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Abstract

In recent years, graph neural networks (GNNs) have been widely applied in the analysis
of brain fMRI, yet defining the connectivity between ROIs remains a challenge in noisy
fMRI data. Among all approaches, Functional Connectome (FC) is the most popular
method. Computed by the correlation coefficients between ROI time series, FC is a pow-
erful and computationally efficient way to estimate ROI connectivity. However, it is well
known for neglecting structural connections and causality in ROI interactions. Also, FC
becomes much more noisy in the short spatio-temporal sliding-window subsequences of
fMRI. Effective Connectome (EC) is proposed as a directional alternative, but it is dif-
ficult to accurately estimate. Furthermore, for optimal GNN performance, usually only
a small percentage of the strongest connections are selected as sparse edges, resulting in
oversimplification of complex brain connections. To tackle these challenges, we propose the
Spatio-Temporal Node Attention Graph Neural Network (STNAGNN) as a data-driven
alternative that combines sparse predefined FC with dense data-driven spatio-temporal
connections, allowing for flexible and spatio-temporal learning of ROI interaction patterns.
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1. Introduction

Functional magnetic resonance imaging (fMRI) is a non-invasive imaging technique that
measures brain activity by detecting changes in blood-oxygen-level-dependent (BOLD) sig-
nals. Through the use of fMRI, significant progress has been made in understanding the
functional organization of the brain. Among the resting-state and task-based alternatives of
fMRI, task-based fMRI presents more significant fluctuations in BOLD signal. It has been
shown to be superior to resting-state data for applications such as predicting behavioral
traits (Zhao et al., 2023) and detecting individual differences (Jiang et al., 2020). Although
the diversity of task designs causes considerable difficulties in constructing large task-based
fMRI datasets, increasing evidence indicates promising potential for task-based fMRI. The
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task-induced fMRI signal may offer a strong inductive bias to learn an informative model,
especially in studies where tasks are designed to enhance disease-specific brain activities.

In recent years, a wide range of machine learning methods including recurrent neural
networks (RNNs) (Dvornek et al., 2017; Dakka et al., 2017), convolutional neural networks
(CNNs) (Kawahara et al., 2017), and graph neural networks (GNNs) (Li et al., 2021a; Gadgil
et al., 2020; Zhang et al., 2023) are applied to fMRI analysis. Among these approaches,
GNN has its unique advantage in interpreting ROI-based brain interactions, an important
field of research for understanding general brain functions and mechanisms of neurological
disorders such as Autism Spectrum Disorder (ASD). However, efficient message passing and
model interpretation in GNN rely on a high-quality definition of edges, posing considerable
data processing challenges in the application of functional brain networks.

To utilize task-based fMRI data with both temporal task context and spatio-temporal
ROI interactions, we formulate our goal as a spatio-temporal graph analysis problem. Specif-
ically, we focus on discrete spatio-temporal graph formation where the spatio-temporal fMRI
input is a temporal sequence of sliding window subsequences of the fMRI that we denote as
graph snapshots. Although temporal GNNs have been a frequently studied subject in recent
years (Rossi et al., 2020; Seo et al., 2018; Chen et al., 2018; Li et al., 2019; Pareja et al.,
2019), we identify two key challenges unique to spatio-temporal brain graph applications:

• From the temporal dimension, the limited temporal resolution of fMRI acquisition
and the sliding window truncation of the sequence data leads to a short sequence of
graph snapshots, minimizing the advantages of the typical RNN to capture long-term
dependencies in temporal information.

• For each graph snapshot, FC is more susceptible to noise when applied on short
temporal sequences inside each sliding window. The noisy pre-defined edges are less
likely to be accurate or sufficient in describing the brain’s functional dynamics.

To address these challenges, we propose STNAGNN, a spatio-temporal GNN model that
incorporates a node-level attention algorithm for information aggregation on ROI-based
brain graphs. To our knowledge, our approach is the first to implement direct spatio-
temporal ROI connections at the node level, enabling more flexible information aggregation
and model explainability.

2. Notation and Problem Definition

We truncate spatio-temporal fMRI data temporally into T subsequences and construct
each sliding window subsequence into a graph snapshot. For each instance, the input is a
sequence of undirected weighted graph snapshots {G1, G2, . . . , GT } where any Gi = (Vi, Ei)
is a graph in the vertex set Vi and the edge set Ei. For any edge (vi,j , vi,k) ∈ Ei connecting
vertices vi,j and vi,k, we define its edge weight ei,j,k ∈ R+. For a vertex set of N vertices,
d-dimensional input node features are denoted as xi,j ∈ Rd where j ∈ {0, 1, . . . , N − 1}.

