc FDA-MMD

C
O

-M 0 −9.34±9.57 −18.20±17.53 16.23±9.43

0.02 14.51±16.37 13.35±19.01 45.59±5.15

R
T-

M 0 1.23±4.76 1.78±3.89 38.15±8.21

0.02 16.99±11.75 20.46±11.77 42.08±6.31

Additionally, we performed a more comprehensive study to
further validate the benefits of stable latent dynamics. Since
stability is maintained by activation functions and scale co-
efficients, we ablated these two components (FDA-al and
FDA-sc, respectively) to violate the assumptions of stability.
As shown in Fig. S4, the distribution of MLEs for FDA-al
and FDA-sc reveals that both variants frequently exhibit
positive values, indicating instability resulting from the ab-

lation of respective components. The corresponding results
for zero-shot and few-trial performance using MMD-based
alignment on the CO-M and RT-M datasets are summarized
in Table 2. Consistent with their reduced stability, FDA-al
and FDA-sc demonstrated substantially degraded transfer
performance. This result suggests that instability is the
factor contributing to their poor transfer ability.

Computational Efficiency and Hyper-parameter Analy-
sis We evaluated the computational efficiency of FDA com-
pared to baselines under identical hardware configurations
(NVIDIA GeForce RTX 3080 Ti, 12GB). The comparison
was based on the number of parameters and training time per
epoch or in total, covering both pre-training and fine-tuning
phases. As shown in Table S10 and Table S11, FDA re-
quired less training time compared to ERDiff and NoMAD,
owing to its efficient training objectives based on short-term
context windows. Further analysis of FDA’s inference time
is presented in Table S12. The average inference time per
window is approximately 4 ms, demonstrating its suitability
for real-time applications. Moreover, the sensitivity analysis
of main hyper-parameters in FDA and the level of diversity
in target trials is provided in App. C.3.

Evaluation on Simulated Neural Data We conducted
further experiments to evaluate the recovery of ground-
truth latent variables in synthetic data. Following method
in (Kapoor et al., 2024), we used the Lorenz attractor as the
latent dynamics. We simulated firing rates as an affine trans-
formation of the 3D latent variables into a 96-dimensional
space, then sampled spike trains from a Poisson distribution.
As shown in Table 3, our FDA successfully recovered the
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latent dynamics from synthetic spiking data. The visualiza-
tions of our decoded 3D trajectories presented in Fig. S7
confirmed that FDA effectively captured the neural dynam-
ics.
Table 3. Average R2 scores(%) for recovered latent variables from
synthetic spiking data at varying mean firing rates.

Mean Firing Rates 0.05 0.1 0.3

R2 95.43±0.87 95.68±1.07 95.24±1.03

4.3. Ablation Study

Ablation Study on Different Alignment Strategies To
evaluate the effectiveness of our alignment, we compared
FDA with several variants. FDA-t extracted and aligned fea-
tures solely using the transformer-based fα without flows.
FDA-g aligned z(1) using Cycle-GAN, and FDA-c aligned
the distribution of c instead of z(1). As shown in Table 4,
full FDA outperformed FDA-t, whose performance fell be-
low that of baselines, indicating the advantage of flow-based
frameworks. The degraded performance of FDA-g stemmed
from training instability, similar to Cycle-GAN, as illus-
trated in Fig. 5(a). FDA-c performed slightly worse than
FDA-MMD, demonstrating the equivalence of aligning c
and z(1) using MMD.

As presented in Fig. 5(a) and App. C.2.1, R2 curves of
FDA-MMD and FDA-c demonstrated more efficient and
robust adaptation in few-trial scenarios, smoothly reaching
their peak within ∼ 20 epochs during fine-tuning. For FDA-
MLA, as shown in Fig. 5(b), both the negative log-likelihood
(NLL) and target R2 exhibited smooth convergence within
∼ 20 epochs across different r, demonstrating rapid and
efficient alignment with few trials. Despite the observed
decline in R2 at higher r values in Fig. 5(b), a general
trend of increasing R2 with larger fine-tuning sample sizes
was observed across most sessions, as shown in Table S14
and Table S15. Furthermore, the superior performance on
Day 52 (RT-M) compared to Days 29 and 31 (CO-M) can be
attributed to greater similarity between the source and target
sessions. This is supported by the maximum mutual infor-
mation (MI) between spiking recordings from individual
channels, which is higher for RT-M (2e-3) than for CO-M
(6e-4).

Table 4. Comparison of average R2 scores (in %) over sessions on
CO-M and RT-M datasets. FDA-t extracted and aligned features
solely using transformer-based fα without flows. FDA-g aligned
z(1) using Cycle-GAN, and FDA-c aligned the distribution of c.

Data Target Ratio FDA-t FDA-g FDA-c FDA-MMD

C
O

-M

0.02 −82.67±90.02 35.57±6.46 42.88±4.73 45.59±5.16
0.03 −85.45±90.20 35.23±7.45 44.69±3.72 48.40±4.59
0.04 −86.09±89.15 35.25±7.66 46.36±4.15 50.71±4.68
0.06 −55.96±85.19 34.35±8.19 47.27±4.53 51.10±4.76

R
T-

M

0.02 0.15±23.78 40.56±7.31 42.28±6.29 42.08±6.31
0.03 1.44±24.47 40.35±7.49 43.77±6.05 44.36±5.83
0.04 3.41±18.17 40.04±7.62 44.08±6.06 45.35±6.15
0.06 3.65±16.10 39.76±7.42 46.31±4.92 47.23±5.96

Ablation Study of Main Components Further ablation
studies were conducted to validate the effectiveness of our

flow-based learning framework. The corresponding results
are provided in Fig. 5(c) and Fig. S9. For the design of flow
paths, we utilized FDA-v and FDA-p as variants with VP
and GVP paths (Ma et al., 2024), similar to those in ERDiff.
We found that the performance degradation with nonlinear
flow paths may result from a mismatch in latent dynamics
between the ground truth and those generated by residual
MLPs, as well as the use of one-step Euler sampling. For
conditional feature extractors, we used FDA-a and FDA-m
as variants, incorporating transformers based on temporal
correlation attention and MLPs. We observed that these
extractors may not provide effective conditional features,
resulting in R2 degradation.

