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ABSTRACT

Pruning encompasses a range of techniques aimed at increasing the sparsity of
neural networks (NNs). These techniques can generally be framed as minimiz-
ing a loss function subject to an L0-norm constraint. In this paper, we introduce
CoNNect, a novel differentiable regularizer for sparse NN training, inspired by
Katz centrality, which measures connectivity in weighted graphs. Unlike L1-
regularization, which is often used as a surrogate for L0-norm regularization,
CoNNect ensures that neural networks maintain connectivity between the input
and output layers throughout training. We prove that CoNNect effectively approx-
imates L0-regularization and guarantees maximally connected network structures
as stable stationary points, avoiding issues such as layer collapse. Our theoretical
and numerical results demonstrate that CoNNect outperforms L1-norm regular-
ization. Moreover, we show that CoNNect is applicable to both unstructured and
structured pruning, and further validate its scalability and effectiveness through
improved one-shot pruning performance in large language models.

1 INTRODUCTION

This paper aims to investigate the creation and enhancement of a sparse neural network (NN). Sparse
NNs, known for their drastic reduction in the number of active connections or parameters, have
attracted significant interest in recent years due to their ability to boost computational efficiency and
minimize memory consumption while preserving or even improving model performance (LeCun
et al., 1989; Hassibi et al., 1993; Frankle & Carbin, 2018).

To achieve sparsity in neural networks, various techniques have been proposed and applied in dif-
ferent domains. For example, weight pruning (Hagiwara, 1993), neuron pruning (Huang & Wang,
2017), and structured pruning (e.g., see (Yuan & Lin, 2006; Anwar et al., 2017)) are common meth-
ods used to reduce model size. Pruning refers to the process of systematically eliminating parameters
that contribute little to network performance, effectively simplifying the model. By carefully identi-
fying and removing these less critical components, the resulting sparse network retains its ability to
make accurate predictions while benefiting from increased efficiency.

We believe that pruning should obey the following two axioms (where we identify a NN with a
directed, weighted graph):
Axiom 1 (Delete as Many Weights as Possible). For the point of memory and energy consumption,
the graph should be “small”: in pruning we want to drastically reduce the number of edges and
maybe even nodes.
Axiom 2 (Preserve Neural Network Connectivity). The pruning process must ensure the stability
of the neural network during training, preventing disruptions in its connectivity, and preserving the
flow of information from input to output.

The extensive research on pruning neural networks, as more elaborately outlined in the literature
overview in Section 2 and particularly in review works such as Hoefler et al. (2021); He & Xiao
(2023), predominantly aligns with the first axiom. However, few methods address the second aspect,
as the impact of weight removal on overall network connectivity is rarely considered. A notable
exception is SynFlow pruning, which we will explore in more detail in Section 3.3.2.

In this paper, we propose a new regularizer, called CoNNect, that delivers a pruning satisfying both
axioms simultaneously. CoNNect, based on the Katz centrality measure (Katz, 1953), evaluates
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the connectivity of weighted graphs by utilizing the connectivity measurement employed by Katz
centrality for networks with normalized weights. Normalization results in weights being restricted
to [0, 1], so that the contribution of path from input to output layer to the overall connectivity of the
network goes exponentially quick to zero unless the weights along the paths are (close to) 1. Hence,
when maximizing the connectivity for the normalized weights, we find a weight association that
prefers few ”direct paths” over many ”parallel paths”, while focusing on connectivity of the input
with the output layer. As is clear form the above, including the CoNNect regularizer in training of
an NN, leads in a natural way to a sparse network representation, and hence satisfies Axiom 1 and
Axiom 2 simultaneously. More specifically, we show in this paper that CoNNEct is a regularizer
that can be integrated into the training of the NN that (i) is differentiable (except in the point zero)
and allows for gradient descent optimization, (ii) effectively approximates L0-regularization and
guarantees maximally connected network structures as stable stationary points, avoiding issues such
as layer collapse, and (iii) yields a better surrogate regularization than the L1-norm.

CoNNect is a multi-versatile regularizer that can be applied for both unstructured and structured
pruning. We argue and corroborate by numerical results that CoNNect can be made fruitful at
different stages of training and fine-tuning. We demonstrate this with a sequence of numerical
examples, where we first deploy an unstructured pruning on the weight level on a toy example
and show that CoNNect outperforms L1 and L2 regularization in terms of accuracy and stability.
Moreover, we apply a structured pruning on the channel-level of VGG-11 and achieve superior
performance compared to L1-regularization. Finally, we highlight CoNNect’s competitiveness as a
one-shot pruning method for Large Language Models (LLMs) (Ma et al., 2023).

2 RELATED WORK

The concept of pruning NNs dates back to the early 1990s. The seminal work by LeCun et al. (1989)
on Optimal Brain Damage introduced the idea of pruning by removing weights that contribute least
to performance, thus simplifying the network. Hassibi et al. (1993) extended this concept with
Optimal Brain Surgeon, which provided a more sophisticated method for determining which weights
to prune based on their impact on the error function. These early methods laid the foundation for
modern pruning techniques, focusing on reducing network complexity while maintaining accuracy.

