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Abstract

Traditional autonomous driving systems often
struggle to connect high-level reasoning with low-
level control, leading to suboptimal and some-
times unsafe behaviors. Recent advances in mul-
timodal large language models (MLLMs), which
process both visual and textual data, offer an
opportunity to unify perception and reasoning.
However, effectively embedding precise safety
knowledge into MLLMs for autonomous driving
remains a significant challenge. To address this,
we propose SafeAuto, a framework that enhances
MLLM-based autonomous driving by incorporat-
ing both unstructured and structured knowledge.
First, we introduce a Position-Dependent Cross-
Entropy (PDCE) loss to improve low-level control
signal predictions when values are represented as
text. Second, to explicitly integrate safety knowl-
edge, we develop a reasoning component that
translates traffic rules into first-order logic (e.g.,
“red light =⇒ stop”) and embeds them into a
probabilistic graphical model (e.g., Markov Logic
Network) to verify predicted actions using rec-
ognized environmental attributes. Additionally,
our Multimodal Retrieval-Augmented Generation
(RAG) model leverages video, control signals,
and environmental attributes to learn from past
driving experiences. Integrating PDCE, MLN,
and Multimodal RAG, SafeAuto outperforms ex-
isting baselines across multiple datasets, enabling
more accurate, reliable, and safer autonomous
driving. The code is available at https://
github.com/AI-secure/SafeAuto.
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1. Introduction
Autonomous Driving (AD) systems (Kim et al., 2018; Jin
et al., 2023; Hu et al., 2023; Jiang et al., 2023; Zhang et al.,
2024b) have made significant strides in recent years, yet
they often rely on separate modules for high-level decision-
making (e.g., “the car should slow to a stop”) and low-
level control signal prediction (e.g., providing the specific
speed or steering angle for the next few moments). How-
ever, these two aspects are inherently correlated, as high-
level actions directly guide low-level control signals. This
modular design often overlooks this correlation, leading
to inefficiencies and less cohesive driving behaviors. Re-
cent advancements in Multimodal Large Language Models
(MLLMs) (Liu et al., 2023b;a; Lin et al., 2023) offer a
promising avenue to bridge high-level reasoning and low-
level control in autonomous driving (AD), which provide
a unified framework capable of processing and reasoning
over multiple data modalities, such as images, videos, and
text. Some recent works (Wang et al., 2023; Xu et al., 2024;
Wang et al., 2024) have begun to leverage MLLMs to gener-
ate both high-level action descriptions and low-level control
signals in an end-to-end manner. However, they are predom-
inantly data-driven and often fail to perform at human levels
due to several limitations.

Firstly, for low-level action prediction, current approaches
in adapting MLLMs generally follow two fashions. The
first fashion treats the prediction of float numbers as text
generation (Gruver et al., 2024; Xu et al., 2024), directly
training the MLLM using cross-entropy (CE) loss for to-
ken prediction. Some variations (Brohan et al., 2023; Sima
et al., 2023) of this method involve tokenizing the prediction
range into several bins and adding new tokens for each bin
into the LLM’s vocabulary, allowing the model to predict
the corresponding bin token ID. However, these methods
remain somewhat coarse compared to traditional regres-
sion techniques (Hu et al., 2023) using Mean Squared Error
(MSE) loss. Alternatively, another fashion (Jin et al., 2024b)
employs a linear layer to decode the float number from
the output hidden embeddings of the MLLM, enabling the
use of MSE loss to train the model. While this approach
may improve numerical accuracy, it compromises the au-
toregressive capability of the LLM, as the model can then
only be purely used for numerical prediction and cannot
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Current video driving scenario: <video>
Control Signal before the current frame Sequence:
Speed: [3.35, 3.26, 3.17, 3.08, 2.96, 2.87, 2.78]
Curvature: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
Acceleration: [-0.92, -0.9, -0.88, -0.85, -0.82, -0.8, -0.77]
Course: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

Multimodal Input: video, text

SafeAuto-Reasoning: Knowledge-Enhanced Post-Safety Verification (§ 3.2)

MLLM Action Predicate: 
MLLMKeep(x)=1, MLLMStop(x) = 0, …
Environmental Predicates: 
SolidRedLight(x)=1, StopSign(x)=0, … 
Observed Action Predicates
Keep(x), Accelerate(x), Stop(x), …

10.02  SolidRedLight(x) => ¬Accelerate(x) ∧ ¬LeftPass(x) ∧ ¬Yield(x)
 8.03  StopSign(x) => Stop(x) ∨ Decelerate(x) ∧ ¬PullOver(x)
 8.47  NoLeftTurnSign(x) => ¬TurnLeft(x) 
10.51   MLLMKeep(x) => Keep(x) 
10.55   MLLMStop(x) => Stop(x)  
  …

Video (8 image frames)

Control Signal (float vector)

Environmental Predicate
(binary vector) Unified

Embedding
rank

SafeAuto-RAG: Learn from Similar Driving Experience (§ 3.3)

Position-Dependent Cross-Entropy Loss (§ 3.1)

[Current Context] + [Retrieved Context]
Human: What is the action of ego car?
LLM: The car is moving forward
LLM: The car is slowing to a stop

Task 3: Low Level Action Query

Human: Predict the control signal of next frame.
LLM: Speed: 2.69 Course: 0.00

Human: Why does the ego car do this?
LLM: for the red light at the intersection ahead.

Task 1: High Level Action Query

Task 2: High Level Justification Query

Tasks of SafeAuto

The Weighted Target Token Probability for float number speed “2.69”

MLLM

Violate safety knowledge,
Should be Stop

[Retrieved Context]
Text

Embedding

Rank

Learning

MLLM

Predicates Weight Formula (Knowledge Rules)

Figure 1: Overview of our SafeAuto pipeline for end-to-end high-level and low-level prediction in autonomous driving, featuring: (1) the
Position-Dependent Cross-Entropy Loss (Section 3.1) for improved low-level numerical predictions using soft, weighted digit probability
distributions; (2) Knowledge-Enhanced Post-Safety Verification (Section 3.2) with Markov Logic Networks to verify high-level actions
against traffic rules; and (3) a Multimodal RAG (Section 3.3) training method that incorporates similar driving experiences via text-based
rankings for better context-aware decision-making.

perform any further QA-for example, handling high-level
question-answering. Additionally, regarding high-level ac-
tion prediction, a significant limitation of current methods
is their inability to effectively utilize both structured and
unstructured knowledge when making decisions. Specifi-
cally, existing approaches often focus solely on data-driven
techniques, inadequately incorporating structured knowl-
edge such as traffic rules and safety constraints. Although
some methods (Sima et al., 2023; Mao et al., 2023; Wang
et al., 2024) attempt to include traffic regulations by embed-
ding them into the model’s context, this implicit approach
is insufficient. Due to the inherent tendency of MLLMs
to hallucinate, they may still generate unsafe or illegal ac-
tions. Meanwhile, while RAG (Lewis et al., 2020) has
been employed in language models (Semnani et al., 2023;
Zhang et al., 2024a) to mitigate issues like hallucination by
incorporating relevant information from external sources,
Yuan et al. (2024) first propose to combine the rich multi-
modal data inherent in autonomous driving contexts—such
as videos, images, and control signals—to learn from past
driving experiences as unstructured knowledge.

To address these challenges, we propose a novel frame-
work SafeAuto that enhances MLLMs for autonomous driv-
ing through three key contributions as shown in Figure 1:
(1) Position-Dependent Cross-Entropy (PDCE) Loss: We
propose a PDCE loss that retains the autoregressive nature of
the MLLM while behaving like an MSE loss during training.
This loss function improves numerical prediction accuracy
without compromising the model’s language generation abil-

ities. (2) Knowledge-Enhanced Post-Safety Verification:
We employ Markov Logic Networks (MLNs) (Richardson &
Domingos, 2006) to explicitly encode domain knowledge
and structured traffic rules into the decision-making process
of the MLLM. This knowledge-enabled reasoning allows
us to verify and correct the high-level actions suggested
by the MLLM, ensuring they comply with traffic regula-
tions and safety constraints. (3) Multimodal RAG for
Autonomous Driving: We introduce a method that utilizes
video data, control signals, and the environmental predicates
used in the MLN to retrieve similar driving experiences. By
learning a joint embedding across these modalities based
on the ranking derived from text description of the current
scenario—which contain rich semantic information—we
can effectively leverage past experiences to inform cur-
rent decision-making. By integrating these components,
SafeAuto provides a comprehensive solution to the chal-
lenges faced by current MLLMs in autonomous driving. We
evaluate our approach on two benchmark datasets: BDD-
X (Kim et al., 2018) and DriveLM (Sima et al., 2023), both
featuring low-level control signals and high-level action de-
scriptions. Our experimental results demonstrate significant
improvements in both low-level control accuracy and high-
level action prediction. First, for low-level prediction on
the BDD-X dataset, it reduces the Root Mean Square Error
(RMSE) for speed and course predictions by an additional
5.8% and 14.1% over the state-of-the-art (SOTA) baselines,
respectively. Furthermore, on the DriveLM dataset, it de-
creases the Average Displacement Error (ADE) for motion
prediction by 44.4%. Second, for high-level prediction on
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the BDD-X dataset, our method boosts high-level action
performance beyond the SOTA by 28.0% under the CIDEr
metric. Meanwhile, on the DriveLM dataset, it improves
the high-level behavior prediction accuracy by an additional
13.0% over the SOTA.