Note that baselines like NoMAD and ERDiff both incorpo-
rate a reconstruction loss term for supervised neural repre-
sentation. To eliminate potential information leakage from
supervised training based solely on behavioral labels, we
introduced additional reconstruction term to regularize our
flow-based representation (FDA-re), achieving results com-
parable to FDA-MMD. This further validates the advantages
of our flow-based learning framework and its efficient adap-
tation in few-trial scenarios.

5. Conclusions and Limitations
In this paper, we establish a novel neural alignment frame-
work of FDA that first leverages flow matching to achieve
efficient and robust adaptation in few-trial scenarios. Our
FDA approach learns flexible neural representations with
stable latent dynamics, thereby facilitating source-free do-
main alignment through likelihood maximization. The latent
dynamics of our FDA method were theoretically verified to
be stable, allowing for the robust neural adaptation. Exten-
sive experiments on motor cortex datasets demonstrate that
FDA significantly enhances decoding performance for few
trials. Our FDA method potentially improves the application
of chronic real-world BCI deployments.

Discussions and Limitations This work has several limi-
tations that warrant further investigation. First, the target
sessions typically originate from the same subject, with
substantial overlap in the recorded neuronal populations in
this study. The effectiveness of FDA in scenarios such as
cross-task or cross-subject alignment requires additional
validation. Scenarios where the observed neuronal subsets
across sessions may not fully overlap are also worth further
investigations. Second, future studies using clinical data
from human subjects (Fan et al., 2023; Karpowicz et al.,
2024) could further enhance the clinical and long-term ap-
plications of BCIs. In addition to the comparison with NDT-
2 (Ye et al., 2024) presented in Table S9, the effectiveness
of FDA in self-supervised learning on large-scale neural
data warrants further investigation. Finally, our findings
indicate that FDA may be applicable to a wider range of
neural recording modalities, including Neuropixels.
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Impact Statement
This paper presents Flow-based Distribution Alignment
(FDA), a novel framework that leverages flow matching
to enable efficient and robust adaptation with few trials.
Our FDA approach learns flexible neural representations
with stable latent dynamics, offering valuable insights for
real-world brain-computer interface (BCI) applications. As
BCI technology advances, it holds the potential to enhance
quality of life and foster inclusivity. To ensure broad and eq-
uitable benefits, its development must be guided by ethical
principles such as data privacy. Our paper focuses mainly
on scientific research and has no obvious negative social
impact.
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Appendix of Flow Matching for Few-Trial Neural Adaptation with Stable Latent Dynamics

A. Method
A.1. Detailed Architectures

We present the detailed architecture of our main modules as follows. The input neural signals have the shape of (Batch
size=256, Window size=w, Number of channels=m). The latent dimensions of conditional features c are denoted as kc, the
dimension of latent states in the continuous normalizing flow as kz . The dropout value is represented as od. The architectures
of fα, and vθ can be seen in Table S1.

Table S1. Detailed Architectures of FDA

fα [MSA(kc, nhead), FFN(kc × nhead, kc)]×2

vθ MLP(kz + kc, kz , vd)×5

Here, we use the term MLP to refer to Multilayer perceptron with residual connections, MSA to represent multi-head
self-attention modules, and FFN to indicate feed-forward neural networks.

Moreover, default dimensions kc, kz , the drop-out rate vd, the number of heads nhead, and the window length w mentioned
above are configured as shown in Table S2 according to different datasets.

Table S2. Default Value Setup on Different Datasets

kc kz vd nhead w

CO-C 64 64 0.1 8 6
CO-M 32 32 0.1 8 5
RT-M 32 32 0.1 8 5

A.2. Proof of Dynamical Stability in Theorem 3.1

• First, consider the iterative relationship between two sampling steps. For example, analyzing the upper bound of
∥zSi (τ1)− zSj (τ1)∥ is as follows:

∥zSi (τ1)− zSj (τ1)∥ = ∥zSi (0) + vθ(z
S
i (0), 0, fα(x

S
i ))− zSj (0)− vθ(z

S
j (0), 0, fα(x

S
i ))∥ (12)

≤ ∥zSi (0)− zSj (0)∥+ ∥vθ(zSi (0), 0, fα(xS
i ))− vθ(z

S
j (0), 0, fα(x

S
i ))∥. (13)

In this study, we use an MLP layers with residuals to compose vθ as illustrated in (Ma et al., 2024), leading to:

vθ(z
S
i (0), 0, fα(x

S
i )) ≈ (2 + γS

i )z
S
i (0) + βS

i , (14)

where γS
i is the scale coefficient, and we assume 0 < ∥3 + γS

i ∥ < 1. We only consider the influence of fα(xS
i ) on γS

i

due to the same sampling time point:
γS
i = g(wγfα(x

S
i ) + bγ). (15)

Similarly, βS
i is calculated in the same way:

βS
i = g(wβfα(x

S
i ) + bβ). (16)

Thus:
vθ(z

S
j (0), 0, fα(x

S
j )) ≈ (2 + γS

j )z
S
j (0) + βS

j . (17)

Substituting the expansions of vθ into the earlier equation yields:

