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ABSTRACT

Combinatorial optimization (CO) is a long-standing challenging task not only in
its inherent complexity (e.g. NP-hard) but also the possible sensitivity to input
conditions. In this paper, we take an initiative on developing the mechanisms
for adversarial attack and defense towards combinatorial optimization solvers,
whereby the solver is treated as a black-box function and the original problem’s
underlying graph structure (which is often available and associated with the prob-
lem instance, e.g. DAG, TSP) is attacked under a given budget. Experimental
results on three real-world combinatorial optimization problems reveal the vulner-
ability of existing solvers to adversarial attack, including the commercial solvers
like Gurobi. In particular, we present a simple yet effective defense strategy to
modify the graph structure to increase the robustness of solvers, which shows its
universal effectiveness across tasks and solvers.

1 INTRODUCTION

The combinatorial optimization (CO) problems are widely studied due to their importance in prac-
tice (e.g. job scheduling, routing, matching, etc). In the last century, a variety of heuristic meth-
ods (Van Laarhoven & Aarts, 1987; Whitley, 1994) are proposed to tackle these standing and often
NP-hard problems. Driven by the recent development of deep learning and reinforcement learning,
many learning-based methods (Khalil et al., 2017; Mao et al., 2019; Kwon et al., 2021) are also
developed in this area, which show promising potential often for their cost-efficiency.

Despite the success of solvers in various combinatorial optimization tasks, few attention has been
paid to the vulnerability and robustness of combinatorial solvers, regardless of whether they are
learning based or not. A line of relevant works aims at handling combinatorial optimization under
uncertainty (Buchheim & Kurtz, 2018). However, to our best knowledge, ensuring the robustness
of combinatorial solvers with slightly modified problem instances remains relatively unexplored. It
is worth noting that many CO problems can be essentially formulated as a graph problem (Khalil
et al., 2017; Bengio et al., 2020), hence it is attractive and natural to modify the problem instance by
modifying the graph structure, to generate more test cases for solvers. In fact, vulnerability can often
be an inherent challenge for CO solvers since the problem is often strong nonlinear and NP-hard.
From this perspective, we consider attack and defense CO solvers in the following aspects.

From the attack side, developing attack models can be useful for thoroughly evaluating a solver’s ro-
bustness. The solvers may be more fragile than the general impression: for traditional learning-free
solvers, in some cases, their heuristics and hyperparameters may not be universal and stable enough
such that a small change on problem condition or graph structure may deteriorate the performance
notably. This also holds for recent machine learning based solvers as the model may be overfit and
the objective landscape can be complex due to the inherent difficulty of discrete CO problems.

As a result, it is imperative to develop defense mechanisms and techniques to improve the robustness
of CO solvers, either for learning-based models or traditional ones, especially if the approach can
be in black-box mode without knowing the details of the solvers. In particular, it is even desirable
to develop out-of-box defense mechanism. Our hope is that this may be realized when the problem
instance change1 involves only graph structure variation – which is often the case.

1Readers may argue that there are little deliberate attacks to CO solvers, while one can regard such attacks as
the problem instance variation which can often happen in real-world e.g. when the network takes a small daily
change in Directed Acyclic Graph (DAG) and Fraud Coverage problems as will be studied in our experiments.
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Table 1: Comparing our framework (ROCO) with FGSM (Goodfellow et al., 2015) and RL-
S2V (Dai et al., 2018). ε-perturb. means the change of one pixel should be bounded in ε. B-hop
neighbourhood means the new attack edges can only connect two nodes with distance less than B.

Method Data Task Attack target Attack cost Attack principle Defense tech.
FGSM image classification pixels ε-Perturb. invisible change adversarial Training

RL-S2V graph classification edges (connectivity) edge # B-hop neighbour random drop
ROCO CO instance CO solution edges (constraints) edge # no worse optimum symmetric RL

To this end, we present Robust Combnaotorial Optimization (ROCO), a framework for testing and
improving the robustness of a given combinatorial optimization solver. Table 1 compares our frame-
work to classical works in images and graphs. Our attacker limits the number of attacked edges
in the graph and guarantees that the optimal solution must not become worse. Our defender en-
sures that the new solution is also feasible for the pre-defended problem. The overview of ROCO
framework is summarized in Fig. 1. In summary, this paper makes the following contributions:

1) Given the fact that combinatorial problems can often be represented by underlying graphs, we
propose to perform adversarial attacks toward CO solvers to deteriorate their solution quality. To
our best knowledge, this is the pioneering work that formally studies adversarial attacks on combi-
natorial solvers, though their vulnerability has been occasionally recognized by the community.

2) We propose ROCO, an adversarial framework that consists of both attack and defense models on
top of CO solvers. We design our attack models with both learning-based and traditional simulated
annealing methods by slightly modifying the graph structures (e.g. add, delete or modify edges). To
increase the robustness of the combinatorial solvers, we further propose defense mechanism against
attacks. Our attack and defense models are applicable to solvers regardless of learning-based or not.

3) We implement and apply our adversarial attack and defense models to three common combi-
natorial optimization tasks: Directed Acyclic Graph Scheduling, Asymmetric Traveling Salesman
Problem and Fraud Coverage. The experimental results on black-box attack/defense show the effec-
tiveness and generality of our approach. The source code will be made public available.

2 RELATED WORK

Combinatorial optimization. As a widely studied problem, there exist many traditional algorithms
for CO, including but not limited to greedy algorithms, heuristic algorithms like simulated anneal-
ing (SA) (Van Laarhoven & Aarts, 1987) or Lin–Kernighan–Helsgaun (LKH3) (Helsgaun, 2017),
as well as commercial solvers like Gurobi (Gurobi Optimization, 2020). Besides, driven by the re-
cent development of deep learning and reinforce learning, many learning-based methods have also
been proposed to tackle these problems. A mainstream approach using deep learning is to predict
the solution end-to-end, such as the supervised model Pointer Networks (Vinyals et al., 2015), rein-
forcement learning models S2V-DQN (Khalil et al., 2017) and MatNet (Kwon et al., 2021). Though
these methods did perform well on different types of COPs, they are not that robust and universal,
as discussed in (Bengio et al., 2020), the solvers may get stuck around poor solutions in many cases.
Different from works (Moon et al., 2019; Zang et al., 2020) which apply CO for attack against neural
networks, we take an initiative on the adversarial attack and defense on CO.