2. Related Work
Advancements in autonomous driving have produced com-
prehensive frameworks like UniAD (Hu et al., 2023), which
integrates modules for tracking, mapping, motion prediction,
and occupancy estimation for low-level planning. However,
UniAD lacks high-level action descriptions and textual jus-
tifications. To address high-level explanations, Kim et al.
(2018) proposed an attention-based video-to-text model gen-
erating explanations of current driving actions. Similarly,
ADAPT (Jin et al., 2023) employs a video Swin Transformer
(Liu et al., 2022) to extract video tokens for separate high-
level and low-level action predictions.

Autonomous Driving with MLLM. The emergence of
MLLMs enables unified end-to-end generation of both high-
level and low-level outputs. Most of these works often
treat numerical control signals as text, training models us-
ing token prediction with cross-entropy loss. For example,
DriveGPT4 (Xu et al., 2024) just treats low-level control
signals as text, fine-tuning an MLLM to sequentially predict
high-level and low-level actions in a conversational manner
using the BDD-X dataset. DriveLM-Agent (Sima et al.,
2023), influenced by RT-2 (Brohan et al., 2023), discretizes
waypoints into bins, expanding the tokenizer vocabulary
accordingly and fine-tuning the BLIP-2 (Li et al., 2023).
While this facilitates end-to-end training, it remains coarse
compared to UniAD (Hu et al., 2023), which uses MSE loss.
Time-LLM (Jin et al., 2024b) decodes numerical predic-
tions directly from output embeddings using a linear layer
with MSE loss but diminishes the language model’s autore-
gressive capabilities, limiting high-level question-answering
abilities. Additionally, Tan et al. (2024) suggest that em-
ploying the LLM backbone in this way does not enhance
regression performance. In contrast, we propose a novel
PDCE loss that adapts the cross-entropy loss for numerical
training to behave more like MSE loss while preserving the
model’s ability to perform high-level question-answering.

Safety Guarantee. Providing safety guarantees (Li et al.,
2022; Zhang et al., 2023a) is always a fundamental con-
cern in machine learning, especially in safety-critical ap-
plications like autonomous driving. Further advancements
involve integrating perception and planning tools into the
MLLM context. Agent-Driver (Mao et al., 2023) incor-
porates modules from UniAD into an MLLM framework,
serving as a language agent for autonomous driving. Om-
niDrive (Wang et al., 2024) introduces a framework com-
bining 3D perception, reasoning, and planning. However,

these methods remain purely data-driven and lack explicit
safety verification for generated actions. Given the safety-
critical nature of autonomous driving, ensuring that output
actions are safe and compliant with traffic rules is essen-
tial. To address this, we incorporate extracted knowledge—
specifically structured traffic rules—into a probabilistic
graphical model like a Markov Logic Network (MLN) for
explicit post-safety verification, which has been widely used
in previous work (Yang et al., 2022; Zhang et al., 2023b).
Besides, RAGDriver (Yuan et al., 2024) further enhances
reasoning by retrieving similar driving experiences through
triplet loss-based metric learning. We extend this approach
by developing a more flexible and efficient retrieval system,
directly training a joint embedding based on multimodal in-
puts to learn relative rankings from text similarity. Most im-
portantly, we find that the incorporation of binary structured
environmental predicates (e.g., the presence of a stop sign)
from the previous reasoning components, namely MLNs,
significantly improves retrieval performance.

3. SafeAuto

Motivation. Recent studies have begun to explore the in-
tegration of MLLMs into autonomous driving systems to
enhance both high-level reasoning and low-level control
actions. As illustrated in Figure 1, the MLLM receives a
sequence of current driving images or videos, accompanied
by textual descriptions of historical control signals, includ-
ing speed, curvature, acceleration, and course, as inputs.
Then, during the conversation, the model is expected to an-
swer three types of queries: (1) High-Level Action Queries:
These queries request a textual description of the action
that the current ego vehicle is performing or should per-
form. For example, when asked “What is the action of
the ego car?”, the MLLM is expected to respond with
an answer like “The car is slowing down to stop”. (2)
High-Level Justification Queries: These queries seek an ex-
planation for the action provided by the MLLM. For in-
stance, “Why does the ego car do this?” prompts the model
to justify the action, such as “for the red light at the intersec-
tion ahead.” (3) Low-Level Action Queries: These queries
request specific control signals or trajectories that the ve-
hicle should execute in the future. For example, the query

“Predict the control signals for the next frame” would elicit
a response like “Speed: 2.69, Course: 0.00”, which can
then be translated into actual control commands for the au-
tonomous vehicle. Typically, low-level action queries follow
high-level action and justification queries, ensuring that the
generated control signals are conditioned on prior high-level
actions for more accurate and coherent driving control.

Overview. In this section, we detail the three main
components proposed within this framework, each elab-
orated in subsequent sections: (1) a Position-Dependent
Cross-Entropy Loss function for improved low-level action

3



SafeAuto: Knowledge-Enhanced Safe Autonomous Driving with Multimodal Foundation Models

(b) Speed prediction distribution
using PDCE loss.

(a) Speed prediction distribution
using original CE loss.

Figure 2: Sampled speed prediction distribution under different
losses when the ground truth is 12.46
prediction (Section 3.1); (2) Knowledge-Enhanced Post-
Safety Verification using Markov Logic Network (MLN) for
high-level action prediction (Section 3.2); (3) Multimodal
Retrieval-Augmented Generation (RAG) for learning from
similar driving experiences (Section 3.3). In summary, dur-
ing training, we first fine-tune the MLLM using the PDCE
loss with the retrieved context to enhance the accuracy of
low-level action predictions. During evaluation, we retrieve
the top K similar driving experiences from the training
database, generate high-level actions using the MLLM, and
apply post-safety verification using the MLN to ensure that
the actions comply with traffic rules and safety constraints.

3.1. SafeAuto—Position-Dependent CE loss

In existing approaches that utilize MLLMs for autonomous
driving, the next-token prediction loss-specifically, the cross-
entropy loss is commonly applied uniformly across all pre-
diction tasks, including numerical value predictions. How-
ever, for numerical regression tasks, it is standard practice
to use the Mean Squared Error (MSE) loss, as it directly
penalizes the squared difference between the predicted and
true values. A fundamental difference between CE loss and
MSE loss lies in how they handle proximity to the target:
MSE loss decreases as the prediction gets numerically closer
to the target value, whereas CE loss does not necessarily
exhibit this property. As a result, an issue is empirically
observed in the speed prediction distribution when using
the original CE loss to fine-tune the MLLM on the BDD-X
dataset, as shown in Figure 2 (a), which displays predictions
over 200 samples given the same input driving context with
temperature as 1.0. As we can see, it reveals two distinct
peaks, indicating that predictions closer to the ground truth
value of “12.46” do not necessarily occur with higher fre-
quency or lower loss, contrary to the behavior expected from
MSE loss. A potential solution is to append an MLP to the
MLLM to decode the output embeddings into float values,
using MSE loss for fine-tuning. However, this will disrupt
the MLLM’s autoregressive token generation, transforming
it into a pure transformer encoder (Tan et al., 2024) used
only for regression tasks and losing its language generation
capabilities necessary for high-level question-answering.

PDCE loss. To overcome these challenges, we adapt

the CE loss to function more like MSE loss while main-
taining textual predictions. Consider the previous exam-
ple of predicting the float number “12.46.” Originally, the
MLLM is trained to maximize the probabilities p(‘1′)p(‘2′ |
‘1′)...p(‘6′ | ‘12.4′) by minimizing the CE loss with one-
hot labels. However, this does not ensure that predictions
closer to the target value have a lower loss as each digit’s
probability is treated with equal importance in loss.

To make the CE loss function behave more like MSE loss,
we adhere to two key principles: (1) Digit-Level Proxim-
ity, where digits closer to the target in the same position
incur lower loss, and (2) Place-Level Importance, where
more significant digit positions have greater influence on
the loss. To implement these, we introduce two modifica-
tions. First, Digit-Level Loss Adjustment replaces one-hot
hard target labels with a soft target distribution D(µ, σ)
centered around the target digit µ, e.g., a Gaussian distri-
bution G(µ, σ) to assign higher probabilities to numerically
closer digits. The loss for each digit is then calculated as
the Kullback-Leibler (KL) divergence between D(µ, σ) and
the predicted probability distribution P from the MLLM.
Second, Place-Level Weighting assigns a weight wi to each
digit position, aiming for weights to decrease with the posi-
tion index i. Instead of using fixed weights, we adopt a soft
approach by utilizing the approximated joint probabilities
as weights, allowing flexible adjustment via σ. For exam-
ple, in the number “12.46”, the weight for digit ‘2’ is the
probability of ‘1’ under D(1, σ), and the weight for digit
‘4’ is the probability of ‘1’ multiplied by the probability of
‘2’ under D(2, σ). This ensures that later positions never
have a higher influence than earlier ones and also allows for
dynamic control of the decreasing weight with σ. Typically,
as σ approaches 0, the weighting scheme converges to the
original CE loss. As a result, the final loss can be summa-
rized as the weighted sum of the KL divergence between
the probabilities generated by the MLLM and the target
digit-level soft probability distributions. Mathematically, it
can be expressed as:

PDCE loss =
n∑

i=1

wi · KL(Pi ∥ D(µi, σ)), (1)

where n is the number of digits used for representing the
number, µi is the i-th digit, Pi represents the probability
distribution over the possible digits for the i-th digit posi-
tion from MLLM, wi =

∏i
j=1 D (µj , σ) [µj ]. The pseudo-

code for implementing this loss during practice is provided
in Appendix B. Besides, to balance the loss among various
float numbers, we standardize their representation by using
consistent digit lengths in text form. For example, in the
BDD-X dataset, each number is formatted to five digits,
such as representing 8.1 as “08.100” during training. The
new prediction distribution using this loss with σ = 0.35
is demonstrated in Figure 2 (b). As shown, the distribution
exhibits predictions that are more centered and closer to the
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ground truth with a bell shape, which aligns with the desired
outcome and verifies our intuition. Figure 7 demonstrates a
further case study showing the token probability distribution
when using CE loss and PDCE loss during training.