∥zSi (τ1)− zSj (τ1)∥ ≤ ∥zSi (0)− zSj (0)∥+ ∥(2 + γS
i )z

S
i (0)− (2 + γS

j )z
S
j (0)∥+ ∥βS

i − βS
j ∥ (18)
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≈ ∥3 + γS
i ∥∥zSi (0)− zSj (0)∥+ ∥βS

i − βS
j ∥. (19)

Further expanding ∥βS
i − βS

j ∥:

∥βS
i − βS

j ∥ = ∥g(wβfα(x
S
i ) + bβ)− g(wβfα(x

S
j ) + bβ)∥. (20)

Since the activation function g of the MLP is typically a Lipschitz continuous function (e.g., sigmoid function), this
simplifies to:

∥βS
i − βS

j ∥ ≤ Kg∥wβ∥∥fα(xS
i )− fα(x

S
j )∥ = Kg∥wβ∥∥cSi − cSj ∥, (21)

where Kg is the Lipschitz constant of the function g. Therefore:

∥zSi (τ1)− zSj (τ1)∥ ≤ Kγ∥zSi (0)− zSj (0)∥+ Kg∥wβ∥∥cSi − cSj ∥, (22)

where 0 < Kγ = ∥3 + γS
i ∥ < 1.

• Next, substituting tn into the above Eq. (22), we obtain the approximate upper bound for ∥zSi (τn)− zSj (τn)∥:

∥zSi (τn)− zSj (τn)∥ ≤ (Kγ)
n∥zSi (0)− zSj (0)∥+

[
n−1∑
a=1

(Kγ)
a

]
Kg∥wβ∥∥cSi − cSj ∥. (23)

Let hz(∥zSi (0)− zSj (0)∥, n) = (Kγ)
n∥zSi (0)− zSj (0)∥, where hz : R≥0 × Z≥0 → R≥0 is a decreasing function with

respect to n.

Let hc(∥cSi − cSj ∥) =
[∑n−1

a=1 (Kγ)
a
]

Kg∥wβ∥∥cSi − cSj ∥, where hc : R≥0 → R≥0, and hc(∥cSi − cSj ∥) → ∞ as

∥cSi − cSj ∥ → ∞.

• In summary, the latent space extracted by our method exhibits the dynamical stability defined in (Angeli, 2002).

A.3. General computation of likelihood in Section 3.2.2

More generally, alternative sampling methods can employ the unbiased Hutchinson-trace estimator (Hutchinson, 1989) to
estimate the divergence in Eq. (2). The detailed computation is presented below.

Using the instantaneous change of variables formula (Chen et al., 2018), the log-likelihood log p1(z
T (1)|fα(xT )) can be

expressed as:

log p1(z
T (1)|fα(xT )) = log p0(z

T (0)|fα(xT ))−
∫ 1

0

∇ · vθ(zT (τ), fα(xT ), τ) dτ, (24)

where the latent variable zT (τ) can be calculated using any sampling method based on Eq. (1). Furthermore, we estimate
∇ · vθ(zT (τ), fα(xT ), τ) via the unbiased Hutchinson-trace estimator.

Specifically, ∇ · vθ(zT (τ), fα(xT ), τ) is estimated as:

∇ · vθ(zT (τ), fα(xT ), τ) = Ep(ϵ)[ϵ
⊤∇vθ(z

T (τ), fα(x
T ), τ)ϵ], (25)

where ∇vθ(z
T (τ), fα(x

T ), τ) can be computed via reverse-mode automatic differentiation. The random variable ϵ satisfies
Ep(ϵ)[ϵ] = 0 and Covp(ϵ)[ϵ] = I .

A.4. Related Work on Normalizing Flows

Normalizing flows have been widely applied in distribution sampling due to their precise and explicit likelihood modeling.
Traditional normalizing flows (Chen et al., 2019; Dinh et al., 2022) typically rely on invertible transformations, but these can
constrain the representational capacity of the networks. Recent research has sought to alleviate this limitation by utilizing
continuous normalizing flows (Yang et al., 2019) based on ODEs. For example, flow matching (Liu et al., 2023a; Lipman
et al., 2023; Ma et al., 2024) extends diffusion models, an advanced generative model, allowing for more flexible diffusion
paths. Conditional flow matching (Liu et al., 2023b; Atanackovic et al.) further incorporates conditional features to model
conditional distributions.
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B. Experimental Details
B.1. Dataset Description

CO-C&CO-M(Ma et al., 2023). Monkeys C and M conducted a center-out (CO) reaching task while holding an upright
handle. Monkey C utilized its right hand, whereas Monkey M used its left. Each trial commenced with the monkey
positioning its hand at the center of the workspace. After a random delay, one of eight evenly spaced outer targets arranged
in a circle was displayed. The monkey then maintained its position through a variable pause until hearing an auditory go cue.
To earn a liquid reward, the monkey needed to reach the outer target within 1.0 second and sustain its hold for 0.5 seconds.

RT-M(Ma et al., 2023). Monkey M also participated in a random-target (RT) task, where it reached for sequences of three
targets shown in random locations on the screen. This task utilized the same apparatus as the CO reaching task. Each trial
started with the monkey placing its hand at the center of the workspace, followed by the sequential presentation of three
targets. The monkey had 2.0 seconds to move the cursor to each target after seeing it. Due to the random positioning of the
targets, the cursor trajectory varied with each trial.

Preprocess Process. For all datasets, we extracted trials from the ’go cue time’ to the ’trial end.’ Next, we processed
the neural signals by digitizing, applying a bandpass filter (250-5000 Hz), and detecting spikes using thresholds based on
root-mean square activity. The data was then timestamped and smoothed with a Gaussian kernel to compute firing rates over
50 ms bins.