Adversarial attack and defense. Since the seminal study (Szegedy et al., 2014) showed that small
input perturbations can change model predictions, many adversarial attack methods have been de-
vised to construct such attacks. In general, adversarial attacks can be roughly divided into two
categories: white-box attacks with access to the model gradients, e.g. (Goodfellow et al., 2015;
Madry et al., 2018; Carlini & Wagner, 2017), and black-box attacks, with only access to the model
predictions, e.g. (Ilyas et al., 2018; Narodytska & Kasiviswanathan, 2016). Besides image and text
adversarial attacks (Jia & Liang, 2017), given the importance of graph-related applications and the
successful applications of graph neural networks (GNN) (Scarselli et al., 2008), more attentions are
recently paid to the robustness of GNNs. In the mean time, many defense strategies like adversar-
ial training (Ganin et al., 2016; Tramèr et al., 2020) have also been proposed to counter this series
of attack methods. Since CO problems can usually be encoded by a graph structure and inspired
by (Dai et al., 2018), which develops an RL based attack policy towards GNNs, we propose a novel
and flexible attack and defense framework for CO solvers using both heuristic and RL methods.

Note that the recent adversarial graph matching (GM) network show how to fulfill attack or defense
via perturbing or regularizing geometry property on the GM solver. (Zhang et al., 2020) degrades the
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Figure 1: Overview of our attack and defense framework ROCO for CO solvers. ROCO targets
on the CO problems which can be encoded by graph (often holds in practice). Here delete/add the
edges in the encoded graph represents delete/add constraints in CO. Symmetric RL denotes that the
defender and attacker share the same structure with symmetric reward and action space.

quality of GM by perturbing nodes to more dense regions while (Ren et al., 2021) improves robust-
ness by separating nodes to be distributed more broadly. However, the techniques are deliberately
tailored to the specific problem and can hardly generalize to the general CO problems. Meanwhile
they work in a white box mode while we aim to develop more flexible black box models.

3 COMBINATORIAL OPTIMIZATION WITH ATTACK AND DEFENSE

3.1 PROBLEM FORMULATION

In general, a traditional CO problem Q defined on graph G = (V,E) can be formulated as:

Q : min
x
f(x|G) s.t. hi(x,G) ≤ 0, i = 1, . . . , I (1)

where x denotes the decision variable, f(x|G) represents the target function w.r.t. the specific CO
problem and hi(x,G) denotes the set of constraints (usually encoded in graphs). However, due to
the NP-hard nature (which is often the case in CO), it can be infeasible to find the optimal solution
within polynomial time. Therefore, we denote a different solver S (which gives the feasible solution
f(S(Q)|G)) to approach the global optimum f∗(Q).

It is worth noting that the optimum f∗(Q) of Eq. 1 will become no worse if we loosen part of the
constraints hi since the previous decision variable x is still feasible under the new setting. Intuitively,
we may expect the solver to give a better (at least the same) solution on the new problem Q′.
However, we will show in this paper that many solvers are vulnerable to such perturbations and their
solutions can become worse under our attacks, despite the loose bound f∗(Q′) ≤ f∗(Q).

Given a solver S and an original problem Q represented by a graph G, the adversarial attacker g is
asked to modify the graph G into G′ to attack the solver S, such that:

max
G′

f(S(Q′)|G′)− f(S(Q)|G)

s.t. G′ = g(S,G), hence Q→ Q′, f∗(Q′) ≤ f∗(Q), T (G,G′) = 1
(2)

Here T (·, ·) → {0, 1} is an equivalency indicator (Dai et al., 2018) that tells whether two graphs G
and G′ satisfy a specified constraint. In short, the above equation tells that the attacker is aiming at
making small modifications to the original graph, loosening the constraints while making the solver
solution as bad as possible.

In this paper, concretely our attacker g is allowed to modify edges (e.g. adding or removing edges)
from G to construct the new graph. Accordingly, we define the equivalency indicator as:

T (G,G′) = I(|(E − E′) ∪ (E′ − E)| ≤ K) (3)

which ensures that the attacker can modify no more than K edges of the original graph.

On the other hand, it is imperative to develop defense mechanism for against the above attacks.
Notice that the attack methods we mentioned before have some degree of symmetry (adding/deleting
edges), we can simply do reverse operations for defense. For example, if we can relax the constraints
by removing edges while worsening the solver’s solution, then we can add some edges (constraints)
and get a better solution (that is, the symmetry). Besides, the new solution under stronger constraints

3



Under review as a conference paper at ICLR 2022

A

A
B
C
D

A
B
C
D

A
B
C
D

B C D

A

B C D

A

B C D

Figure 2: Attack and defense on applying Shortest Job First algorithm for solving DAG.The edges
show the dependencies. (x, y) of each node means run time (x) and resource occupancy rate (y).

is surely feasible for the original graph (then we can use it in the original graph to get f(S(Q′)|G)).
Hence, the new problem can be formulated as:

min
G′

f(S(Q′)|G)− f(S(Q)|G)

s.t. G′ = d(S,G), hence Q→ Q′, Hj(G′,G) ≤ 0, for j = 1 . . . J, T (G,G′) = 1
(4)

here the constraints Hj(G′,G) ≤ 0 ensure that the feasible space of G′ is a subset of G.

Concrete Examples. Fig. 2 shows the attack and defense of the Shortest Job First algorithm on DAG
(TSP and FC examples are in Appendix A). We remove an edge but get a worse finish time (objective
– the smaller the better). Then we add an edge for defense, which leads to a better solution.

In this paper, we focus on black-box attack and defense, which means we have no idea on the solver.
This setting is practical especially considering there are plenty of commercial solvers e.g. Gorubi
and CPLEX etc. We leave white box attack and defense for future work.

