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Abstract

Vision-language models (VLMs) increasingly001
leverage diverse knowledge sources to address002
complex tasks, inevitably encountering con-003
flicts between their internal parametric knowl-004
edge and external information. Knowledge con-005
flicts often result in hallucinations and unreli-006
able responses, but the mechanisms governing007
such interactions remain unknown. To address008
this gap, we analyze the mechanisms VLMs use009
to resolve cross-modal conflicts by introducing010
a dataset of multimodal counterfactual queries011
that deliberately contradict internal common-012
sense knowledge. We localize with logit inspec-013
tion a small set of heads that control the conflict.014
Moreover, by modifying these heads, we can015
steer the model towards its internal knowledge016
or the visual inputs. Finally, we show that atten-017
tion from such heads pinpoints localized image018
regions driving visual overrides, outperforming019
gradient-based attribution in precision. 1020

1 Introduction021

Vision–language models (VLMs) (Alayrac et al.,022

2022; Li et al., 2022; Liu et al., 2023; Team, 2024;023

Deitke et al., 2024) have shown a remarkable versa-024

tility across various multimodal tasks, from image025

understanding to image generation. They draw on026

their ability to combine a rich set of world knowl-027

edge acquired during training, while also integrat-028

ing contextual information provided in the prompts.029

However, these two sources of information can030

contradict each other, such as when the pretrain-031

ing knowledge becomes outdated (Lazaridou et al.,032

2021; Luu et al., 2022) or when intentionally mis-033

leading visual cues are injected into the prompt034

(Liu et al., 2024d). These conflicts often trigger035

hallucinations and mistakes (Cui et al., 2023; Liu036

et al., 2024a; Guan et al., 2024), and little is known037

1Our code and data have been uploaded to the submission
system and will be open-sourced upon acceptance.
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Figure 1: Overview of Our Approach. (Top) We con-
struct prompts that induce a conflict between a vision-
language model’s internal factual knowledge and coun-
terfactual visual context. (Bottom) We then analyze
which components in the model mediate this tension,
identifying attention heads and visual patches that favor
factual or visually grounded predictions.