3.2. SafeAuto—reasoning

Currently, most methods for autonomous driving that utilize
MLLMs are still purely data-driven. While these data-driven
approaches have led to significant advancements, they may
not be entirely suitable for safety-critical scenarios like au-
tonomous driving, where reliability and strict adherence to
safety regulations are paramount. To address this concern,
we propose incorporating Probabilistic Graphical Models
(PGMs) to verify the safety of the high-level actions sug-
gested by the underlying MLLM. Specifically, in this paper,
we focus on demonstrating how to adopt Markov Logic
Networks to integrate domain knowledge and traffic rules
into the decision-making process, while other variants are
also applicable. In this section, we begin by explaining what
MLNs are and how they apply to our AD context.

Definition. Essentially, an MLN consists of a set of
first-order logic formulas, each associated with a weight
that reflects the strength or confidence of that formula.
These weights allow us to model uncertainty and han-
dle exceptions in real-world knowledge. In our au-
tonomous driving scenario, we use MLNs to model traf-
fic rules and safety constraints. For example, a traf-
fic rule like “If there is a stop sign, then the vehicle
should stop or decelerate” can be represented as the
logical formula: StopSign(x) =⇒ Stop(x) ∨
Decelerate(x), where x represents the current driv-
ing scenario. Here, predicates such as StopSign(x),
Stop(x), and Decelerate(x) are logical functions
that return true or false, indicating whether the condition
holds in scenario x. Formally, in MLNs, predicates are
logical functions defined over a set of constants V =
{v1, v2, . . . , vN}, where each vi represents an object or con-
cept in the domain, such as “stop sign” or “red light.” A
predicate takes these constants as arguments and returns
a truth value: k(·) : V × · · · × V → 0, 1. While for-
mulas are logical statements composed of predicates and
logical connectives (e.g., =⇒ , ∧, ∨), with each for-
mula f associated with a weight wf indicating its impor-
tance. Then, an MLN defines a joint probability distribu-
tion over all possible assignments of truth values to the
ground predicates (predicates with specific constants as-
signed). The probability of a particular world (an assign-
ment of truth values to all ground predicates) is given by:
P (X) = 1

Z exp
(∑

f∈F wf

∑
af∈Af

ϕf (af )
)

, where X is
the set of all ground predicates, F is the set for all formulas
f , Z is the partition function ensuring the distribution sums
to one, ϕf (af ) is the potential function for formula f with

assignment af (which equals 1 if f is true under af and 0
otherwise), and Af is the set of all possible assignments to
the arguments of formula f .

Autonomous Driving Context. In our approach, we cat-
egorize predicates into unobserved predicates (U), repre-
senting potential vehicle actions like Accelerate(x),
Stop(x), and TurnLeft(x), and observed predicates
(O). Observed predicates include (1) MLLM Action Pred-
icates, such as MLLMAccelerate(x), MLLMStop(x),
and MLLMTurnLeft(x), which reflect high-level actions
suggested by the MLLM. We map these to their truth
values, introducing formulas like MLLMAccelerate(x)
⇒ Accelerate(x) to align with MLLM’s decisions.
(2) Environmental Predicates, which describe conditions
like StopSign(x) or SolidRedLight(x), extracted
from video data using object detectors. These predicates
integrate with main action predicates to form logical for-
mulas based on traffic rules from the California Driver
Handbook 1, e.g., StopSign(x) =⇒ Stop(x) ∨
Decelerate(x) ∧ ¬PullOver(x). Additionally,
predicates like HCSTurnLeft(x) reflect historical ac-
tions based on control signals, enhancing the vehicle’s ac-
tion decision-making process. Details are deferred to Ap-
pendix A.

Inference. Our goal is to infer the most probable assign-
ment of the unobserved main action predicates U given the
observed predicates O. To determine the safest and most
appropriate action, we perform inference by maximizing
the conditional probability P (U|O). Specifically, we seek
the assignment to the main action predicates U that maxi-
mizes this probability U∗ = argmaxU P (U|O). Since the
possible worlds for U (i.e., the possible assignments to the
main action predicates) are inherently limited—a vehicle
cannot simultaneously accelerate and decelerate or turn left
and right—the inference process is thus computationally
efficient. The detailed specifics of the possible worlds can
be found in Appendix A.6.

Training. The training of the MLN is straightforward and
involves learning the weights wf of the formulas to max-
imize P (U|O). In our approach, we utilize a mix of real
and simulated data for training. The real data serves as the
ground training data, provided by datasets such as BDD-X,
while the simulated data allows us to model various driving
conditions. This includes rare or dangerous scenarios not
present in the real data, by simulating different truth values
for the predicates to perform inference. Details are deferred
to Appendix A.4.

Safety Verification. Initially, we collect observed grounded
environmental predicates and the MLLM action predicates

1https://www.dmv.ca.gov/portal/handbook/
california-driver-handbook/
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from high-level actions generated by the MLLM, extracted
through object detector and prompting with GPT4o. These
predicates undergo inference within the trained MLN. If the
MLN’s final main action predicate output contradicts the
MLLM’s suggested action—suggesting a potential safety
violation or a breach of critical traffic rules, we overwrite
the original high-level action query based on the MLN’s
output and re-prompt the MLLM to generate a new high-
level action, as depicted in Figure 1. Further details are
available in Appendix A.5. In this way, the MLN serves as a
post-verification layer that can override unsafe suggestions
from the MLLM, enhancing the overall reliability of the
autonomous driving system.

3.3. SafeAuto—Multimodal RAG

In this section, we introduce a novel training method for con-
structing a unified embedding that effectively integrates mul-
tiple modalities—current driving videos, historical control
signals, and observed environmental predicate information
from Section 3.2. Specifically, we aim to train the joint em-
bedding to mirror the similarity rankings derived from the
embedding of the textual descriptions for the current driving
scenarios, which encapsulate the semantic information of
all modalities during training. This approach facilitates the
retrieval of similar driving experiences, enabling the ego
vehicle to make more informed and context-aware decisions
in current driving situations.

Different Modality. (1) Image/ Video Embedding: for the
image or video modality, we utilize the pre-trained Lan-
guageBind encoder (Zhu et al., 2024). This encoder pro-
cesses an input image in R256×1024, while processing video
into eight frames and generates a video embedding in
R2048×1024. For simplicity and to reduce computational
complexity, we apply global average pooling over the first
dimension for both modalities here, resulting in a com-
pressed embedding Zv ∈ R1×1024 for use in subsequent
experiments. (2) Control Signal Vector: the control signals
are numerical values representing various aspects of the
ego vehicle’s historical state, such as speed, curvature, ac-
celeration, and course. In datasets like BDD-X, each of
these four types of control signals contains seven historical
values (excluding the current frame), resulting in a total of
N = 4× 7 = 28 values. We concatenate these values into a
single vector Zc ∈ R1×N , which serves as the initial control
signal vector. (3) Environmental Predicate Vector: These
environmental predicates introduced in Section 3.2 are bi-
nary indicators of certain conditions or observations (e.g.,
presence of a stop sign, status of a traffic light). We encode
these predicates into a single binary vector Zp ∈ {0, 1}1×M ,
where M is the number of the whole environmental pred-
icates. Empirically, we found that including this explicit
binary representation significantly boosts retrieval perfor-
mance, as demonstrated in Section 5. This enhancement

may be attributed to the reduction of noise inherent in the
raw video embeddings or control signals; the binary pred-
icates provide a clearer and more robust representation of
essential environmental information.

Unified Embedding Construction. The central question
is: How can we train a unified embedding that effectively
combines these different modalities for similarity compu-
tation and retrieval? A key insight is that textual descrip-
tions of the current driving scenario typically encompass
all relevant semantic information, reflecting aspects of the
video, control signals, and predicates. For instance, a text
that concatenates action and justification—such as “The
car is slowing to a stop for the red light at the intersec-
tion ahead” as shown in Figure 1 captures the essence of
all three modalities. This comprehensive representation is
particularly valuable for ranking the most similar driving
scenarios. However, such ground text descriptions are often
not available during evaluation. Building on this intuition,
we propose learning a unified embedding that aligns these
modalities in a shared space, akin to how text embeddings
represent semantic information.

Training Loss. We start by mapping each input vector—
Zv, Zc, and Zp—to aligned embeddings Z ′

v, Z ′
c, and Z ′

p

through individual projectors, each normalized to a unit
ℓ2 norm and sharing the same dimension. We then apply
weighting factors wv , wc, and wp to adjust the contributions
of each modality in the final unified embedding, calculated
as Zu = Projector(wvZ ′

v + wcZ ′
c + wpZ ′

p), which re-
sides in R1×H . Motivated by CLIP (Radford et al., 2021),
our objective is to train these projectors so that Zu effec-
tively mirrors the relational properties of text embeddings
Zt ∈ R1×I derived from high-level scenario descriptions,
including actions and justifications. To achieve this, we
randomly sample a batch of cases, Z ′

u ∈ RB×H and corre-
sponding text embeddings Z ′

t ∈ RB×I (assume each row
has been normalized to a unit ℓ2 norm). We compute the
similarity matrices S′

u = Z ′
u(Z ′

u)
⊤ and S′

t = Z ′
t(Z

′
t)

⊤.
The training loss is then finally defined as the minimiza-
tion of the divergence between the similarity matrix logits
S′
u and the temperature-scaled target logits S′

t/τ , where τ
is a temperature parameter that sharpens the focus on the
most similar examples. This minimization ensures that the
unified embeddings preserve the relative rankings of the
text embeddings, crucial for effective retrieval tasks without
ground textual descriptions during inference.

