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Abstract

Vision-language models (VLMs) achieve001
promising results in medical reasoning but002
struggle with hallucinations, vague descrip-003
tions, Inconsistent logic and poor localization.004
To address this, we propose a agent frame-005
work named Medical Visual Reasoning Agent006
(Med-VRAgent). The approach is based on Vi-007
sual Guidance and Self-Reward paradigms and008
Monte Carlo Tree Search (MCTS). By com-009
bining the Visual Guidance with tree search,010
Med-VRAgent improves the medical visual rea-011
soning capabilities of VLMs. We use the trajec-012
tories collected by Med-RAgent as feedback to013
further improve the performance by fine-tuning014
the VLMs with the proximal policy optimiza-015
tion (PPO) objective. Experiments on multiple016
medical VQA benchmarks demonstrate that our017
method outperforms existing approaches.018

1 Introduction019

Visual Language Models (VLMs) enable context-020

aware medical reasoning and have shown strong021

performance in tasks like radiology report genera-022

tion (Hartsock and Rasool, 2024; Tanno et al., 2025;023

Li et al., 2023c). However, they remain prone to024

hallucinations, where outputs deviate from the vi-025

sual input—posing risks in clinical settings (Chen026

et al., 2025; Jin et al., 2024). This issue is exac-027

erbated by the factual unreliability of underlying028

large language models (LLMs) (Huang et al., 2023;029

Zhu et al., 2024b; Pal et al., 2023), highlighting the030

urgent need for effective mitigation strategies (Kim031

et al., 2025; Huang et al., 2025).032

Researchers also have explored several en-033

hancements, the Chain-of-Thought (CoT) has be-034

come a popular approach to enhance the logi-035

cal reasoning capability (Wei et al., 2022). Vi-036

sual prompting—using region-specific cues —have037

been shown to improve model performance in038

fields such as radiology and pathology where pre-039

cise localization is required. (Denner et al., 2025).040

Task: Medical Report Generation

w/o Visual Guidance & Feedback

with Visual Guidance & Feedback
Student

Feedback

Teacher Assessor

Guidance1 Guid..2

Figure 1: Top: A student struggles, feeling confused and mak-
ing mistakes. Bottom: With guidance, the student overcomes
the confusion and successfully completes the task.

Plan-then-Generate decouple reasoning into struc- 041

tured planning followed by execution (Zhou et al., 042

2022). Self-enhancement mechanisms, such as self- 043

reflection, self-correction, and self-critique, and 044

external feedback systems enable models to revise 045

their own reasoning (Madaan et al., 2023; Liu et al., 046

2023b). Additionally, Retrieval-Augmented Gen- 047

eration (RAG) incorporates external knowledge to 048

support the reasoning process (Lewis et al., 2020). 049

While the above approaches are effective, some 050

key challenges remain. (1) In high-stakes domains 051

like radiology and pathology, VLMs often lack fine- 052

grained image-text alignment, producing overly 053

generic descriptions that miss critical local details, 054

spatial structures, and abnormal patterns. (Zhang 055

et al., 2023a; Yamamoto et al., 2023). (2) Al- 056

though complex medical prompting strategies have 057

been proposed to address this issue, they are of- 058

ten domain-specific, labor-intensive, and require 059

expert knowledge. (Boiko et al., 2023; Yu et al., 060

2023). (3) Furthermore, current models, even with 061

visual prompting, focus on a single ROI and strug- 062

gle to integrate overall medical image structure and 063

spatially distributed lesions, limiting performance 064

in cases with high spatial complexity. (Wang et al., 065

2023; Cheng et al., 2023). (4) Current frameworks 066

offer limited feedback, usually evaluating only the 067

final output, making error detection and correction 068
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during reasoning difficult. (5) Finally, retrieval en-069

hancement methods often introduce irrelevant or070

noisy information, potentially distorting clinical071

reasoning. (Gao et al., 2023; Ji et al., 2023).072

We propose a multimodal agent framework Med-073

RAgent, to tackle challenges like error propaga-074

tion, suboptimal planning, limited feedback, and075

the fragility of retrieval-based methods. Med-076

RAgent consists of three core modules—Teacher,077

Student, and Assessor—and two key components:078

a Visual Extraction Module, and a Retrieval-079

Augmented Reflection (RAR). The Visual Extrac-080

tion Module identifies Regions of interest (ROIs)081

in medical images and uses Visual Token Edit082

to improve the agent’s regional perception. The083

Teacher provides ROI-specific visual guidance.084

The Student generate diagnostic outputs with ROI085

and teacher’s guidance. The Assessor offers fine-086

grained feedback for iterative refinement. We use087

RAR module to enhance factual grounding by in-088

corporating external medical knowledge and intro-089

duce Monte Carlo Tree Search (MCTS) to explore090

high-quality reasoning paths using an adaptive091

expansion strategy while better balancing perfor-092

mance and efficiency. Our framework only needs093

to be trained once for both the teacher and the asses-094

sor, which can achieve good generalization ability095

and save computational resources.096

Results across three benchmarks confirm the097

superior performance of Med-VRAgent, achiev-098

ing new state-of-the-art (SOTA) results. It outper-099

forms reasoning baselines (Visual CoT) on GMAI100

(Table 3), surpasses retrieval-augmented methods101

on IU-Xray (Demner-Fushman et al., 2015) (Ta-102

ble 4), and exceeds advanced fine-tuning strategies103

like MMedPO on VQA-RAD (Lau et al., 2020)104

and MIMIC-CXR (Johnson et al., 2019) (Table 2).105

These results highlight the effectiveness of our106

visual guidance-based medical multimodal agent107

framework.108

In summary, our contributions are as follows:109
• We propose a Teacher-Student-Evaluator110