3.2 ATTACK VIA GRAPH MODIFICATION

We devise both reinforce learning (RL) and heuristic based attackers. For RL, the popular Proximal
Policy Optimization (PPO) (Schulman et al., 2017) framework is adopted. We also design three
traditional heuristic attackers: random sampling, optimum-guided search and simulated annealing.

3.2.1 REINFORCE LEARNING BASED ATTACK

Eq. 2 is treated as the learning objective and we resort to reinforcement learning (RL) to optimize
G′ in a data-driven manner. In general, we modify the graph structure and compute f(S(Q′)|G′)
alternatively, getting rewards that will be fed into the PPO framework and train the agent iteratively.

MDP Formulation. Given an instance (S,G), with a total modification budget, we model the attack
via sequential edge modification as a Finite Horizon Markov Decision Process (MDP).

• State. The current graph Gk (i.e. the graph G′ after k actions) is treated as the state, whose nodes
and edges encode both current input and constraints. The original graph G0 is the starting state.
• Action. As mentioned in Sec. 3.1, the attacker is allowed to add/delete edges in the graph. So
a single action at time step k is ak ∈ Ak ⊆ Ek. Here our action space Ak is usually a subset of
all the edges Ek because we restrict the action space (i.e. abandon some useless edge candidates)
according to the previous solution S(Qk) to speed up our algorithm. Furthermore, we decompose
the action space (O(|V |2) → O(|V |)) by transforming the edge selection into two node selections:
first selecting the starting node, then the ending node.
• Reward. The new graph Gk+1 results in a new CO problem Qk+1 whose objective becomes
f(S(Qk+1)|Gk+1). The reward is the increase of the objective:

r = f(S(Qk+1)|Gk+1)− f(S(Qk)|Gk) (5)

• Terminal. Once the agent modifies K edges or edge candidates become empty, the process stops.

PPO Design. The input and constraints of a CO problem are usually tightly encoded in the graph
structure. Thus, our PPO agent (i.e. the actor and the critic) should behave according to the graph
features. Specifically, We resort to the Graph Neural Networks (GNN) for graph embedding:

n = GNN(Gk), g = AttPool(n) (6)
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where the matrix n (with the size of node number× embedding dim) is the node embedding, and an
attention pooling layer is used to extract a graph level embedding g. The GNN model can differ by
the CO problem. After graph feature extraction, we design the corresponding actor and critic net:

• Critic. The critic predicts the value of each state Gk. Since it aims reward maximization, a max
pooling layer is adopted over all node features which are concatenated (denoted by [·||·]) with the
graph embedding g, fed into a network (e.g. ResNet block (He et al., 2016)) for value prediction:

V(Gk) = ResNet1([MaxPool(n)||g]) (7)

• Actor. As mentioned in Sec. 3.2.1, the edge selection is implemented by selecting the start and
end node. The action scores are computed using two independent ResNet blocks, and a Softmax
layer is added to regularize the scores into probabilities within [0, 1] as follows:

P (a1) = softmax(ResNet2([n||g])), P (a2|a1) = softmax(ResNet3([n||n[a1]||g)) (8)

where n[a1] denotes the embedding for node a1. We add the feature vector of the selected start node
for the end node selection. For training, actions are sampled w.r.t. their probabilities. For testing,
beam search is adopted to find the optimal solution: actions with top-B probabilities are chosen for
each graph in the last time step, and only those actions with top-B rewards will be reserved for the
next search step (see Alg. 1 for details).

3.2.2 HEURISTIC ALGORITHM ATTACKING Algorithm 1: Attack framework by iterative
edge manipulation (RL version)
Input: Input graph G; solver S; max number of

actions K; beam size B.
G01..B ← G; G∗ ← G; # set initial state
for k ← 1..K do

for b← 1..B do
# do beam search for graphs in last step

Predict P (a1), P (a2|a1) on Gk−1
b ;

Select (a1, a2) with top-B probabilities;
for each (b, a1, a2) pair do
G′(b, a1, a2)← modify edge (a1, a2) in
Gk−1
b ; # new state by tentative action

if f(S|G′(b, a1, a2)) > f(S|G∗) then
G∗ ← G′(b, a1, a2) # update the

optimal attacked graph

Sort G′(·, ·, ·) w.r.t. their solutions by decreasing
order; # select top-B graphs for next step
Gk1..B ← G′1..B ;

Output: Optimal Attacked Graph G∗

Traditional heuristic algorithms are also stud-
ied, with three attack algorithms as follows.

Random sampling. In each iteration, an
edge is randomly chosen to be modified in the
graph and it repeats for K iterations. We run
N attack trials and choose the best solution.
It can reflect the robustness of solvers with
the cost of time complexity O(NK).

Optimum-guided search (OG-Search). It
focuses on finding the optimum solution dur-
ing each iteration. We use beam search
to maintain the best B current states and
randomly sample M different actions from
the candidates to generate next states. The
number of iterations is set to be no more
than K. Its time complexity is O(BMK).

Simulated Annealing (SA). Simulated an-
nealing (Van Laarhoven & Aarts, 1987)
comes from the idea of annealing and cool-
ing used in physics for particle crystallization. In our scenario, a higher temperature indicates a
higher probability of accepting a worse solution, allowing to jump out of the local optimum. As the
action number increases and the temperature decreases, we will be more conservative and tend to re-
ject the bad solution. The detailed process is shown in Appendix B and we will repeat the algorithm
for N times. SA is a fine-tuned algorithm and we can use grid search to find the best parameter to
fit the training set. Its time complexity is O(NMK). Table 2: Comparison of attack models. Ran-

dom means it will produce different results
in different trials. Finetune means the algo-
rithm can be tuned by training set.

Technique Random Finetune Time
Random X O(NK)

OG-Search X O(BMK)
SA X X O(NMK)
RL X O(BMK)

Table 2 concludes the attacking methods property
and time complexity. Since the former three algo-
rithms are inherently stochastic, we will run them
multiple times to calculate the mean and standard
deviation for fair comparison.