4. Experiments
In this section, we present our experimental results on two
datasets: the BDD-X dataset (Kim et al., 2018) and the
DriveLM dataset (Sima et al., 2023), both of which con-
tain high-level action questions and low-level control ques-
tions. Specifically, we find that: (1) when using the Position-
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Table 1: High-level action and justification evaluation on BDD-X
dataset. B4, C, and M represent BLEU4, CIDEr, and METEOR,
respectively.

Method
Action Justification

B4 ↑ C ↑ M ↑ B4 ↑ C ↑ M ↑
ADAPT 34.6 247.5 30.6 11.4 102.6 15.2

DriveGPT4 30.0 214.0 29.8 9.4 102.7 14.6
RAGDriver 34.3 260.8 30.7 11.1 109.1 14.8
SafeAuto 38.6 337.4 35.5 9.4 96.0 14.0

Table 2: High-level behavior and low-level motion prediction
evaluation on DriveLM dataset.

Method
High-Level Behavior Motion

Acc ↑ Speed ↑ Steer ↑ ADE ↓
UniAD-Single - - - 1.80
UniAD-Full - - - 0.80
BLIP-RT-2 - - - 2.63

DriveLM-Agent 61.60 65.40 81.61 1.51
SafeAuto 74.60 81.61 81.90 0.84

Dependent Cross-Entropy loss, the numerical prediction of
float numbers is significantly improved; (2) with the post-
safety knowledge-enhanced verification via MLN, many
dangerous high-level actions have been corrected; (3) the
incorporation of Multimodal RAG, specifically integrating
environmental predicate information from the MLN com-
ponent, leads to significant improvements in the MLLM’s
high-level prediction performance. Notably, our framework
is plug-and-play and can be directly applied to any new
methods based on MLLMs. All experiments are conducted
on eight NVIDIA A6000 GPUs.

Datasets and Tasks. (a) BDD-X: In this work, we adopt
the processed version from RAGDriver (Yuan et al., 2024),
where the task involves using an input video along with
control signals from the past seven frames as context for a
conversation that focuses on three types of questions: (i)
high-level action queries, (ii) high-level justification queries,
and (iii) low-level action predictions for speed and course
in the next frame. This processed dataset contains 16,390
training video QA conversations and 2,123 test conversa-
tions. (b) DriveLM: The DriveLM dataset is built upon the
nuScenes dataset (Caesar et al., 2020). In this work, we
primarily focus on tasks that involve using six multi-view
images from the current frame, and control signals includ-
ing trajectory positions from the past three seconds as input
context. The conversation concentrates on: (i) planning
for possible high-level safe actions, (ii) high-level behavior
involving predicting speed and steering actions, which serve
as multiple-choice questions, and (iii) low-level motion, pre-
dicting 2D trajectories for the next three seconds, similar
to UniAD (Hu et al., 2023). We filter instances to include
only those with a prediction horizon of at least 3 seconds,
resulting in a final dataset of 3,447 training conversations
and 685 test conversations.

Model. We use the pretrained Video-LLaVA (Lin et al.,

2023) with Vicuna 1.5 7B (Zheng et al., 2023) as the base
LLM for fine-tuning. We fine-tune the model for 2 epochs
with a batch size of 128 on the BDD-X dataset and for 4
epochs with a batch size of 64 on the DriveLM dataset,
using a learning rate of 5× 10−2.

Experimental Details. (a) PDCE loss: During the fine-
tuning of the MLLM, we initialize σ in D(µ, σ) at a small
value of 0.01 and geometrically increase it after each op-
timization step until it reaches the predefined value of
σ = 0.35. This gradual increase helps stabilize the training
process. (b) Post-safety verification via MLN: we fine-tune
YOLOv8 (Jocher et al., 2023) using LISA dataset (Jensen
et al., 2016) as the object detector for both traffic lights and
signs. For the BDD-X dataset, we define 16 action predi-
cates, 20 environmental predicates, and 35 formulas based
on traffic rules. Similarly, for the DriveLM dataset, we de-
fine 7 action predicates, 29 environmental predicates, and
29 formulas. Further details are provided in Appendix A. (c)
Multimodal RAG: we consistently employ four-layer mul-
tilayer perceptrons (MLPs) as projectors to obtain aligned
embeddings for each modality and to generate the final uni-
fied embedding, and we use sentence-t5-xl (Ni et al.,
2022) as our text encoder. The weighting factors wv and wc

are both set to 0.4, while the weight for the predicate embed-
ding wp is set to 0.2. We consistently set the learning rate
to 0.001 and the temperature parameter τ to 0.5 for training.
On the BDD-X dataset, the projectors are trained for 100
epochs with a batch size of 2,048; while for the DriveLM
dataset, the projectors are also trained for 100 epochs but
with a batch size of 512. Finally, we retrieve the Top K = 2
examples on BDD-X dataset, and Top K = 1 example for
DriveLM dataset on finetuning MLLM and inference.

Baselines. (a) On the BDD-X dataset, we compare our
method with several baselines: (1) ADAPT (Jin et al., 2023),
a state-of-the-art video transformer-based method that pro-
vides high-level and low-level answers using two separate
branches; (2) TimeLLM (Jin et al., 2024a), which repurposes
frozen large language models for general time series fore-
casting by reprogramming numerical inputs into text-based
patches; (3) DriveGPT4 (Xu et al., 2024), the first work to
provide both high-level action descriptions and low-level
vehicle control signals in an end-to-end fashion using an
MLLM; and (4) RAGDriver (Yuan et al., 2024), a state-of-
the-art method that leverages triplet loss to train multimodal
retrieval models for autonomous driving. (b) For the Driv-
eLM dataset, we use: (1) DriveLM-Agent, the current state-
of-the-art method that employs graph-based visual question
answering to improve high-level responses and uses mo-
tion tokenization for low-level prediction; (2) UniAD (Hu
et al., 2023), the state-of-the-art method on the nuScenes
dataset used here for comparing low-level predictions—-we
consider two versions: UniAD (Full), which utilizes the
entire historical video input, and UniAD (Single), a variant
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Table 3: Low-level control signal prediction evaluation on BDD-X dataset.

Method
Speed Course

RMSE ↓ A0.1 ↑ A0.5 ↑ A1.0 ↑ A5.0 ↑ A10.0 ↑ RMSE ↓ A0.1 ↑ A0.5 ↑ A1.0 ↑ A5.0 ↑ A10.0 ↑
ADAPT 2.68 11.77 31.79 47.48 92.75 95.87 5.87 54.49 86.39 91.06 97.36 98.20

TimeLLM 1.17 21.34 53.13 74.14 99.67 99.86 4.10 65.70 83.47 89.59 97.60 98.59
DriveGPT4 1.09 56.93 77.77 87.97 99.00 99.57 4.57 69.22 79.14 84.47 95.72 96.74
RAGDriver 0.69 51.12 85.54 94.49 99.81 99.91 4.48 74.32 88.69 93.12 98.30 99.10
SafeAuto 0.65 55.49 88.84 95.34 99.81 99.91 3.85 76.26 89.68 94.11 98.30 99.25

Table 4: Ablation study of the contribution from each module in
SafeAuto focusing on high-level action and justification assess-
ment on the BDD-X dataset. “Acc” denotes the high-level action
predicates accuracy.

Method
Action Justification

B4 ↑ C ↑ M ↑ Acc ↑ B4 ↑ C ↑ M ↑
Base 30.8 221.5 29.2 61.75 7.8 85.4 13.2

PDCE 31.4 231.4 29.3 61.94 7.9 84.2 13.2
PDCE + MLN 31.5 232.2 29.4 62.97 7.9 84.5 13.2
PDCE + RAG 38.2 334.8 35.3 91.00 9.4 95.5 13.9
PDCE + MLN

+ RAG 38.6 337.4 35.5 92.18 9.4 96.0 14.0

Table 5: Ablation study of the contribution from each module in
SafeAuto on both high-level and low-level predictions using the
DriveLM dataset.

Method
High-Level Behavior Motion

Acc ↑ Speed ↑ Steer ↑ ADE ↓
Base 60.58 64.67 80.29 0.86

PDCE 63.21 67.88 79.27 0.85

PDCE + MLN 66.86 71.39 80.29 0.85

PDCE + RAG 74.01 79.27 81.61 0.84
PDCE + MLN + RAG 74.60 79.85 81.90 0.84

modified to use only the current frame’s input for a fair com-
parison; and (3) BLIP-RT-2, which fine-tunes BLIP-2 (Li
et al., 2023) on the DriveLM data and utilizes trajectory
tokenization as proposed in RT-2 (Brohan et al., 2023).

Metrics. (a) For the BDD-X dataset, we adopt widely used
metrics for high-level prediction, including 4-gram BLEU
(B4) (Papineni et al., 2002), METEOR (M) (Banerjee &
Lavie, 2005), and CIDEr (C) (Vedantam et al., 2015). For
low-level prediction, we use the Root Mean Square Error
(RMSE) for both steering angle (in degrees) and speed (in
meters per second). We also present “tolerant accuracy”
metrics, Aδ , representing the accuracy of predictions when
binarized as being within a tolerance threshold δ of the
ground truth. (b) For the DriveLM dataset, the high-level
behavior questions are multiple-choice problems concerning
speed and steering. We report the overall accuracy, as well
as individual accuracies for speed and steering predictions.
For low-level trajectory prediction, we use the Average
Displacement Error (ADE), as in UniAD, which indicates
the average ℓ2 distance between the predicted trajectory and
the ground truth trajectory and is calculated as the average
of the errors at the 1st, 2nd, and 3rd seconds.