framework for medical visual reasoning based111

on Visual Guidance and Feedback.112

• We use Visual Extraction and Visual Token113

Edit to improve the visual capabilities of mul-114

timodal agents.115

• We develop a Retrieval-Augmented Reflec-116

tion module to further boost agent reasoning117

via External knowledge.118

• Extensive experiments on multiple medical119

multimodal benchmarks demonstrate that our120

framework achieves SOTA performance. 121

2 Related Work 122

2.1 Foundation Large models 123

Large Language Models (LLMs) like GPT- 124

3 (Brown et al., 2020), PaLM (Chowdhery et al., 125

2022), and LLaMA (Touvron et al., 2023) have 126

shown strong capabilities in reasoning, generation, 127

and understanding across natural language tasks, 128

excelling in few-shot learning, in-context reason- 129

ing, and text generation. These models are cen- 130

tral to the development of multi-modal systems. 131

VLMs have demonstrated remarkable generaliza- 132

tion across cross-modal tasks such as image cap- 133

tioning, retrieval, and visual question answering 134

(VQA). Early models like CLIP (Radford et al., 135

2021) and Flamingo (Alayrac et al., 2022) use large- 136

scale image-text pairs for contrastive or retrieval- 137

based learning. Recent models like BLIP-2 (Li 138

et al., 2023b) and MiniGPT-4 (Zhu et al., 2023) 139

integrate LLMs with visual encoders to enhance 140

reasoning and support open-ended question answer- 141

ing. These advances in Foundation Large Models 142

(FLMs) lay the foundation for tasks that require 143

deep cross-modal understanding. 144

2.2 Multi-step Reasoning in FLMs 145

Reasoning in Foundation Large Models (FLMs) 146

has advanced with frameworks enhancing multi- 147

step inference and decision-making. CoT (Wei 148

et al., 2023) enables intermediate reasoning 149

steps, improving performance on complex tasks. 150

ToT (Yao et al., 2023) explores multiple reason- 151

ing paths using tree search strategies, boosting 152

decision-making. The ReAct framework (Yao et al., 153

2022) combines reasoning with environment inter- 154

action, improving tool-augmented tasks. In multi- 155

modal reasoning, Visual Chain-of-Thought (Rose 156

et al., 2024) extends CoT by integrating visual 157

grounding to bridge logical gaps. The Reinforced 158

Ranker-Reader (R3) architecture (Zhang et al., 159

2023c) improves open-domain question answering 160

by combining a ranker and reader with reinforce- 161

ment learning, optimizing accuracy over retrieved 162

documents. 163

2.3 Medical-Specific Reasoning Frameworks 164

Medical-Specific Reasoning has advanced with 165

specialized frameworks to enhance LLMs’ clin- 166

ical reasoning. MedAgents (Tang et al., 2023) 167

creates a multi-agent system where LLM-based 168
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Figure 2: Overview of the Med-VRAgent framework. The system uses MCTS to generate solutions Sij based on Regions of
Interest ROIij , visual guides Gij , rewards Rij , and external knowledge Kij .S∗

ij is the solution after reflection.