about the internal mechanisms employed by VLMs 038

to resolve this conflict (Xu et al., 2024). 039

In this work, we analyze how VLMs resolve 040

conflicts between visual input and internal knowl- 041

edge by framing the problem through counterfac- 042

tual image-text pairs. We prompt the VLMs with 043

images depicting unusual or absurd scenes taken 044

from the WHOOPS! dataset (Guetta et al., 2023), 045

which are followed by a sentence encouraging a 046

typical, knowledge-based continuation. As shown 047

in Fig. 1, each input prompt is associated with a 048

1



counterfactual pair of completions. For instance,049

the model may be shown an image of a wolf howl-050

ing at the sun, a scene that contradicts common-051

sense knowledge, and asked to complete the prompt052

accordingly (see top-left panel). We construct the053

dataset such that VLMs, when prompted with text054

alone, generate factual responses while in the pres-055

ence of the image, change their prediction to align056

with the visual context, even when it contradicts057

their internal knowledge. Building on the approach058

of Ortu et al. (2024), we identify which internal059

components of the model contribute the most to060

factual versus counterfactual predictions. We find061

that a small subset of attention heads mediates this062

competition, and targeted interventions on these063

heads can reliably alter the model’s outputs. We064

also show that these heads prove more effective065

than gradient-based methods at identifying which066

parts of an image are most important for resolving067

multimodal conflicts in VLMs.068

In summary, our contributions are as follows:069

1. We construct WHOOPS-AHA!, a dataset that070

combines images containing counterfactual071

scene elements and commonsense textual072

queries, designed to analyze conflicts between073

visual context and internal knowledge (Sec.074

4.1);075

2. We identify the attention heads that promote076

factual and counterfactual responses, ranking077

their importance with logit attribution (Sec.078

4.2);079

3. By reweighting these heads, we show that we080

can control the tendency of the model to rely081

on the visual evidence or its internal knowl-082

edge and vice versa (Sec. 4.3);083

4. We demonstrate that direct attention attribu-084

tion from conflict-resolution heads provides085

more accurate identification of counterfactual086

image regions than traditional gradient-based087

attribution methods (Sec. 4.4).088

2 Related Work089

Most prior work on knowledge conflict has focused090

on language models and unimodal tasks, leaving091

the multimodal domain underexplored (Xu et al.,092

2024).093

The analyses of knowledge conflicts in language094

models have largely been behavioral, showing that095

when resolving conflicts between contextual and096

internal knowledge, language models can overrely 097

on their internal knowledge or contextual infor- 098

mation, depending on factors such as model size 099

(Longpre et al., 2021) and conflicting external in- 100

formation (Chen et al., 2022). Wang et al. (2024) 101

found that even SOTA language models often fail 102

to report inconsistencies between in-context infor- 103

mation and their internal knowledge. Few works 104

have analyzed the internal mechanisms underlying 105

conflict resolution. Ortu et al. (2024) identified two 106

heads that mediate between factual and counterfac- 107

tual information, while Jin et al. (2024) showed 108

that pruning specific heads can steer the model’s 109

reliance toward internal or contextual sources. In 110

the multimodal domain, studies on VLMs have 111

primarily focused on benchmark construction and 112

black-box evaluation. Han et al. (2024) introduced 113

a dataset probing contextual knowledge conflicts 114

introduced by deceptive visual elements in prompts. 115

Golovanevsky et al. (2025) proposed NOTICE, 116

using semantically corrupted image pairs to an- 117

alyze attention heads behavior in LLaVA and BLIP. 118

Liu et al. (2024c); Guan et al. (2024) developed 119

ConflictVis to study conflicts between visual in- 120

put and parametric knowledge, but restricted their 121

analysis to the prompt structure rather than internal 122

mechanisms. 123

In contrast, in this work, we focus on model 124

internals, identifying specific attention heads re- 125

sponsible for mediating factual and counterfactual 126

reasoning, and validating their roles through tar- 127

geted ablations. 128

3 Background and Methods 129

3.1 Model Architectures 130

This study investigates how visual input interacts 131

with the model’s internal knowledge during text 132

generation in VLMs. Given a sequence of k image- 133

text tokens, a VLM encodes the image using a 134

vision encoder and the text using an embedding 135

matrix, producing the residual stream x ∈ Rd×k, 136

where d is the hidden dimension of the model. We 137

denote the residual stream at position i and layer l 138

as xl
i. The residual stream is processed through L 139

layers, each composed of an attention block al and 140

an MLP block ml. After the final layer, it is pro- 141

jected to the vocabulary space via an unembedding 142

matrix WU ∈ Rd×|V |. Formally, the update of the 143

residual stream at the lth layer is: 144

xl = xl−1 + al +ml , (1) 145
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where both the attention and the MLP block take146