Results. (a) BDD-X Dataset: The final results for high-level
prediction, including both action and justification, are pre-
sented in Table 1, while the low-level predictions for speed
and course are shown in Table 3. For high-level action pre-
diction, SafeAuto improves performance by 11.6%, 29.4%,
and 15.6% for the BLEU4, CIDEr, and METEOR met-
rics, respectively. Although the justification performance is
slightly lower than the state-of-the-art method, it still sig-
nificantly outperforms the vanilla fine-tuned Video-LLaVA
model, as demonstrated in Section 5. Additional case study
is provided in Figure 5. For low-level control signal predic-

tion, SafeAuto achieves further reduction of 5.8% in RMSE
for speed prediction and 14.1% in RMSE for course predic-
tion. The contributions of each component to the overall
performance are detailed in Section 5. (b) DriveLM Dataset:
The final results are demonstrated in Table 2. For high-
level behavior prediction, SafeAuto improves accuracy by
13.00% compared to the SOTA baseline DriveLM-Agent.
For low-level motion prediction, it achieves a further reduc-
tion of 44.4% in ADE over the DriveLM-Agent. Notably,
the ADE of SafeAuto is even comparable to UniAD (Full)
which is trained purely for low-level prediction. Additional
case study is provided in Figure 6.

5. Ablation Study
In this section, we conduct various ablation studies on
SafeAuto to assess the impact of each module and different
hyperparameters, as outlined in Section 3. For clarity, we
refer to the base model—trained without any enhancements
described in our paper—as ‘Base’.

Contribution from Each Module. The contributions of dif-
ferent modules to both high-level and low-level performance
on the DriveLM dataset are shown in Table 5, while the high-
level results for the BDD-X dataset are presented in Table 4.
The contributions of each module in SafeAuto to low-level
control signal prediction on the BDD-X dataset are deferred
to Appendix C.1. To accurately measure improvements
in action performance, we introduce a new metric called
high-level action predicate accuracy for the BDD-X dataset,
which converts high-level action descriptions to one of 16
predefined actions using GPT4o strictly and measures accu-
racy. Our results reveal that: (1) PDCE loss markedly en-
hances low-level prediction while preserving high-level pre-
diction performance; (2) post-safety verification via MLN
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Figure 3: RMSE variation of low-level speed and course
predictions with different PDCE loss σ values on the BDD-
X dataset. The dashed line represents the result of using
the original CE loss.

Table 6: The impact of incorporating Environmental Predicates (EP) in-
formation for retrieval, along with the number of retrieved examples K in
Multimodal RAG, on high-level action and justification performance in the
BDD-X dataset.

Method K
Action Justification

B4 ↑ C ↑ M ↑ Acc ↑ B4 ↑ C ↑ M ↑
Base - 30.8 221.5 29.2 61.75 7.8 85.4 13.2

RAG w/o EP 1 29.4 219.2 28.5 59.06 7.3 74.8 12.6
RAG w/o EP 2 29.7 218.6 28.7 59.91 7.3 73.7 12.5
RAG w/ EP 1 38.1 334.8 35.4 91.47 8.8 89.2 13.5
RAG w/ EP 2 38.2 334.8 35.3 91.00 9.4 95.5 13.9

still corrects certain unsafe actions, even though the base
model is conservative; the impact of each module on the
rates of rule violation is detailed in Appendix C.3. (3) the
use of Multimodal RAG significantly enhances performance,
increasing high-level action predicate accuracy by 30% on
BBD-X, and 14% on DriveLM.

PDCE Loss with Different σ Values. We investigate the
effect of varying σ values on low-level predictions in the
BDD-X dataset, as demonstrated in Figure 3. Our findings
show that PDCE loss consistently achieves lower RMSEs
for speed and course predictions than the CE loss, with
minimal sensitivity to σ changes, indicating strong stability.

Influence of Environmental Predicates on Retrieval. Our
approach incorporates explicit Environmental Predicate (EP)
information extracted from video and control signals. As in-
dicated in Table 6, omitting environmental predicates yields
performance akin to the base model, while including them
markedly improves high-level prediction performance. This
underscores the potential of using explicit binary environ-
mental predicates to refine retrieval, eliminating the noise
in the original data sources.

Multimodal RAG with Different K. We explore the im-
pact of varying top K selections for BDD-X dataset in Ta-
ble 6. As we can see, significant improvements in high-level
action prediction are achieved even with K = 1, and the
performance is already comparable to the K = 2 scenario.
Furthermore, selecting a larger K value enhances perfor-
mance in high-level justification prediction.

Impact of Predicate Selection. Predicates are crucial for
retrieval and post-verification, as shown in an ablation study
in Appendix C.2. This study highlights the importance of
MLLM action and environmental predicates, demonstrating
that certain environmental predicates significantly improve
accuracy in driving scenarios when aligned with relevant
traffic regulations for predicting lawful high-level actions.

Case Study on Post-Safety Verification. In the BDD-X

dataset, the critical traffic rule SolidRedLight(x) =⇒
¬Accelerate(x) ∧ ¬LeftPass(x) ∧ ¬Yield(x)
and in the DriveLM dataset, the key rule is
RedYieldSign(x) =⇒ ¬Fast(x). These
rules carry the highest weights in their respective MLNs.
A case of MLN correcting aggressive driving behavior is
illustrated in Figure 8.

Limitation
There are some limitations in SafeAuto that could be ad-
dressed in future work. These include: (1) using better
designed distribution D(µ, σ) for PDCE loss to enhance
performance, (2) improving the effectiveness of safety veri-
fication by refining predicate extraction, especially in scenar-
ios with limited predicates, and (3) adding further filtering or
reranking processes after retrieval in the Multimodal RAG
within the MLLM context to enhance accuracy.
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A. Details on SafeAuto-Reasoning
A.1. Traffic Rule Mapping

This section outlines the methodology for extracting first-order logic formulas from the California Driver Handbook 2.
Initially, all traffic rules are transformed into a structured format using GPT4o, based on the template: ’When [conditions],
you should/should not [action] (unless [conditions]).’ Subsequently, GPT4o is utilized again to translate the structured traffic
rules into first-order logic formulas. The complete set of prompts is provided in Table 7 and Table 8.

As an agent for autonomous driving, your task is to extract pertinent rules from the provided text concerning autonomous driving, while
simultaneously filtering out irrelevant information. In specific, please extract rules from the text relating to specific driving
maneuvers listed as follows: keep, accelerate, decelerate, stop, make left turns, make right turns, reverse, merge, change lanes, park,
make U-turns, overtake, yield, follow different traffic signs. Disregard unrelated actions for autonomous driving like "looking around/
checking mirrors" or similar non-quantifiable action.

Use the structured format: 'When [conditions], you should/should not [action] (unless [conditions]).' Utilize 'OR' or 'AND' to connect
multiple conditions that may trigger the same action. Optionally, include 'unless [conditions]' where exceptions apply. Each rule
should be direct and applicable, ensuring it aids in the precise and safe execution of self-driving maneuvers. If the text does not
provide relevant advice for the actions listed, respond with 'None'.

Here is one example:

#Title#: Double Solid Yellow Lines
#Passage#: Do not pass over double solid yellow lines. Stay to the right of these lines unless you are:
In a high-occupancy vehicle (HOV) carpool lane that has a designated entrance on the left.
Instructed by construction or other signs to drive on the other side of the road because your side is closed or blocked.
Turning left across a single set of double yellow lines to enter or exit a driveway or private road or make a U-turn.
Two sets of solid double yellow lines spaced two or more feet apart are considered a barrier. Do not drive on or over this barrier,
make a left turn, or make a U-turn across it, except at designated openings.
#Extracted Rules#: When driving near double solid yellow lines, you should stay to the right of these lines unless: (i) You are in a
high-occupancy vehicle (HOV) carpool lane that has a designated entrance on the left; (ii) You are instructed by construction or other
signs to drive on the other side of the road because your side is closed or blocked; (iii) You are turning left across a single set of
double yellow lines to enter or exit a driveway or private road, or to make a U-turn.
When two sets of solid double yellow lines spaced two or more feet apart are present, you should not drive on or over this barrier,
make a left turn, or make a U-turn across it, unless there is a designated opening for such maneuvers.

Now, extract the rules for the following passage:
#Title#: {title}
#Passage#: {passage}
#Extracted Rules#:

Table 7: Prompt for converting traffic rules to structured format
Your goal is to transform natural language driving rules into first-order logical rules for autonomous driving systems, start by
identifying the relevant actions and conditions from the text. Actions must choose from predefined predicates like Keep, Accelerate,
Decelerate, Stop, MakeLeftTurn, MakeRightTurn, Reverse, Merge, ChangeToLeftLane, ChangeToRightLane, Park, MakeUTurn, LeftPass,
RightPass and Yield.

First, analyze the natural driving rules to identify clear obligations (required actions) and prohibitions (banned actions), explicitly
ignoring any actions described as conditional permissions ("may"). Each rule will either dictate required actions under specific
conditions or explicitly ban certain actions in defined scenarios. For each rule:

Identify Required Actions (Obligations): If a rule specifies an action that must be taken under certain conditions, formulate this into
a logical statement using the format "Condition Action." This represents an obligatory action.

Identify Prohibited Actions (Bans): If a rule bans certain actions in specific circumstances, express this as a logical statement using
the format "Condition Action." This captures actions that are explicitly forbidden.