medical experts collaborate on diagnostic tasks,169

improving zero-shot reasoning. MedReason (Wu170

et al., 2025) aligns LLM reasoning with medical171

graphs, enhancing decision-making accuracy and172

interpretability. FineMedLM-o1 (Yu et al., 2025)173

uses supervised fine-tuning and test-time training174

on curated dialogues for complex tasks like differ-175

ential diagnosis. DeepSeek R1 (Moell et al., 2025)176

benchmarks LLM outputs against expert behavior,177

revealing both advanced reasoning and domain-178

specific biases. These models highlight the value179

of tailored frameworks and medical knowledge in180

improving LLM clinical reasoning.181

3 Methodology182

To enhance medical visual reasoning, we propose183

Med-VRAgent, a novel reasoning scheme. It com-184

bines a Visual guidance and Reward-Feedback185

Paradigm in a search algorithm to optimize rea-186

soning paths.187

3.1 Med-VRAgent Reasoning Process188

Fig 2 illustrates the Med-VRAgent process. We189

model the agent reasoning process as a tree search,190

where each node Sij represents a state defined as:191

Sij = [Q, I,Gij ,Aij ,Rij ,Fij ,A∗
ij ,Oij ,ROIi] (1)192

where Q is the query, I is the medical image,193

Gij is the visual guidance, Aij is the current step194

answer, Rij is the reward, Fij is feedback, A∗
ij 195

is the answer after reflection, Oij represents the 196

observation information, including all ancestor and 197

sibling node guidance and answers, and ROIi is 198

the visual ROI. 199

Given an image I and query Q, the goal is for 200

Student Smodel to generate step-by-step reasoning 201

using ROIs ROIi from Vision Extraction Vmodel 202

and visual guidance Gij from Teacher T θ
model. As- 203

serror Aθ
model evaluates guidance and answers, pro- 204

viding reward Rij and feedback Fij . If answer 205

quality is low, the reflection module uses exter- 206

nal knowledge K from retriever Rmodel to refine it. 207

MCTS searches for the optimal reasoning path for 208

answering Q. 209

3.2 Visual Extraction Module 210

Visual ROIs Extraction We use a lightweight 211

VLM to extract medical entities E relevant to 212

the question and image. Following MedVP (Zhu 213

et al., 2025), we adopt a fine-tuned Grounding 214

DINO (Liu et al., 2024) as the visual extractor. 215

Grounding DINO is an open-vocabulary detec- 216

tor that localizes entities from image I and text 217

prompts E = {e1, e2, . . . , eN}. 218

ROI = {ROIi}Ni=1 = G-DI(I, E), ROIi = (bi, si, li)
(2) 219

ROI is the set of extracted regions, with each 220

ROIi = (bi, si, li) representing the bounding box, 221

confidence score, and matched entity label. 222
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Visual Token Edit To refine the Agent’s focus223