B.2. Training Details

The main configurations for model training included the learning rate, weight decay parameters of the Adam optimizer,
batch sizes, number of iterative epochs during pre-training and fine-tuning phases. Details of these hyperparameters are
provided in Table S3 and Table S4, respectively.

Table S3. Detailed Pre-training Setup

Learning Rate Weight Decay Epochs Batch Size

CO-C 2e-3 1e-5 3500 256
CO-M 2e-3 1e-5 3500 256
RT-M 2e-3 1e-5 3500 256

Table S4. Detailed Fine-tuning Setup

Learning Rate Weight Decay Epochs Batch Size

CO-C 1e-4 1e-5 25 256
CO-M 1e-4 1e-5 25 256
RT-M 1e-4 1e-5 25 256

B.3. Baseline Implementation

CEBRA(Schneider et al., 2023). CEBRA is a sophisticated machine-learning approach aimed at analyzing and compressing
time series data, particularly in the context of behavioral and neural studies. It excels at revealing hidden structures in data
variability and has been effectively applied to decode neural activity in the mouse brain’s visual cortex, allowing for the
reconstruction of what the subject has seen. The code can be accessed at https://github.com/AdaptiveMotorControlLab/cebra.

ERDiff(Wang et al., 2023b). ERDiff introduces a method that utilizes diffusion models to extract latent dynamic structures
from the source domain and subsequently recover them in the target domain using maximum likelihood alignment.
Empirical evaluations on both synthetic and neural recording datasets indicate that this approach surpasses others in
effectively preserving latent dynamic structures over time and across individuals. The latest code can be accessed at
https://github.com/yulewang97/ERDiff.

NoMAD(Karpowicz et al., 2022). NoMAD utilizes the latent manifold structure present in neural population activity to
create a reliable connection between brain activity and motor behavior. It shows the capability to achieve accurate and
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highly stable behavioral decoding over long durations, thus eliminating the necessity for supervised recalibration. In this
study, we implemented NoMAD using the LFADS code found at https://github.com/arsedler9/lfads-torch/tree/main, which
may lead to some differences from the original implementation.

Cycle-GAN(Ma et al., 2023). Cycle-GAN aligned the distributions of full-dimensional neural recordings, stabilizing the
original decoding model without the need for recalibration. Evaluations of Cycle-GAN alongside a related approach (ADAN)
on multiple monkey and task datasets reveal that Cycle-GAN outperforms in maintaining BCI accuracy robustly over time
without additional training. Since this study employs the same datasets, we directly implement the publicly available code
from https://github.com/limblab/adversarial BCI.

B.4. Validation Details

Specifically, during the validation after fine-tuning phases, we employed neural signals xT from the target domain, which
were not leveraged during the fine-tuning phase, to evaluate the efficacy of our alignment approach.

This evaluation is based on the decoding performance based on R2 scores. We first sample zT (1) using the one-step Euler
based on zT (0): zT (1) = vθ(z

S(0), 0, fα(x
S)). The predicted target label ỹT are computed as below: ỹT = η∗zT (1). R2

scores are further obtained between ỹT and actual yT .

B.5. Lyapunov Exponents

The stability described above can be quantified using the Lyapunov function (Angeli, 2002), which can also be estimated
through the maximum Lyapunov exponent (MLE). The maximum Lyapunov exponent λ can be defined based on the latent
state z(t) as follows: λ = lim

t→∞
lim

|δz(0)|→0

1
t ln

|δz(t)|
|δz(0)| . A non-positive MLE often indicates the stability of dynamical systems,

achieving stable dynamical latent features (Wolf et al., 1985). Here, we estimated the MLE λ of zi based on the method in
(Wolf et al., 1985) to evaluate the stability of dynamical latent features extracted from DS after the pre-training phase. The
detailed calculation of λ is available below.

The stability defined in (Angeli, 2002) can be determined using a Lyapunov function V (z): given an equilibrium point z∗ of
the system,
V (z∗) = 0,
V̇ (z∗) = 0,
V (z) > 0 for all z ̸= z∗,
V̇ (z) < 0 for all z ̸= z∗.

It is known that V (z) = 1
2z

T z is one of the functions that meet the conditions. However, directly calculating complex V (z)
can be difficult. Therefore, we used the method based on (Wolf et al., 1985) to estimate the stability of z(t) as follows:

Step 1:
Select N sample points, denoted one as z1(t0), find j such that j = arg mink∥z1(t0) − zk(t0)∥, and let L0(t0) =
∥z1(t0)− zj(t0)∥.

Step 2:
Find ti, for a given constant ϵ, such that t0 ≤ t < ti, L0(t) ≤ ϵ; L0(ti) > ϵ. Let L′

0 = L0(ti). Continue with z1(ti) as the
next sample point following Step 1.

Step 3:
The maximum Lyapunov exponent(MLE) λ is approximately as follows:

λ ≈ 1

N∆t

M∑
s=1

log2

(
L′
0

L0(t0)

)
,

where ∆t is the time step interval and M is the number of steps in a single orbit.
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C. Additional Results
C.1. Comparative Study

𝒓 = 𝟎. 𝟎𝟑

𝑅
2
Sc
o
re

𝑅
2
Sc
o
re

𝒓 = 𝟎. 𝟎𝟐(a) (b) (c)

𝒓 = 𝟎. 𝟎𝟒 𝒓 = 𝟎. 𝟎𝟔

𝑅
2
Sc
o
re

𝑅
2
Sc
o
re

(d)

Figure S1. (a) The maximum Lyapunov exponent (MLE) λ achieved by ERDiff, NoMAD, and FDA is displayed for the CO-C dataset.
Dots in different colors represent the average MLE from individual sessions. (b) Average R2 scores for NoMAD, Cycle-GAN, FDA-MLA,
and FDA-MMD are presented under varying values of r on CO-C. (c) and (d): R2 scores for cross-session decoding (r = 0.02, 0.03
(c) and r = 0.04, 0.06 (d)) when DS contains two sessions, obtained from NoMAD, Cycle-GAN, and FDA-MMD, are shown. Dots in
different colors represent the average R2 scores for different DS .

