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ABSTRACT

Deep learning models are known to be vulnerable to adversarial attacks by in-
jecting sophisticated designed perturbations to input data. Training-time defenses
still exhibit a significant performance gap between natural accuracy and robust
accuracy. In this paper, we investigate a new test-time adversarial defense method
via diffusion-based recovery along opposite adversarial paths (OAPs). We present
a purifier that can be plugged into a pre-trained model to resist adversarial attacks.
Different from prior arts, the key idea is excessive denoising or purification by
integrating the opposite adversarial direction with reverse diffusion to push the
input image further toward the opposite adversarial direction. For the first time,
we also exemplify the pitfall of conducting AutoAttack (Rand) for diffusion-based
defense methods. Through the lens of time complexity, we examine the trade-off
between the effectiveness of adaptive attack and its computation complexity against
our defense. Experimental evaluation along with time cost analysis verifies the
effectiveness of the proposed method.

1 INTRODUCTION

1.1 BACKGROUND

It has been well known that deep learning models are vulnerable to adversarial attacks by injecting
(imperceptible) adversarial perturbations into the data that will be input to a neural network (NN)
model to change its normal predictions (Athalye et al. (2018); Carlini et al. (2019); Croce et al.
(2023); Frosio & Kautz (2023); Goodfellow et al. (2015); Gowal et al. (2021); Madry et al. (2018);
Venkatesh et al. (2023)). Please also see Chen & Liu (2023) for a recent review on the adversarial
robustness of deep learning models. It can be found from the literature that adversarial attacks defeat
their defense counterparts easily and rapidly, and there is still a gap between natural accuracy and
robust accuracy.

The study of adversarial defense in resisting adversarial attacks can be divided into two categories:
(1) Adversarial training/Training-time defense (Gowal et al. (2021); Hsiung et al. (2023); Huang
et al. (2023); Suzuki et al. (2023); Wang et al. (2019; 2023); Wu et al. (2020); Zhang et al. (2019));
and (2) Input pre-processing/Test-time defense (Alfarra et al. (2022); Chen et al. (2022); Hill et al.
(2020); Ho & Vasconcelos (2022); Nie et al. (2022); Wang et al. (2022); Wu et al. (2022); Yoon et al.
(2021)). Adversarial training utilizes adversarial examples derived from the training data to enhance
the robustness of the classifier. Despite the effort in training-time defense, we do see ( RobustBench
Croce et al. (2021)) there is still a remarkable gap between natural accuracy and robust accuracy.

Different from the training-time defense paradigm, in this paper, we propose a new test-time adver-
sarial defensive method by pre-processing data in a way different from the prior works. It is a kind
of purifier and serves as a plug-and-play module that can be used to improve the robustness of a
defense method once our module is incorporated as a pre-processor. Specifically, the formulation
of processing the input data is derived as: minϕ, θ E

[
maxx′∈B(x) L((fϕ ◦ gθ)(x′), y)

]
, where x′

denotes the adversarial example corresponding to clean image x with label y, B(·) is the threat model,
fϕ is the image classifier parameterized by ϕ, and gθ is a pre-processor.
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A key to test-time defense is the design of pre-processor or denoiser (e.g., gθ), which aims at denoising
an adversarial example to remove the added perturbations. Intuitively, the goal is to have the denoised
image as close to the original one so as to achieve perceptual similarity.

1.2 RELATED WORKS

We introduce representative test-time adversarial defense methods (Alfarra et al. (2022); Ho &
Vasconcelos (2022); Hill et al. (2020); Yoon et al. (2021); Nie et al. (2022); Wang et al. (2022); Wu
et al. (2022)) that share the same theme as our method. Please also see Sec. 6 in the Supplementary
for details of Hill et al. (2020); Yoon et al. (2021); Wang et al. (2022); Wu et al. (2022).

In Alfarra et al. (2022), a defense method is proposed by connecting an anti-adversary layer with
a pre-trained classifier fϕ. Given an input image x, it will be first sent to the anti-adversary layer
for generating anti-adversarial perturbation γ by solving an optimization problem. As the name
implies, in most cases, the direction γ will be opposite to the direction of adversarial perturbation.
The resultant purified image x+ γ is then used for classification.

DISCO (Ho & Vasconcelos (2022)) is proposed as a purification method to remove adversarial
perturbations by localized manifold projections. The author implemented it with an encoder and a
local implicit module, which is leveraged by the architecture called LIIF (Chen et al. (2021); Chen &
Zhang (2019)), where the former produces per-pixel features and the latter uses the features in the
neighborhood of query pixel for predicting the clean RGB value.

In DiffPure (Nie et al. (2022)), given an input (clean or adversarially noisy), the goal is to obtain
a relatively cleaner version through a series of forward and reverse diffusion processes. Moreover,
a theoretical guarantee is derived that, under an amount of Gaussian noise added in the forward
process, the adversarial perturbation may be removed effectively. This is independent of the types of
adversarial perturbations, making DiffPure defend against unseen attacks.