Here is one example:

#Natural Rules#: When driving near double solid yellow lines, you should stay to the right of these lines unless: (i) You are in a
high-occupancy vehicle (HOV) carpool lane that has a designated entrance on the left; (ii) You are instructed by construction or other
signs to drive on the other side of the road because your side is closed or blocked; (iii) You are turning left across a single set of
double yellow lines to enter or exit a driveway or private road, or to make a U-turn.
When two sets of solid double yellow lines spaced two or more feet apart are present, you should not drive on or over this barrier,
make a left turn, or make a U-turn across it, unless there is a designated opening for such maneuvers.
#Logical Rules#: (1) LeftSingleSetDoubleYellow InHOVCarpoolWithLeftEntrance Construction ChangeToLeftLane LeftPass
AdjacentSingleSetDoubleYellow EnterOrExitDriveway EnterOrExitPrivateRoad MakeLeftTurn
(2) LeftDoubleSetsDoubleYellow DesignatedOpeningLeftTurn MakeLeftTurn
LeftDoubleSetsDoubleYellow DesignatedOpeningUTurn MakeUTurn

Now, extract the first-order logical rules for the following natural rules, and label each logical rule clearly with #Logical Rules#
and include an index that corresponds to the index of the original rule as shown in the example. Besides when there are only
conditioanl permissions ("may") and no clear obligations or progibitions, you can simply output None.
#Natural Rules#: {rules}

Table 8: Prompt for further converting traffic rules to first-order logic formulas

2https://www.dmv.ca.gov/portal/handbook/california-driver-handbook/
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A.2. YOLOv8 Fine-tuning

We fine-tuned the YOLOv8 model using the LISA dataset (Jensen et al., 2016), which contains annotations for both traffic
signs and traffic signals. The dataset comprises four daytime sequences and two nighttime sequences, primarily designated
for testing purposes, with a total duration of 23 minutes and 25 seconds of driving footage recorded in Pacific Beach and
La Jolla, San Diego. It contains 43, 007 frames, annotated with 113, 888 traffic lights and 7, 855 traffic signs across 6, 610
frames. The YOLOv8m model was fine-tuned over 500 epochs, with an input image resolution of 640× 640 pixels.

A.3. Predicate Extraction

For environmental predicates, we use the fine-tuned YOLOv8 for detection, as described in Appendix A.2. To ensure
consistency with RagDriver (Yuan et al., 2024), we uniformly divide video segments into 8 frames and select the final
frame as input. Additionally, in DriveLM, images from three perspectivesthe front camera, left front camera, and right front
cameraare utilized. We leveraged the nuScenes map expansion to extract lane line information for both sides of the lane in
which the ego vehicle is positioned. Historical control signals in BDD-X and DriveLM were obtained by querying GPT4o
and mapping the results to corresponding environmental predicates (e.g., HCSKeep(x)). Specific details of the prompts
used in this extraction process are provided in Table 9 and Table 10.

Given the current speed, curvature, acceleration, and course of the car, use one velocity predicate and one directional predicate to
best describe the behavior of the car.
The velocity predicates are: Keep, Accelerate, Decelerate, Stop, Reverse.
The directional predicates are: Straight, Left, Right.
Output the predicates directly without any additional information.
Here are some examples:
#Speed#: [7.18, 5.76, 4.45, 3.30, 2.24, 1.20, 0.36]
#Curvature#: [1.32, 0.88, 0.58, 1.85, 2.74, 1.61, 0.64]
#Acceleration#: [-1.22, -1.85, -2.39, -2.22, -2.01, -1.46, -0.87]
#Course#: [0.00, -10.03, -8.33, -3.23, -0.97, -0.32, -0.08]
#Predicate#: HCSStop, HCSLeft
#Speed#: [12.31, 9.51, 7.24, 5.38, 3.67, 2.76, 3.00]
#Curvature#: [-0.00, 0.00, 0.00, -0.05, -0.18, -0.67, -0.79]
#Acceleration#: [-1.85, -2.79, -2.73, -2.23, -1.67, -0.47, 0.71]
#Course#: [0.00, 0.00, 0.00, 0.00, -20.26, -60.78, 7.17]
#Predicate#: HCSDecelerate, HCSRight
#Speed#: [1.27, 4.18, 6.83, 8.87, 10.44, 12.22, 14.45]
#Curvature#: [0.00, 0.00, 0.00, -0.00, -0.01, -0.00, -0.00]
#Acceleration#: [2.27, 2.15, 1.81, 1.35, 1.28, 1.56, 1.45]
#Course#: [0.00, -0.09, 0.00, 0.00, 0.20, 0.00, 0.00]
#Predicate#: HCSAccelerate, HCSStraight
#Speed#: {speed}
#Curvature#: {curvature}
#Acceleration#: {acceleration}
#Course#: {course}
#Predicate:

Table 9: Prompt for Extracting High-level Control Signal Environmental Predicates from the BDD-X Dataset

Given the current speed and course of the car, use one velocity predicate and one directional predicate to best describe the behavior
of the car.
The velocity predicates are: Normal, Fast, Slow, Stop.
The directional predicates are: Straight, Left, Right.
Output the predicates directly without any additional information.
Here are some examples:
#Speed#: [(4.54, 0.0), (5.34, 0.0), (5.67, 0.0), (5.7, 0.0), (6.46, 0.0), (6.63, 0.0)]
#Course#: [(1.0, 0.0), (1.0, 0.0), (1.0, 0.0), (1.0, 0.0), (1.0, 0.0), (1.0, 0.0)]
#Predicate#: HCSFast, HCSStraight
#Speed#: [(10.01, 0.0), (9.88, 0.0), (9.52, 0.0), (9.39, 0.0), (9.15, 0.0), (8.94, 0.0)]
#Course#: [(0.84, 0.0), (0.84, 0.0), (0.86, 0.0), (0.89, 0.0), (0.93, 0.0), (0.95, 0.0)]
#Predicate#: HCSFast, HCSRight
#Speed#: [(2.51, 0.0), (2.49, 0.0), (2.45, 0.0), (2.43, 0.0), (2.43, 0.0), (2.37, 0.0)]
#Course#: [(0.85, 0.0), (0.85, 0.0), (0.86, 0.0), (0.85, 0.0), (0.82, 0.0), (0.75, 0.0)]
#Predicate#: HCSSlowly, HCSLeft
#Speed#: [(1.65, 0.0), (1.37, 0.0), (0.73, 0.0), (0.09, 0.0), (0.0, 0.0), (0.0, 0.0), (0.0, 0.0), (0.0, 0.0)]
#Course#: [(0.86, 0.0), (0.86, 0.0), (0.87, 0.0), (0.86, 0.0), (0.86, 0.0), (0.86, 0.0), (0.85, 0.0), (0.84, 0.0)]
#Predicate#: HCSStop, HCSStraight
#Speed#: {speed}
#Course#: {course}
#Predicate#:

Table 10: Prompt for Extracting High-level Control Signal Environmental Predicates from the DriveLM Dataset

With respect to MLLM action predicates, since the output of MLLM consists of high-level action descriptions such as
“The car is slowing down to stop, we map these to predicates represented as (MLLMDecelerate(x), MLLMStop(x)).
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Given the current behavior of the car, please use predicates below to best describe the behavior of the car. The predicates are:
Keep, Accelerate, Decelerate, Stop, Reverse, TurnLeft, TurnRight, UTurn, Merge, LeftPass, RightPass, Yield, ChangeToLeftLane,
ChangeToRightLane, Park, PullOver.
Here are some examples:
#Current Behavior#: The car is travelling down the road.
#Predicates#: Keep
#Current Behavior#: The car is making left turn.
#Predicates#: TurnLeft
#Current Behavior#: The car is slowing down and then comes to a stop.
#Predicates#: Decelerate, Stop
#Current Behavior#: The car is accelerating and then turns right.
#Predicates#: Accelerate, TurnRight
#Current Behavior#: The car is making a left turn and accelerates.
#Predicates#: TurnLeft, Accelerate
#Current Behavior#: The car decelerates and stops.
#Predicates#: Decelerate, Stop

Now the current behavior of the car is described, provide the predicates that best describe the behavior of the car.

#Current Behavior#: {action}
#Predicates#:

Table 11: Prompt for Extracting Environmental Predicates from the BDD-X Dataset

In the BDD-X dataset, due to the increased number and complexity of high-level action descriptions for MLLM action
predicates, we employ GPT4o with specifically designed prompts to extract these predicates, with the detailed prompts
provided in Table 11. In DriveLM, given that the question-and-answer format comprises multiple-choice questions with
fixed option descriptions, we predefine mapping rules to translate high-level action descriptions into predicates, as described
in Table 12.

Table 12: Mapping of High-level Action Descriptions to MLLM Action Predicates.

High-level Action Description MLLM Action Predicate

Going straight
MLLMStraight(x)Slightly steering to the left

Slightly steering to the right

Driving fast
MLLMFast(x)

Driving very fast

Driving slowly MLLMSlow(x)

Driving with normal speed MLLMNormal(x)

Not moving MLLMStop(x)

Steering to the left MLLMLeft(x)

Steering to the right MLLMRight(x)

A.4. Training Details

The learning rate for the Markov Logic Network (MLN) is set at 1× 10−5. To mitigate the risk of overfitting and to avoid
excessive reliance on frequently occurring scenarios, such as straight movements, regularization is incorporated into the
training process, also set at 1× 10−5. The models are trained for a total of 300 epochs, unless interrupted by a predefined
early stopping criterion: specifically, if the model’s accuracy fails to improve by more than 1× 10−6 over 10 consecutive
epochs, training will be terminated.