Based on the above definitions, our goal of performing K class instance classification is
equivalent to learning a mapping function f that maps a sequence of graph snapshots to a
class prediction label output Z:

f : {Gi|i ∈ {1, 2, . . . , T}} 7→ Z ∈ {0, 1, . . . ,K − 1}
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3. Data and Preprocessing

3.1. Biopoint Dataset

We include a 118-subject task-based fMRI dataset to experiment with an autism spectrum
disorder (ASD) classification task. The dataset contains fMRI scans of 75 children with
ASD and 43 healthy controls matched in age and IQ. The scans are acquired under the
biopoint (Kaiser et al., 2010) task that contains 12 videos of biological or scrambled motions
of point light displays. Videos of these two categories are given to subjects in an alternating
sequence during the fMRI scan with the intention of highlighting deficits in the perception
of biological motion in autistic children.

The scan for each subject has 146 frames with a frame rate of 2 seconds and an original
resolution of 3.2mm. It is collected in the anonymous institution and approved by Yale
Institutional Review Board. The acquired fMRI data are preprocessed using a pipeline
described in (Yang et al., 2016), including the preprocessing steps of motion correction,
interleaved slice timing correction, BET brain extraction, grand mean intensity normaliza-
tion, spatial smoothing, and high-pass temporal filtering. The preprocessed data have a
2mm resolution in the MNI space.

3.2. Human Connectome Project (HCP) Dataset

We also evaluated our method in a 7-class brain state classification task using the HCP
dataset (Van Essen et al., 2012). We take 1,025 subjects in the WU-Minn HCP 1200 subject
data release who have RL task-based fMRI scans in all 7 fMRI task sessions: emotion,
gambling, language, motor, relational, social, and working memory. We use preprocessed
fMRI in MNI space with 2mm resolution. Models are trained to classify spatio-temporal
graph inputs into their corresponding tasks during data acquisition.

3.3. Data Processing and Graph Construction

For our biopoint dataset, we first parcellate the brain fMRI data into 84 ROIs based on
the Desikan-Killiany atlas (Desikan et al., 2006). For network training, we performed
class-stratified sampling on subjects in five roughly equal length subsets for five-fold cross-
validation. Then, the mean time series of each ROI is extracted using 1/3 of all voxels by
bootstrap random sampling (Dvornek et al., 2018). We sample each ROI 30 times as data
augmentation method, resulting in a total of 3540 = 118× 30 instances.

For graph construction, we truncate the mean time series into 12 subsequences aligned
with each video stimuli. Using a similar approach as described in (Li et al., 2021a), for each
local subsequence time series, we calculate the Pearson correlation between ROIs and use
it as node features. Meanwhile, we extract and concatenate all the time series acquired in
biological motion videos. Using the concatenated sequence, we calculate a global biological
partial correlation and use its top 5% values to define the edges and their weights for graph
sparsity. Edges are shared across all 12 graph snapshots for each instance. As the biological
motion viewing task is expected to elicit stronger correlated activity than the more random
scrambled motion viewing task, we chose to use the global biological partial correlation for
all edges. Alternatives in data processing are compared in the ablation study.
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Figure 1: STNAGNN architecture

For HCP data, we parcellate brain fMRI into 268 ROIs using Shen atlas (Shen et al.,
2013). The 1025 subjects are also divided into five subsets of 205 subjects for cross-
validation. Each subject has 7 scans for all tasks, which leads to a total of 7175 = 1025× 7
instances. Data augmentation is not performed on the HCP dataset. For graph construc-
tion in HCP, we follow the same approach as biopoint data except truncating each HCP
fMRI scan into 4 equal-length sliding window subsequences and calculating edges using each
entire fMRI sequence.

4. Models

4.1. STNAGNN Model

Our proposed STNAGNN model utilizes GNN convolution operation and the attention
algorithm for sparse-connection and dense-connection graph information aggregation, re-
spectively. It maintains node identities in aggregating spatio-temporal information from
different graph snapshots. As shown in Figure 1, after performing two layers of graph con-
volution to extract localized graph information, we add positional encoding to each node
and compute nodewise self-attention as a global spatio-temporal information aggregation
operation using the dot product attention algorithm (Vaswani et al., 2017). Essentially, in
this operation, we neglect the spatial edges defined by FC and impose a fully connected
spatio-temporal graph containing nodes from all node sets {V1, V2, . . . , VT }.