Recently, the robustness of diffusion-based purifiers is considered overestimated. Lee & Kim (2023)
provides recommendations for robust evaluation, called surrogate process, and shows that the defense
methods may be defeated under the surrogate process. Kang et al. (2024) proposes DiffAttack, a
new attack technique against diffusion-based adversarial purification defenses, that can overcome
the challenges of attacking diffusion models, including vanishing/exploding gradients, high memory
costs, and large randomness. The use of a segment-wise algorithm allows attacking with much longer
diffusion lengths than previous methods.

Although the aforementioned purification-based adversarial defense methods show promising perfor-
mance in resisting adversarial attacks, Croce et al. (2022) argues that their evaluations are ineffective
in two aspects: (i) Incorrect use of attacks or (ii) Attacks used for evaluation are not strong enough.
However, the authors also mentioned test-time defense complicates robustness evaluation because of
its complexity and computational cost, which impose even more computations for the attackers.

1.3 MOTIVATION

Let us take image classification as an example, where clean/natural accuracy is the classification
accuracy for benign images and robust accuracy is measured for adversarial samples. However, we
argue that “perceptually similar” does not mean adversarial robustness as it is not guaranteed to
entirely remove the adversarial perturbations such that the residual perturbations still have an impact
on changing the prediction of a learning model. On the contrary, we propose to purify the input data
along the direction of opposite adversarial paths (OAPs) excessively, as illustrated in Fig. 1.

Conceptually, if we add the adversarial perturbation along the opposite direction of Projected Gradient
Descent (PGD) (Madry et al. (2017)), denoted as “−adv,” to a given data, robust accuracy can be
improved. To gain an insight that excessive denoising (more than one step along the opposite gradient)
is advantageous in resisting attacks, a simple experiment was conducted by moving each data point x
to the new position xK through K iterations of opposite adversarial perturbation, according to the
ground truth label and classifier. Given each kind of xK , the accuracy change is illustrated in Table 1.
For the decrease in clean accuracy at K = 1, we conjecture that the process “−adv” is still unstable.
Hence, some data points near the decision boundary may be perturbed to incorrect class. Moreover,
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Figure 1: Concept diagram of new refer-
ence point generation via K consecutive
purifications along opposite adversarial
paths (OAPs).

-K Steps Clean Accuracy (%) Robust Accuracy (%)

0 95.16 0.18
-1 89.94 6.18
-3 98.56 83.64
-5 99.63 96.78

-10 99.96 99.86
-20 100.00 100.00

Table 1: Pre-processing the training dataset by adding K
steps of −adv (via PGD (Madry et al. (2017)); see Fig. 1)
and feeding to a non-defense classifier (ResNet-18 (He et al.
(2016))) pre-trained on CIFAR-10 (Krizhevsky et al. (2009))
for testing. K = 0 indicates original data.

motivated by Croce et al. (2022), our defense method also aims to complicate the computation of
adaptive adversarial attacks.

1.4 CONTRIBUTIONS

Different from prior works, the concept of OAP can be incorporated into any training scheme of
purifiers, and the OAP-based purifier can also become a part of modules in other defense processes.
For instance, OAP-based purifiers can provide additional directions within reverse diffusion, whereas
diffusion models alone (Song et al. (2020) (baseline model in DiffPure)) only provide direction to
generate images. Unlike the traditional purification methods, we do not use classifier-generated
labels (e.g. Anti-Adv Alfarra et al. (2022)) in our baseline purifier during testing. On the contrary,
combining the proposed baseline purifier with the reverse diffusion process provides reference
directions pointing to a safer area during the purification process.

Contributions of this work are summarized as follows:

1. We are first to present the idea of excessive denoising along the opposite adversarial path
(OAP) as the baseline purifier for adversarial robustness. (Sec. 3.1)

2. We integrate the OAP baseline purifier and conditional reverse diffusion as a sophisticated
adversarial defense that can be interpreted as moving purified data toward the combination
of directions from the score-based diffusion model and baseline purifier (Sec. 3.2).

3. To complicate the entire defense mechanism by complicating the computation overhead of
adaptive attacks accordingly, we study a double diffusion path cleaning-based purifier (Sec.
3.3). This creates a trade-off between the attack effectiveness and attack computation.

4. For the first time, we exemplify the pitfall of conducting AutoAttack (Rand) for diffusion-
based adversarial defense methods (Sec. 3.4).

2 PRELIMINARY

2.1 BASIC NOTATION

In the paper, x denotes an input image, x̂ denotes a recovered image or overly denoised/purified
image, xadv denotes an adversarial image, y is a ground-truth label of x, ŷ is a prediction, gθ is a
purifier, and fϕ is a pre-trained classifier.