3.3 DEFENSE VIA GRAPH MODIFICATION

We adopt RL as the defender and treat Eq. 4 as the
learning objective. The defense MDP formulation is just the same as Sec. 3.2.1 except that we set
r = f(S(Qk)|G) − f(S(Qk+1)|G) and use the symmetric action of the attacker. It is worth noting
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Table 3: DAG attack results of Ratio (%) ↑ ± Std. Baseline denotes mean finish time (real time
should ×5000) on test set. Ratio represents time improvement after attack w.r.t. baselines. The
larger the ratio, the better attack performance the adversarial attack method achieve. Random, OG-
search, SA are tested for 10 trials to calculate the mean and std.

Solver TPC-H Baseline Attack Method (Ratio ± Std)
job# Random OG-Search SA RL

Shortest Job First 50 20.9228 1.08± 0.12 1.33± 0.18 1.54± 0.07 1.41
Critical Path 50 17.3900 8.13± 0.44 9.03± 0.25 9.58± 0.15 9.26

Tetris (Grandl et al., 2014) 50 16.4538 11.57± 0.60 12.05± 0.80 14.02± 0.52 14.22
Shortest Job First 100 38.3202 0.26± 0.03 0.41± 0.04 0.48± 0.02 0.54

Critical Path 100 32.0355 8.57± 0.28 8.98± 0.27 9.13± 0.02 9.24
Tetris (Grandl et al., 2014) 100 30.3722 13.27± 0.36 12.60± 0.73 14.70± 0.49 15.41

Shortest Job First 150 57.1554 0.84± 0.07 1.12± 0.08 1.30± 0.05 1.35
Critical Path 150 48.7963 5.33± 0.37 6.27± 0.37 6.65± 0.12 6.85

Tetris (Grandl et al., 2014) 150 44.9376 11.21± 0.85 11.44± 0.90 13.04± 0.26 12.73

Table 4: DAG attack and defense results of Time ↓ and Ratio (%) ↓. The solvers’ solutions are
recorded and the all the ratio is computed by the solved finish time w.r.t. Normal solution.

Solver Mode job#=50 job#=100 job#=150
Time↓ Ratio↓ Time↓ Ratio↓ Time↓ Ratio↓

Shortest Job First Normal 20.9228 0.00 38.3202 0.00 57.1554 0.00
Shortest Job First Attack 21.2093 1.37 38.5335 0.55 57.9326 1.36
Shortest Job First Defense 20.9151 -0.04 38.0470 -0.71 57.4370 0.49

Critical Path Normal 17.3900 0.00 32.0355 0.00 48.7963 0.00
Critical Path Attack 18.9782 9.13 34.9976 9.25 52.1519 6.88
Critical Path Defense 18.4335 6.00 33.4258 4.34 49.9011 2.26

Tetris (Grandl et al., 2014) Normal 16.4538 0.00 30.3722 0.00 44.9376 0.00
Tetris (Grandl et al., 2014) Attack 18.7944 14.22 35.0321 15.34 50.6415 12.69
Tetris (Grandl et al., 2014) Defense 17.7033 7.59 34.2604 12.80 49.2008 9.49

that the defense RL agent can not only play a defensive role against the attacked problem instance,
but can also help further improve the solution of normal instances, as will be shown in some of our
experiments. We leave more in-depth analysis and corresponding approach design for future work.

4 EXPERIMENTS AND RESULTS

We conduct experiments on three representative tasks: Directed Acyclic Graph Scheduling, Asym-
metric Traveling Salesman Problem and Fraud Coverage. The former two problems are popular
problems in CO. The third problem is originated from a real-world transaction dataset. The detailed
graph embedding for the three tasks is shown in Appendix C. In Appendix G, we provide the train-
ing and evaluation parameters of different solvers for fair time comparison and reproducibility. All
experiments are run on RTX 2080Ti and RTX 3090 (see Appendix H for the detailed testbed).

4.1 TASK I: DIRECTED ACYCLIC GRAPH SCHEDULING

Task scheduling for heterogeneous systems and various jobs is a popular problem due to its practical
importance. Many systems formulate the job stages and their dependencies as a Directed Acyclic
Graph (DAG) (Saha et al., 2015; Chambers et al., 2010; Zaharia et al., 2012). The data center has
limited computing resources to allocate the jobs with different resource requirements. These jobs
can run in parallel if all their parent jobs have finished and the required resources are available. Our
goal is to minimize the finish time of the jobs i.e. we should finish all jobs as soon as possible.

Solvers. We choose three popular heuristic solvers as our attack targets. First, the Shortest Job
First algorithm chooses the jobs greedily with minimum completion time. Second, the Critical Path
algorithm analyzes the bottleneck and finishes the jobs in the critical path sequence. Third, the Tetris
(Grandl et al., 2014) scheduling algorithm models the jobs as 2-dimension blocks in the Tetris games
according to their finish time and resource requirement.

Attack model. The edges in a DAG represent job dependencies, and removing edges will relax the
constraints. After removing existing edges in a DAG, it is obvious that the new solution will be equal
or better than the original one since there are less restrictions. As a result, in the DAG scheduling
tasks, the attack model is to selectively remove existing edges.

Defense model. We propose to add non-existing edges on the input graph associated with the CO
problem, and obviously the new solution under more constraints is still feasible for the original
CO problem. The motivation is to help tune the graph structure to be more suitable for heuristic
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algorithms. To reduce the action space, we propose to pre-process the node pairs that already have
dependencies and remove the corresponding edges in the candidate set.

Dataset. We use the TPC-H dataset (http://tpc.org/tpch/default5.asp), which is
composed of business-oriented queries and concurrent data modification. Many DAGs have tens
or even hundreds of stages with different duration and numbers of parallel tasks. As each DAG
in TPC-H dataset represents a computation job, we gather the DAGs randomly and generate three
different datasets, TPC-H-50, TPC-H-100, TPC-H-150, of each containing 50 training and 10 testing
samples. Each DAG node has two properties: execution time and resource requirement.
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Figure 3: Finish time ↓ as DAG objective
score (mean and std by 10 trials) among
three modes: attack, defense and nor-
mal: schedule 100 jobs from TPC-H. At-
tack will incur worse score than in normal
mode, which can be remedied by defense.