Unstructured vs. Structured Pruning. Pruning methods can be broadly categorized into unstruc-
tured and structured pruning. Unstructured pruning involves selectively removing individual weights
from the network. Unstructured pruning can lead to highly sparse networks, but often results in ir-
regular memory access patterns, which can be difficult to optimize in hardware implementations.
Pruning neural network weights based on absolute values is a classic example of unstructured prun-
ing (LeCun et al., 1989; Hassibi et al., 1993; Hagiwara, 1993; Han et al., 2015). This method is
effective in reducing the number of active parameters, but may not always lead to practical im-
provements in computational efficiency. In contrast, structured pruning removes entire groups of
parameters, such as neurons, filters, or even layers. This approach results in a network structure
that is more amenable to efficient hardware implementations. Techniques like Group Lasso (Yuan
& Lin, 2006; Hoefler et al., 2021) and other structured sparsity learning (Wen et al., 2016; Zhuang
et al., 2020) fall into this category; see He & Xiao (2023) for a review. Structured pruning tends to
preserve the regular structure of the network, which can lead to greater practical efficiency improve-
ments, though it may require more careful consideration to avoid significant loss of accuracy.

Regularization-Based Pruning (Soft Pruning). Regularization methods play a crucial role in pro-
moting sparsity during the training process by extending the loss function with a penalty function
that discourages overly complex models. While sparsity is encouraged, regularization does not
explicitly set the weights to zero but instead reduces their magnitude, allowing them to remain non-
zero and potentially become active again if needed. This leads to what is termed soft pruning, where
sparsity is encouraged but not strictly enforced through hard weight removal. One of the simplest
and most widely used methods, L1-regularization (Tibshirani, 1996; He et al., 2017; Yang et al.,
2019; De & Doostan, 2022), penalizes the sum of the absolute values of the weights, encouraging
many weights to become zero. Moreover, L1-regularization fails to incorporate considerations from
Axiom II, which emphasizes the preservation of neural network connectivity and functionality. This
lack of consideration for connectivity can lead to a network that, while sparse, may suffer from dis-
rupted information flow, ultimately impairing its performance. Similarly, L2-regularization, another
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common regularization technique, penalizes the sum of the squares of the weights (e.g., see Hin-
ton (2012); Phaisangittisagul (2016); Loshchilov et al. (2017)). While L2-regularization is effective
at discouraging large weights, it does not push small weights towards zero, thus failing to induce
sparsity in the network. As a result, L2-regularization typically produces networks with small but
non-zero weights, which do not benefit from the same computational efficiency gains that a sparse
network would offer. Moreover, like L1-regularization, L2-regularization does not address the need
to maintain critical connections as highlighted by Axiom II, making it less suitable for tasks where
maintaining network connectivity is essential.

Stage-Based Pruning (Hard Pruning). Stage-based pruning strategies are utilized as separate,
discrete actions during various stages of model training. These techniques can be implemented
before training (Lee et al., 2018; Tanaka et al., 2020; Wang et al., 2020), during training (Frankle
& Carbin, 2018), or after training (Hagiwara, 1993; Thimm & Fiesler, 1995; Gale et al., 2019; Ma
et al., 2023). Stage-based pruning generally does not fundamentally alter the objective function or
the descent direction like regularization does, but instead acts on the model’s structure or parameters
at specific moments. These kind of pruning methods can be considered hard pruning approaches, as
parameters are explicitly removed. Many different criteria for pruning have been introduced, such
as magnitude-based pruning (Hagiwara, 1993; Gale et al., 2019), which involves removing weights
with the lowest absolute values and is based on the idea that these weights have the least impact on
the overall performance of the model. More complex criteria have been constructed to determine
the impact of weight removal, such as first-order (e.g., see (Zhou & Si, 1999; Molchanov et al.,
2016; Sanh et al., 2020)) and second-order expansions (LeCun et al., 1989; Hassibi et al., 1993;
Ma et al., 2023) of the training objective. Specifically, SynFlow (Tanaka et al., 2020) is a method
that adheres closely to the principles of Axiom II, focusing on retaining the network’s connectivity
and functionality during pruning. Unlike magnitude-based techniques (Hagiwara, 1993; Gale et al.,
2019), SynFlow utilizes a first-order expansion of signal flow to pinpoint and remove weights with
minimal impact on the network’s overall information flow. This approach ensures that while the
network is being pruned, its structural integrity is preserved and the critical pathways in terms of
connectivity remain intact.

We conclude the above discussion by noting that the CoNNect regularizer, to be introduced in the
next section, can be integrated in any of the above stage-based pruning approaches.

3 METHODOLOGY

3.1 PRELIMINARIES

We define a graph G = (V,E), where V denotes the set of vertices (or nodes) and E represents the
set of directed links that connect these vertices. A weighted graph has weights Wi,j ≥ 0 for links
(i, j) ∈ E, where we let Wi,j = 0, for (i, j) ̸∈ E. Neural networks can be described using graph
theory by representing them as directed, weighted graphs. In this setting, the vertices V = V1∪ . . .∪
VK in the graph correspond to the neurons in the network which are organized into distinct subsets
corresponding to the different layers Vk, for k = 1, . . . ,K. Here, the input nodes V1 represent the
neurons in the input layer, the hidden nodes Vk, for k = 2, . . . ,K − 1, represent the neurons in
the hidden layers, and the output nodes VK represent the neurons in the output layer. Assuming a
simple feedforward neural network without skip connections (we leave other architectures such as
recurrent neural networks and residual neural networks for future work), each pair of subsequent
layers Vk and Vk+1 is connected via edges in the set Ek, for k = 1, . . . ,K − 1.