For the diffusion model, the forward process is denoted by q(·|·) and the backward/reverse process is
denoted by pθ(·|·) with parameter θ. For t ∈ [0, T ], xt represents an image at time step t during the
forward / reverse diffusion process. Usually, x0 is a clean image and xT ∼ N (0, I).

For the adversarial attack, it modifies the input image x by adding to it adversarial perturbation δ
by calculating the gradient of loss according to information leakage of pre-trained NN fϕ without
changing ϕ, causing fϕ to classify incorrectly. According to the leakage level, there are roughly two
types of attacks. Please see Sec. 7 in the Supplementary for details.
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2.2 DIFFUSION MODELS

Since the diffusion model (Sohl-Dickstein et al. (2015); Ho et al. (2020); Song & Ermon (2019);
Song et al. (2020)) is a baseline model in diffusion-based purifiers, to make this paper self-contained,
please refer to Sec. 8 of Supplementary for a brief introduction to the diffusion model.

3 PROPOSED METHOD

We describe the proposed test-time adversarial defense method with its flowchart illustrated in Fig. 2.

Figure 2: Flowchart of our method.
The purifier (gray block) can be one
of (a)-(c), where (a) is the proposed
baseline purifier, (b) shows the com-
bination of baseline purifier and re-
verse diffusion, and (c) expands (b)
with two diffusion paths. In (c),
xtar
1 , . . . , xtar

C are obtained via Eq. (2)
from fixed C images with one image
per class (in CIFAR-10). The image
in front of Color OT with green/blue
arrow is called the source/target im-
age. xp2 is defined in Eq. (10).

3.1 BASELINE PURIFIER: OPPOSITE ADVERSARIAL PATH (OAP)

Given a classifier model fϕ parameterized by ϕ, a loss function L(x, y, ϕ), and a pair of data (x, y),
the adversarial attack can be computed as

xadv = Πx+S(x+ α sign(∇xL(x, y, ϕ))), (1)

where S is the set that allows the perceptual similarity between natural and adversarial images. This
iterative process aims to find the adversarial image xadv that maximizes the loss function.

On the other hand, the opposite direction of each iteration points to minimize the loss. Assume now
we get an ordinary noisy input xadv = x+ δ with ∥δ∥p ≤ ϵp via image processing, a denoiser can
push the denoised input close to x within a non-perceptual distortion. Nevertheless, if the noisy
input xadv is a sophisticated design via adversarial attack, it is too early to claim, depending on the
perceptual similarity between x and xadv , that the denoised image can be free from being affected by
adversarial perturbations. We argue that if we properly push the denoised image further away from
the decision boundary, the downstream classifier can still successfully classify the input since the
direction we push points to a lower loss area on the input-loss surface, as illustrated in Fig. 1. Also
note that the plug-and-play module lies under the setting that the baseline purifier is only trained on a
given attack (e.g., PGD-ℓ∞-7), which is independent of the attacks (e.g., PGD-ℓ∞-40, AutoAttack,
and BPDA+EOT) used in testing. In addition, the diffusion model is pre-trained (Sec. 3.2) and does
not involve adversarial examples during its training.

3.1.1 NEW REFERENCE POINT GENERATION

Previous test-time defense methods with a plug-and-play fashion take xadv as an input and generate
the predicted “clean” image x̂. In our scenario, we want to move a few steps further. Starting from the
clean image x, ground-truth label y, parameter ϕ and loss function L of classifier f , we can generate
a new reference point xK for training by the following formula:

xk = Πxk−1+S(x
k−1 − α sign(∇xk−1L(xk−1, y, ϕ))), (2)

for 1 ≤ k ≤ K, where x0 = x. If we iterate Eq. (2), we can get a series of data, x1, x2, . . . , xK , as
illustrated in Fig. 1.
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-K steps
Non-adapt PGD-ℓ∞ / ResNet-18
Clean Acc (%) Robust Acc (%)

0 89.57 73.13
-1 90.71 86.10
-3 89.53 82.02
-7 89.33 56.21

Non-adapt AA / WRN-28-10
Clean Acc (%) Robust Acc (%)

89.00 85.00
91.66 88.79
90.23 86.14
89.58 69.04

BPDA / VGG16
Clean Acc (%) Robust Acc (%)

88.38 47.37
89.26 56.34
87.78 59.94
88.42 52.31

Table 2: Evaluation of DISCO trained with the relation between new reference point and adversarial
perturbations by PGD attack generated in ResNet-18. Entire CIFAR-10 testing dataset was used.
(Left) Attack: Non-adaptive PGD-ℓ∞. Test model: ResNet-18. (Middle) Attack: Non-adaptive
AutoAttack (AA). Test model: WRN-28-10 (Zagoruyko & Komodakis (2017)). (Right) Attack:
BPDA. Test model: VGG16 (Simonyan & Zisserman (2015)).