A.5. Post-verification Details

As outlined in Section 3.2, during safety verification, we initiate the process by extracting observed grounded environmental
predicates and MLLM action predicates using the object detector and GPT4o. If the final main action predicate output of the
Markov Logic Network (MLN) conflicts with the suggested action from MLLM, we modify the high-level action query
based on the output of the MLN. In the BDD-X dataset, we replace the original high-level action queries with new actions
inferred from the MLN. For example, if the MLN predicts the possible world represented as “Stop(x) = 1” with the
highest probability, we append the suggestion “The ego vehicle should stop” to the high-level action query. This approach
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# str_num: a string representing a float number (excluding 

the decimal point '.') with N digits

# logits: the logits distribution output from MLLM for each 

digit in str_num, with a shape of N * 10

# sigma: the standard deviation of the Gaussian distribution

# Precompute the digit-level probability distributions

from scipy.stats import norm

distribution_dict = {}

for num in range(10):

  prob_distribution = np.array([norm(num, sigma).cdf(i + 0.5)

- norm(num, sigma).cdf(i - 0.5) for i in range(10)])

  prob_distribution /= prob_distribution.sum()

  distribution_dict[str(num)] = prob_distribution

# Calculate weights for each digit position

tgt_probs = []

Weight = 1.0

for digit in str_num:

  # The place-level weighting

  digit_probs = distribution_dict[digit] * weight

  weight *= digit_probs[int(digit)]

  tgt_probs.append(digit_probs)

tgt_probs = np.array(tgt_probs)

# Compute the KL loss, constants are ignored

loss = - (tgt_probs * log_softmax(logits, axis=1)).sum()

Figure 4: The numpy-style pseudocode on PDCE loss.

facilitates the mapping back to the corresponding high-level action description and ensures the flow of conversation for
subsequent queries.

In DriveLM, since high-level action queries are presented in a multiple-choice format, the final main action predicate output
from the Markov Logic Network (MLN) may not always align directly with one of the options. In such cases, we filter the
available options by the probability of possible worlds. Given that MLLM action predicates may map to multiple high-level
action descriptions, it is feasible for multiple valid options to arise simultaneously. We then overwrite the high-level action
queries by removing incorrect options and prompt the MLLM to regenerate an option.

A.6. Predicates and Traffic Rules

This section provides a detailed overview of the specific aspects of the MLN construction for both the BDD-X and DriveLM
datasets. Table 16, Table 17, Table 18, present the predicate set of BDD-X, all possible worlds, and first-order predicate
logic, respectively; while Table 19, Table 20, and Table 21 show those of DriveLM.

B. Pseudo-Code of PDCE loss
The pseudo-code for calculating the PDCE loss is provided in Figure 4.

C. Experiements on Ablation Study
C.1. Contribution from different module

Table 13 presents an ablation study evaluating the contribution of each module in SafeAuto to the low-level control signal
prediction on the BDD-X dataset. Interestingly, we find that the MLN reasoning and RAG modules have only a minimal
impact on the low-level prediction accuracy, with the primary improvement stemming from the PDCE loss, as expected.
Additionally, we observe that incorporating RAG slightly increases the RMSE for speed prediction but decreases the RMSE
for course prediction.
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Table 13: Ablation study of the contribution from each module in SafeAuto focusing on low-level control signal assessment on the
BDD-X dataset.

Method
Speed Course

RMSE ↓ A0.1 ↑ A0.5 ↑ A1.0 ↑ A5.0 ↑ A10.0 ↑ RMSE ↓ A0.1 ↑ A0.5 ↑ A1.0 ↑ A5.0 ↑ A10.0 ↑
Base 0.76 53.65 87.38 95.10 99.76 99.81 4.18 76.31 89.87 94.49 98.21 99.15

PDCE 0.63 55.63 88.04 95.24 99.86 99.91 3.89 76.64 89.97 94.35 98.21 99.20
PDCE+MLN 0.64 55.58 87.99 95.24 99.81 99.91 3.89 76.68 90.01 94.35 98.21 99.20
PDCE+RAG 0.65 55.49 88.79 95.34 99.81 99.91 3.85 76.31 89.68 94.07 98.30 99.25

PDCE+MLN+RAG 0.65 55.49 88.84 95.34 99.81 99.91 3.85 76.26 89.68 94.11 98.30 99.25

C.2. Predicate Selection

Table 14 indicates that incorporating MLLM action predicates significantly enhances SafeAuto’s effectiveness. Subsequently,
we ranked all environmental predicates based on their total occurrence frequency across all scenarios. For each experiment,
we selected the top n (n = 5, 10, 15, 20) most frequently occurring environmental predicates, retrained the Markov
Logic Network, and evaluated its performance. Notably, selecting only the top five environmental predicates achieved
relatively high accuracy, suggesting that the majority of erroneous scenarios are associated with these predicates, such as
SolidRedLight.

Table 14: Ablation study on the impact of different predicate selections on SafeAuto performance.

Method
BDDX DriveLM

Acc ↑ Speed ↑ Steer ↑ Avg. ↑ Acc ↑ Speed ↑ Steer ↑ Avg. ↑

MLLM Action Predicates & All Environmental Predicates 92.18 79.85 81.90 84.65 74.60 79.85 81.90 78.12
All Environmental Predicates 49.88 49.49 46.28 48.55 38.83 49.49 46.28 44.20
MLLM Action Predicates & Top 5 Environmental Predicates 87.75 79.27 81.75 82.26 74.16 79.27 81.75 78.39
MLLM Action Predicates & Top 10 Environmental Predicates 92.10 79.56 81.75 84.47 74.30 79.56 81.75 78.54
MLLM Action Predicates & Top 15 Environmental Predicates 92.18 79.42 81.90 84.50 74.31 79.42 81.90 78.54

C.3. Rule Violation

Table 15 presents the impact of PDCE, RAG, and MLN on the violation of traffic rules in SafeAuto’s action prediction. On
the BDD-X dataset, PDCE and RAG significantly reduce the violation rate in the underlying MLLM’s decision-making. The
MLN post-verification further decreases the violation rate of SafeAuto. However, on the DriveLM dataset, PDCE and RAG
do not reduce the violation rate of MLLM’s prediction, as DriveLM contains a large number of simple driving scenes with
only straight-line movement, making it challenging for MLLM to effectively learn different driving patterns. Nevertheless,
using MLN to correct MLLM’s errors reduces the violation rate.

Table 15: Ablation study on the impact of each module on the traffic rule violation rate of MLLM-predicted actions.

Method BDDX DriveLM

Base 11.64% 1.03%
PDCE 8.44% 1.46%

RAG+PDCE 5.90% 1.03%
RAG+PDCE+MLN 4.50% 0.75%

D. Case Study
D.1. High-Level Action Query

The two examples in Figure 5 use the base model and SafeAuto, respectively, to predict high-level actions. The actions
predicted by SafeAuto are closer to the ground truth.
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Figure 5: Case Study on High-Level Action Queries.

D.2. Low-Level Action Query

Figure 6 shows that the low-level control signals obtained through SafeAuto for low-level action queries are numerically
closer to the ground truth. Moreover, the predicted control signals are highly correlated with the previous high-level queries.

D.3. Token Probability Distribution in Control Signal Prediction

Figure 7 illustrates the probability distribution of numerical tokens when predicting low-level control signals using the base
model and SafeAuto.

D.4. MLN Post-Verification

Figure 8 illustrates how the MLN rejects dangerous and illegal actions predicted by the MLLM and enhances safety by
recommending high-level actions for the MLLM to re-output.
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Figure 6: Case Study on Low-Level Action Queries.

Figure 7: Case Study on Token Probability Distribution.
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What is the action of ego car? The car accelerates

The ego vehicle should stop.
What is the action of ego car?

The car slows to a stop

Why does the ego car doing this? Because the light is red

Predict the control signal for 
next frame.

Speed: 02.510 Course: 00.000

1. High-Level Action Queries

2. High-Level Justification Queries

3. Low-Level Action Queries

MLLMAccelerate(x)=1, MLLMKeep(x)=1 …

MLLM Action Predicate: 

Predicate Extraction

SolidRedLight(x)=1, StopSign(x)=0, …

Environmental Predicates: 

YOLOv8 GPT4o

MLN Weight Formula(Knowledge Rules)

10.02
8.03
8.47
8.77
…

SolidRedLight → ¬Accelerate∧¬LastPass∧¬Yield
StopSign(x) => Stop(x) ∨ Decelerate(x) ∧ ¬PullOver(x)
NoLeftTurnSign(x) => ¬TurnLeft(x) 
MLLMAccelerate(x) => Accelerate(x) 

Inference Observed Action Predicates
Accelerate(x)

Stop(x)
…

Probability

0.02
0.88 The ego car should stop

Suggestion

Re-prompt

extract

extract

overwrite

Post-Safety Verification

Figure 8: An example of rejecting and correcting aggressive behavior through MLN

Predicates
• Unobserved Predicates:
Keep(x), Accelerate(x), Decelerate(x), Stop(x), Reverse(x), TurnLeft(x), TurnRight(x),
UTurn(x), Merge(x), LeftPass(x), RightPass(x), Yield(x), ChangeToLeftLane(x),
ChangeToRightLane(x), Park(x), PullOver(x)

• Observed Predicates:
– MLLM Action Predicates:
MLLMKeep(x), MLLMAccelerate(x), MLLMDecelerate(x), MLLMStop(x), MLLMReverse(x),
MLLMTurnLeft(x), MLLMTurnRight(x), MLLMUTurn(x), MLLMMerge(x), MLLMLeftPass(x),
MLLMRightPass(x), MLLMYield(x), MLLMChangeToLeftLane(x), MLLMChangeToRightLane(x),
MLLMPark(x), MLLMPullOver(x)