Throughout the paper, we describe a neural network G using the tuple (W, b), where W ∈ R|V |×|V |

is the weighted adjacency matrix of the weights, such that Wi,j connects node i ∈ Vk with node
j ∈ Vk+1, and b = (b1, . . . , b|V |) is the bias vector. Moreover, we denote the activation of the
k + 1th layer by the tensor

X(k+1) = σ
(
W (k)X(k) + b(k+1)

)
,

where σ is the activation function, W (k) is the submatrix containing the weights between nodes in
Vk, and Vk+1, and b(k+1) the biases for the nodes in Vk+1. Finally, we denote f(X(1);W, b) as a
forward pass through the network.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.2 PROBLEM FORMULATION

Let {(xi, yi)}Ni=1 denote the training set, where xi = X
(1)
i represents the input data and yi represents

the corresponding label for each of the N samples. Fitting the parameters of a neural network G in-
volves optimizing the network’s weights to minimize a loss function L(ŷ, y), where ŷ = f(x;W, b)
is the predicted output given an input x.

In this paper, our objective is to train a sparse neural network, which can be achieved by inducing
sparsity in the network’s parameters. A commonly employed approach to sparsification is regular-
ization. Regularization involves augmenting the loss function with an additional term that penalizes
non-zero elements in the network parameters. Specifically, the optimization problem can be formu-
lated as:

min
W,b

L(ŷ, y) + λR(W ), (1)

where R(W ) = ∥W∥0,1. However, this L0-norm is non-convex and leads to a combinato-
rial optimization problem, which is generally NP-hard and computationally intractable for large-
scale problems. A more practical alternative is L1-regularization, as in Lasso regression, where
R(W ) = ∥W∥1,1. L1-regularization induces sparsity by shrinking weights to zero, approximating
the L0-norm while remaining convex and suitable for gradient-based optimization. However, L1-
regularization primarily satisfies Axiom 1 by reducing connections but fails to address Axiom 2,
which focuses on preserving network connectivity and ensuring efficient signal flow. This limitation
can result in a disconnected or underperforming network when key pathways are not maintained.

3.3 CONNECT

To overcome the aforementioned issues, we propose CoNNect, a regularizer that considers both
individual weights and the network’s overall connectivity, ensuring that the structure contributes
to optimal performance. We first introduce CoNNect for unstructured soft pruning, along with a
straightforward strategy for hard pruning. Then, we demonstrate how CoNNect can be seamlessly
extended to structured pruning.

3.3.1 WEIGHT-LEVEL REGULARIZATION

Katz centrality is a measure used in network analysis to determine the relative connectivity of a node
in a network by considering both the number and the quality of connections (Katz, 1953). Inspired
by the connectivity measurement in Katz centrality, let us consider the following connectivity matrix
for a network:

φ(W ) =

K∑
k=1

(θ(W ))k,

where (φ(W ))i,j indicates the connectivity from node i to node j, and θ(W ) is a simple normaliza-
tion of the network weights between two subsequent layers, e.g., for i ∈ Vk and j ∈ Vk+1,

(θ(W ))i,j =
|Wi,j |∑

k∈Vk

∑
l∈Vk+1

|Wk,l|
. (2)

In the context of a neural network, we can denote the connectivity by taking the sum of connectivity
values between the input and output layer:

φtot(W ) =
∑
i∈V1

∑
j∈Vk

(φ(W ))i,j .

Finally, we argue for the preservation of connectivity (as per Axiom 2), so we aim to maximize the
network’s overall connectivity. Consequently, we choose the regularizer as:

R(W ) = −φtot(W ), (3)

which we will refer to as the CoNNect regularizer. A possible extension of CoNNect would be to
include the biases and activation functions, but we leave this for future work.
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CoNNect is effectively the (negative of the) sum of all (multiplicative) reparameterized weighted
paths between nodes in the input layer V1 and the output layer VK . It follows that −φtot(W ) = 0
if and only if there is no path with positive weight between the input and output layer. Moreover,
−φtot(W ) can be efficiently computed using a single forward pass f(1̄,W, 0̄), where 1̄ is a vector
of ones as input, 0̄ is a vector of zeroes for the biases finally taking the sum of the output values.

In the following, we show that −φtot(W ) can be used as a surrogate regularizer for the L0-norm
to induce sparsity. Taking R(W ) = ||W ||0,1 in Equation (1), it is easy to show that any neural
network W that minimizes ||W ||0,1 while connecting the input layer to the output layer (without
skip connections), i.e., φtot(W ) > 0, has K − 1 non-zero weights. As the following theorem
shows, a similar result holds for the CoNNect regularizer as any W minimizing −φtot(W ) has
between layer 2 and K − 1 only K − 3 non-zero weights.

Theorem 1. Consider the problem

min
W

−φtot(W ), (4)

for a given network with number of layers K > 2. All solutions W ∗ to Equation (4) have at most
|V1|+ |VK |+K − 3 non-zero weights.

Proof. See Appendix A.1.

Theorem 1 demonstrates that L0-norm regularization can be effectively achieved through the CoN-
Nect regularizer, as the induced sparsity in large neural networks is comparable. Importantly, the
difference in the number of non-zero elements becomes negligible in practice when most input nodes
contribute valuable predictive information, and all output nodes are used for accurate classification.
Crucially, our regularizer does not force the input nodes to disconnect due to its indifference to the
number of input nodes that connect to the second layer, which is a beneficial feature. If certain input
nodes were disconnected, as might happen with other regularizers such as L1-regularization, impor-
tant data features could be disregarded, potentially resulting in suboptimal model performance.

We now show that a gradient descent can easily solve Equation (4). In the following, we assume that
any network W is connected, that is, φtot(W ) > 0. We do so because we will prove later that it is
impossible to reach an unconnected network (φtot(W ) = 0) when starting in a connected network
simply by using a log-transformation of φtot(W ).