on a ROI without retraining, we apply Visual Token224

Edit (VTE), a single edit to visual tokens in the225

first (K≤3) self-attention layers. For each patch226

embedding vi ∈ Rd and binary ROI mask mi ∈227

{0, 1}, we replace:228

vi −→ v⋆
i = vi + β mi b (3)229

where b is a fixed direction (e.g., 1 or vi). Because230

the key and value projections are linear, Eq. (3) in-231

creases the ℓ2 norm of ROI tokens and thus raises232

their soft-max attention weights indirectly, concen-233

trating information flow on the referenced region234

while keeping background tokens intact.235

The gain β > 0 is chosen on-the-fly to prevent236

over- or under-boosting:237

β = si κϕ
( ābg

āROI
− 1

)
, κ ∈ [0, 1], (4)238

where āROI and ābg are the average pre-softmax239

attention logits of ROI and background patches240

obtained from a provisional forward pass, and si241

is the detector confidence for the ROI, ϕ(·) is any242

element-wise activation that is non-negative and243

monotonically non-decreasing. When the model244

already attends to the ROI (āROI ≥ ābg), Eq. (4)245

yields β = 0, leaving the representation unchanged.246

Setting κ = 0 disables VTE entirely, making the247

mechanism safe,computationally negligible, and248

fully reversible.249

3.3 Teacher-Student-Assessor Mechanism250

Teacher Agent. In natural language tasks, the ex-251

ponential growth of tag combinations severely lim-252

its vanilla MCTS. To improve efficiency, we incor-253

porate a prompt-driven Teacher T θ
model that expands254

the policy space via heuristics. See the appendix 6255

for prompt. At each node, T θ
model gathers prior256

guidance–answer pairs (G1..i,A1..i) and feedback257

F , then generates the next-step guidance:258

Gij+1 = Tmodel(ROIi,Gi1..j ,Ai1..j ,Fi) (5)259

Student Agent. The Student Smodel leverages a260

vision-language backbone to perform step-wise rea-261

soning. At each stage of problem, it receives the262

Teacher T θ
model-generated guidance Gij and the cor-263

responding image ROIi, and produces an interme-264

diate answer Aij . After search, the best reasoning265

path selected by MCTS is used to compose the final266

answer. This process is formally defined as:267

Aij = Smodel(ROIi, Gij), (6)268

Assessor Agent. In the MCTS, it is essential to 269

quantitatively evaluate each reasoning step and pro- 270

vide high-quality feedback to guide the search pro- 271

cess. To this end, we adopt a LLM-as-a-Judge (Gu 272

et al., 2025) approach, we introduce an Assessor 273

model Aθ
model, implemented using a VLM, and 274

grounded in the Self-Rewarding paradigm (Yuan 275

et al., 2025) The Assessor Aθ
model employs a 5-point 276

scoring system to evaluate task progress, where the 277

score reflects both the quality and contribution of 278

each intermediate answer. The Assessor Aθ
model re- 279

ceives the image ROI ROIi, the current guidance 280

Gij , and the student’s answer Aij . It then produces 281

both a descriptive feedback Fij and a quantitative 282

rating Rij , See Appendix 7 for prompt. The pro- 283

cess is formalized as: 284

Fij , Rij = Amodel(ROIi, Gij , Aij). (7) 285

3.4 Retrieval-Augmented Reflection 286

The reflection phase is designed to enhance ROI 287

analysis tasks that the Student Smodel fails to com- 288

plete under Teacher T θ
model guidance. We use IU- 289

Xray, MIMIC-CXR, VQA-RAD and other datasets 290

as knowledge sources. The reflection process con- 291

sists of two stages: 292

Retrieval Phase. We adopt the domain-aware re- 293

triever from MMed-RAG (Xia et al., 2025), which 294

uses ResNet-50 (He et al., 2015) and BioClinical- 295

BERT (Alsentzer et al., 2019) as the image and 296

text encoders, respectively. During reflection, the 297

retriever takes as input the guidance Gij , image I, 298

and answer Aij . It first retrieves a Top-K candi- 299

date set K1 from the external knowledge base using 300

FAISS (Johnson et al., 2017). A cross-attention- 301

based relevance scoring model cross-encoder/ms- 302

marco-MiniLM-L-6-v2 (Reimers and Gurevych, 303

2019) then refines these candidates into a subset 304

K2, which is finally reranked to produce the final 305

knowledge set Kij . This multi-stage knowledge 306

retrieval process is formally expressed as: 307

Kij = Rerank
(

Relevance
(
RetrieveTop-K(I,Gij ,Aij)

))
(8) 308

Rewriting Phase. When reflection is needed, the 309

student Smodel receives the original answer Aij , 310

guidance Gij , the input ROI, feedback Fij , and 311

retrieved knowledge Kij . It then synthesizes these 312

inputs to produce a refined answer A∗
ij . This rewrit- 313

ing process can be formalized as: 314

A∗
ij = Smodel(ROIi,Gij ,Aij ,Fij ,Kij) (9) 315
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3.5 Monte Carlo Tree Search Process316

Monte Carlo Tree Search (MCTS) operates through317

four main phases—selection, expansion, evalua-318

tion, and backpropagation—repeating until satis-319

factory reasoning results are produced or compu-320

tational limits are reached. In the Selection phase,321

the algorithm starts at the root node (initial state322

S0) and recursively selects child nodes using the323

Upper Confidence Bound (UCB) formula, which324

balances exploration and exploitation:325

UCB(s) =
R(s)

N(s)
+ C ·

√
2 · lnN(p)

N(s)
(10)326

where R(s) is the reward, N(s) the visit count of327

node s, N(p) the visit count of its parent p, and C328

is a constant. The Expansion phase involves se-329

lecting an unprocessed ROI along the current path330

and expanding it by sampling N guidance sugges-331

tions from the Teacher T θ
model. This step incorpo-332

rates a heuristics mechanism, where feedback from333

Assessor Aθ
model and all observations—including334

guidance, answer from ancestor and sibling nodes335

are provided to the Teacher T θ
model. In the Evalua-336

tion phase, each new child node is assessed using337

feedback from the Assessor Aθ
model. Finally, in the338

Backpropagation phase, the reward R(s′) is used339

to update the average reward and visit counts for340

node S ′ and its ancestors.341

To improve search performance and efficiency342

in MCTS, we apply some strategy.343

Early Stopping. Expansion is terminated when344

the node score exceeds 4 or when KL divergence345

and semantic similarity suggest the Student Smodel346

and Teacher T θ
model outputs align with the previous347

node. This allows the agent to shift to other ROIs.348

Alpha-Beta Pruning. During selection and349

expansion, Alpha (min guaranteed by maximiza-350

tion) and Beta (max guaranteed by minimization)351

bounds are maintained. Subtrees are pruned when352

node scores fall outside this range, avoiding unnec-353

essary evaluations.354

Reflection. If early stopping is triggered re-355

peatedly or the expansion limit is reached without356

achieving a score of 4, the reflection module is ac-357

tivated. In this case, the Student Smodel retrieves358

external knowledge to continue reasoning.359

3.6 Training Strategy and Optimization360

To enhance the Teacher T θ
model and Assessor Aθ

model,361

we fine-tune both VLMs using proximal policy362

optimization (PPO) with feedback trajectories col- 363

lected by Med-VRAgent. PPO optimizes the policy 364

by maximizing expected rewards while constrain- 365

ing updates to avoid performance degradation. The 366

objective is: 367

LPPO(θ) = E
[
min

(
rθÂt, clip(rθ, 1− ϵ, 1 + ϵ)Ât

)]
(11) 368

where 369

rθ =
πθ(A1..i|O1..i)

πθold(A1..i|O1..i)
(12) 370

Here, A1..i and O1..i denote sampled actions (guid- 371

ance) and observations, respectively, while Ât is 372

the advantage estimate and ϵ is the clipping thresh- 373

old. We collect trajectories 374

TMed-VRAgent = (A1..i, O1..i, R1..i) (13) 375

from Med-VRAgent to estimate advantages and 376

update the policy parameters θ. The clipping in 377

LPPO(θ) ensures conservative, stable updates. 378

4 Experiments 379

4.1 Experimental Datasets 380

Dataset Modality Size Task Type

IU-Xray X-ray 590 Report Generation
MIMIC-CXR Chest X-ray 500 Report Generation
VQA-RAD X-ray, CT 451 Visual Question Answering
GMAI-MMbench 38 modalities 4 task Visual Question Answering