Positional encoding is a crucial part for the attention algorithm to capture the order
information of the data. In both Transformer (Vaswani et al., 2017) and Vision Trans-
former (Dosovitskiy et al., 2020), the additive positional encoding for the attention al-
gorithm is an absolute 1D raster sequence sinusoidal function. Various other designs of
positional encoding have also been proposed for transformer architectures, including rel-
ative (Dosovitskiy et al., 2020) and learnable (Li et al., 2021b) alternatives. There are
also attempts to apply 2D positional encoding, but mainly in the application for x and y
dimensions of 2D images (Raisi et al., 2021).
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For graph-structured data, although adding positional encoding to nodes can potentially
further empower GNNs with positional knowledge, additive absolute positional embedding
is generally considered not applicable since it breaks the permutation invariance of graph
message passing (Wang et al., 2022). However, for the ROI-based brain graph application,
the brain graph nodes always follow the same node sequence. Permutation invariance is
not a required attribute. In our proposed STNAGNN architecture, to encode both spatial
and temporal information of a node and preserve computation simplicity, we propose an
absolute multiplicative 2D positional encoding defined as follows:

PE(j, i, 2f) = sin(j/CE
1 )sin((C2 + i)/CE

1 ) (1)

PE(j, i, 2f + 1) = cos(j/CE
1 )cos((C2 + i)/CE

1 ) (2)

E = 2f/d (3)

where j denotes spatial position and i denotes temporal position. f represents the individual
feature channel in the node features of dimension d. C1 = 10000 is a constant to scale the
frequency of encoding. C2 is a constant offset to avoid duplicated embedding in different
nodes. In our experiments, we set C2 = 10000. When the spatial position j is fixed, any
positional encoding PEj,i can be represented as a linear function of PEj,i+k with k being a
constant temporal offset. The same applies to temporal position i being fixed.

Our method is to our knowledge the first to use 2D positional encoding in a spatio-
temporal context. There are several advantages in applying the spatio-temporal self-
attention operation in the STNAGNN architecture.

• By imposing a fully connected self-attention operation, we mitigate the bias from
inaccurate edge definition in the functional brain graph application. Data-driven
information aggregation based on the similarity between node features and the spatio-
temporal adjacency of nodes brings more flexibility to learning ROI interactions.

• A fully connected graph using attention allows for the direct participation of informa-
tion from one node to any other nodes (Figure 2). It alleviates the problem of limited
receptive fields in graph convolution operations (Kipf and Welling, 2016; Veličković
et al., 2018). In our experiment, we argue that adding this operation allows multi-scale
information aggregation from both local and global neighborhoods of nodes.

4.2. Baseline models

There are various existing spatio-temporal GNN models that use discrete graph snapshot
structures to incorporate temporal information into GNN. For comparison with the proposed
STNAGNN approach, we experiment with four different spatio-temporal GNN designs:
GConvLSTM (Seo et al., 2018), GCLSTM (Chen et al., 2018), LRGCN (Li et al., 2019),
and EvolveGCN (Pareja et al., 2019). These compared architectures include approaches of
GNN-embedded RNN (Seo et al., 2018; Chen et al., 2018), stateful GNN (Li et al., 2019),
and weight-evolving GNN (Pareja et al., 2019).

5



Wang

Figure 2: Illustration of connectivity types: a) spatial connectivity; b) temporal connec-
tivity; c) spatio-temporal connectivity (magenta). Existing architectures usu-
ally consider only spatial connectivity (Li et al., 2021a) or temporal connectiv-
ity (Dvornek et al., 2017). Some spatio-temporal designs consider both spatial
and temporal perspectives (Seo et al., 2018; Chen et al., 2018; Li et al., 2019;
Pareja et al., 2019) but use a two-step spatial-then-temporal approach. Our pro-
posed STNAGNN jointly considers all spatio-temporal connectivity.