3.1.2 BASELINE PURIFIER TRAINING

In traditional denoising, the goal is to train a purifier that produces a denoised output x̂ from the
adversarial input xadv , denoted as xadv 7→ x̂, such that x̂ and x can be as similar as possible in terms
of, say, ℓp-norm. We, instead, train the purifier to produce x̂K from xadv that further points toward
the opposite adversarial attack direction. We call the resultant x̂K an excessively-denoised image and
the model gθ that moves data along the opposite adversarial path (OAP) the “baseline purifier.”

In practice, we train a baseline purifier using data pairs {(xadv, x
K)} with a certain number of

opposite steps K ∈ N, where xK is generated by Eq. (2). The training procedure of gθ is to minimize:

θ∗ = argmin
θ

∥∥gθ(xadv)− xK
∥∥
1
, (3)

where gθ can be any existing defense methods (e.g., DISCO Ho & Vasconcelos (2022)). The results
of training on different opposite steps are shown in Table 2 respect to PGD-ℓ∞ (Madry et al. (2017)),
AutoAttack (AA) (Croce & Hein (2020)), and BPDA (Athalye et al. (2018)). We can observe that
the idea of the new reference point indeed improves DISCO. Specifically, when K = 1, the robust
accuracy can be improved greatly, but it decreases as K goes larger. The results are somewhat
inconsistent with those in Table 1. The reason we conjecture is that the experiment presented in
Table 1 is under the condition of using the ground-truth label to move data step-by-step, whereas
that in Table 2 is not. Hence, as K increases excessively, the distance that pushes the data increases
excessively, which is similar to the effect of large step size in gradient descent. Therefore, based on
the empirical observations, we will empirically set K = 1 for learning the opposite direction of an
adversarial attack during training.

On the other hand, we will later demonstrate that OAP is a powerful module readily to be incorporated
with existing adversarial defenses (e.g., DISCO) in improving both the clean and robust accuracy.

3.2 DIFFUSION-BASED PURIFIER WITH OAP PRIOR

In Sec. 3.1, we have witnessed the merit of baseline purifier based on OAP in improving robustness
against adversarial attacks. This data moving trick also motivates us to study how to incorporate OAP
prior and diffusion models as a stronger adversarial defense.

We first propose to integrate the idea of opposite adversarial paths with the reverse diffusion process
(e.g., guided diffusion Dhariwal & Nichol (2021), ILVR Choi et al. (2021), and DDA Gao et al.
(2023)) to achieve a similar goal of pushing the input image further toward the opposite adversarial
direction. More importantly, for each step in the reverse diffusion process, the purifier is used to
provide a direction that points to xK .

To this end, according to Eq. (14) of guided diffusion described in Sec. 8 in Supplementary, by taking
logarithm and gradient with respect to xt−1 (Dhariwal & Nichol (2021)), we can derive

∇xt−1
log pθ(xt−1|xt, y) = ∇xt−1

log pφ(xt−1|xt) +∇xt−1
log pϕ(y|xt−1), (4)

where t denotes the diffusion time step. Based on Langevin dynamics, we get a sampling chain on
xt−1 as:

xt−1 ← xt +∇xt−1
log pφ(xt−1|xt), (5)
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where we get the first direction (specified by pφ) of moving to xt−1. However, if we want to
generate xt−1 by moving along the direction given xt and y, we have to introduce the second
direction (specified by pϕ) to move to xt−1 given condition y based on Eq. (4). Hence, we add
∇xt−1

log pϕ(y|xt−1) in the sampling chain (5) as:

xt−1 ← xt +∇xt−1 log pφ(xt−1|xt) +∇xt−1 log pϕ(y|xt−1), (6)

where the last two terms are the same as the RHS of Eq. (4). Note that the second term can be
approximated by a model ϵφ(·) that predicts the noise added to the input. According to (11) in
Dhariwal & Nichol (2021), it can be used to derive a score function as:

∇xt−1
log pφ(xt−1|xt) = −

ϵφ(xt−1)√
1− ᾱt

, (7)

where ᾱt =
∏t

s=1(1− βs).

Different from previous works, if y in the third term of Eq. (6) is replaced with the new reference
point xK , as described in Eq. (2) of Sec. 3.1, then the term becomes ∇xt−1

log pϕ(x
K |xt−1) and

represents how to move along the direction to xK given xt−1. This can be set by

x̂K ← gθ(xt−1); ∇xt−1
log pϕ(x

K |xt−1) ≈ η(x̂K − xt−1), (8)

where η is the step size and gθ(·) is the purifier (see Sec. 3.1) that can approximate the mapping of
xadv → xK . Hence, the purification process can be interpreted as moving toward the combination of
directions from the score-based diffusion model (Nie et al. (2022); Song & Ermon (2019); Song et al.
(2020)) and baseline purifier gθ(·).