as input the x after layer normalization norm:147

al = al(norm(xl−1)) , (2)148

ml = ml(norm(xl−1 + al)) . (3)149

We focus on two models: LLaVA-NeXT-7b (Liu150

et al., 2024b) and Gemma3-12b (Kamath et al.,151

2025). LLaVA-NeXT has 32 layers with 32 atten-152

tion heads per layer, while Gemma3 has 48 layers153

with 16 attention heads per layer. Both models154

use a visual encoder to process image features, but155

generate only textual output.156

3.2 Dataset Construction157

To study how VLMs handle conflicts between vi-158

sual context and internal knowledge, we introduce159

WHOOPS-AHA!, a new dataset designed to in-160

duce controlled competition between the two in-161

formation sources. Each example in WHOOPS-162

AHA! consists of (i) a counterfactual image, (ii)163

a sentence referring to the image, and (iii) two164

sets of plausible continuations: (Sfact) reflecting165

common sense knowledge, and (Scofa) consistent166

with the counterfactual scene represented in the167

image. We construct our dataset on top of the168

WHOOPS! collection (Guetta et al., 2023), which169

consists of 500 images illustrating visually implau-170

sible scenes, each annotated with descriptions of171

the image content and the underlying anomaly.172

For each image in WHOOPS!, we use GPT-4o to173

generate a sentence that references the anomaly,174

while remaining consistent with commonsense (fac-175

tual) completion without visual input. GPT-4o is176

also prompted to produce a set of plausible fac-177

tual tokens Sfact and visually-grounded counter-178

factual continuations Scofa. For instance, for the179

case of an image representing a wolf howling at180

the sun (see Fig. 1), the sentence proposed by181

GPT-4o is "The wolf is howling at the",182

Sfact = {"moon", "night",...} Scofa = {"sun",183

"daylight","morning",..}. All generated con-184

tent is manually verified to ensure a clear distinc-185

tion between factual and counterfactual continu-186

ations. Full prompt details are provided in ap-187

pendix C.188

3.3 Analytical Tools189

Logit Inspection To identify the internal compo-190

nents of VLMs responsible for the competition be-191

tween inner knowledge and conflicting visual con-192

text, we trace the evolution of token logits across193

the model’s architecture. Specifically, we apply the 194

Logit Lens technique (Nostalgebraist, 2020), which 195

projects intermediate hidden representations into 196

the vocabulary space. This approach has been used 197

in previous work to analyze token-level informa- 198

tion flow (Halawi et al., 2023; Yu et al., 2023; Ortu 199

et al., 2024) in LLMs. In our setting, we apply the 200

Logit Lens to the last token of the prompt and ex- 201

tract the logits corresponding to the tokens in Sfact 202

and Scofa at various layers and components of the 203

model to identify the components that contribute 204

to the promotion of one mechanism over the other. 205

Targeted Intervention on Attention Heads To 206

test the causal role of specific attention heads in 207

promoting predictions aligned with either factual 208

inner knowledge or counterfactual visual context, 209

we intervene directly on their attention patterns 210

during inference. We define two groups of heads 211

based on Logit Inspection: factual heads (Hfact), 212

which favor predictions based on inner knowledge, 213

and counterfactual heads (Hcofa), which favor vi- 214

sually grounded alternatives. We apply a multi- 215

plicative intervention to their attention weights at 216

the final token position (i.e., the last row of the 217

attention matrix), after the softmax operation. Let 218

Ahl
last = [Ahl

last,img,A
hl
last,text] denote the last row of 219

the attention weights for head h at layer l, divided 220

between image and text tokens. The intervention is 221

defined as 222

Ahl
last,img ← (1 + λ) ·Ahl

last,img (4) 223

if (h, l) ∈ Hcofa, and 224

Ahl
last,text ← (1− λ) ·A(hl)

last,text (5) 225

if (h, l) ∈ Hfact. 226

This targeted and bidirectional intervention al- 227

ters the flow of information in a controlled way, 228

allowing us to test whether modulating the influ- 229

ence of these heads changes the model predictions 230

toward the factual or counterfactual outcome. To 231

determine the number of heads to include in each 232

group, we experiment with different group sizes 233

ranging from 5 to 60 heads. We select 20 heads 234

of the configuration that offers the best trade-off 235

between the effectiveness of the intervention and 236

the stability of the model’s output. Stability is mea- 237

sured by tracking the rank position of the two repre- 238

sentative tokens (tfact and tcofa) in the model’s next- 239

token logit distribution, ensuring that the higher- 240

ranked token remains within the top 80 positions 241

for Gemma3 and the top 30 for LLaVA-NeXT. 242
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Figure 2: Factual Prevalence in Attention and MLP
Blocks. The plot shows the factual prevalence of atten-
tion and MLP blocks in LLaVA-NeXT across layers,
indicating whether each component promotes predic-
tions aligned with factual knowledge or counterfactual
visual context. Positive values correspond to blocks
favoring the factual (commonsense) continuation. Neg-
ative values indicate preference for the counterfactual
continuation induced by the image. The results reveal
a functional distinction: attention blocks tend to sup-
port counterfactual information (top), whereas MLP
blocks frequently promote the model’s internal knowl-
edge (bottom).