5. Evaluation and Interpretation

5.1. Classification Task Performance

For the STNAGNN model, we experiment with alternative two-layered graph convolution
backbones including GCN (Kipf and Welling, 2016), GAT (Veličković et al., 2018), Graph-
SAGE (Hamilton et al., 2017), and Graph Transformer (GT) (Shi et al., 2020). In the
feed-forward modules following graph convolution and temporal aggregation methods, we
apply SiLU (Elfwing et al., 2017) activation and a dropout rate of 0.2 in each layer. All
models are trained with cross-entropy loss on a single RTX A5000 GPU. We perform a
five-fold cross-validation experiment on both biopoint and HCP datasets. During training,
we tune hyperparameters for each dataset respectively. For biopoint data, we use a learning
rate of 2 × 10−5 and a large weight decay factor of 0.015. For HCP, we use 4 × 10−6 as
learning rate and 0.0001 as weight decay. For both datasets, we use a batch size of 10.
The results for both datasets measured by classification accuracy and Area Under the ROC
Curve (AUC) are summarized in Table 1.

5.2. Ablation Study

5.2.1. Graph Construction

We perform ablation studies of graph construction methods on biopoint ASD classification
tasks for STNAGNN architecture using GCN and GAT. For data truncation, we validate
the task-aligned choice of using 12 sliding windows by comparing it to using 10 and 14
windows using the whole sequence in edge construction for comparison. In addition, under
the 12-sliding-window construction, we compare the performance of spatial graph edges
constructed using fMRI data acquired under biological motion videos, scrambled motion
videos, and the whole sequence. The results are summarized in Table 2.
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Biopoint HCP
Acc(%) AUC Acc(%) AUC

GConvLSTM 63.8(3.65) 0.642(0.031) 96.7(0.768) 0.998(0.001)
GCLSTM 72.5(3.67) 0.675(0.067) 97.7(0.224) 0.998(0.000)
LRGCN 72.5(2.83) 0.741(0.059) 96.8(0.637) 0.998(0.000)

EvolveGCN 72.0(7.58) 0.734(0.123) 95.7(0.535) 0.997(0.001)

STNAGNN-GCN 75.2(4.40) 0.670(0.130) 97.3(0.424) 0.998(0.000)
STNAGNN-GAT 79.2(3.49) 0.755(0.099) 96.9(0.747) 0.998(0.000)
STNAGNN-SAGE 74.0(4.26) 0.619(0.112) 98.1(0.179) 0.999(0.000)
STNAGNN-GT 74.7(3.36) 0.664(0.105) 98.1(0.407) 0.999(0.000)

Table 1: Comparison of classification performance with temporal GNN baselines and
STNAGNN architectures using different graph convolution backbones. Results
in biopoint and HCP dataset are reported in mean(standard deviation). Best
mean performance in each column are bolded.

Edge ALL ALL ALL BIOL SCRAM

# Windows 10 12 14 12 12

GNN-backbone GCN GAT GCN GAT GCN GAT GCN GAT GCN GAT

Acc (%) 73.4 73.5 73.4 73.5 69.7 71.6 75.2 79.2 70.0 73.0
AUC 0.680 0.666 0.621 0.665 0.658 0.710 0.670 0.755 0.676 0.666

Table 2: Ablation study on graph construction. BIOL, SCRAM, and ALL denote edge
computed using fMRI under biological motion, scrambled motion, and all fMRI
frames. The combination used above and the best performances are bolded.

5.2.2. Positional Encoding

We validate the proposed 2D spatio-temporal positional encoding by comparing it to the
1D raster sequence positional encoding. The results are summarized in Table 3. Using
the proposed 2D spatio-temporal outperforms using the 1D raster sequence option in all
metrics.

5.3. ASD Biomarker Interpretation

An important advantage of graph-based methods in the analysis of brain fMRI is the capabil-
ity to identify ROI biomarkers by interpreting the decision-making process of trained GNN

1D Raster Sequence 2D Spatio-temporal
Acc(%) AUC Acc(%) AUC

GCN 71.6 0.653 75.2 0.670
GAT 74.6 0.680 79.2 0.755

Table 3: Ablation study on positional encoding. Mean of cross-validation is reported.
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Figure 3: Interpreted ROI importance from T = 3, 4, 7, 8, 11, 12. Temporal indices of graph
snapshots are marked on the top of each plot. Time under biological motion
stimuli are marked by the blue dashed square. Darker regions indicate higher
importance. Blue and green circles mark left parietal lobe and right thalamus.

models. To interpret our trained STNAGNN model, we apply the GNNExplainer (Ying
et al., 2019), which is a module designed as a post-hoc interpretability method for GNN
architectures. We consider all the 1008 = 84 × 12 spatio-temporal nodes and derive an
importance score for each node empirically by optimizing a mask function towards the
highest mutual information between the outputs generated using masked and unmasked
inputs. Using the trained best-performance STNAGNN with GAT backbone, we plot 12
ROI-importance heatmaps, each for a graph snapshot. 6 heat maps sampled among 12
snapshots of graphs are shown in Figure 3.