3.2.1 CONNECTING THE OAP PRIOR WITH DIFFUSION

We are aware that the base purifier has to operate in the domain the same as that in the diffusion
reverse process, i.e., they deal with different inputs with noises at different scales. However, according
to Eq. (3), the baseline purifier only takes inputs that are adversarially perturbed. Hence, during the
training of baseline purifier, we randomly add different scales of noise to the input data so that the
base purifier can accommodate the different noise scales in the reverse diffusion process, denoted as:

θ∗n = argmin
θ

Epdata(xadv)Epσt (x̃|xadv)

∥∥gθ(x̃)− xK
∥∥
1
, (9)

where t is uniformly chosen from 0 . . . t∗, σt is the corresponding noise scale at diffusion time step t,
and x̃ is the perturbed data according to the diffusion process. We replace the baseline purifier gθ in
Eq. (8) in Sec. 3.2 with this purifier gθn .

3.3 DIFFUSION PATH CLEANING-BASED PURIFIER

In this section, we describe how to further utilize other gradients from different constraints to
modify/move our samples toward specific directions. Moreover, the goal is to complicate the entire
framework of purifier+classifier so as to complicate the computation of adaptive attacks accordingly
while maintaining comparable clean and robust accuracy. We first conduct a test to verify whether
such a framework could be affected by such an attack.

In this test, we verify the framework composed of two diffusion paths, denoted as p1 and p2, and a
pre-trained classifier fϕ (e.g., pre-trained WRN-28-10), as shown in Fig. 3. The adaptive adversarial
image xadv is generated via BPDA+EOT (Athalye et al. (2018)) as an input to path p1 while the clean
image x is assumed to be available (ideal case) in path p2. In this case, we minimize the ℓ2 distance
between the intermediate image in the reverse process p1 and that in p2, which gives a direction to
make p1 close to p2. Finally, the output x̂p1 is feed into the classifier fϕ for prediction. We obtain the
natural accuracy of 93.5% and robust accuracy of 93.0% from the test. This provides us a hint that
the diffusion path p1 should be maintained relatively clean (e.g., both the input and reverse diffusion
process in path p1 are as clean as those in path p2) so that the output of p1, which is the recovered
image x̂p1 , is purified enough.

Therefore, the motivation here is to expand the idea of the opposite adversarial direction in modifying
(i) the input for arriving at a safer area and (ii) the entire path for purification. Nevertheless, the clean
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Figure 3: (Ideal model) Red arrows depict direc-
tions to minimize ℓ2 distance between the inter-
mediate images of two reverse diffusion paths, p1
and p2. L is the loss function. Dataset: CIFAR-
10.

Figure 4: Reverse diffusion process implementa-
tions: The original implementation of DiffPure
involves only one function call in reverse and ad-
joint solver calls. The PGD+EOT attack utilizes a
surrogate diffusion process with fewer steps than
purification steps. However, in our implementation,
we use the same number of steps for purification
and attack.

image x corresponding to xadv required for the second path p2 is absent during testing. In addition, it
is known that adversarial perturbation is added to an image and causes imperceptible changes. In
view of this, we resort to generating purified images as input to p2 using the new reference point
strategy, as described in Eq. (2) of Sec. 3.1.

Conceptually, the idea of generating the input to path p2 that guides path p1 is to transfer pixel values
from the source image (adversarial image) to the other target image (clean/purified image), which can
be treated as finding the optimal transport plan that moves every 3D point (RGB value) in a source
point cloud to a target point cloud with the minimum cost (e.g., in terms of ℓ2 distance between two
point clouds). Fortunately, we can use non-attack images, which are the training data, combined with
Eq. (2) to produce excessively denoised target images for diluting the attack perturbation.

Based on the above test and observations, we now describe the proposed method for cleaning the
diffusion path with adversarial images as input. The flowchart is illustrated in Fig. 2(c). First, suppose
we have xadv as the source image, it will be processed by color transfer with optimal transport (Feydy
et al. (2019)), which is denoted as “Color OT” in Fig. 2(c), using the images coming from the training
dataset. To this end, we pick C images with one image per class, where C stands for the number of
classes. By using Eq. (2) to generate new reference points from these picked images, we have the
target images xtar

1 , . . . , xtar
C for “Color OT” to change/purify the adversarial pixels in xadv. The C

target images will not be picked again throughout the testing so that there is no randomness.

Second, after finding the xtar
j that has the lowest Sinkhorn divergences Sε (Eq. (3) in Feydy et al.

(2019)) with xadv , we then use color transfer fCT to modify xadv with reference to xtar
j . The output

is denoted as xp2 . The purification procedure is specified as:

j = argmin
i∈{1,...,C}

Sε(xadv, x
tar
i ); xp2 = fCT (xadv, x

tar
j ). (10)

As our starting point, xp2 goes into the diffusion process, as shown in Fig. 2(c). This ensures all pixel
values in xp2 are not from xadv. To make it clear, examples of the intermediate images generated
from the diffusion process in Fig. 2(c) are illustrated in Fig. 5 of Sec. 9 in the Supplementary.