Table 1: The medical visual dataset used in this experiment

We evaluate Med-VRAgent on various medical 381

visual-linguistic datasets covering report genera- 382

tion and VQA tasks. As shown in Table 1, for 383

report generation, we use the IU-Xray (Demner- 384

Fushman et al., 2015) dataset containing 590 test 385

samples and the MIMIC-CXR (Johnson et al., 386

2019) dataset test with 500 test samples. For 387

VQA, we use VQA-RAD containing test 451 QA 388

pairs based on X-rays and CT images and GMAI- 389

MMbench (Chen et al., 2024b) we use 4 clinical 390

tasks. 391

For the Med-VQA task, for open questions, we 392

report recall in the Open column. For closed ques- 393

tions, we report precision in the Closed column. 394

For the report generation task, we use BLEU (Pa- 395

pineni et al., 2002) Score, ROUGE-L (Lin, 2004), 396

and METEOR as metrics (Banerjee and Lavie, 397

2005). BLEU score represents the average of 398

BLEU-1/2/3/4. 399
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4.2 Compared Methods400

We evaluate the performance of various methods401

across different approaches.402

For training methods, we employ the LLaVA-403

Med (Li et al., 2023a) model and assess its per-404

formance on the VQA-RAD and MIMIC-CXR405

datasets. The training approaches compared in-406

clude SFT, Self-Rewarding (Yuan et al., 2025),407

Direct Preference Optimization (DPO) (Rafailov408

et al., 2024), STLLaVA-Med, and MMedPO (Zhu409

et al., 2024a).410

For reasoning methods, we use the DeepSeek-411

VL-7B (Lu et al., 2024) and MiniCPM-V2 (Yao412

et al., 2024) models, evaluating their performance413

on the GMAI-MMbench. The reasoning ap-414

proaches compared include CoT (Wei et al., 2023),415

ToT (Yao et al., 2023), and Visual CoT (Shao et al.,416

2024).417

Finally, for Decoding-based and Retrieval-418

Augmented methods, we use the LLaVA-Med v1.5419

model and evaluate its performance on the IU-Xray420

dataset. The Decoding-based methods include421

Greedy Decoding, BeamSearch (Xie et al., 2023),422

DoLa (Chuang et al., 2024), OPERA (Huang423

et al., 2024), VCD (Leng et al., 2023). The424

RAG approaches compared include MedDr (He425

et al., 2024), FactMM-RAG (Zhang et al., 2023b),426

RULE (Liu et al., 2023a), and MMed-RAG (Chen427

et al., 2024a). Please see the appendix 6 for details.428

4.3 Model Implementation429

We applied Med-VRAgent to LLaVA-Med v1.5,430

DeepSeek-VL-7B, and MiniCPM-V2. To ensure431

fair comparison, we follow the same experimen-432

tal settings as prior work, using a decoding tem-433

perature of 0.7. We use DeepSeek-VL-7B as the434

Teacher T θ
model and Assessor Aθ

model and perform435

PPO fine-tuning.436

For PPO fine-tuning, We follow the official train-437

ing scripts and use the ‘peft‘ and ‘trl‘ Python438

packages to implement LoRA and PPO. The fine-439

tuning process is completed within 7–8 hours on440

4 Nvidia A6000 GPUs. The ‘lora_target_modules‘441

are set to ["q_proj", "v_proj"], with lora_r set to442

16, lora_alpha set to 32, and lora_dropout set to443

0.05. The micro_batch_size is 1, the batch_size is444

8, and num_epochs is 1. For optimization, we set445

the learning_rate to 1.41e-5, the reward baseline to446

3.75, and the random seed to 0.447

Methods VQA-RAD MIMIC-CXR
Open Closed BLEU ROUGE-L METEOR

LLaVA-Med v1.5 29.24 63.97 2.76 10.31 7.71
SFT 31.38 64.26 3.10 10.21 8.75
Self-Rewarding 32.69 65.89 3.03 10.05 8.77
DPO 32.88 64.33 3.17 10.38 9.10
STLLaVA-Med 33.72 64.70 3.05 10.12 8.98
MMedPO 34.03 67.64 3.71 13.22 10.20
Med-VRAgent (Ours) 35.70 68.72 3.90 13.53 9.58

Table 2: Comparison of Med-VRAgent with fine-tuning meth-
ods, including SFT, Self-Rewarding, DPO, STLLaVA-Med,
and MMedPO, evaluated on VQA-RAD (Open/Closed Ac-
curacy) and MIMIC-CXR (BLEU, ROUGE-L, METEOR)
datasets, based on LLaVA-Med v1.5. The best result for each
model is bolded.