By comparing heat maps over different time frames, the brain ROIs that are important
for making ASD classification appear to be dynamic across different graph snapshots. For
example, from the heatmaps sampled, the signals from the left parietal lobe at T=8 con-
tribute significantly more to the classification task than in the other frames. Meanwhile,
we also see some recurring ROIs being prominent, such as the right thalamus in T=3, 4,
8 and the left parietal lobe in T=8, 12. While the thalamus is usually considered highly
associated with ASD (Schuetze et al., 2016; Tomasi and Volkow, 2017), the left parietal
lobe is also found to be indicative of language development in ASD (Zoccante et al., 2010).

Similar to other applications for interpreting ROI importance using GNN, analyzing
recurring salient ROIs can help us identify potential ASD biomarkers useful for ASD di-
agnosis and subtype classification. Additionally, in a spatio-temporal GNN model such as
STNAGNN, spatio-temporal importance aligned with task schemes can guide us in finding
the appropriate stimuli to trigger the study-related functional response in the brain, which
can potentially help design fMRI sessions.

6. Conclusion

In this paper, we propose the STNAGNN architecture as a spatio-temporal framework for
analyzing task-based fMRI data. In addition to enabling spatio-temporal explainability, it
also outperforms existing designs in both ASD classification and brain state classification
tasks.
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Appendix A. Related Work

A.1. Graph Neural Network

Graph Neural Network (GNN) is a class of machine learning models applied to graph-
structured data. It aims to learn an aggregation function for a neighborhood of nodes and
propagate the function over the entire graph. In each layer, a GNN update of the node
feature can usually be described as follows:

xki = f({xk−1
j ,∀j ∈ N(i)}, xk−1

i ) (4)

where x denotes node feature, k denotes layer number, and N(i) is the neighborhood of
node i. From a graph spectrum perspective, a GNN layer usually functions similarly to a
low-pass filter on an input graph to suppress high-frequency noise and extract low-frequency
information.

A.2. Scaled Dot-Product Attention Algorithm

The scaled dot-product attention algorithm is first introduced in (Vaswani et al., 2017)
as a fundamental mechanism for the Transformer architecture. It quantifies the similarity
between elements using regularized dot-product and updates each element as a weighted sum
using the similarity-based attention score. A self-attention operation using this algorithm
is theoretically similar to a fully connected graph, which allows for information to flow from
one node to any other nodes.

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (5)

Appendix B. Ablation: Attention versus LSTM

To compare the performance of the proposed attention-based spatio-temporal aggrega-
tion method with RNN structures such as LSTM (Hochreiter and Schmidhuber, 1997),
we perform ablation study on biopoint and HCP dataset using an architecture similar to
STNAGNN except that the attention layer is replaced with LSTM. The detailed architec-
ture of this GNN-LSTM ablation is described in Figure 5. We experiment with the same set
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Spatio-temporal STNAGNN

Figure 4: Preprocessing and graph construction pipeline on the biopoint data

Biopoint HCP
Acc (%) AUC Acc(%) AUC

GCN-LSTM 73.4(6.67) 0.700(0.089) 97.4(0.387) 0.998(0.000)
GAT-LSTM 76.0(5.31) 0.705(0.090) 97.0(0.546) 0.998(0.001)
SAGE-LSTM 72.1(2.68) 0.708(0.076) 97.8(0.471) 0.999(0.000)
GT-LSTM 73.6(3.63) 0.690(0.078) 97.9(0.276) 0.999(0.000)

Table 4: Performance on GNN-LSTM ablation with various GNN backbones. Results in
biopoint and HCP dataset are reported in mean(standard deviation). Best mean
performance in each column are bolded.

of GNN backbones as in STNAGNN architecture. The results in both classification tasks
are shown in Table 4. The best performance in each column is not better than the best
STNAGNN performance shown in Table 1.
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Figure 5: GNN-LSTM Architecture

Figure 6: Interpreted ROI importance from T = 1, 2, . . . , 12
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