Results for attack. Table 3 reports the results of
our four attack methods, where RL outperforms other
learning-free methods in most cases, illustrating the
correctness of our feature extraction techniques and
training framework. It is worth noting that even the sim-
plest random attack can cause a significant performance
degradation to the CO solvers, showing their vulnera-
bility and the effectiveness of the attack framework.

Results for attack and defense. Table 4 and Fig. 3
show the results of attack and defense experiments on
DAG. In general, the defense model can compensate for
the damage of the attack and can even obtain better so-
lutions than the baseline in some cases. It’s also worth
noting that for some instances, the edges removed in the
attack stage will be added back in the defense.

4.2 TASK II: ASYMMETRIC TRAVELING SALESMAN PROBLEM

The classic traveling salesman problem (TSP) is to find the shortest cycle to travel across all the
cities. Here we tackle the even challenging asymmetric TSP (ATSP) for its generality.

Solvers. Four algorithms are treated as our attack targets: i) Nearest Neighbour greedily adds
the nearest city to the tour. ii) Furthest Insertion finds the city with the furthest distance to the
existing cities in the tour and inserts it. iii) Lin-Kernighan Heuristic (LKH3) (Helsgaun, 2017) is the
traditional SOTA TSP solver. iv) Matrix Encoding Networks (MatNet) (Kwon et al., 2021) claims
as a SOTA learning-based solver for ATSP and flexible flow shop (FFSP).

Attack model. The attack is to choose an edge and half its value, after which we will get a better
theoretical optimum. To reduce the action space, we will not select the edges in the current path
predicted by the solver at the last time step.

Defense model. First we calculate the optimal path by the solver and add these edges to the candi-
date set. The action is to modify an edge’s weight by doubling the distance of that edge in order to
encourage the solver to explore other paths.

Dataset. It comes from (Kwon et al., 2021) consisting of ‘tmat’ class ATSP instances which have
the triangle inequality and are widely studied by the operation research community (Cirasella et al.,
2001). We solve the ATSP of three sizes, 20, 50 and 100 cities. The distance matrix is fully con-
nected and asymmetric, and each dataset consists of 50 training samples and 20 testing samples.

Results for attack. Table 5 reports the attack results of four target solvers. In general, the learning-
based solvers (e.g. MatNet) or those with intrinsic randomness (e.g. LKH3) show stronger robust-
ness to the attacks. Furthermore, it is notable that the RL based attack outperforms in most cases.

Results for attack and defense. Table 6 shows that the defense model works well on ATSP. In
addition to making up the degeneration by attack, in some cases it even obtains shorter total distance.

4.3 TASK III: FRAUD COVERAGE

Our last problem instance refers to Fraud Coverage (FC), which is an emerging NP-Complete (de-
tails in Appendix D.1) problem abstracted from real life: the growing online transactions have also
spawned criminals and scams. The transactions E can be classified into black (fraudulent) events B
and white (normal) eventsW . To block fraud events, the bank system designs a series of rulesR to
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Table 5: ATSP attack results of Ratio (%) ↑ ± Std. Baseline denotes mean tour length on test set.
Result is the mean ratio on all test instances computed by the solved tour length w.r.t. baselines.

Solver City# Baseline Attack Method
×106 Random OG-Search SA RL

Nearest Neighbour 20 1.9354 10.09± 0.79 9.34± 1.67 10.28± 0.82 12.94
Furthest Insertion 20 1.6092 5.35± 0.65 5.18± 0.73 6.78± 0.71 8.56

LKH3 (Helsgaun, 2017) 20 1.4595 0.03± 0.02 0.03± 0.03 0.10± 0.07 0.11
MatNet (Kwon et al., 2021) 20 1.4616 0.40± 0.08 0.46± 0.04 0.46± 0.06 0.65

Nearest Neighbour 50 2.2247 6.24± 0.37 7.02± 0.43 8.14± 0.68 10.26
Furthest Insertion 50 1.9772 4.15± 0.36 3.51± 0.63 4.35± 0.45 6.97

LKH3 (Helsgaun, 2017) 50 1.6621 0.19± 0.04 0.21± 0.04 0.37± 0.06 0.35
MatNet (Kwon et al., 2021) 50 1.6915 1.39± 0.07 1.71± 0.06 2.01± 0.07 2.15

Nearest Neighbour 100 2.1456 4.02± 0.46 3.53± 0.71 3.81± 0.52 5.02
Furthest Insertion 100 1.9209 2.88± 0.46 2.97± 0.58 3.35± 0.33 4.87

LKH3 (Helsgaun, 2017) 100 1.5763 0.40± 0.04 0.54± 0.03 0.59± 0.02 0.63
MatNet (Kwon et al., 2021) 100 1.6545 1.37± 0.06 1.63± 0.03 1.79± 0.04 1.98

Table 6: ATSP attack and defense results of Distance ↓ and Ratio (%) ↓. The solutions are
recorded and the ratio is computed by the solved tour length w.r.t. normal solution.