Methods AR BVR B CR Average

DeepSeek-VL-7B 38.43 47.03 42.31 37.03 41.20
CoT 39.24 46.60 43.26 38.18 41.57
ToT 40.23 46.07 44.42 39.58 42.08
Visual CoT 41.57 46.76 44.13 41.59 43.51

Med-VRAgent (Ours) 44.81 51.82 47.52 42.79 46.74

MiniCPM-V2 40.74 43.01 36.46 37.57 39.45
CoT 41.69 43.90 37.69 38.74 40.51
ToT 42.14 44.32 38.27 39.29 41.01
Visual CoT 43.20 44.70 39.12 41.28 42.08

Med-VRAgent (Ours) 44.81 47.32 40.18 41.34 43.41

Table 3: Comparison of Med-VRAgent with reasoning meth-
ods, including CoT, Tree-of-Thought (ToT), and Visual
CoT ,evaluated on the GMAI (Accuracy) dataset, based on
DeepSeek-VL-7B and MiniCPM-V2. GMAI include AR (At-
tribute Recognition), BVR (Blood Vessels Recognition), B
(Bone), and CR (Cell Recognition). The best result for each
model is bolded, and average values are in blue.

4.4 Overall Performance 448

Evaluating Training Strategy. As shown in Ta- 449

ble 2, we evaluated Med-VRAgent on medical 450

VQA tasks using the LLaVA-Med v1.5 model, com- 451

paring it with five baselines: Zero-shot, SFT, Self- 452

Rewarding, DPO, and STLLaVA-Med. On VQA- 453

RAD, Med-VRAgent achieved 35.70 (open) and 454

68.72 (closed); on MIMIC-CXR, it scored 3.90 455

(BLEU), 13.53 (ROUGE-L), and 9.58 (METEOR), 456

outperforming other methods in generalization and 457

generation quality. 458

Evaluating Reasoning Strategy. As shown in Ta- 459

ble 3, we tested Med-VRAgent’s reasoning strategy, 460

hypothesizing that improved visual gudiance and 461

feedback and higher-quality auxiliary information 462

enhance performance. On the DeepSeek-VL-7B 463

and MiniCPM-V2 models, Med-VRAgent outper- 464

formed others, achieving top scores in BVR (51.82 465

and 47.32) and average (46.74 and 43.41). Com- 466

pared to Zero-shot, CoT, and ToT, it excelled in 467

abnormality recognition, visual reasoning, and rela- 468

tional understanding, confirming the effectiveness 469
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Methods BLEU ROUGE-L METEOR

LLaVA-Med v1.5 9.64 12.26 8.21
Greedy 11.47 15.38 12.69
Beam Search 12.10 16.21 13.17
DoLa 11.79 15.82 12.72
OPERA 10.66 14.70 12.01
VCD 10.42 14.14 11.59

MedDr 12.37 16.45 13.50
FactMM-RAG 14.70 18.05 15.92
RULE 27.53 23.16 27.99
MMed-RAG 31.38 25.59 32.43

Med-VRAgent 33.45 26.81 33.12

Table 4: Comparison of Med-VRAgent with RAG methods,
including FactMM-RAG, MMed-RAG etc, on the IU-Xray
(BLEU, ROUGE-L, METEOR) dataset, based on LLaVA-
Med v1.5 model. The best score for each metric is highlighted
in bold.

of the Med-VRAgent in complex medical VQA.470

Performance Comparison of Decoding-based471

and RAG-based Methods. As shown in Ta-472

ble 4, on the IU-Xray dataset, LLaVA-Med v1.5473

performed poorly (BLEU=9.64), with modest474

improvements from Greedy and Beam Search475

(BLEU=12.10). MMed-RAG showed signifi-476

cant improvement (BLEU=31.38), while Med-477

VRAgent achieved the best results (BLEU=33.45,478

ROUGE-L=26.81, METEOR=33.12), demonstrat-479

ing that Med-VRAgent enhances medical report480

generation quality.481

5 Discussion482

This section presents three experiments examining483

Med-VRAgent’s performance in medical visual484

reasoning tasks. The first investigates the impor-485

tance of each component. The second explores the486

impact of MCTS width and depth on model accu-487

racy. The third experiment evaluates the adaptive488

retrieval strategy (ARS) in the Reflection compo-489

nent compared with the traditional fixed Top-K490

method.491

5.1 Analysis of Med-VRAgent’s Components492

We conduct an ablation study on Med-VRAgent493

to assess the contribution of its key components to494

medical visual reasoning. As shown in Fig 3, re-495

moving any component leads to performance degra-496

dation, highlighting the critical role of each mod-497

ule in reasoning progression, relevance, coherence,498

and adaptability. The visual extraction component499

has the greatest impact. Specifically, omitting any500

module increases the error rate in LLMs, affecting501

reasoning quality.502

Figure 3: Ablation Experiment 1 Results (accuracy; %) for
DeepSeek-VL-7B with Med-VRAgent on dataset GMAI-
MMBench. Noall means removing all components, NoV
means removing visual extraction, NOA means removing As-
sessor, and NoT means removing Teacher.

Experiment Filter Rerank BLEU ↑ ROUGE-L ↑ METEOR ↑

Fixed Top-K ✗ ✗ 3.66 13.10 8.94
Rerank Only ✗ ✓ 3.75 13.20 9.22
Dynamic Top-K ✓ ✗ 3.80 13.75 9.12
Adaptive Retrieval ✓ ✓ 3.90 14.10 9.58

Table 5: Ablation study on the MIMIC-CXR dataset using the
LLaVA-Med v1.5 model. Each retrieval strategy varies in its
use of Filter and Rerank.

