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Abstract

Vision-language models (VLMs) increasingly
leverage diverse knowledge sources to address
complex tasks, inevitably encountering con-
flicts between their internal parametric knowl-
edge and external information. Knowledge con-
flicts often result in hallucinations and unreli-
able responses, but the mechanisms governing
such interactions remain unknown. To address
this gap, we analyze the mechanisms VLMs use
to resolve cross-modal conflicts by introducing
a dataset of multimodal counterfactual queries
that deliberately contradict internal common-
sense knowledge. We localize with logit inspec-
tion a small set of heads that control the conflict.
Moreover, by modifying these heads, we can
steer the model towards its internal knowledge
or the visual inputs. Finally, we show that atten-
tion from such heads pinpoints localized image
regions driving visual overrides, outperforming
gradient-based attribution in precision. !

1 Introduction

Vision—language models (VLMs) (Alayrac et al.,
2022; Liet al., 2022; Liu et al., 2023; Team, 2024;
Deitke et al., 2024) have shown a remarkable versa-
tility across various multimodal tasks, from image
understanding to image generation. They draw on
their ability to combine a rich set of world knowl-
edge acquired during training, while also integrat-
ing contextual information provided in the prompts.
However, these two sources of information can
contradict each other, such as when the pretrain-
ing knowledge becomes outdated (Lazaridou et al.,
2021; Luu et al., 2022) or when intentionally mis-
leading visual cues are injected into the prompt
(Liu et al., 2024d). These conflicts often trigger
hallucinations and mistakes (Cui et al., 2023; Liu
et al., 2024a; Guan et al., 2024), and little is known
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Figure 1: Overview of Our Approach. (Top) We con-
struct prompts that induce a conflict between a vision-
language model’s internal factual knowledge and coun-
terfactual visual context. (Bottom) We then analyze
which components in the model mediate this tension,
identifying attention heads and visual patches that favor
factual or visually grounded predictions.

about the internal mechanisms employed by VLMs
to resolve this conflict (Xu et al., 2024).

In this work, we analyze how VLMs resolve
conflicts between visual input and internal knowl-
edge by framing the problem through counterfac-
tual image-text pairs. We prompt the VLMs with
images depicting unusual or absurd scenes taken
from the WHOOPS! dataset (Guetta et al., 2023),
which are followed by a sentence encouraging a
typical, knowledge-based continuation. As shown
in Fig. 1, each input prompt is associated with a



counterfactual pair of completions. For instance,
the model may be shown an image of a wolf howl-
ing at the sun, a scene that contradicts common-
sense knowledge, and asked to complete the prompt
accordingly (see top-left panel). We construct the
dataset such that VLMs, when prompted with text
alone, generate factual responses while in the pres-
ence of the image, change their prediction to align
with the visual context, even when it contradicts
their internal knowledge. Building on the approach
of Ortu et al. (2024), we identify which internal
components of the model contribute the most to
factual versus counterfactual predictions. We find
that a small subset of attention heads mediates this
competition, and targeted interventions on these
heads can reliably alter the model’s outputs. We
also show that these heads prove more effective
than gradient-based methods at identifying which
parts of an image are most important for resolving
multimodal conflicts in VLMs.
In summary, our contributions are as follows:

1. We construct WHOOPS-AHA !, a dataset that
combines images containing counterfactual
scene elements and commonsense textual
queries, designed to analyze conflicts between
visual context and internal knowledge (Sec.
4.1);

2. We identify the attention heads that promote
factual and counterfactual responses, ranking
their importance with logit attribution (Sec.
4.2);

3. By reweighting these heads, we show that we
can control the tendency of the model to rely
on the visual evidence or its internal knowl-
edge and vice versa (Sec. 4.3);

4. We demonstrate that direct attention attribu-
tion from conflict-resolution heads provides
more accurate identification of counterfactual
image regions than traditional gradient-based
attribution methods (Sec. 4.4).

2 Related Work

Most prior work on knowledge conflict has focused
on language models and unimodal tasks, leaving
the multimodal domain underexplored (Xu et al.,
2024).

The analyses of knowledge conflicts in language
models have largely been behavioral, showing that
when resolving conflicts between contextual and

internal knowledge, language models can overrely
on their internal knowledge or contextual infor-
mation, depending on factors such as model size
(Longpre et al., 2021) and conflicting external in-
formation (Chen et al., 2022). Wang et al. (2024)
found that even SOTA language models often fail
to report inconsistencies between in-context infor-
mation and their internal knowledge. Few works
have analyzed the internal mechanisms underlying
conflict resolution. Ortu et al. (2024) identified two
heads that mediate between factual and counterfac-
tual information, while Jin et al. (2024) showed
that pruning specific heads can steer the model’s
reliance toward internal or contextual sources. In
the multimodal domain, studies on VLMs have
primarily focused on benchmark construction and
black-box evaluation. Han et al. (2024) introduced
a dataset probing contextual knowledge conflicts
introduced by deceptive visual elements in prompts.
Golovanevsky et al. (2025) proposed NOTICE,
using semantically corrupted image pairs to an-
alyze attention heads behavior in LLaVA and BLIP.
Liu et al. (2024c); Guan et al. (2024) developed
ConflictVis to study conflicts between visual in-
put and parametric knowledge, but restricted their
analysis to the prompt structure rather than internal
mechanisms.

In contrast, in this work, we focus on model
internals, identifying specific attention heads re-
sponsible for mediating factual and counterfactual
reasoning, and validating their roles through tar-
geted ablations.