– Environmental Predicates:
SolidRedLight(x), SolidYellowLight(x), YellowLeftArrowLight(x), RedLeftArrowLight(x),
MergingTrafficSign(x), NoLeftTurnSign(x), NoRightTurnSign(x), PedCrossingSign(x),
StopSign(x), RedYieldSign(x), SlowSign(x), SolidGreenLight(x), HCSKeep(x),
HCSAccelerate(x), HCSDecelerate(x), HCSStop(x), HCSReverse(x), HCSStraight(x),
HCSLeft(x), HCSRight(x)

Table 16: The predicate set of BDD-X.
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Traffic Rules
• SolidRedLight(x) =⇒ ¬Accelerate(x) ∧ ¬LeftPass(x) ∧ ¬Yield(x)
• SolidYellowLight(x) =⇒ TurnLeft(x) ∨ TurnRight(x) ∨ Keep(x) ∨ Stop(x) ∨ Decelerate ∧
¬Accelerate(x)

• YellowLeftArrowLight(x) =⇒ Stop(x) ∨ Decelerate(x)
• RedLeftArrowLight(x) =⇒ ¬(TurnLeft(x) ∨ UTurn(x))
• MergingTrafficSign(x) =⇒ Decelerate(x)
• NoLeftTurnSign(x) =⇒ ¬TurnLeft(x)
• NoRightTurnSign(x) =⇒ ¬TurnRight(x)
• RedYieldSign(x) =⇒ Decelerate(x)
• SlowSign(x) =⇒ ¬Accelerate(x)
• StopSign(x) =⇒ Stop(x) ∨ Decelerate(x) ∧ ¬PullOver(x)
• HCSKeep(x) =⇒ Keep(x) ∨ Accelerate(x)
• HCSAccelerate(x) =⇒ Keep(x) ∨ Accelerate(x)
• HCSDecelerate(x) =⇒ Decelerate(x) ∨ Stop(x)
• HCSStop(x) =⇒ Decelerate(x) ∨ Stop(x)
• HCSReverse(x) =⇒ Reverse(x)
• HCSLeft(x) =⇒ TurnLeft(x) ∨ ChangeToLeftLane(x)
• HCSRight(x) =⇒ TurnRight(x) ∨ ChangeToRightLane(x)
• HCSLeft(x) ∧ MLLMChangeToRightLane(x) =⇒ ChangeToLeftLane(x)
• HCSRight(x) ∧ MLLMChangeToLeftLane(x) =⇒ ChangeToRightLane(x)
• MLLMKeep(x) =⇒ Keep(x)
• MLLMAccelerate(x) =⇒ Accelerate(x)
• MLLMDecelerate(x) =⇒ Decelerate(x)
• MLLMStop(x) =⇒ Stop(x)
• MLLMReverse(x) =⇒ Reverse(x)
• MLLMTurnLeft(x) =⇒ TurnLeft(x)
• MLLMTurnRight(x) =⇒ TurnRight(x)
• MLLMUTurn(x) =⇒ UTurn(x)
• MLLMMerge(x) =⇒ Merge(x)
• MLLMLeftPass(x) =⇒ LeftPass(x)
• MLLMRightPass(x) =⇒ RightPass(x)
• MLLMYield(x) =⇒ Yield(x)
• MLLMChangeToLeftLane(x) =⇒ ChangeToLeftLane(x)
• MLLMChangeToRightLane(x) =⇒ ChangeToRightLane(x)
• MLLMPark(x) =⇒ Park(x)
• MLLMPullOver(x) =⇒ PullOver(x)

Table 17: First-order logic formulas of BDD-X.

Possible Worlds
(Keep), (Accelerate), (Decelerate), (Stop), (TurnLeft), (TurnRight), (UTurn), (PullOver), (Reverse), (Park), (Merge), (LeftPass),
(RightPass), (ChangeToLeftLane), (ChangeToRightLane), (Yield), (ChangeToRightLane, Merge), (Accelerate, ChangeToRightLane),
(Decelerate, Stop), (Keep, Stop), (Accelerate, Keep), (Merge, Stop), (Accelerate, LeftPass), (ChangeToLeftLane, Merge), (Stop, Yield),
(Accelerate, TurnRight), (Decelerate, Keep), (Decelerate, PullOver), (ChangeToLeftLane, PullOver), (ChangeToRightLane, Stop),
(Keep, TurnRight), (PullOver, Stop), (Park, Stop), (Decelerate, TurnRight), (Keep, LeftPass), (Accelerate, ChangeToLeftLane), (Accel-
erate, TurnLeft), (Accelerate, Stop), (Keep, TurnLeft), (Accelerate, Merge), (Decelerate, TurnLeft), (Park, PullOver), (Keep, Merge),
(Keep, Park), (TurnLeft, TurnRight), (TurnLeft, Reverse), (TurnRight, Stop), (ChangeToLeftLane, Decelerate), (ChangeToRightLane,
Decelerate), (TurnLeft, Stop), (TurnRight, Park), (ChangeToLeftLane, ChangeToRightLane), (Keep, RightPass), (ChangeToLeftLane,
Stop), (Keep, PullOver), (LeftPass, RightPass), (ChangeToRightLane, Keep), (TurnRight, PullOver), (ChangeToLeftLane, Keep),
(TurnRight, Reverse), (PullOver, Reverse), (ChangeToRightLane, TurnLeft), (Accelerate, Decelerate), (TurnRight, Yield), (Decelerate,
Yield), (ChangeToRightLane, PullOver), (TurnLeft, PullOver), (Decelerate, TurnLeft, Stop), (Decelerate, Merge, Stop), (Decelerate,
PullOver, Stop), (ChangeToRightLane, Decelerate, Stop), (ChangeToLeftLane, Decelerate, Stop), (Decelerate, TurnRight, Stop),
(Accelerate, ChangeToLeftLane, ChangeToRightLane), (ChangeToRightLane, Decelerate, Merge), (ChangeToRightLane, Decelerate,
Merge, Stop)

Table 18: The possible worlds of BDD-X.
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Predicates
• Unobserved Predicates:
Normal(x), Fast(x), Slow(x), Stop(x), Left(x), Right(x), Straight(x)

• Observed Predicates:
– MLLM Action Predicates:
MLLMNormal(x), MLLMFast(x), MLLMSlow(x), MLLMStop(x), MLLMLeft(x), MLLMRight(x),
MLLMStraight(x)

– Environmental Predicates:
SolidRedLight(x), SolidYellowLight(x), YellowLeftArrowLight(x),
RedLeftArrowLight(x), MergingTraffic(x), NoLeftTurnSign(x), NoRightTurnSign(x),
PedCrossingSign(x), StopSign(x), RedYieldSign(x), SlowSign(x), SolidGreenLight(x),
DoubleDashedWhiteLineLeft(x),
DoubleDashedWhiteLineRight(x), SingleSolidWhiteLineLeft(x),
SingleSolidWhiteLineRight(x), DoubleSolidWhiteLineLeft(x),
DoubleSolidWhiteLineRight(x), SingleZigzagWhiteLineLeft(x),
SingleZigzagWhiteLineRight(x), SingleSolidYellowLineLeft(x),
SingleSolidYellowLineRight(x), HCSNormal(x), HCSFast(x), HCSSlow(x), HCSStop(x),
HCSLeft(x), HCSRight(x), HCSStraight(x)

Table 19: The predicate set of DriveLM.

Traffic Rules
• SolidRedLight(x) =⇒ ¬Fast(x)
• SolidYellowLight(x) =⇒ ¬Fast(x)
• YellowLeftArrowLight(x) =⇒ Stop(x) ∨ Slow(x)
• RedLeftArrowLight(x) =⇒ ¬Left(x)
• MergingTrafficSign(x) =⇒ ¬Fast(x)
• NoLeftTurnSign(x) =⇒ ¬Left(x)
• NoRightTurnSign(x) =⇒ ¬Right(x)
• RedYieldSign(x) =⇒ ¬Fast(x)
• SlowSign(x) =⇒ ¬Fast(x)
• SingleSolidWhiteLineLeft(x) =⇒ ¬Left(x)
• SingleSolidWhiteLineRight(x) =⇒ ¬Right(x)
• DoubleSolidWhiteLineLeft(x) =⇒ ¬Left(x)
• DoubleSolidWhiteLineRight(x) =⇒ ¬Right(x)
• SingleZigzagWhiteLineLeft(x) =⇒ ¬Stop(x)
• SingleZigzagWhiteLineRight(x) =⇒ ¬Stop(x)
• HCSNormal(x) =⇒ Normal(x)
• HCSFast(x) =⇒ Fast(x)
• HCSSlow(x) =⇒ Slow(x)
• HCSStop(x) =⇒ Stop(x)
• HCSLeft(x) =⇒ Left(x)
• HCSRight(x) =⇒ Right(x)
• HCSStraight(x) =⇒ Straight(x)
• MLLMNormal(x) =⇒ Normal(x)
• MLLMFast(x) =⇒ Fast(x)
• MLLMSlow(x) =⇒ Slow(x)
• MLLMStop(x) =⇒ Stop(x)
• MLLMLeft(x) =⇒ Left(x)
• MLLMRight(x) =⇒ Right(x)
• MLLMStraight(x) =⇒ Straight(x)

Table 20: First-order logic formulas of DriveLM.

Possible Worlds
(Normal, Left), (Normal, Right), (Normal, Straight), (Fast, Left), (Fast, Right), (Fast, Straight), (Slow, Left), (Slow, Right), (Slow,
Straight), (Stop, Left), (Stop, Right), (Stop, Straight),

Table 21: The possible worlds of DriveLM.
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