Identification of Conflict-Inducing Visual To-243

kens To isolate the visual tokens responsible for244

introducing counterfactual information that con-245

flicts with the inner knowledge of the model, we246

apply two methods. Both are based on a threshold247

parameter τ ∈ [0, 1], which controls the sensitivity248

of token selection.249

1. Most-Attended Visual Tokens: Given a set250

of attention heads, we select the visual tokens251

that receive at least τ times the maximum at-252

tention weight within each head. We then take253

the union of these tokens across all heads.254

2. Gradient-Based Token Importance: We255

compute the gradient of the logit associated256

with a target token (e.g., from Sfact or Scofa)257

with respect to the input visual token embed-258

dings. Visual tokens whose gradient magni-259

tudes exceed τ times the maximum are se-260

lected as influential.261

By varying τ , we control how many image patches 262

are selected—from none when τ is 1, to all when 263

τ is 0. This allows us to ablate different image 264

portions and analyze how they affect the model 265

predictions. 266

3.4 Reproducibility 267

We run the experiments on one NVIDIA H100 268

GPU, and two GPUs for the gradient-based attribu- 269

tion tests. We use the HuggingFace Transformers 270

library (Wolf et al., 2020) with public implemen- 271

tations of LLaVA-NeXT and Gemma3. The total 272

compute time is 15 GPU hours. The WHOOPS! 273

dataset was released with a CC-By 4.0 license. 274

4 Results 275

4.1 Inducing the Conflict between Inner 276

Knowledge and Visual Context 277

To systematically induce competition between vi- 278

sual input and internal knowledge, we construct 279

the WHOOPS-AHA! dataset as described in Sec. 280

3.2. Each example of WHOOPS-AHA! includes 281

a counterfactual image, a sentence describing the 282

image, and two sets of plausible next-word candi- 283

dates proposed by GPT-4o: Sfact, consistent with 284

commonsense knowledge, and Scofa aligned with 285

the counterfactual visual context. For each model, 286

first identify tfact as the token in Sfact with the 287

highest probability using only the textual part of 288

the prompt. We consider only the first token if 289

a candidate word is tokenized into multiple to- 290

kens. Then, using the full multimodal input (im- 291

age and text), we select tcofa as the token with 292

the highest probability from Scofa. For example, 293

when prompted with the sentence "The wolf is 294

howling at the", LLaVA-NeXT and Gemma3 295

predict the factual token moon with probabilities 296

of 78% and 100%, respectively. However, when 297

the corresponding image is included, both models 298

shift to the counterfactual token sun, with probabil- 299

ities of 26% (LLaVA-NeXT) and 44% (Gemma3), 300

while the probability of moon drops to 17% and 301

0.02%. We filter out ambiguous cases in which 302

Scofa contains tokens with a probability higher than 303

Sfact in the text-only setup, keeping 436 examples 304

for LLaVA-NeXT and 432 for Gemma3. In the 305

following sections, we always prompt the model 306

with image and text using tfact and tcofa to assess 307

whether different model components promote inter- 308

nal knowledge or contextual information. Notably, 309

introducing the image reduces the preference of the 310
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Figure 3: Contribution of Attention Heads to Factual and Counterfactual Predictions. (Left) Factual accuracy
of individual attention heads in LLaVA-NeXT, based on Logit Lens projections at the final token position. Blue
indicates heads that tend to favor the factual token (reflecting inner knowledge), while red indicates heads that
favor the counterfactual token (introduced by the visual context). (Right) Mean attention to image tokens at the
final generation step for heads in each group. Each group contains 20 attention heads. Counterfactual heads attend
significantly more to the image (60%) than factual heads (28%) or the model-wide average (22%), indicating that
visual information is directly propagated to the output and plays a key role in counterfactual predictions.

model for the commonsense token: the prediction311

of the factual token tfact drops to 27% for LLaVA-312

NeXT and 24% for Gemma3. This setup ensures313

that the image introduces a counterfactual signal314

that conflicts with the model’s inner knowledge,315

allowing us to analyze how visual input alters the316

model’s prediction compared to its default behavior317

based on factual knowledge alone.318

4.2 The Tension Between Inner Knowledge319

and Visual Context is Localized320

Building on the controlled knowledge conflict in-321

duced by WHOOPS-AHA!, we now study how the322

competition between factual and counterfactual323

continuations is resolved internally and which com-324

ponents mediate it. To do this, we use the Logit325

Lens technique to analyze the hidden state at the326

final token position of the prompt, after each at-327

tention block and MLP, projecting it into the vo-328

cabulary space (see Sec. 3.3). We then compute,329

across the dataset, how often the logit of the factual330

token tfact is larger than that of the counterfactual331

token tcofa. This gives an accuracy score for each332

component that reflects whether it tends to promote333

the factual or counterfactual mechanism. To mea-334

sure the strength of this tendency, we compute the335

factual preference strength, which is defined as the 336

difference between the fraction of examples for 337

which tfact > tcofa and 0.5, the random baseline. A 338

value near zero indicates no consistent tendency to 339

favor factual versus contextual information across 340

the dataset, while higher values reflect stronger, 341

more polarized behavior. This method allows us to 342

localize the components that modulate the interac- 343

tion between visual inputs and internal knowledge. 344

Functional Separation Between Attention and 345

MLP Layers. We first compare the contributions 346

of attention and MLP blocks to the prediction 347

of tfact and tcofa. Figure 2 shows the results for 348

LLaVA-NeXT (see appendix A for similar results 349

on Gemma3). Attention blocks exhibit a stronger 350

tendency to favor the counterfactual visual context, 351

whereas MLP blocks are more aligned with the 352

internal factual knowledge. In particular, the influ- 353

ence of attention blocks increases from the middle 354

layers (around layer 15), peaking in the final four 355

layers. MLP blocks similarly show their strongest 356

alignment to factual knowledge in the upper lay- 357

ers, with a peak at the final layer. This pattern 358

is consistent with previous findings on the role of 359

upper-layer MLPs in retrieving factual knowledge 360
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(Geva et al., 2021; Meng et al., 2022; Dai et al.,361