C.1.1. LATENT DYNAMICS STABILITY

To validate the dynamical stability of FDA, we measured the maximum Lyapunov exponent (MLE) λ of zS(τ) after
pre-training on DS . The value of λ was computed as described in (Wolf et al., 1985), and the results of CO-C is shown
in Fig. S1(a).

Moreover, we also visualized all maximum Lyapunov exponents (MLE) achieved by ERDiff, NoMAD, and FDA across
target sessions. As shown in Fig. S2(a), FDA consistently achieved non-positive MLEs in most cases, aligning with the
average MLE results. Compared to ERDiff and NoMAD, the latent dynamics of our learning based on FDA are more stable.

(a) (b)

M
LE

 𝜆
≤
0

, ↓

Figure S2. (a) Violin plot of all maximum Lyapunov exponents (MLE) λ achieved by ERDiff, NoMAD, and FDA on the CO-M and RT-M
datasets, with a non-positive λ typically indicating dynamical stability. (b) Negative log likelihood (NLL) (Left) and the corresponding
R2 (Right) curves on CO-M (Day8) by FDA-MLA with various target ratios r.
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Figure S3. Overall performance of average R2 scores (r = 0.02) for NoMAD, Cycle-GAN, FDA-MLA, and FDA-MMD are demonstrated
on RT-M, and CO-M datasets. Blocks with various colors represent the corresponding values of R2. For convenience, the diagonal values
of the in-session performance were set to 0 by default.

Additionally, we conducted a more thorough ablation study to validate the assumption of stability. Since stability is
governed by activation functions and scale coefficients, we ablated these two components individually (FDA-al and FDA-sc,
respectively) to violate the assumption. As shown in Fig. S4, the distribution of maximum Lyapunov exponents (MLE) for
FDA-al and FDA-sc reveals frequent occurrences of positive MLEs, indicating instability.

(a) (b)

Figure S4. Violin plot of all maximum Lyapunov exponents (MLE) λ achieved by FDA-al(FDA without activation functions), FDA-
sc(FDA without scale coefficients) and FDA on the (a) CO-M and (b) RT-M datasets, with a non-positive λ typically indicating dynamical
stability.
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C.1.2. CROSS-SESSION PERFORMANCE

We verified the cross-session performance of FDA with limited target trials. First, we conducted experiments with DS

containing only one session. The full average R2 scores on the CO-C dataset, using Day0 as the source session and a target
ratio r of 0.02, are presented in Table S5.

In addition, as illustrated in Fig. S1(b), FDA achieved significantly higher average R2 scores across different values of r.
The overall performance of average R2 on RT-M, and CO-M datasets is presented in Fig. S3.

More comparisons on all datasets when DS included two sessions when r equals 0.02, 0.03, 0.04, and 0.06 are shown in
Fig. S1(c) and (d).

Table S5. Comparison of R2 values (in %) of baselines and FDA on the CO-C dataset(r = 0.02).
Data Session LSTM CEBRA ERDiff NoMAD Cycle-GAN FDA-MLA FDA-MMD

C
O

-C

Day 0 86.65±1.18 87.86±0.98 88.69±0.74 87.99±3.45 84.54±1.32 81.63±2.88 81.63±2.88

Day 1 5.04±27.90 18.87±6.82 −0.34±0.03 27.76±5.21 8.05±9.86 49.13±5.03 50.84±5.32

Day 2 9.25±32.85 44.73±14.03 −0.49±0.04 34.81±3.40 15.35±11.34 36.25±5.60 34.28±5.35

Day 3 −128.25±65.07 24.47±7.60 −0.39±0.05 17.59±6.71 5.40±7.21 7.54±4.52 8.49±3.85

Day 9 −24.15±33.53 7.79±23.55 −0.25±0.02 31.07±3.93 18.37±7.71 38.02±7.84 33.22±7.69

Day 10 −70.33±65.25 14.64±3.55 −0.97±0.10 30.05±6.07 20.30±8.84 1.21±2.61 0.76±1.26

Day 14 −65.46±24.55 −12.97±41.24 −0.62±0.06 29.10±1.57 2.67±14.34 22.99±7.08 16.40±8.49

Day 15 −32.08±24.64 −12.95±27.23 −0.53±0.02 21.72±5.40 19.55±16.31 9.80±15.59 15.35±12.25

Day 16 −123.74±63.89 −9.18±30.96 −0.44±0.03 9.32±4.15 6.70±11.45 5.09±8.98 11.04±6.03

Day 36 −70.67±99.37 −30.76±30.03 −0.33±0.06 −5.76±3.74 −9.40±16.54 −4.81±6.74 0.99±2.62

Day 37 −29.54±59.36 −21.54±29.56 −0.40±0.06 8.40±1.36 8.76±6.63 3.08±9.33 15.95±5.73

Day 38 −112.02±132.39 −7.36±16.59 −0.48±0.05 6.88±5.40 12.17±7.03 −2.77±8.46 12.95±0.92

To explore the differences in results between Monkey C and Monkey M, we analyzed the cross-session performance of
FDA-MMD with greater target ratios r. As shown in Table S6, although FDA-MMD initially performed worse on CO-C,
its performance improved significantly and became comparable to RT-M when r exceeded 0.3 (approximately 60 trials).
Additionally, we observed larger deviations per session on CO-C. This suggests that the difference arises from instability
caused by outliers specifically from the dataset of Monkey C, which notably impacted performance when r was small.