Solver Mode ATSP-20 ATSP-50 ATSP-100
Distance↓ Ratio↓ Distance↓ Ratio↓ Distance ↓ Ratio↓

Nearest Neighbour Normal 1.9354 0.00 2.2247 0.00 2.1456 0.00
Nearest Neighbour Attack 2.1366 10.40 2.4264 9.07 2.2439 4.58
Nearest Neighbour Defense 1.7564 -9.25 2.2069 -0.80 2.0319 -5.30
Furthest Insertion Normal 1.6092 0.00 1.9772 0.00 1.9272 0.00
Furthest Insertion Attack 1.7088 6.19 2.0957 5.99 1.9963 3.58
Furthest Insertion Defense 1.5210 -5.48 1.9558 -1.08 1.8990 -1.46

LKH3 (Helsgaun, 2017) Normal 1.4595 0.00 1.6621 0.00 1.5763 0.00
LKH3 (Helsgaun, 2017) Attack 1.4598 0.02 1.6671 0.30 1.5867 0.66
LKH3 (Helsgaun, 2017) Defense 1.4595 0.00 1.6610 -0.07 1.5744 -0.12

MatNet (Kwon et al., 2021) Normal 1.4617 0.00 1.6915 0.00 1.6545 0.00
MatNet (Kwon et al., 2021) Attack 1.4708 0.62 1.7261 2.04 1.6841 1.79
MatNet (Kwon et al., 2021) Defense 1.4591 -0.18 1.6696 -1.29 1.6185 -2.18

identify transactions as either black or white events. The goal is to select a subset of rules R ⊆ R
to maximize the coverage of fraudulent monetary values while affecting no more thanK white
events. The problem can be represented by a bipartite graph, where any edge exists between a rule
node and an event node only when the event is deemed as black by the rule. Formally:

max
R

∑
b∈B

w(b)× I(b ∈
⋃
ri∈R

C+(ri)) s.t. |
⋃
ri∈R

C−(ri)| ≤ K (9)

where w(·) denotes the monetary value of a certain transaction event, C(·) denotes the set of events
covered by a rule that are deemed as black events, and C+(·) and C−(·) denotes the subset of events
in C(·) with true labels being black and white, respectively.

Solvers. As an emerging real-world CO task, the FC problem is very challenging and here we
propose three different solvers as the target for attacking. First, the trivial Local algorithm which
iterates over the rules sequentially, adding any rules that will not exceed the threshold. Second, a
more intelligent Greedy Average algorithm that always chooses the most cost-effective (the ratio of
the increase of black event money values to the increase of number of covered white events) rule at
each step until the constraint isn’t satisfied. Third, we formulate the problem into standard ILP form
(details in Appendix D.2) and solve it by Gurobi.

Attack model. Intuitively, when a white event is mislabeled as a black event, the FC problem will
achieve an equal or better optimum f∗(Q′), since we can possibly cover more white events while
not exceeding the threshold. In our attack model, we focus on the attack toward the edges rather
than the nodes. We choose to add non-existing black edges that connect rules to black events, which
leads to a theoretically better optimum and can potentially mislead the solvers. Further, in order
to reduce action space, we only select the unchosen rules, otherwise it will be useless since adding
edges for selected rules would not affect a solver’s output solution. Here we report the attack method
on adding black edges and present the results for attacking black nodes in the Appendix F.1.

Defense model. Similar to the attack method, as defense we remove the existing black edges that
connect rules to black events. To reduce action space, we select the rules chosen in the prior solution,
since deleting black edges for the unchosen rules will not change the solution.

Dataset. We analyze the distribution of transaction amounts and rule coverage of the real dataset,
then generate a series of simulated data for experiments. The distribution of events amount and the

8
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Table 7: FC attack results of Ratio (%) ↑ ± Std. The Gurobi time limit is shown in brackets w.r.t.
different data sizes (it should be long enough to give a feasible solution but not too long for attack).
Baseline is the average original solution of the solvers on test set. The ratio here is the mean of ratios
on all test instances computed by the solved FC monetary value w.r.t. baselines.

Solver problem size: Baseline Attack Method (Ratio ± Std)
rule#-event# Random OG-Search SA RL

Local Search 30-3K 9.5713 0.78± 0.06 0.77± 0.11 0.85± 0.03 0.89
Greedy Average 30-3K 18.0038 2.72± 0.16 3.17± 0.23 2.70± 0.22 4.79

Gurobi(1s) 30-3K 18.8934 10.41± 1.13 18.42± 1.88 18.99± 1.95 50.68
Local Search 60-6K 24.9913 0.47± 0.04 0.80± 0.14 0.69± 0.15 0.76

Greedy Average 60-6K 43.1625 0.91± 0.09 0.93± 0.11 1.02± 0.09 2.29
Gurobi(2s) 60-6K 41.1828 7.15± 0.84 9.35± 1.02 7.02± 0.89 100.00

Local Search 100-10K 22.9359 0.76± 0.09 1.23± 0.08 0.83± 0.09 1.55
Greedy Average 100-10K 51.3905 1.25± 0.14 1.70± 0.34 1.37± 0.08 1.61

Gurobi(5s) 100-10K 49.3296 6.33± 0.70 7.69± 0.96 4.26± 0.48 92.01

Table 8: FC attack and defense results of Fraud$ ↑ and Ratio (%) ↑. The solvers’ solutions are
recorded and the ratio is computed by the solved FC monetary value (Fraud$) w.r.t. Normal solution.

Solver Mode rule#=30, event#=3K rule#=60, event#=6K rule#=100,event#=10K
Fraud$↑ Ratio↑ Fraud$↑ Ratio↑ Fraud$↑ Ratio↑

Local Search Normal 9.5713 0.00 24.9913 0.00 22.9359 0.00
Local Search Attack 9.4638 -1.12 24.8038 -0.75 22.6930 -1.06
Local Search Defense 10.0680 5.19 25.8300 3.36 23.7252 3.44

Greedy Average Normal 18.0038 0.00 43.1625 0.00 51.3905 0.00
Greedy Average Attack 17.1256 -4.88 42.3911 -1.79 50.5651 -1.61
Greedy Average Defense 17.6850 -1.77 42.8371 -0.75 51.0684 -0.63

Gurobi Normal 18.8934 0.00 41.1828 0.00 49.3296 0.00
Gurobi Attack 2.7194 -85.61 2.2218 -94.60 4.6731 -90.53
Gurobi Defense 17.2712 -8.59 42.1617 2.38 51.2941 3.98

rule coverage is shown in Appendix E. The dataset consists of three rule-event pairs 30-3K, 60-6K
and 100-10K, each with 50 training samples and 20 testing samples.

Results for attack. Table 7 shows the attack results of our simulated dataset. We can observe that
both heuristic and RL approaches have yielded significant attack effects, while RL outperforms the
others in most cases (especially for Gurobi, in many cases it is not even possible to give a feasible
solution within time after employing RL attacks).
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Figure 4: Gurobi’s mean time cost in solv-
ing FC problems. Run experiments on 3
datasets (20 instances) of different sizes.