2022).362

Localization of the Modality Conflict to Individ-363

ual Attention Heads. We next examine the role364

of individual attention heads. Figure 3-left shows365

the tendency for each attention head to promote366

or suppress the factual token in LlaVa-NeXT (see367

Appendix, Fig. 8 for Gemma3). The distribution368

shows that only a small subset of heads exhibit369

a strong, consistent alignment with tfact or tcofa.370

Moreover, consistently with the results at the block371

level, these factual and counterfactual heads are372

concentrated in the final layers of the model, indi-373

cating that the conflict between inner knowledge374

and visual context is resolved late in the forward375

pass. In the analyses of the next sections, we focus376

on the 20 heads that promote the factual and coun-377

terfactual tokens more strongly. On average, the378

factual heads favor the tfact 85% of the time, and379

the counterfactual ones 15% of the time, indicating380

strong alignment with their respective information381

sources.382

Factual and Counterfactual Heads Exhibit Dis-383

tinct Visual Attention Patterns. We then inves-384

tigate whether heads associated with the factual385

mechanism or the counterfactual visual context386

exhibit distinct attention patterns – specifically,387

whether they attend to different token modalities388

(image or text). Since the counterfactual informa-389

tion is introduced through the image, a natural hy-390

pothesis is that counterfactual heads attend more391

strongly to visual tokens, while factual heads rely392

more on textual content. To test this hypothesis, for393

each group of heads, we sum the attention weights394

assigned to visual tokens in the last row of each395

head and average across the dataset. Figure 3-right396

reports the average amount of attention to the im-397

age for the two groups of heads. Heads favoring the398

counterfactual token tcofa attend to image tokens399

significantly more (61%) than those aligned with400

inner knowledge (29%) or the model-wide average401

(22%).402

Although the counterfactual signal originates in403

the image, it is not a priori clear that this infor-404

mation is transmitted directly to the final token.405

The model could, in principle, diffuse or encode406

this signal in different positions across intermediate407

layers. However, the observed attention patterns408

suggest that the visual context influences the out-409

put token directlyin late layers of the model, with410

limited intermediate processing. These findings are411

20

40

60

80

−2 0 2
λ

Fa
ct

ua
l A

cc
ur

ac
y 

(%
)

Model Gemma3 LLaVA−NeXT

Figure 4: Intervention on Target Attention Heads.
Change in factual accuracy under different levels of
intervention strength (λ). For λ < 0, we boost the
counterfactual heads (on image tokens) and weaken the
factual heads (on text tokens); for λ > 0, we do the
opposite. The intervention is applied at the final token
position, modifying only the relevant attention values in
the last row.

consistent for Gemma3, and we report the analysis 412

in appendix A. 413

4.3 Targeted Intervention on Selected 414

Attention Heads Causally Shifts Model 415

Behavior 416

Having identified attention heads aligned with ei- 417

ther factual knowledge or counterfactual visual con- 418

text, we next examine whether these components 419

play a causal role in shaping model predictions. To 420

this end, we apply the targeted intervention strategy 421

introduced in section 3.3, modifying the attention 422

weights to steer the output of the model towards 423

one mechanism or the other. Guided by our ear- 424

lier observation that counterfactual heads attend 425

more to visual tokens, we design a bidirectional 426

intervention that selectively adjusts attention val- 427

ues based on head type and token modality. For 428

counterfactual heads, we modify their attention to 429

image tokens; for factual heads, we target their at- 430

tention to text tokens. In both cases, we apply a 431

multiplicative adjustment at the final token posi- 432

tion. Each intervention simultaneously enhances 433

the attention of one group to its relevant modality 434

while suppressing the other group’s attention, for 435

instance increasing the attention to image tokens 436

for counterfactual heads while reducing attention to 437

text tokens for factual heads, and vice versa. This 438

approach enables us to modulate the relative influ- 439

ence of factual and counterfactual mechanisms on 440

the model prediction. 441

Figure 4 shows the results of our intervention 442
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for LLaVA-NeXT (orange profile) and Gemma3443