Table S6. Comparison of average R2 values (%) across sessions for FDA-MMD on the CO-C, CO-M, and RT-M datasets (r = 0.02). The
average standard deviations over five runs per session are also reported.

r 0.02 0.03 0.04 0.06 0.1 0.2 0.3 0.4 0.5 0.6

CO-C 16.40±5.40 17.08±7.53 17.27±8.58 17.41±7.66 28.18±5.36 42.61±5.23 50.12±6.90 54.87±5.05 55.05±5.71 56.00±4.88

CO-M 45.59±5.15 48.40±4.59 50.71±4.68 51.10±4.76 57.90±2.68 62.20±2.41 65.16±2.53 66.38±2.44 66.78±2.48 67.32±3.32

RT-M 42.08±6.31 44.36±5.83 45.35±6.15 47.23±5.96 52.15±4.16 53.66±3.35 55.28±2.89 56.45±2.89 56.53±2.55 57.93±2.39

Additionally, we observed that the worst R2 score occurred on different days for each method. This variability may stem
from the different criteria used for optimal alignment. For instance, FDA-MLA exhibited an abnormal increase in NLL
during the initial fine-tuning epochs on Day 8 (CO-M), as shown in Fig. S2(b). In contrast, other methods, such as NoMAD
based on KL divergences and LSTM without alignment, did not show this phenomenon on the same day, leading to the
worst performance of FDA-MLA while others did not experience such an issue.

C.1.3. CROSS-SESSION PERFORMANCE UNDER DIFFERENT LATENT DIMENSIONS

To determine the appropriate latent dimensions, we conducted experiments on CEBRA under varying latent dimensions. As
shown in Table S7, we selected the latent dimensions for CEBRA as 32, based on its better performance. For ERDiff and
NoMAD, we set the latent dimension to 8 and 16 respectively, following the default settings mentioned in the original paper
due to its application to similar datasets.
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Table S7. Average R2 scores across sessions of CEBRA on CO-M and RT-M datasets under different latent dimensions.
Latent Dimension 16 32 48

CO-M −1.34±11.69 1.14±14.47 0.85±12.61

RT-M −53.01±14.49 −45.48±12.51 −49.21±14.71

C.1.4. ZERO-SHOT CROSS-SESSION PERFORMANCE

Additionally, we compared the zero-shot cross-session performance of NoMAD without alignment, Cycle-GAN without
alignment, and FDA without alignment, with detailed results presented in Table S8. FDA without fine-tuning outperformed
the baselines, which we attribute to the dynamical stability of its pre-trained latent spaces. Furthermore, performance in
few-trial scenarios continued to improve after fine-tuning. In summary, the combination of stable latent dynamics and
efficient fine-tuning contributes to FDA’s better performance in few-trial scenarios.

Table S8. Comparison of R2 values (in %) across target sessions (where the R2 scores for each session are averaged over five random
runs with different sample selections) of baselines and FDA without alignment on CO-M and RT-M datasets.

Data NoMAD w/o alignment Cycle-GAN w/o alignment FDA w/o alignment FDA-MLA FDA-MMD

CO-M −121.47±77.80 −126.84±23.82 16.23±9.43 36.05±5.84 45.59±5.15

RT-M −74.06±49.94 −3.42±5.55 38.15±8.21 41.73±4.88 42.08±6.31

C.1.5. ZERO-SHOT PERFORMANCE COMPARISON WITH NDT-2

We utilized 47 sessions recorded from the motor cortex of two monkeys, available via the external
link (https://zenodo.org/records/3854034), as well as datasets provided by the Neural Latents Benchmark
(https://neurallatents.github.io/) for pre-training NDT-2 (Ye et al., 2024). Subsequently, supervised fine-tuning was conducted
using 80% of the trials from a source session of the CO-C/CO-M datasets, followed by zero-shot evaluation on the remaining
target sessions.

The average R2 scores are presented in Table S9. While NDT-2 achieved higher performance in intra-session decoding on
the source session, its performance degraded substantially during zero-shot evaluation. This suggests that NDT-2 may be
more effective when fine-tuned with supervised data from the target sessions.

Table S9. Average R2 scores (%) of NDT-2 for intra-session and inter-session decoding on the CO-C and CO-M datasets.
Data Intra-session Inter-session

CO-C 89.82±1.18 −34.70±0.32

CO-M 93.75±1.51 −52.31±0.16

C.1.6. PERFORMANCE WITH DIFFERENT TARGET RATIOS r

To further evaluate the performance of FDA under different target ratios r, we gradually increased r from 0.02 to 0.6. The
R2 scores for NoMAD, Cycle-GAN, and FDA are shown in Fig. S5. In particular, Cycle-GAN and NoMAD exhibited
significantly lower performance (approximately five times worse) with fewer target samples. However, as r increased to
around 0.3 (approximately 60 trials), their performance became comparable to that of FDA-MLA and FDA-MMD.
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(a) (b)

Target Ratio 𝑟 Target Ratio 𝑟

Figure S5. Comparison of average R2 scores across target sessions (where the R2 scores for each session are averaged over five random
runs with different sample selections) for NoMAD, Cycle-GAN, FDA-MLA, and FDA-MMD under different target ratios r on the (a)
CO-M and (b) RT-M datasets.