5.2 Width and Depth Optimization 503

We studied the impact of different MCTS fixed 504

widths and depths on performance. The results 505

are shown Fig 5. By adjusting the fixed width and 506

depth in the search strategy, we found that accuracy 507

could be improved. Search benefits decrease as 508

width and depth rise, likely due to VLM’s limited 509

processing capacity. The best fixed combination 510

(width 2, depth 3) achieved the highest accuracy of 511

46.68%. The adaptive strategy (width 1.74, depth 512

2.23) achieved an even higher accuracy of 46.74%. 513

This result demonstrates that our adaptive strategy 514

can maintain a balance between exploration and 515

exploitation. 516

5.3 Evaluation of Adaptive Retrieval Strategy 517

The Table 5 presents an ablation study on the 518

MIMIC-CXR dataset using the LLaVA-Med v1.5 519

model, evaluating different retrieval strategies. The 520

experiments compare the impact of enabling fil- 521

tering and Rerank mechanisms on the quality of 522

generated outputs. The results indicate that using 523

either Filter or Rerank alone leads to modest perfor- 524

mance improvements. For instance, compared to 525

the Fixed Top-K baseline, the Rerank Only strategy 526

shows slight gains across all metrics . The best per- 527

formance is Adaptive Retrieval, which combines 528

both Filter and Rerank. It obtains the highest scores 529

across all metrics. 530
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Zero-shot: ... clear lung field, .... The lu
ngs appear to have normal bronchovas
cular markings, ... There is no visible pl
eural effusion or pneumothorax, an
d the diaphragm appears intact....  Th
e lung parenchyma is free of significant 
pathological changes. The costophreni
c angles are well-defined, and no blunt
ing or fluid collection is visible. The che
st X-ray appears normal .... No signs of 
pneumonia, lung masses, or cardiov
ascular abnormalities are present. 

GroundTruth: ... The left lung is relatively well a
erated and clear. The right hemithorax is marked
ly opacified with volume loss, circumferential ple
ural thickening and pleural fluid with near com
plete opacification of the right lung with right b
asal pleural catheter noted. ... Cardiac contours a
re somewhat obscured but unremarkable. ...Biba
silar opacities, larger on the left side, could be d
ue to atelectasis but superimposed infection ca
nnot be excluded. If any, there is a small right pl
eural effusion. There is elevation of the right he
midiaphragm. There is mild vascular congestion.

Med-MAgent: Increased density is observed 
in the left lower lung field, .... The grayscale v
alue in this area is higher than the contralate
ral side, with reduced translucency, ... Blurred 
architecture of the left lower lobe.... ... atelec
tasis ... should be considered; ... Blurring of 
the right heart border may indicate involvem
ent of the right middle or lower lobe, such as 
exudation or pleural effusion. Increased ma
rkings and reduced translucency ... possible i
nflammatory changes. ... No significant cardi
omegaly or mediastinal shift is noted.

Figure 4: Med-VRAgent Medical Report Generation Case Study

Figure 5: Ablation Experiment 2 Results (accuracy; %) for
DeepSeek-VL-7B with Med-VRAgent on dataset GMAI-
MMBench. Best is an adaptive exploration strategy, the av-
erage width and depth are 1.74 and 2.23 (red line), and other
combinations are fixed width and depth.

5.4 Performance and Efficiency Analysis531

In this experiment, we compared the performance532

of four methods (CoT, ToT, Med-VRAgent (Fix),533

Med-VRAgent (Ours)) on the GMAI-MMBench534

dataset. Fix is a fixed width of 2 and depth of 3. The535

results show that Med-VRAgent (Ours) performs536

best in terms of accuracy, reaching 46.74%. In537

addition, Med-VRAgent (Ours) has an advantage538

over Med-VRAgent (Fix) in inference time, which539

is 36.7 seconds, significantly lower than the fixed540

strategy of 45.7 seconds. Although the ToT method541

is slightly higher than CoT in accuracy (42.08% vs.542

41.52%), its inference time is longer, reaching 31.3543

seconds. The Cot method is the most efficient in in-544

ference time, only 18.3 seconds, but its accuracy is545

lower. Overall, Med-VRAgent (Ours) has achieved546

a good balance between accuracy and inference547

time, showing its comprehensive advantages over548

fixed strategies and other methods. This shows549

that adaptive strategies can optimize inference time550

while improving accuracy, and have better applica-551

tion potential.552

Method Accuracy (%) Inference Time (s)

CoT 41.52 18.3
ToT 42.08 31.3
Med-VRAgent (Fix) 46.68 45.7
Med-VRAgent (Ours) 46.74 36.7

Table 6: DeepSeek-VL-7B compares the inference accuracy
and average time of CoT, ToT and Med-VRAgent ( fixed and
adaptive policies ) on the GMAI-MMBench dataset.