Results for attack and defense. Table 8 records the
results of attack and defense experiments on FC prob-
lems. Experiments are conducted on the same test set.
In general, the defender can compensate for the dam-
age of attack effectively and obtain an even better so-
lution than the baseline in some cases. Besides, as a
commercial solver, Gurobi should be able to obtain op-
timal solutions if in sufficient time (assuming we have
unlimited computational resources). So we record the
time for Gurobi to find the optimal solution under at-
tack and defense. The result is shown in Fig. 4, where
Gurobi’s solution time after attack (defense) signifi-
cantly increases (decreases). This inspires us to attack
toward the solvers’ solution time in future work.

5 CONCLUSION AND OUTLOOK

We have presented a general adversarial attack and defense framework called ROCO on top of
combinatorial solvers. For attack, we devise both RL and traditional heuristic attackers to modify the
underlying graph structure of combinatorial problems. Meanwhile, we propose a simple yet effective
defense mechanism to modify the ill-posed problem in a reversed way to increase the robustness of
combinatorial solvers. Experiments show the effectiveness of our paradigm and techniques.

The proposed paradigm opens up large space for further research, at least in the following aspects:
1) new attack/defense techniques beyond graph structure but also node/edge attribute; 2) iterative
adversarial training for defense model, especially for learning-based solvers (at least in the sense of
tailored data augmentation); 3) white-box attack/defense when the solver information is known.

9
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APPENDIX

A EXAMPLES FOR ATSP AND FC

To have a more intuitive understanding of the attack and defense on ATSP and FC, we provide two
examples here. Fig. 5 displays attack and defense effect on Nearest Neighbour algorithm of an ATSP
instance. Fig. 6 displays the attack and defense effect on Greedy algorithm of an FC instance with
white event threshold 5.

D

A

C

B

D

A

C

B

D

A

C

B

Figure 5: ATSP attack and defense on Nearest Neighbour algorithm. The attack action on edge AC
will cause 2 further distance. The defense action on edge CB will help the algorithm improve the
solution, even better than the origin.
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Figure 6: FC attack and defense on Greedy algorithm. The attack action on edge Aa will cause a
lower fraudulent monetary value. The defense action on edge De will help the algorithm improve
the solution, even better than the origin.

12



Under review as a conference paper at ICLR 2022

B HEURISTIC ATTACK ALGORITHM

As a heuristic attack example, we list the pseudo code of SA in Algorithm 2.

Algorithm 2: Simulated Annealing (SA) Attack
Input: Input graphs G; solver S; max number of actions K; action sample number M ;

Temperature decay ∆T ; coefficient β.
G0 ← G; G∗ ← G0; T ← 1; # initial temperature
for k ← 1..K do

flag = False; # if action is available
for i← 1..M do

Random sample an edge (x, y) in edge candidates of Gk−1;
G′ ← add/delete the edge (x, y) in Gk−1; # new state by tentative action
P = exp(β(f(S|G

′)−f(S|Gk−1)+eps
T ); # action acceptance probability

if Random(0, 1) ≤ P then
flag = True; Gk ← G′; G∗ ← Gk
break;

if flag = False then
break;

T = T ·∆T ;
Output: Graph G∗

C GRAPH EMBEDDING FOR SPECIFIC TASKS

C.1 TASK I: DIRECTED ACYCLIC GRAPH SCHEDULING

Since the task is a directed acyclic graph, we use GCN to encode the state in the original graph
and its reverse graph with inversely directed edges separately. Then we concatenate the two node
embedding and use an attention pooling layer to extract the graph-level embedding for Eq. 6:

n = [GCN1(G)||GCN2(reverse(G))], g = AttPool(n).

C.2 TASK II: ASYMMETRIC TRAVELING SALESMAN PROBLEM

Considering the graph is fully connected, we use GCN to encode the state in the graph. Then we use
an attention pooling layer to extract the graph-level embedding. Eq. 6 becomes:

n = [GCN(G)], g = AttPool(n).

C.3 TASK III: FRAUD COVERAGE

For the RL attack method, different from DAG and TSP, FC has a unique bipartite graph structure.
Therefore, we resort to SAGEConv, which can handle bipartite data, for graph feature extraction. As
input, we classify the nodes into three classes (rules, black events and white events) and associate
them with three dimension one-hot tensors. Besides, we add one more dimension for event nodes,
which records their amounts. Eq. 6 becomes:

ne = SAGEConv1(Ir, Ie), nr = SAGEConv2(Ie, Ir)

ge = AttPool1(ne), gr = AttPool2(nr)
(10)
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D FORMULAS AND PROOFS

D.1 FC NP-COMPLETE PROVEMENT

For the sake of our proof, here we redefine FRAUD-COVERAGE and give the definition of an existing
NPC problem: SET-COVER.

FRAUD-COVERAGE. Given a set of rules R along with an event set consisted of white and black
events E = W ∪ B. Rules are corresponding to certain events (white W (r) or black B(r)) which
have their amounts w(e). Does there exist a collection of these rules to cover ≥ M fraudulent
monetary value while influence no more than k white events?

SET-COVER. Given a set U of elements, a collection S1, S2, . . . , Sm of subsets of U , and an integer
k, does there exist a collection of ≤ k of these sets whose union is equal to U?

First, we need to show that FC is NP. Given a set of selected rules R = {r1, r2, . . . , rm}, we could
simply traverse the set, recording the covered black and white events. Then, we can assume whether
the covered black events number is no more than k and fraudulent monetary value is no less than m.

Since the certification process could be done in O(n2), we could tell that FC is NP. Then, for NP-
hardness, we could get it reduced from SET-COVER.

Suppose we have a SET-COVER instance, we construct an equivalent FC problem as follows:

• Create |U | black events, each with amount 1.

• Create m rules, set B(ri) = Si.

• Connect each rule to a different white event of amount 1.