Third, we put xadv and xp2 into the diffusion model and set t∗, which is the optimal time step (Nie
et al. (2022)) to remove the adversarial noise. We maintain two paths: the path with superscript p1
for denoising the color values and the path with superscript p2 for recovering the image. Unlike the
test in Fig. 3, during the reverse diffusion process, we do not use p2 to pull p1, since xp2 is generated
by fCT . Instead, we use “baseline purifier+reverse diffusion” described in Sec. 3.2 on one path, p1.
Therefore, after the reverse diffusion process, the image x̂p2 will refer to the denoised image x̂p1

as the target for fCT to restore the colors, which is denoted as x̂clean. This is because x̂p2 is still a
color-transferred image after the diffusion model, but the output from p2 in the aforementioned test
(Fig. 3) starts from the ideal clean image x without needing color restoration. The whole process
will be iterated again with starting point x̂clean and t∗ being halved at each iteration. Please see
Algorithm 1 in Sec. 12 of Supplementary in describing the entire procedure.
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3.4 GRANULARITY OF GRADIENT APPROXIMATION IN REALIZING POWERFUL ADAPTIVE
AUTOATTACK

We present to implement a more powerful adaptive AutoAttack via granularity of gradient approxima-
tion in order not to overestimate robustness. Actually, our implementation requires the output in each
step from torchsde in the diffusion reverse process, which starts from xt∗ and calls torchsde to
produce the output xt∗−1 of next time step till we get the final image x̂. Hence, if one understands the
mechanism of using adjoint method as BPDA correctly, gradient computation in the reverse diffusion
process will demand the same amount of calls of adjoint method as in that of torchsde. We have
to particularly point out that this is different from DiffPure (Nie et al. (2022)), where the authors
only used one torchsde call for the final image and one call of adjoint method for computing
the gradient. We believe the granularity (one call vs. multiple calls of adjoint method) of gradient
approximation causes the performance difference, and the use of multiple calls indeed provides
AutoAttack with sufficient information to generate a more powerful adversarial perturbation.

To verify our finding, we have observations across different datasets, as shown in Table 3. First,
we selected a subset from CIFAR-10 testing dataset consisting of 64 images, then generated the
corresponding adversarial examples from adaptive AutoAttack (Rand) with 20 EOT via two different
implementations, including (1) AutoAttack (Rand-DiffPure): Original code from DiffPure (Nie et al.
(2022)) using one torchsde function call and (2) AutoAttack (Rand-Ours): Our own implementa-
tion that pulls the output xt at each time step from torchsde solver, which means 100 torchsde
function calls. See Fig. 4 for comparison of different implementations of reverse diffusion process.

We can see from Table 3 that in comparison with AutoAttack (Rand-DiffPure), the defense capability
of DiffPure is remarkably reduced (the accuracy in boldface) when the adversarial examples generated
from AutoAttack (Rand-Ours) are present, obviously indicating robustness overestimation. Actually,
it is evidence of revealing that our implementation can let attackers create stronger adversarial
examples and can be used as a proxy to attack diffusion-based purifiers. Also, this finding sheds
light on whether using adjoint method hides the information used for creating stronger adversarial
examples in an adaptive AutoAttack setting.

Finally, since DiffPure (Nie et al. (2022)) has not been evaluated in Croce et al. (2022), it is believed
that this simple trick of implementation that creates stronger AutoAttack (Rand) can be an easy way
of attacking test-time adversarial defense purifiers and a promising supplement to Croce et al. (2022).
In the following experimental evaluations, this kind of adjoint strategy will be used in implementing
stronger adaptive attacks.

AutoAttack (Rand-DiffPure) (Rand-Ours)

DiffPure 76.56% 64.06%

AutoAttack (Rand-DiffPure) (Rand-Ours)

DiffPure 26.56% 20.31%

AutoAttack (Rand-DiffPure) (Rand-Ours)

DiffPure 46.88% 28.13%

Table 3: Robust accuracy for adversarial examples (Adv) generated from different implementations
of diffusion purification under adaptive AutoAttack (Rand) with 20 EOT. Our implementation uses
output in every time step from torchsde, whereas DiffPure (Nie et al. (2022)) uses torchsde
without accessing the intermediate outputs, which is encapsulated in torchsde function call. Left:
CIFAR-10/WRN-28-10; Middle: CIFAR-100/WRN-28-10; Right: ImageNet/ResNet-18.

3.5 ATTACK COST AND TIME COMPLEXITY

We study how to resist adaptive attacks by analyzing and increasing the time cost of breaking the
proposed defense models. The results are shown in Table 5. Due to space constraints, please see the
time complexity analysis in Sec. 10 in the Supplementary for details.