First, consider for some (i, j) ∈ Ek let

∂Wi,j
(θ(W ))i,j =

∑
(r,c)∈Ek

|Wr,c| − |Wi,j |
(
∑

(r,c)∈Ek
|Wr,c|)2

, and ∂Wq,t
(θ(W ))i,j =

−|Wq,t|
(
∑

(r,c)∈Ek
|Wr,c|)2

,

specifically for (q, t) ̸= (i, j) ∈ Ek. Observe that differentiating θ(W ) with respect to Wi,j only
affects the weights in the same layer as Wi,j . Thus, a stationary point to Equation (4) solves the
following first-order conditions:

∂Wi,jφ
tot(W ) =

∑
(r,c)∈E1

∂Wr,c(θ(W ))i,j · ac· = 0, ∀ (i, j) ∈ E1;

∂Wi,jφ
tot(W ) =

∑
(r,c)∈Ek

a·r · ∂Wr,c(θ(W ))i,j · ac· = 0, k = 2, . . . ,K − 2,∀ (i, j) ∈ Ek;

∂Wi,jφ
tot(W ) =

∑
(r,c)∈EK−1

a·r · ∂Wr,c(θ(W ))i,j = 0, ∀ (i, j) ∈ EK−1, (5)

where a·r =
∑

i∈V1

∑
γ∈Γi,r

∏|γ|−1
k=1 (θ(W ))γk

and ac· =
∑

m∈VK

∑
γ∈Γc,m

∏|γ|−1
k=1 (θ(W ))γk

are
the connectivity from input layer to a node r and connectivity from a node c to the output layer,
respectively. To satisfy Equation (5), we need:

• the weights for the edges in E1 must be assigned to all (θ(W ))i,j , where j = argmaxj aj·;

• the weights for the edges in Ek, k = 2, . . . ,K − 2 must be assigned to (θ(W ))i,j , where
argmaxi,j = a·iaj·;

5
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• the weights for the edges in EK−1 must be assigned so that to (θ(W ))i,j , where
argmaxi = a·i.

Weight matrices W that are local optima to Equation (4) can be characterized as having all paths
between layers 2 and K − 1 with equal strength, since stronger paths yield larger ∂Wi,j

φtot(W )
and so attract more weight; see Equation (5). Moreover, the paths need equivalent weights in the
sequence as imbalances are inherently non-stationary. This insight implies that for all non-optimal
stationary points, i.e., φtot(W ) < 1, there exists a direction of improvement by simply transferring
mass from one path to another. It follows that these solutions are inherently unstable and are not
local optima. Concluding, all local optima to Equation (4) are global optima. We present the precise
statement in the following theorem.

Theorem 2. Assume a neural network with K > 3 layers. All stationary points W ∗ to Equation (4)
that are connected, i.e., φtot(W ) > 0, have paths with equal subsequent weights between layers 2
and K − 1 on its non-zero paths. That is, for each two paths γ′, γ′′ ∈

⋃
i∈V1,m∈VK

Γi,m, such that

K−1∏
k=1

(θ(W ∗))γk
> 0, γ ∈ {γ′, γ′′},

i.e., both paths have positive weight, we have (θ(W ∗))γ′
k
= (θ(W ∗))γ′′

k
, for all k = 2, . . . ,K − 2.

Moreover, the only stable stationary points W ∗ of −φtot(W ) are global minimizers and so have
only K − 3 non-zero weights between layer 2 and K − 1.

Proof. See Appendix A.2.

As Theorem 2 shows, the only stable stationary points of CoNNect are those where the weight
matrix does have between layer 2 and K − 1 only K − 3 non-zero weights. This implies that a
gradient search algorithm will not get stuck in the other (unstable) stationary points as for those
there is always a direction of improvement. Hence, global solutions to Equation (4) are easily found
using a gradient search.

As argued earlier, it is recommended to take the logarithm over the connectivity regularizer, i.e.,

− log
(
φtot(W ))

)
, (6)

as it ensures that if the neural network tends to disconnect during training, i.e., φtot(W ) −→ 0, Equa-
tion (6) approaches ∞, hence preventing layer collapse. Moreover, it enhances numerical stability,
ensuring that the regularization term remains well-behaved even for varying scales of connectivity.

Although CoNNect sums over all path weights, it remains computationally efficient because its
gradient can be computed using only a single backward pass. Hence, CoNNect can be efficiently
applied to large-scale neural networks without incurring significant computational overhead.

3.3.2 WEIGHT-LEVEL PRUNING

Once we have trained a model with CoNNect regularization, many of the redundant weights will
have been pushed to zero. Consequently, we can cut these weights using a simple magnetude-based
pruning strategy. Alternatively, we can use SynFlow pruning, which computes the contribution of a
weight to the network connectivity:

Ii,j =
(
∂(θ(W ))i,jφ

tot(W )
)
· (θ(W ))i,j = a·i · (θ(W ))i,j · aj·.

A straightforward pruning approach is then to eliminate the weights with the smallest Ii,j values.

3.3.3 CHANNEL-LEVEL REGULARIZATION

The regularizer introduced in Section 3.3.1 was explicitly defined on the weights of the neural net-
work, making it an unstructured pruning approach. In this section, we show how it can be easily
extended to structured pruning. To this end, we introduce a scaling factor for the output of structures
(e.g., neurons, channels, etc.) that we want to prune (Huang & Wang, 2017)). In the following, we
explain how to include structured pruning on the channel-level in Convolutional Neural Networks

6
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(CNNs), but this can be naturally extended to any parallel structures in neural networks, such as
nodes and entire block structures.