(green profile). For LLaVA-NeXT, the baseline444

accuracy, defined as the proportion of examples in445

which the factual token tfact receives a logit higher446

than the counterfactual token tcofa, is 27%. When447

we increase attention from factual heads and de-448

crease it from counterfactual heads, the factual ac-449

curacy increases to 82%, indicating a strong shift to-450

wards predictions of inner knowledge. Conversely,451

reversing the intervention reduces the accuracy to452

20%, confirming that these heads causally influ-453

ence whether the model favors factual or counter-454

factual content. A similar trend can be observed455

for Gemma3, with an even stronger relative effect456

driven by its lower baseline factual accuracy of457

24% and a peak of 85%. To ensure plausible in-458

terventions, we constrain the scaling parameter to459

λ ∈ [−3, 3] and monitor the position of the higher-460

logit token in the full next-token distribution. For461

example, using LLaVA-NeXT, the average rank of462

the token tfact shifts from 3 at λ = 0 to 31 at λ = 3,463

indicating that while the intervention is highly ef-464

fective, it introduces some deviation in the overall465

logit distribution, an expected effect when strongly466

modulating internal components. As a control, we467

randomly select 100 attention heads and apply the468

same intervention for varying λ values. This ma-469

nipulation does not produce a substantial deviation470

from the baseline, confirming that the observed ef-471

fects are specific to the heads identified as aligned472

with factual or counterfactual mechanisms. The473

complete results are reported in Appendix Fig. 9.474

4.4 Counterfactual Predictions Depend on475

Localized Image Regions476

In the previous sections, we analyzed the conflict477

between contextual information and internal knowl-478

edge using WHOOPS-AHA! prompts, which in-479

duce a competition between counterfactual visual480

cues and factual model knowledge. This analysis481

revealed that specific attention heads at the final482

token position mediate this conflict, with heads483

aligned with the visual context attending strongly484

to image tokens and thereby injecting visually485

grounded information into the generation process.486

However, two key questions remain open. (i) Is the487

counterfactual visual signal localized to specific488

image regions or spread across the input? (ii) Is489

the visual signal passed directly to the last token490

position, or is it mediated by successive layers and491

tokens before reaching the output in the upper lay-492

ers? To address these questions, we perform two493
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Figure 5: Ablation of Relevant Pixels. The plot shows
the effect of ablating different percentages of image
pixels in LLaVA-NeXT. The green line corresponds to
pixels selected based on the highest attention from coun-
terfactual heads, while the orange line corresponds to
pixels with the highest gradient magnitude with respect
to the counterfactual token. The gray line shows a ran-
dom baseline where pixels are removed uniformly at
random.

complementary analyses: (i) we identify the image 494

patches most responsible for driving counterfac- 495

tual predictions using attention and gradient-based 496

attribution methods, as described in section 3.3; 497

and (ii) we ablate the identified patches by setting 498

the corresponding visual token embeddings to zero 499

at the input of the transformer, and measure the 500

resulting change in inner knowledge accuracy. In 501

addition to the quantitative analysis, we inspect 502

the selected image patches to assess whether they 503

correspond to intuitive counterfactual regions or 504

visually salient objects contradicting the model’s 505

internal knowledge. To test the specificity of our 506

findings, we also perform a control experiment in 507

which we randomly sample an equivalent number 508

of image patches for ablation. This allows us to as- 509

sess whether the identified regions are uniquely re- 510

sponsible for triggering counterfactual predictions 511

or whether any removal of visual input affects the 512

model’s behavior. 513
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precision cuts the 

tissue

The British guards are known 
for their distinctive
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are typically

black rainbow

Figure 6: Qualitative Examples of Visual Regions
Driving Counterfactual Predictions. Highlighted im-
age regions correspond to visual patches identified as
most responsible for counterfactual predictions using
attention-based attribution. In both examples, the model
generates a visually grounded but factually incorrect
token (e.g., rainbow, fruit) instead of the commonsense
alternative (black, tissue). The highlighted areas align
with semantically meaningful and visually anomalous
content, demonstrating that counterfactual outputs are
grounded in localized, interpretable image features.