4 EXPERIMENTS

We examine the performance of proposed test-time adversarial defense methods, described in Sec.
3.2 and Sec. 3.3, against state-of-the-art adversarial attacks, and performance comparison with SOTA
purification-based defenses.
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4.1 DATASETS AND EXPERIMENTAL SETTINGS

Three datasets, CIFAR-10 (Krizhevsky et al. (2009)), CIFAR-100 (Krizhevsky et al. (2009)), and
ImageNet (Deng et al. (2009)), were adopted, where the results for CIFAR-100 and ImageNet are
shown in Table 3 and Sec. 11 of Supplementary. All experiments were conducted on a server with
Intel Xeon(R) Platinum 8280 CPU and NVIDIA V100.

For a fair comparison, we followed RobustBench (Croce et al. (2021)) and existing literature to
conduct experiments on two popular NN models, including ResNet-18 (He et al. (2016)) and WRN-
28-10 (Zagoruyko & Komodakis (2017)). The step size, η, in Eq. (8) of Sec. 3.2 was set as 2.5×10−3

and we followed Nie et al. (2022) to set t∗ used in Sec. 3.2 and Sec. 3.3 as 0.1. Since t∗ = 0.1,
the number of steps required in the reverse process is 100, where the step size dt for torchsde
solver is set to 1e-3. We set ε = 0.05 in Eq. (10), which is the default setting in the official package
(GeomLoss) (Feydy et al. (2019)). For all attacks, we used ℓ∞ and set perturbation ∥δ∥∞ ≤ 8/255.

For training, the only model that needs to be trained is the baseline purifier gθn with K = 1, which we
chose DISCO (Ho & Vasconcelos (2022)) as the baseline to be combined with our new reference point
generation in Eq. (2) with K = 1 throughout the experiments. In computing the attack gradient per
step (K), we used PGD-ℓ∞ with 7 iterations. For testing the diffusion-based purifiers, we followed
the testing paradigm described in DiffPure (Nie et al. (2022)), including the uses of 24 random subsets
(each contains 64 images) for AutoAttack and 15 random subsets (each contains 200 images) for
BPDA+EOT from CIFAR-10 testing dataset.

4.2 ADVERSARIAL ROBUSTNESS EVALUATIONS

Two types of adversarial attacks, including non-adaptive attack (PGD-ℓ∞ Madry et al. (2017),
AutoAttack (Standard) Croce & Hein (2020)) and adaptive attack (BPDA+EOT Athalye et al. (2018),
PGD+EOT Lee & Kim (2023) and DiffAttack Kang et al. (2024)), were adopted. For AutoAttack,
we utilized the package AutoAttack (Croce & Hein (2020)) with ℓ∞, in which it has two settings: (1)
“Standard,” which includes APGD-CE, APGD-DLR, FAB, and Square Attack and (2) “Rand,” which
includes APGD-CE and APGD-DLR with Expectation Over Time (EOT) (Athalye et al. (2018)) in
case of models with stochastic components. To the most extreme case in which the attacker knows
every detail about our framework of “purifier+classifier,” we utilized BPDA (adjoint method Li et al.
(2020) for the diffusion model) to bypass purifiers and EOT to combat the randomness in purifiers.
As mentioned in Sec. 3.4, our adjoint strategy will be used to implement stronger adaptive attacks in
order to avoid robustness overestimation.

The robustness performance was measured regarding clean/natural accuracy (Clean Acc) for benign
samples and robust accuracy (Robust Acc) for adversarial samples. Several test-time adversarial
defense methods, including Anti-Adv (Alfarra et al. (2022)), DISCO (Ho & Vasconcelos (2022)),
DiffPure (Nie et al. (2022)), SOAP (Shi et al. (2021)), Hill et al. (Hill et al. (2020)), and ADP (Yoon
et al. (2021)), were adopted for comparison. Tables 4 and 5 show the robustness evaluation results
and indicate that our methods either outperform or are comparable with the prior works.

The experiment in Table 4 is under the setting of non-adaptive attacks (PGD-ℓ∞ with 40 iterations
and AutoAttack (Standard)), in which the attacker only knows the information of the downstream
classifier. According to Alfarra et al. (2022), we specifically point out that the authors used the
robustly trained classifier, Adversarial Weight Perturbation (AWP) (Wu et al. (2020)), as the testing
classifier. So, except Alfarra et al. (2022), we used a normally trained classifier throughout the
experiments.