CNNs are a specialized type of neural network designed to process grid-like data such as images.
These images can be represented using a tensor X ∈ Rd×h×w, where d refers to the number of
channels (e.g., RGB for color images) and h and w refer to the height and width of the image
respectively. A standard CNN consists of (several) convolutional layers followed by an activation
function (e.g., ReLU), and pooling layers that reduce spatial dimensions while preserving important
features. Convolutional layers transform the tensor into a set of feature maps through a series of
learned filters (also known as kernels). Each convolutional layer in the CNN applies these filters to
local regions of the input, capturing spatial hierarchies and patterns like edges, textures, and more
complex shapes as the network deepens.
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Figure 1: Illustration of CNN with
the scaling factor.

For performing regularizing on the channel-level, we intro-
duce a set of learnable parameters that scale the output of each
channel after a convolutional layer. More formally, for every
X(k) ∈ Rd×h×w which is the activation after a convolutional
layer, we scale the channels with δ(k) ∈ Rd so that

X(k+1) = δ(k+1) ⊙X(k),

where ⊙ denotes element-wise multiplication so that the scal-
ing factor δ(k) is broadcast across the height h and width w.
The inclusion of scaling factors δ(k) is a simple linear trans-
formation and so can be perceived as the introduction of an
additional layer to the neural network W , see Figure 1, re-
sulting in an extended neural network denoted by W ′. As the
normalization in Equation (2) will also be applied on the scaling factors, the unstructured CoNNect
regularizer in Equation (3) caries over to a structured regularization, where the scaling factors of less
informative channels are pushed to 0 and more informative channels are retained.

3.3.4 CHANNEL-LEVEL PRUNING

Note that once a CoNNect-regularized neural network is obtained, we prune channels by calculated
an importance scores for each channel. To that end, we aim to determine the contribution of a
channel c in layer k in terms of the connectivity of the neural network, denoted by Ik,c. More
formally, let θ(k)c (δ) = |δ(k)c |

/
∥δ(k)∥1 denote the normalization of the scaling factors with index c

for convolutional layer k − 1 so that Ik,c can be determined via

Ik,c =
(
∂
θ
(k)
c (δ)

φtot(W )
)
· θ(k)c (δ) =

( ∑
r∈V

(c)
k−1

a·r

)
· θ(k)c (δ) ·

( ∑
r∈V

(c)
k+1

ar·

)
,

where V
(c)
k is the subset of nodes in a layer k corresponding to channel index c. Simply put, Ik,c

denotes the total connectivity that flows through channel c in layer k. Consequently, a simple pruning
strategy can be to prune the channels with lowest values of Ik,c.

4 NUMERICAL EXPERIMENTS

4.1 WEIGHT-LEVEL PRUNING

In the following, we consider a small multilayer perceptron neural network with ReLU activations.
The network has 6 input nodes, three hidden layers of 5 nodes, and a single output node. We sample
input values xi = (xi,1, . . . , xi,6) ∼ N (0,Σ), where Σ is a matrix with the value 2 on the diagonal.
Furthermore, we let the output values be

yi =

{
1 if xi,1 + xi,2 + ξi > 0;

0 otherwise,

where ξi ∼ N (0, 0.25). To solve the problem with CoNNect, we aim to

min
W,b

L(ŷ, y) + λ1∥W∥1,1 − λ2 log
(
φtot(W )

)
+ λ3∥W∥2,1, (7)
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where L(ŷ, y) is the Binary Cross Entropy between the target and the input probabilities and ∥W∥2,1
is the often-applied L2-regularization, also known as weight decay. We fit three different models
following Equation (7) for which we provide coefficients in Table 1.

Table 1: Regularizer coefficients.

Regularizer λ1 λ2 λ3

None 0 0 0.0005
L1 0.001 0 0.0005
CoNNect 0 0.1 0.0005

All models have been trained for 200 epochs using Adam
with a learning rate of 0.01 using a cosine annealing
scheduler and batch size 256. Afterwards, the weights are
pruned using two different pruning strategies: i) magni-
tude pruning per layer, which prunes 96% of the smallest
weights in absolute value in each layer separately, and ii)
SynFlow pruning, which prunes 96% of the neural net-
work’s weights according to synaptic saliency scores; see Section 3.3.2. Although SynFlow is
generally regarded as a global pruning strategy, we frequently observed layer collapse under this
configuration. In contrast, applying a local pruning approach yielded significantly better results,
particularly for models without regularization and L1 regularization. Finally, the model is fine-tuned
with the same hyperparameters but with a decreased initial learning rate of 0.001 for 50 epochs.

We explore the use of SynFlow pruning, as one might assume that it could yield strong results in
this numerical example as it also incorporates the information flow. However, the key difference
lies in the fact that improved performance is driven by the effects of our regularizer during training,
which SynFlow pruning alone cannot achieve. Although SynFlow is traditionally introduced as a
pre-training pruning method, its data-agnostic nature makes it less effective here, given the presence
of uninformative input nodes. As a result, we applied SynFlow as a post-training pruning strategy
instead for meaningful comparison.

(a) No regularization. (b) L1-regularization. (c) CoNNect regularization.

Figure 2: Trained (top) and fine-tuned (bottom) models. Thicker and darker colors correspond to
stronger values. Red and blue edges correspond to positive and negative values respectively.
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(a) Loss values.
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(c) Magnitude pruning.
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(d) SynFlow pruning.