• Set the white events threshold kw equal to the set number threshold ks.

• Set fraudulent monetary target m = |U |.

Suppose we find a set of rules which meet the conditions of FC, then we select subsets Si iff we
select ri. The total number of rules (subsets) is no more than kw(ks) since the influenced white
events number is equal to |R|. The subsets also cover U since the covered white event money (each
with amount 1) is no less than |U |. Similarly, we can prove that we can find a suitable rule set for
FC if we have found a set of subsets that meet the conditions of SET-COVERAGE. So we can induce
that SET-COVER ≤p FRAUD-COVERAGE.

Thus, we prove that FC is NP-Complete.

D.2 FC ILP FORMULATION

As discussed in the main text, B denotes the set of black events,W represents the set of white events,
R refers to the rule set and E denotes the event set. Using notations above, we could translate Eq. 9
into standard ILP form as follows:

max
∑
i∈B

Y [i]×W [i], s.t.
∑
i∈W

Y [i] ≤ K

for i = 1 . . . |E|, (Y [i]− 0.5)(0.5−
|R|∑
j=1

X[j]× I(i in E[j])) ≤ 0

(11)

where X[j] ∈ {0, 1} denotes whether rule j is chosen or not, Y [i] ∈ {0, 1} shows whether event
i has been covered by the chosen rules. Besides, W [i] ∈ R records the amount of the events while
E[j] ⊆ E is the corresponding events of rule j. The third equation ensures the event binary to be
1 iff it has been covered by the rule set (if ∃X[j] = 1 and event i ∈ E[j], then the formula in the
second bracket is negative, ensuring Y [i] to be 1; else if event i is not covered by any chosen rules,
then the second formula is positive and Y [i] must be 0).
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E FRAUD COVERAGE DATASET

The Fraud Coverage dataset is generated according to the real data. We normalize the amount of each
event to [0, 1]. Fig. 7 shows the distribution of the amount larger than 0.1 of a rule100-event10K
instance. Most events are small transactions and show a long-tail distribution format while fraud
events tend to obey the long-tail distribution and are close to the uniform distribution when the
amounts are larger than 0.1. Fraudsters often tend to cheating larger amounts and disregarding the
small transactions may account for this phenomenon. Fig. 8 shows fraudulent monetary value cover-
age of different strategies. It follows the real condition that few well-designed rules can cover most
fraud events. The other rules can be regarded as complementary to the main rules. Different rules
do not show some obvious patterns on the distributed number of events. For example, the fraudulent
monetary value detected is not linearly related to the distributed events. Different rules may also
cover the same fraud events and normal events, which makes the problem complex (Appendix D.1).
That’s why we need to select a suitable rule set.
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Figure 7: FC dataset fraudulent monetory value
distribution of a 100-10K instance.
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F ADDITIONAL EXPERIMENT RESULTS

F.1 TABLES

As discussed in Sec. 4.3, we propose 2 attack methods towards the FC solvers. The experiment
results of ‘adding black edges’ are shown in the main text. And the results of the W2B attack
method are shown in Table 9.

Table 9: FC Node attack results of Ratio (%)↑. Baseline is the average original solution of the
solvers on test set. We use RL as our attack method and the ratio here is the mean of ratios on all
test instances computed by the solved FC monetary value w.r.t. baselines.

Solver Rule#-Event# (Baseline, Ratio)
30-3K 60-6K 100-10K

Local Search 9.5713, 0.54% 24.9913, 1.15% 22.9359, 0.75%
Greedy Average 18.0038, 0.11% 43.1625, 0.27% 51.3905, 0.18%

Gurobi 18.8934, 41.47% 41.1828, 78.59% 49.3296, 69.84%

F.2 FIGURES

Fig. 9 and 10 summarize the attack and defense results of TSP and FC experiments.
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Figure 9: Box diagram for TSP attack and de-
fense results. We run experiments on 20 testing
instances which traverse 50 cities from ‘tmat’.
Three solvers are chosen as our targets and their
solution distance are shown in the figure.
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Figure 10: Box diagram for FC attack and de-
fense results. We run experiments on 20 testing
instances that contain 60 rules and 6000 events.
Three solvers are chosen as our targets and their
solution fraud$ are shown in the figure.

G EXPERIMENT PARAMETERS

Reinforcement learning model settings. Table 10 records the parameters for RL during the training
process. Trust region clip factor is a parameter in PPO agent to avoid model collapse. We also adopt
some common policy-gradient training tricks like reward normalization and entropy regularization
during training processes.

Table 10: RL parameter configuration in tasks GED, ATSP and FC
Parameters DAG ATSP FC

Actions# 20 20 10
Reward discount factor 0.95 0.95 0.95
Trust region clip factor 0.1 0.1 0.1

GNN type GCN GCN SAGEConv
GNN layers# 5 3 3
Learning rate 1e-4 1e-3 1e-3

Node feature dimensions# 64 20 16

Attackers evaluation setting. For fair comparison of different attackers Random, OG-search, SA
and RL, we set the parameters to ensure similar evaluation time. According to the time complexity
we discuss in Table 2, we specify the following parameters: number of iterations N , beam search
size B and number of different actions M in each iteration.

DAG : Random N = 30; OG-search B = 3, M = 9; SA N = 5, M = 6; RL B = 3, M = 9;

TSP : Random N = 130; OG-search B = 5, M = 25; SA N = 13, M = 10; RL B = 5, M = 25;

FC : Random N = 220; OG-search B = 6, M = 36; SA N = 22, M = 10; RL B = 6, M = 36;

H EXPERIMENT ENVIRONMENTS.

DAG and TSP experiments are run on GeForce RTX 2080Ti (11GB) and Intel(R) Core(TM) i7-
7820X CPU @ 3.60GHz. FC experiments are run on GeForce RTX 3090 (20GB) and AMD Ryzen
Threadripper 3970X 32-Core Processor. Our environment configurations are as follows:

• Ubuntu 20.04
• CUDA 11.2
• Pyhton 3.7
• Pytorch 1.9.0
• Pytorch Geometric 1.7.2
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