Table 5 shows the results obtained under adaptive attacks, including stronger ones like PGD+EOT
(Lee & Kim (2023)) and DiffAttack (Kang et al. (2024)). For the two kinds of AutoAttack (Rand)
described in Sec. 3.4, please refer to Table 3. Since most diffusion-based purifiers exhibit randomness,
we utilized the “EOT” setting for randomness, and “BPDA” for bypassing the reverse process of
diffusion-based methods, which use the adjoint method to calculate the gradient of such process.
We also provide the time needed to attack an image (attack time cost) against a defense method.
Besides, according to the dual-paths design of Sec. 3.3, all adaptive attacks have to attack both paths.
As a result, our defense experiences TWICE stronger attacks than other single-path methods since
gradients are obtained from two paths. In other words, attacks are computed twice.
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Defense Methods Clean Accuracy (%) Robust Accuracy (%) Attacks

No defense 94.78 0 PGD-ℓ∞
AWP (Wu et al. (2020))* 88.25 60.05 AutoAttack (Standard)

Anti-Adv (Alfarra et al. (2022))* + AWP (Wu et al. (2020)) 88.25 79.21 AutoAttack (Standard)
DISCO (Ho & Vasconcelos (2022))* 89.26 82.99 PGD-ℓ∞

DISCO (Ho & Vasconcelos (2022)) + our OAP (K = 1) 92.5±2.06 88.29±3.3 PGD-ℓ∞
DiffPure (Nie et al. (2022)) 88.06±2.65 87.21±2.28 PGD-ℓ∞
DiffPure (Nie et al. (2022)) 88.15±2.86 87.71±2.12 AutoAttack (Standard)
SOAP (Shi et al. (2021))* 96.93 63.10 PGD-ℓ∞

Hill et al. (Hill et al. (2020))* 84.12 78.91 PGD-ℓ∞
ADP (σ = 0.1) (Yoon et al. (2021))* 93.09 85.45 PGD-ℓ∞

Ours (Sec. 3.2) 90.77±2.25 88.48±2.04 PGD-ℓ∞
Ours (Sec. 3.2) 90.46±2.36 89.06±2.62 AutoAttack (Standard)

Table 4: Non-adaptive robustness comparison between our method and state-of-the-art methods.
Classifier: WRN-28-10. Asterisk (*) indicates that the results were excerpted from the papers.
Boldface indicates the best performance for each attack. Note that, by incorporating our Opposite
Adversarial Path (OAP) prior, the clean and robust accuracy of DISCO can be greatly increased.

Defense Methods Clean Accuracy (%) Robust Accuracy (%) Attack time cost (sec.) Attacks

No defense 94.78 0 N/A BPDA+EOT
DiffPure 92.38±1.86 80.92±3.53 592.92 BPDA+EOT

Hill et al.* 84.12 54.90 N/A BPDA+EOT
ADP (σ = 0.1)* 86.14 70.01 N/A BPDA+EOT
Ours (Sec. 3.3) 92.08±1.99 81.25±3.62 6880.97 BPDA+EOT

DiffPure 96.88 46.88 3632.94 PGD+EOT
Ours (Sec. 3.3) 100 53.12 22721.90 PGD+EOT

DiffPure 89.02 46.88 N/A DiffAttack
Ours (Sec. 3.3) 95.31 93.75 20397.27 DiffAttack

Table 5: Aadaptive robustness comparison between our method and state-of-the-art methods with
attack time cost per image. Classifier: WRN-28-10. Asterisk (*) indicates that the results were
excerpted from the papers. Boldface indicates the best performance for each attack. The attacks
include BPDA+EOT, PGD+EOT (Lee & Kim (2023)), and DiffAttack (Kang et al. (2024)).

More specific, we can see from Table 5 that, in addition to accuracy, the time costs the attackers need
to generate attack examples for our defense method are greatly higher than those for other defense
methods. If the attackers would like to shorten computations of generating adversarial examples,
the number of iterations of conducting attacks or the number of EOT need to be reduced, thereby
weakening the attack performance. Take BPDA+EOT as an example: the total time to finish a batch
testing on DiffPure costs less than 1 day but it costs 2 days to test on our proposed method under
the same setting with 8 V100 GPUs. Moreover, the number of paths in our method (Sec. 3.3) can
be flexibly increased to be larger than two to greatly increase the time cost for attackers to generate
adaptive attack examples. An accompanying merit is that the robust accuracy of our method in
resisting DiffAttack is rather high because DiffAttack focuses on attacking the only one path by
computing the gradient on it without meeting our dual path strategy.

Finally, our method outperforms the prior works with a gap in Table 5 remarkably larger than that in
in Table 4. One main reason is due to the data size and the given random seeds between adaptive and
non-adaptive attacks are quite different.

5 CONCLUSIONS & LIMITATIONS

We have presented a new test-time adversarial defense method. The key is to excessively denoise
the incoming input image along the opposite adversarial path (OAP) so as to move far away from
the decision boundary. This OAP prior can be readily plugged into the existing defense mechanisms
for robustness improvement. Our defense method also forces attackers to spend a great deal of time
creating adaptive adversarial examples. Meanwhile, we exemplify, for the first time, the pitfall of
conducting AutoAttack (Rand) for diffusion-based adversarial defense methods. However, we are
aware there are several attacks targeting diffusion-based adversarial defenses, and the performance of
our proposed method may be overestimated since the gradient computation is approximated.
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