Additionally, we examined the R2 curves across target sessions for FDA-MMD and Cycle-GAN on the CO-M dataset. As
shown in Fig. S6, both methods exhibited fluctuating R2 curves at small target ratios. However, as the target ratio increased,
the fluctuations were alleviated. With the exception of a few sessions, R2 scores generally decreased across most target
sessions. We attribute this trend to the reduced influence of certain outliers in scenarios with few target samples.

DayDay

(a) (b)

Figure S6. R2 curves across target sessions for (a) FDA-MMD and (b) Cycle-GAN under different target ratios r (0.2, 0.4, and 0.6) on the
CO-M dataset.

C.1.7. COMPUTATIONAL EFFICIENCY

We compared the computational efficiency of our methods with that of ERDiff, Cycle-GAN, and NoMAD on NVIDIA
GeForce RTX 3080 Ti (12GB). The comparison was based on the number of parameters and training time per epoch, which
includes pre-training and fine-tuning, on CO-C, CO-M, and RT-M. As shown in Table S10, FDA-MLA and FDA-MMD
exhibited a higher number of parameters. However, they required less training time compared to ERDiff and NoMAD,
which can be attributed to effective training losses and sampling methods.

Table S10. The computational efficiency comparison between the baselines and FDA, evaluated in terms of the number of parameters and
per-epoch training time (s), including both pre-training and fine-tuning, across the CO-C, CO-M, and RT-M datasets.

Method ERDiff(Wang et al., 2023b) Cycle-GAN(Ma et al., 2023) NoMAD(Karpowicz et al., 2022) FDA-MLA FDA-MMD

Parameter Number (M) 0.04 0.03 0.05 0.03 0.03

Ti
m

e(
s) CO-C 0.39 0.05 1.05 0.14 0.14
CO-M 1.14 0.02 1.03 0.13 0.14
RT-M 0.49 0.02 1.04 0.10 0.10
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A more detailed comparison of total training time (in seconds) during the pre-training and fine-tuning phases is provided
in Table S11.

Table S11. Total training time (s) for pre-training and fine-tuning phases across baselines and FDA
Phase ERDiff Cycle-GAN NoMAD FDA-MLA FDA-MMD

Pre-training 2449.68 - 135.34 98.95 98.95
Fine-tuning 1.21 11.90 76.83 2.32 2.38

We further analyzed the inference time of FDA-MLA and FDA-MMD on an NVIDIA GeForce GTX 1080 Ti (11GB). As
shown in the table below, the average inference time for a single window is approximately 4 ms, indicating the method’s
suitability for real-time applications.

Table S12. Average inference time (ms) of FDA-MLA and FDA-MMD.
Data FDA-MLA FDA-MMD

Avg 3.90 3.97

C.1.8. EXPERIMENTS ON SYNTHETIC NEURAL DATA

We conducted further experiments to evaluate the recovery of ground-truth latent variables in synthetic data. Following the
method in (Kapoor et al., 2024), we used the Lorenz attractor as the latent dynamics (3D latent variables). The visualizations
of our decoded 3D trajectories presented in Fig. S7 confirmed that FDA effectively captured the neural dynamics.

Figure S7. Ground truth (green, solid) and reconstructed 3D trajectories (orange, dashed) of the underlying Lorenz system from synthetic
spiking data. FDA accurately recovers the latent dynamics.
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C.2. Ablation Study

C.2.1. ABLATION STUDY ON DIFFERENT ALIGNMENT STRATEGIES

To evaluate the effectiveness of our alignment strategy, we compared FDA with several variants. FDA-t only extracted
features using fα and aligned them through MMD for decoding with a linear decoder. FDA-g used an adversarial approach
via Cycle-GAN to align z(1), while FDA-c applied MMD for aligning c. The average R2 values of CO-C dataset are shown
in Table S13.

Moreover, the R2 curves for FDA-MMD and its variants are shown in Fig. S8(a). Additionally, as shown in Fig. S8(b), the
negative log-likelihood (NLL) curves and their corresponding R2 values, derived under various r using FDA-MLA, are
presented.

Table S13. Average cross-session R2 scores (%) for CO-C. FDA-t only extracted features using fα and aligned them through MMD
for decoding with a linear decoder. FDA-g used an adversarial approach via Cycle-GAN to align z(1), while FDA-c applied MMD for
aligning c.

Data Target Ratio FDA-t FDA-g FDA-c FDA-MLA FDA-MMD

C
O

-C

0.02 −0.33±0.29 13.19±9.06 18.25±7.30 16.39±6.30 13.84±5.41

0.03 −0.30±0.34 13.07±9.06 18.49±7.38 17.08±6.53 13.93±4.79

0.04 −0.32±0.28 13.06±8.89 18.64±7.43 17.27±6.58 13.94±5.64

0.06 −0.23±0.25 13.19±8.94 18.60±7.10 17.41±6.66 13.82±5.45

(a) (b)

Figure S8. (a) R2 curves for FDA-t, FDA-g, FDA-c, and FDA-MMD are shown on CO-M (Day25, Day29) and RT-M (Day67, Day69)
with r being 0.02. FDA-t only extracted features using fα and aligned them through MMD for decoding with a linear decoder. FDA-g
used an adversarial approach via Cycle-GAN to align z(1), while FDA-c applied MMD for aligning c. (b) Curves for R2 (Left) and the
corresponding negative log likelihood (NLL) (Right) on CO-M (Day25) and RT-M (Day52), obtained by FDA-MLA, are visualized under
distinct target ratios r.