Figure 3: (a)-(b) Learning curves for solving Equation (4). Synflow pruning happens at iteration 200.
Bandwidths are 95% confidence intervals. (c)-(d) Fine-tuned accuracy after magnitude pruning and
SynFlow pruning.
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We show the results in Figure 2 for a single neural network initialization with SynFlow pruning.
We present the results for 100 repetitions, where we show the (aggregated) train and test loss in
Figures 3(a) and (b) in and the fine-tuned accuracies in Figure 3(c) and (d). As shown, CoNNect
regularization via φtot(W ) outperforms both pruning strategies. Roughly speaking, the final accu-
racy for each model can be categorized by the ability to find the network connecting the input nodes
1 and 2 to the output layer. If the fine-tuned accuracy is around 0.50, the algorithm was unable to
connect node 1 and node 2 to the output (e.g., see Figures 2(a) and (b)). If the fine-tuned accuracy is
around 0.75, the algorithm was able to connect node 1 or node 2 to the output. Finally, if the algo-
rithm preserved the edges connecting node 1 and node 2, it found the correct network and achieves
an accuracy of more than 0.95 (e.g., see Figure 2(c)).

Although SynFlow pruning appears to enhance the performance of L1 and L2 regularization models,
it still falls short of matching the results achieved by connectivity regularization. Additionally, Syn-
Flow pruning does not offer any further improvement over connectivity regularization compared to
simple magnitude pruning. This can be attributed to the fact that CoNNect regularization has already
trained the network to use the correct path to model the current problem, as shown in Figure 2(c). It
then suffices to apply a simple magnitude pruning to identify that path.

We conduct an ablation study to analyze the impact of the regularization strength λ; see Appendix C.

4.2 CHANNEL-LEVEL PRUNING
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Figure 4: Accuracy for given prun-
ing ratio.

In this section, we demonstrate CoNNect for structured prun-
ing on the channel-level; see Section 3.3.3. To that end,
we train VGG-11 (Simonyan & Zisserman, 2014) (includ-
ing Batch Normalization (BN) layers) on the CIFAR-10
(Krizhevsky et al., 2009) dataset. Since the BN-layers have
weights that scale channels in VGG-11 independently, it suf-
fices to use these as scaling factors. Hence, there is no need to
introduce another set of scalars for scaling the channel output.

For the regularization of connectivity in VGG-11, two things
are worth mentioning. First, the standardization applied in BN
layers can be disregarded, as it merely re-scales the connec-
tivity values at these nodes. Second, we remove dropout lay-
ers, as they do not contribute to neural network connectivity.
Third, we replaced the max pooling layers with average pool-
ing layers to ensure that all paths contribute consistently throughout the network and for numerical
stability. Note these changes are only implemented when computing the forward pass for CoNNect,
the forward pass for the VGG-11 itself is not modified.

Similar to the previous section, we compare the results for: i) no regularization, ii) L1 regularization,
and iii) CoNNect regularization. We train various models for 20 epochs with parameters shown in
Table 3, Appendix C, and fine-tune the model after pruning for 5 epochs each. The results, presented
in Figure 4, are consistent with our findings in Section 4.1, confirming that CoNNect outperforms
L1-regularization.

4.3 ONE-SHOT PRUNING LLMS VIA CONNECT

To demonstrate the scalability of our proposed metric, we follow the framework of LLM-Pruner
(Ma et al., 2023) to perform a one-shot pruning on LLaMA-7B (Touvron et al., 2023). First, all
parameters of the LLM are divided into several groups according to the dependency relationships in
the computation process. Then, the importance score under the objective function J (·) is calculated
by Ii,j = |JWi,j

(W )−JWi,j=0(W )| ≈ |∂Wi,j
J (W )·Wi,j |, where we redefine (θ(W ))i,j = |Wi,j |

to enhance both numerical stability and computational efficiency, as dropping the normalization does
not affect the ranking of importance scores or the outcomes. We integrate our CoNNect approach
to the LLM-Pruner through the objective, i.e., J (W ) = L(D)− λ log(φtot(W )), where D denotes
the dataset. The importance of each group is aggregated through summation, and the least important
groups are pruned. Finally, the LLM is fine-tuned using LoRA (Hu et al., 2021) technique to restore
as much of the maximum structural capability as possible under the current architecture.

9
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To assess the model performance, we conduct a zero-shot perplexity analysis on WikiText2 (Merity
et al., 2022) and PTB (Marcus et al., 1993), and then follow Gao et al. (2021) to test the model
with zero-shot classification tasks on common sense reasoning datasets: BoolQ (Clark et al., 2019),
PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021),
ARC-easy, ARC-challenge (Clark et al., 2018), OpenbookQA (Mihaylov et al., 2018), where the
model ranks the choices in these multiple-choice tasks.

We compare CoNNect to L2, random, and vanilla LLM-Pruner’s importance metrics with a 40%
parameter reduction. All methods are equipped with the same group division and aggregation strat-
egy. As presented in Table 2, compared to LLM-Pruner, we have reduced the performance gap be-
tween the pruned model and the original model by 9.13% without fine-tuning, which is 9.29% when
fine-tuning is applied. The results differ significantly from those obtained by randomly removing
parameter groups, but the grouping approach keeps random pruning from detrimental outcomes.
However, L2 regularization even results in incorrect pruning choices, which is consistent with the
conclusions drawn in the previous two subsections. Please refer to Appendix B.2 for detailed exper-
imental settings and more evaluation aspects.

Table 2: Zero-shot performance of the compressed LLaMA-7B. The underlined and bold values
indicate the best results without and with fine-tuning, respectively. The average is calculated among
seven classification accuracies. An asterisk denotes that performance normalization is not available.