5.5 Case Study 553

As shown in the Fig 4, the case comes from the 554

Deepseek-VL and the MIMI-CXR dataset. Med- 555

VRAgent outperforms the Zero-shot in generating 556

clinically accurate and factually grounded chest 557

X-ray reports. While the Zero-shot model incor- 558

rectly states clear lungs and no pleural abnormali- 559

ties, Med-VRAgent correctly identifies increased 560

density, reduced translucency, and possible pleural 561

effusion in the left lung, closely matching the ex- 562

pert GroundTruth. It avoids major hallucinations 563

and captures subtle findings like blurred architec- 564

ture and right heart border changes, suggesting 565

infection or inflammation. Med-VRAgent also in- 566

cludes diagnostic considerations such as atelectasis, 567

reflecting expert-level reasoning. 568

6 Conclusion 569

This study introduces Med-VRAgent, a novel medi- 570

cal visual reasoning framework that enhances multi- 571

modal large models’ performance in medical image 572

understanding. It incorporates a teacher-student- 573

evaluator mechanism, visual guidance and self- 574

feedback paradigm, and a multi-step reasoning 575

strategy based on MCTS. Med-VRAgent achieved 576

top performance across several medical multimodal 577

benchmark datasets, demonstrating proficiency in 578

image-text alignment, spatial structure understand- 579

ing, and lesion recognition. Future research will fo- 580

cus on improving search efficiency, using advanced 581

multimodal models, and expanding deployment in 582

real clinical settings. 583
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Limitations584

Although Med-VRAgent has achieved significant585

improvements in medical visual reasoning, it still586

has limitations. Despite optimization, tree search587

is still resource-intensive. Due to node expansion588

strategies and computational resource constraints,589

it may not be possible to fully search all possible590

reasoning paths. It may not be directly transferable591

to other domains and additional domain adapta-592

tion is required. Visual guidance may have limited593

effect in complex images or low-quality images.594

Inaccurate reasoning may still occur when faced595

with fine-grained errors or very complex cases. Per-596

formance and reliability in actual clinical settings597

have not been fully verified.598

Ethical Considerations599

Ethical considerations are central to our research.600

In this study, we ensure adherence to ethical601

principles by exclusively using publicly available602

datasets and employing models that are open-603

source or widely accepted within the research com-604

munity. We emphasize transparency in all stages605

of our work and prioritize the responsible appli-606

cation of technology, particularly in the sensitive607

domain of medical reasoning, to ensure that our608

contributions promote fairness, reliability, and so-609

cietal benefit.610
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A Prompt877

Prompt

Role Setting: You are a medical expert providing guidance on medical image analysis to help students
improve their understanding.
Task Description: Focus on the red-boxed area in the image, using previous guidance and student
feedback to offer optimized suggestions for enhancing their analysis skills.
Guidance Content:
Analyze Key Area:
Identify the red-boxed region for closer analysis.
Observe structural features, shape changes, color contrasts, and any abnormalities.
Reference Feedback and Suggestions:
Evaluate the student’s previous analysis.
Point out missed details or inadequate analysis, and offer visual techniques.
Optimize Analysis Directions:
Guide the student based on the image type (e.g., CT, X-ray, ultrasound).
Suggest perspectives like cross-sections or tissue density changes.
Important Notes:
Your goal is to help students master image analysis, not to do it for them.
Focus on a logical, systematic approach for comprehensive image interpretation.
Previous Guidance: </Guidance>
Student’s Answer: </Answer>
Feedback Information: </Feedback >
Use this format for guidance: </Guidance> Guidance here </Guidance>

Figure 6: Evaluation prompt for medical image analysis results
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Prompt

You are a medical expert. Please review the image and visual analysis guidance and rate the student-
generated answers using the additional 5-point rating system described below. The rating will be
cumulative based on the following criteria:
5-point rating scale:
1. Relevant information: If the medical vision answer provides some information that is relevant to the
user’s query, even if the information is incomplete or contains some incompletely relevant content, 1
point can be awarded. 2. Partially solve the problem: If the answer solves most of the user’s question,
but does not fully answer the user’s question or does not directly answer the core query, 2 points can be
awarded. 3. Essential elements: If the answer answers the basic elements of the user’s question from a
medical vision perspective, although it may lack detail or completeness in some aspects, but is still
helpful to the user, 3 points can be awarded. 4. Direct and comprehensive solution to the problem:
If the answer directly and comprehensively solves the user’s question, although there may be some
room for improvement in clarity, conciseness or visual focus, 4 points can be awarded. 5. Tailored,
professional and profound: If the answer is tailored to the user’s question, provides an in-depth and
professional answer through medical vision, avoids irrelevant information, and produces high-quality,
engaging and insightful content, 5 points should be awarded.
Information: <guidance> Teacher’s guidance </guidance> <answer> Student’s answer </answer>
Evaluation steps:
Total rating: Please briefly explain your rating in 100 words or less.
Suggestions for teachers: Provide suggestions for teachers to build better guidance in 100 words or less.
Revision suggestions for students: Provide revision suggestions for students in 100 words or less.
Rating conclusion:
<score>Integer score</score>
<feedback1>Feedback to teachers</feedback1>
<feedback2>Revision suggestions for students</feedback2>

Figure 7: Evaluation prompt for medical image analysis results
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