To investigate the observed decline in R2 with more finetuning samples as shown in Fig. 5(b), we further analyzed the
average R2 scores of FDA-MMD across multiple random seeds under varying training ratios r. The detailed results for
each target session of the CO-M and RT-M datasets are provided in Table S14 and Table S15 below. A general trend of
increasing R2 with larger fine-tuning sample sizes was observed across most sessions.
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Table S14. Average R2 scores (%) across sessions for FDA-MMD on the CO-M dataset under varying r values.
r Day 8 Day 14 Day 15 Day 22 Day 24 Day 25 Day 28 Day 29 Day 31 Day 32

0.02 45.23±4.44 55.90±3.17 49.55±3.41 27.35±7.34 51.28±2.53 36.79±4.12 54.87±4.40 41.26±5.70 57.10±3.24 44.66±4.41
0.03 44.47±3.31 59.18±4.24 52.90±4.62 40.58±4.98 55.94±1.78 41.10±2.95 57.93±4.03 39.56±6.33 59.15±1.77 48.08±2.90
0.04 46.68±2.44 60.35±5.54 53.18±5.23 42.89±4.10 59.48±2.23 45.84±2.40 59.97±2.62 42.66±5.25 61.03±1.72 49.80±3.28
0.06 49.96±3.43 60.48±5.33 52.53±5.18 43.19±3.64 59.19±2.65 49.29±3.97 61.25±2.38 45.06±3.81 63.31±2.97 51.27±2.66

Table S15. Average R2 scores (%) across sessions for FDA-MMD on the RT-M dataset under varying r values.
r Day 1 Day 38 Day 39 Day 40 Day 52 Day 53 Day 67 Day 69 Day 77 Day 79

0.02 74.32±2.25 55.39±2.80 40.44±7.31 39.85±3.27 44.99±4.96 50.03±4.44 50.29±5.07 39.19±4.07 16.67±9.32 38.99±5.70
0.03 73.86±3.20 58.12±2.75 41.61±5.91 41.88±3.17 44.87±5.25 52.17±0.71 51.08±6.30 43.40±3.84 20.51±8.44 41.95±5.26
0.04 74.57±2.45 58.79±2.71 41.39±6.34 42.20±4.26 45.09±5.13 53.39±1.56 51.27±6.91 45.08±3.98 22.68±7.64 41.69±5.51
0.06 74.98±1.93 58.97±1.54 43.82±6.86 43.50±4.54 45.03±5.34 53.76±1.35 52.65±5.39 44.26±4.33 29.05±7.01 48.94±5.36

In addition, we observed that the number of valid channels differs between the CO-M sessions (95 for the source and 96 for
the target), whereas RT-M sessions remain consistent. This suggests less neuronal overlap with the source session in the
CO-M dataset, resulting in worse decoding performance as presented in Fig. S8(a).

C.2.2. ABLATION STUDY ON MAIN COMPONENTS

The average R2 for each target session achieved by FDA and its variants based on main components is shown in Fig. S9.
We employed FDA-v and FDA-p as variants utilizing VP and GVP flow paths, respectively. FDA-a and FDA-m employ
transformers with temporal correlation attention and MLPs as conditional feature extractors, respectively. FDA-re includes
an additional reconstruction term to regularize the learned neural representations.

(a)

(b)

Figure S9. Average R2 scores across each target session, achieved by FDA-a, FDA-m, FDA-v, FDA-p, FDA-re, FDA-MLA, and FDA-
MMD, are displayed on CO-M (a) and RT-M (b) datasets with r being 0.03, 0.04, and 0.06. Dots with different colors represent R2 values
for individual sessions. We employed FDA-v and FDA-p as variants utilizing VP and GVP flow paths, respectively. FDA-a and FDA-m
employ transformers with temporal correlation attention and MLPs as conditional feature extractors, respectively. FDA-re includes an
additional reconstruction term to regularize the learned neural representations.
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C.3. Hyper-parameter Sensitivity Analysis

The main hyper-parameters of our FDA method include the signal window size (w), the dimensions of conditional features
and latent states(kc,z), and the number of euler sampling steps neuler when the target ratio r equals 0.02. For convenience,
we set kc and kz to be the same. The results of their sensitivity analysis using FDA-MMD on CO-M, and RT-M datasets are
shown in Table S16, Table S17, and Table S18.

Table S16. Average R2 scores for different datasets with varying w.
kc 4 5/6 7 8

CO-M 43.91±4.68 45.59±5.15 48.38±4.98 49.07±5.11

RT-M 40.77±5.46 42.08±6.31 40.54±7.74 46.73±3.83

Table S17. Average R2 scores for different datasets with varying kc.
kc 24 32 48 72

CO-M 48.00±5.68 45.59±5.15 45.63±4.77 45.03±4.84

RT-M 44.02±5.01 42.08±6.31 39.48±5.51 43.91±4.34

Table S18. Average R2 scores for different datasets with varying neuler .
neuler 1 2 4 10

CO-M 45.59±5.15 45.32±5.14 43.19±5.34 41.71±5.37

RT-M 42.08±6.31 42.14±6.17 40.33±6.12 38.99±6.23

We also conducted additional analyses on selected sessions from CO-M to investigate the desirable level of diversity in
target trials. The diversity was categorized into three levels: small (1–2 distinct targets), medium (3–4 targets), and large (all
distinct targets). The average R2 for FDA-MMD is presented in Table S19. Our results indicate that a medium level of
diversity achieves desirable performance, while too little diversity negatively impacts performance.

Table S19. Average R2 scores (%) for FDA-MMD on CO-M under different levels of trial diversity
Trial Diversity Day14 Day15 Day28 Day32

Small 58.93±1.10 45.86±1.81 50.90±1.70 43.70±2.60

Medium 57.01±1.80 57.26±1.20 55.46±1.00 49.19±1.49

Large 65.60±2.84 59.49±0.46 59.74±1.33 53.23±1.09
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