Pruned Model Method WikiText2↓ PTB↓ BoolQ∗ PIQA HellaSwag WinoGrande∗ ARC-e ARC-c OBQA Average

Ratio = 0% LlaMA-7B 12.62 22.15 73.15 77.48 73.01 67.09 52.57 41.47 42.40 61.02

Ratio = 40%
w/o tune

L2 13783.81 27844.06 42.69 52.01 28.29 51.46 27.36 25.85 29.80 36.78
Random 100.42 133.56 40.00 57.29 36.00 50.12 32.83 25.77 31.00 39.00
LLM-Pruner 48.09 105.24 58.90 64.74 47.58 53.20 37.75 29.44 35.00 46.66
CoNNect 46.43 95.08 60.95 67.30 50.04 52.09 38.30 29.86 36.80 47.91

Ratio = 40%
w/ tune

L2 44.91 67.16 47.34 71.60 50.60 54.38 43.35 32.25 36.80 48.05
Random 37.82 58.12 54.95 67.36 48.61 55.25 43.69 30.29 33.20 47.62
LLM-Pruner 27.62 48.28 59.97 71.38 56.21 59.35 44.53 32.42 36.20 51.44
CoNNect 27.13 47.44 61.59 71.06 57.78 58.48 45.58 32.85 39.00 52.33

5 CONCLUSIONS

In this work, we introduce a novel regularizer called CoNNect, which leverages network connectivity
to promote sparsity. Theoretically, we showed that CoNNect aligns with the minimization of the
L0-norm and avoids getting trapped in local minima. Through numerical experiments, we have
shown that CoNNect can be effectively used for both unstructured and structured network pruning.
Specifically, our regularizer outperforms standard L1-regularization in toy problems and channel-
wise pruning scenarios. Furthermore, we demonstrated how CoNNect can be applied competitively
in a one-shot pruning framework for large language models (LLMs), as proposed by Ma et al. (2023).
This shows that CoNNect offers flexibility in its implementation within different pruning strategies.
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A PROOFS

A.1 PROOF THEOREM 1

Let Γi,m denote the set of paths in the neural network that go from some input node i ∈ V1 to the
output node m ∈ VK , where

γ = ((i, j), (j, k), . . . , (l,m)) ∈ Γi,m

is a sequence of edges from the input layer to the output layer. Using that φtot(W ) is the sum of
weights of paths from the input to the output layer (Neyshabur et al., 2015), we rewrite

φtot(W ) =
∑
i∈V1

∑
m∈VK

∑
γ∈Γi,m

K−1∏
k=1

(θ(W ))γk
=

∑
i∈V1

∑
m∈VK

∑
γ∈Γi,m

K−1∏
k=1

|Wγk
|∑

(r,c)∈Ek
|Wr,c|

,

where γk refers to the kth edge in a sequence γ. Then, to minimize R(W ), i.e., maximize φtot(W ),
we need to allocate all the mass to a single path from the input to the output, which means selecting
a specific sequence of weights that maximizes the product along that path, effectively minimizing
the contributions from all other paths.

To show the upper bound of |V1| + |VK | +K − 3 non-zero weights in W ∗, assume w.l.o.g. some
W ∗ where a single path Γi,m has all mass in the network. It follows that φtot(W ∗) = 1. Now, let
W ′ denote a solution where some mass from the first weight Wi,j , for (i, j) ∈ Γi,m is shifted to any
other weight(s) Wl,j (note that j is fixed), where l ∈ V1 connects to j ∈ V2. It is easily seen that
φtot(W ′) = 1 since

φtot(W ′) =
∑
l∈V1

(θ(W ′))l,j
∑

γ∈Γj,m

K−1∏
k=1

(θ(W ′))γk

=
∑
l∈V1

|W ′
l,j |∑

(r,c)∈E1
|W ′

r,c|
∑

γ∈Γj,m

K−1∏
k=1

(θ(W ′))γk
=

∑
l∈V1

|W ′
l,j |∑

(r,c)∈E1
|W ′

r,c|
· 1 = 1,

In words, φtot(W ) is indifferent in how many of the |V1| input nodes connect to a single node in
the second layer. Note that a similar argument can be made for the weights connecting the K − 1th
layer with the Kth layer. It follows that the number of non-zero weights for W ∗ is upper bounded
by |V1| for the first layer, |VK | for layer K − 1, and K − 3 for the weights of the remaining layers.
The resulting upper bound is then |V1|+ |VK |+K − 3.

A.2 PROOF THEOREM 2

We prove this by induction using the necessary and sufficient system of equations for stationarity
in φtot(W ), see Equation (5). Assume any connected neural network, i.e., φtot(W ) > 0, of ar-
bitrary size with K = 2 layers and weight allocation such that (θ(W ))i,j > 0 for i ∈ V1 and
j ∈ argmaxk∈V2

a·k. Note that for this specific case any weight allocation will be stationary in
φtot(W ). Moreover, assume a·i = a·j , for all i, j ∈ argmaxk∈V2

a·k, since adding a layer VK+1

implies that this condition must hold to satisfy Equation (5) in the next step.