Quantitative Analysis of Patch Attribution and514

Ablation The results of the experiments are515

shown in Figure 5. We observe that the ablation of516

visual patches identified through attention-based at-517

tribution leads to a sharp and consistent increase in518

factual accuracy as more pixels are removed (green519

profiles). For instance, in the case of LLaVA-NeXT,520

factual accuracy improves markedly with the ab-521

lation of just 10–30% of the top-ranked patches522

and eventually plateaus around 80%. This sug-523

gests that counterfactual predictions are primar-524

ily driven by a small, localized subset of visually525

salient regions. Gradient-based attribution (shown526

in red) also yields a substantial increase in fac-527

tual accuracy, though the effect is less pronounced528

and saturates earlier, suggesting lower precision in529

identifying counterfactual-driving regions. In con-530

trast, ablating an equivalent number of randomly531

selected patches results in only minor fluctuations532

in accuracy, never approaching the improvements533

achieved through targeted attribution. These find-534

ings confirm the causal role of the identified re-535

gions and support the hypothesis that counterfac-536

tual signals are spatially localized and semantically537

specific.538

Qualitative Analysis of Visual Attribution To 539

assess the semantic coherence of the identified 540

visual regions, we qualitatively examine exam- 541

ples where attribution methods highlight specific 542

patches as responsible for counterfactual predic- 543

tions (see Fig. 6. In many cases, these regions 544

correspond to intuitive scenes that directly con- 545

tradict commonsense knowledge, such as unusual 546

objects, implausible substitutions, or visual fea- 547

tures that override typical textual expectations. For 548

instance, when the model predicts “rainbow” in- 549

stead of “black” for a bearskin hat, the highlighted 550

patches focus on the hat’s unrealistic coloring (Fig. 551

6-top). Similarly, when “fruit” replaces “tissue” in 552

a surgical scene, the attention centers on the bright, 553

unexpected presence of oranges on the operating 554

table (Fig. 6-bottom). These observations confirm 555

that the model’s counterfactual outputs are not arbi- 556

trary but grounded in semantically meaningful and 557

localized image features. 558

5 Conclusion 559

In this work, we investigated how counterfactual 560

visual inputs interact with the internal knowledge 561

representations of VLMs during generation. To 562

this end, we introduced WHOOPS-AHA!, a dataset 563

that pairs visually anomalous scenes with textual 564

prompts designed to elicit either a commonsense 565

(factual) continuation or one grounded in the vi- 566

sual counterfactual. This setup enables fine-grained 567

analysis of how conflicting visual and textual cues 568

influence model behavior. We showed that a small 569

set of attention heads mediate this competition. 570

These heads also exhibit distinct modality pref- 571

erences and play a causal role in determining the 572

model’s output. By intervening on their attention 573

weights, we were able to shift predictions in a con- 574

trolled way, favoring either the internal knowledge 575

or the visual context. Finally, we demonstrated 576

that these heads provide accurate attribution of the 577

visual regions responsible for counterfactual com- 578

pletions, outperforming standard gradient-based 579

attribution techniques. These findings contribute 580

to a deeper mechanistic understanding of multi- 581

modal reasoning in VLMs and offer a foundation 582

for developing more interpretable and controllable 583

systems under conflicting input conditions. 584

Limitations 585

The analysis relies on the Logit Lens technique to 586

project intermediate hidden states into token logits. 587
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Although this method has been widely adopted for588

interpretability, it is known to introduce distortions589

due to projection from non-final residual states590

(Belrose et al., 2023), and should be interpreted591

as an approximate diagnostic rather than a precise592

decoding proxy. In our setting, we use a represen-593

tative factual and counterfactual token per example594

to enable controlled comparisons. Although this595

simplifies the generative landscape of the model,596

it offers a practical and interpretable probe of the597

underlying mechanisms. Future work could ex-598

plore more model behavior across full generations599

to complement this approach. Our attribution and600

intervention methods focus on attention heads and601

target the final token position. This design iso-602

lates interpretable causal signals while remaining603

tractable, though it does not capture the possible604

contributions of other components, such as MLP605

layers or visual encoders. Extending this frame-606

work to broader architectural elements is a promis-607

ing direction. Finally, the WHOOPS-AHA! dataset608

is constructed from synthetic and curated inputs,609

which allow precise manipulation of visual-textual610

conflict. Although this setting facilitates analysis,611

future extensions to more naturalistic data could612

further validate the findings in less constrained con-613

texts.614

Ethical Considerations615

This work aims to improve our understanding of616

how VLMs resolve conflicts between internal fac-617

tual knowledge and contradictory visual context.618

Our analysis is intended to contribute to founda-619

tional research in model interpretability, with the620

broader goal of developing more transparent and621

controllable multimodal systems. The techniques622

presented are diagnostic and exploratory in nature,623

designed to support responsible development and624

analysis of multimodal systems. We believe that625

studying the dynamics of conflicting information626

sources is essential for anticipating model failure627

modes, mitigating unintended behaviors, and build-628

ing more robust AI systems. All models and data629

are used in accordance with their intended research630

licenses, and WHOOPS-AHA! is released solely631

for non-commercial, research purposes under com-632

patible terms. We used AI assistants (e.g., GitHub633

Copilot) to support code completion during experi-634

ment implementation; all generated code was man-635

ually reviewed and supervised by the authors.636
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Figure 7: Factual and Counterfactual Contributions
of MLP and Attention Blocks in Gemma3. Layer-
wise deviation from 50% factual accuracy for attention
and MLP blocks, as measured by the relative logits of
tfact and tcofa via Logit Lens. Positive values indicate
a bias toward the factual token, while negative values
indicate preference for the counterfactual token. Con-
sistent with trends observed in LLaVA-NeXT, attention
blocks in Gemma3 increasingly support counterfactual
predictions in higher layers, while MLP blocks show
stronger alignment with internal factual knowledge.
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Figure 8: Factual and Counterfactual Contributions of Attention Heads for Gemma3. (Left) Factual accuracy
of individual attention heads in Gemma3, computed using Logit Lens projections of the final token’s hidden state.
Blue indicates heads that more frequently favor the factual token (tfact), while red indicates those that favor the
counterfactual token (tcofa). As in LLaVA-NeXT, highly polarized heads are concentrated in the upper layers.
(Right) Mean attention to image tokens at the final generation step. Counterfactual heads attend more strongly to
image tokens (52%) than factual heads (25%) or the model-wide average (22%), highlighting the direct role of
visual input in modulating counterfactual predictions.
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Figure 9: Control Experiment: Intervention on Ran-
dom Attention Heads. Change in factual accuracy
under varying levels of intervention strength (λ) applied
to 100 randomly selected attention heads. The results
show no substantial deviation from baseline, confirming
the specificity of the identified target heads.
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You are presented with an image and an incomplete sentence describing its content.
 
The image intentionally portrays an unusual scenario that contrasts typical or factual knowledge.

Your task is to generate two lists of tokens:

    1. Factual Tokens (5 tokens): These tokens should represent words or concepts that accurately
 and typically complete the sentence based solely
 on common knowledge, without considering the unusual image.