Now we add a new layer of arbitrary size VK+1. In case VK+1 is the last layer, it is sufficient
to allocate (θ(W ))i,j > 0, for all i ∈ argmaxk∈VK

a·k to obtain a stationary point. In case the
neural network is expanded with another layer VK+2 in a next step, we let (θ(W ))i,j > 0 for
i ∈ argmaxk∈VK

and j ∈ argmaxk∈VK+1
a·k, such that a·i = a·j , for all i, j ∈ argmaxk∈VK+1

a·k
to satisfy Equation (5). Note that this immediately implies (θ(W ))i,j = (θ(W ))r,c, for all
(i, j), (r, c) ∈ argmax(i,j)∈EK+1

a·ia·j . Hence, (θ(W ))γ′
k
= (θ(W ))γ′′

k
, for all k = 2, . . . ,K − 2,

for all paths γ with positive path weight. Moreover, note that stationarity cannot be induced by repa-
rameterization θ(W ). Considering that we derived the above points using the necessary and suffi-
cient conditions for stationarity, all other points are non-stationary. Moreover, for all non-optimal
stationary points, i.e., φtot(W ) < 1, there exists a direction of improvement by simply transferring
mass from one path to another. It follows that these solutions are inherently unstable and are not
local optima. Hence, all local optima to Equation (4) are global optima.
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B EXPERIMENTAL SETTINGS

Platform: All experiments were performed on a single NVIDIA RTX4090 GPU with 24GB of
memory.

B.1 EXPERIMENTAL SETTINGS FOR SECTION 4.2

Dataset: We use CIFAR-10 (Krizhevsky et al., 2009), a dataset with 60,000 32x32 images with 10
different classes. Each class has 6,000 images.

VGG-11 (with Batch Normalization): The VGG-11 model consists of 11 layers with learnable
parameters, including 8 convolutional layers. Each convolutional layer is followed by a batch nor-
malization (BN) layer and a ReLU activation function. Max pooling (2x2, stride 2) is applied where
applicable, based on the spatial dimensions. The network concludes with a classifier composed of 3
fully connected (linear) layers.

Table 3: Regularizer coefficients used in Section 4.2.

Regularizer λ1 λ2 λ3

None 0 0 0.001
L1 0.0001 0 0.001
CoNNect 0 0.1 0.001

B.2 EXPERIMENTAL SETTINGS FOR SECTION 4.3

In the current experiment, we use 10 randomly selected samples from Bookcorpus (Zhu, 2015) to
be the calibration samples for establishing the dependency between parameters in the model and
calculate the gradient for LLaMA-7B. To that end, we truncate each sample to a sequence length
of 128. During fine-tuning, we utilize Alpaca (Taori et al., 2023), which comprises approximately
50,000 samples, to recover the capacity of the pruned model, which requires just 2 hours on our
platform (NVIDIA RTX4090 GPU).

To determine which groups to prune, we compute importance scores for each weight in the model.
Since the simplified form (θ(W ))i,j = |Wi,j | works well on LLMs, we use absolute values instead
of normalized ones to reduce computational effort. Then, specifically for L2 pruning, we compute
the importance of each group by computing the L2-norm and prune the groups with lowest impor-
tance scores.For random pruning, there is no need to compute importance scores for each group -
we simply randomly select certain groups for pruning. Moreover, we leave the first three layers and
the final layer unchanged (similar to Ma et al. (2023)), as substantial changes to the parameters of
these layers greatly influence the performance of the model. Finally, the discovered groups within
each module are pruned according to a predetermined ratio. The pruning rate for the selected groups
is higher than the pruning ratio for the parameters since some layers (e.g., the excluded layers) re-
tain their parameters. For a total of 40% parameter removal, we must prune 50% of the groups
specifically from the fourth to the thirtieth layer.

C ABLATION STUDIES

We have performed experiments with different values of λ. Specifically, increasing λ1 by one order
of magnitude to 0.01 causes a frequent occurrence of layer collapse, although it does increase the
performances for the cases without layer collapse, see Figure 5 in Appendix C. Changing λ3 by
one order of magnitude to 1 did not cause any specific change, arguing for the stability of CoN-
Nect. Moreover, increasing λ2 by one order of magnitude to 0.005 seems to improve the model
performance overall, especially for the CoNNect regularized model, see Figure 6 in Appendix C.
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Table 4: Regularizer coefficients used for producing Figure 5.

Regularizer λ1 λ2 λ3

None 0 0 0.0005
L1 0.01 0 0.0005
CoNNect 0 1.0 0.0005

Table 5: Regularizer coefficients used for producing Figure 6.

Regularizer λ1 λ2 λ3

None 0 0 0.005
L1 0.01 0 0.005
CoNNect 0 1.0 0.005
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Figure 5: Fine-tuned accuracy after magnitude pruning and SynFlow pruning for the parameters in
Table 4.
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Figure 6: Fine-tuned accuracy after magnitude pruning and SynFlow pruning for the parameters in
Table 5.
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D LIMITATIONS AND FUTURE WORK

For future work, we suggest extending CoNNect to incorporate biases and activation functions,
thereby broadening its applicability. Moreover, when CoNNect is applied as regularizer, it can be
used to determine meaningful pruning ratios by analyzing the dispersion achieved in the model’s
regularized weights (e.g., see Zhuang et al. (2020)), where in the current paper’s experiments we
have simply used a predetermined pruning ratio. Finally, exploring its effectiveness on different
neural network architectures, such as recurrent neural networks, could provide further insights into
its generalizability.

16


	Introduction
	Related Work
	Methodology
	Preliminaries
	Problem Formulation
	CoNNect
	Weight-Level Regularization
	Weight-Level Pruning
	Channel-Level Regularization
	Channel-Level Pruning


	Numerical Experiments
	Weight-Level Pruning
	Channel-Level Pruning
	One-shot Pruning LLMs via CoNNect

	Conclusions
	Proofs
	Proof Theorem 1
	Proof Theorem 2

	Experimental Settings
	Experimental Settings for Section 4.2
	Experimental Settings for Section 4.3

	Ablation Studies
	Limitations and Future Work