    2. Counterfactual Tokens (5 tokens): These tokens should represent words or concepts that
 correctly complete the sentence when explicitly
 considering the unusual content depicted in the image, even if it contradicts common factual
 knowledge.

Please format your response clearly as a JSON object as follows:

```json
{
  "sentence": "{INCOMPLETE_SENTENCE}",
  "factual_tokens": ["token1", "token2", "token3", "token4", "token5"],
  "counterfactual_tokens": ["token1", "token2", "token3", "token4", "token5"]
}
```

Figure 10: Prompt Used to Generate Factual and Counterfactual Tokens. Given a fixed input sentence and an
image from the WHOOPS! dataset, GPT-4o is prompted to propose candidate next-token completions. The prompt
guides the model to return two sets of tokens: one reflecting commonsense completions consistent with world
knowledge (factual), and one aligned with the visually depicted but counterfactual scene.
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You are an helpfull assistant expert in LLMs research. 

Counterfactual Dataset Generation Prompt

Objective:
Generate captions for images that highlight a clear contrast between common (factual) 
and unusual (counterfactual) scenarios involving the subject depicted. 
Each caption must include the subject of the image and end with "___" indicating
 the blank space where a single-word token is placed.

Definitions:
- **Factual token**: A single word that represents typical, expected behavior or
 attributes of the main subject shown in the image.
- **Counterfactual token**: A single word introducing a surprising, unexpected, or 
unusual element related explicitly to the same main subject; it makes sense
 only if the image explicitly illustrates this twist.

Context Provided:
For each image, you will receive the following textual information:
- Selected Caption: A primary description identifying the main subject clearly.
- Crowd Captions: Alternative descriptions from multiple annotators.
- Designer Explanation: Explanation emphasizing the unusual or counterintuitive 
aspect involving the subject.
- Crowd Explanations: Multiple explanations focusing on the unusual aspects related 
directly to the subject of the image.

Task Instructions:

Caption Construction:
- Create exactly one neutral sentence (caption) clearly containing the main subject
 depicted in the image but avoiding the description of unusual aspect 
contained in the image.
- The sentence must end with an intentional blank ("___").
- Critical Requirement: The caption must compel the model to complete the blank 
differently based on the context:
    - **Without the image**: complete with a factual token (typical scenario involving
 the subject).
    - **With the image**: complete with a counterfactual token (unexpected scenario 
explicitly depicted).
- Important Constraint: Use neutral language with NO textual hints indicating abnormality.
 The main subject must explicitly appear in the caption to establish 
context clearly. Only the image content itself should disambiguate the scenario.
- The caption should not contain any unusual or counterintuitive elements; the unusual 
aspect should be reflected solely in the image content and in the 
counterfactual tokens.
- Make sure that if you substitute the blank with a factual or counterfactual token,
 the sentence is fluent and grammatically correct.

Explicit Single-Word Token Generation:
- Generate exactly **ten single-word factual tokens** representing common scenarios
 involving the main subject that could complete in a grammatically
 correct way the sentence.
- Generate exactly **ten single-word counterfactual tokens** representing surprising 
scenarios involving the same subject, justified solely by the
 provided image and that could complete the sentence in a grammatically correct way.
- Strictly enforce single-word tokens; no multi-word phrases or sentences.
- Ensure clear differentiation without conceptual overlap between factual and counterfactual
 tokens.

JSON Output Format:
Provide each caption and tokens following this exact schema:

{
  "caption": "Neutral sentence explicitly containing the main subject and ending with
 an intentional blank ('___')",
  "factual_tokens": ["token1", "token2", "token3", "token4", "token5", ...],
  "counterfactual_tokens": ["token1", "token2", "token3", "token4", "token5", ...],
  "context": {
    "selected_caption": "Primary description clearly stating the main subject of the image",
    "crowd_captions": ["Caption 1", "Caption 2", "..."],
    "designer_explanation": "Explanation highlighting the unusual aspect directly
 involving the main subject",
    "crowd_explanations": ["Explanation 1", "Explanation 2", "..."]
  }
}

Your role is to craft neutral captions explicitly containing the main subject of 
each image, along with precisely differentiated factual and counterfactual 
single-word tokens. The explicit presence of the main subject in the caption must guide
 factual versus counterfactual completions, relying solely on the provided image for 
disambiguation.

Figure 11: Prompt Used to Generate Dataset Instances. We provide GPT-4o with an image, a set of captions, and
an explanation of the visual anomaly, and instruct it to generate a sentence that implicitly refers to the anomaly
while remaining commonsense-compatible. The model is then asked to propose plausible factual and counterfactual
next-token completions, reflecting typical knowledge-based and visually grounded interpretations, respectively.
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