3 Background and Methods

3.1 Model Architectures

This study investigates how visual input interacts
with the model’s internal knowledge during text
generation in VLMs. Given a sequence of k image-
text tokens, a VLM encodes the image using a
vision encoder and the text using an embedding
matrix, producing the residual stream x € R%*¥,
where d is the hidden dimension of the model. We
denote the residual stream at position ¢ and layer [
as x'. The residual stream is processed through L
layers, each composed of an attention block a’ and
an MLP block m’. After the final layer, it is pro-
jected to the vocabulary space via an unembedding
matrix Wy € R4V, Formally, the update of the
residual stream at the [*" layer is:

X =x"1ta +m, (1)



where both the attention and the MLP block take
as input the x after layer normalization norm:

a' = al(norm(x'™1)), )
m' = m!(norm(x'~! +a')) . 3)

We focus on two models: LLaVA-NeXT-7b (Liu
et al., 2024b) and Gemma3-12b (Kamath et al.,
2025). LLaVA-NeXT has 32 layers with 32 atten-
tion heads per layer, while Gemma3 has 48 layers
with 16 attention heads per layer. Both models
use a visual encoder to process image features, but
generate only textual output.

3.2 Dataset Construction

To study how VLMs handle conflicts between vi-
sual context and internal knowledge, we introduce
WHOOPS-AHA!, a new dataset designed to in-
duce controlled competition between the two in-
formation sources. Each example in WHOOPS-
AHA! consists of (i) a counterfactual image, (ii)
a sentence referring to the image, and (iii) two
sets of plausible continuations: (Sg.ct) reflecting
common sense knowledge, and (S¢q¢,) consistent
with the counterfactual scene represented in the
image. We construct our dataset on top of the
WHOOPS! collection (Guetta et al., 2023), which
consists of 500 images illustrating visually implau-
sible scenes, each annotated with descriptions of
the image content and the underlying anomaly.
For each image in WHOOPS!, we use GPT-40 to
generate a sentence that references the anomaly,
while remaining consistent with commonsense (fac-
tual) completion without visual input. GPT-4o0 is
also prompted to produce a set of plausible fac-
tual tokens St and visually-grounded counter-
factual continuations Sc.,. For instance, for the
case of an image representing a wolf howling at
the sun (see Fig. 1), the sentence proposed by
GPT-40 is "The wolf is howling at the”,
Stact = {"moon”, "night", ...} Scora = {"sun”,
"daylight"”,"morning”,..}. All generated con-
tent is manually verified to ensure a clear distinc-
tion between factual and counterfactual continu-
ations. Full prompt details are provided in ap-
pendix C.

3.3 Analytical Tools

Logit Inspection To identify the internal compo-
nents of VLMs responsible for the competition be-
tween inner knowledge and conflicting visual con-
text, we trace the evolution of token logits across

the model’s architecture. Specifically, we apply the
Logit Lens technique (Nostalgebraist, 2020), which
projects intermediate hidden representations into
the vocabulary space. This approach has been used
in previous work to analyze token-level informa-
tion flow (Halawi et al., 2023; Yu et al., 2023; Ortu
etal., 2024) in LLMs. In our setting, we apply the
Logit Lens to the last token of the prompt and ex-
tract the logits corresponding to the tokens in St
and S¢ot, at various layers and components of the
model to identify the components that contribute
to the promotion of one mechanism over the other.

Targeted Intervention on Attention Heads To
test the causal role of specific attention heads in
promoting predictions aligned with either factual
inner knowledge or counterfactual visual context,
we intervene directly on their attention patterns
during inference. We define two groups of heads
based on Logit Inspection: factual heads (Hyct),
which favor predictions based on inner knowledge,
and counterfactual heads (Hcofa), Which favor vi-
sually grounded alternatives. We apply a multi-
plicative intervention to their attention weights at
the final token position (i.e., the last row of the
attention matrix), after the softmax operation. Let
Al = [Aﬁlst7img, Aﬁﬁt’text] denote the last row of
the attention weights for head A at layer [, divided
between image and text tokens. The intervention is
defined as
Ahl

last,img

— (1+N) - Al 4)

last,img

if (h,1) € Hcofa, and
AL e (1= 2) - Al )

last,text
if (h, l) € Heaet.

This targeted and bidirectional intervention al-
ters the flow of information in a controlled way,
allowing us to test whether modulating the influ-
ence of these heads changes the model predictions
toward the factual or counterfactual outcome. To
determine the number of heads to include in each
group, we experiment with different group sizes
ranging from 5 to 60 heads. We select 20 heads
of the configuration that offers the best trade-off
between the effectiveness of the intervention and
the stability of the model’s output. Stability is mea-
sured by tracking the rank position of the two repre-
sentative tokens (Zsact and teof,) in the model’s next-
token logit distribution, ensuring that the higher-
ranked token remains within the top 80 positions
for Gemma3 and the top 30 for LLaVA-NeXT.



Attention
o Factual
o
5 15%
c
>
(0]
g 0%
E
5 -15%
L‘E Counter—
f |
actual )6 8 1012141618 20 22 24 26 28 30
Layer
MLP
o Factual
(8]
5 15%
E el |
(0]
E 0% I.II I I II_ ._II-..-..._--
E
5 -15%
L‘E Counter—
factual
0 2 46 81012141618202224262830

Layer

Figure 2: Factual Prevalence in Attention and MLP
Blocks. The plot shows the factual prevalence of atten-
tion and MLP blocks in LLaVA-NeXT across layers,
indicating whether each component promotes predic-
tions aligned with factual knowledge or counterfactual
visual context. Positive values correspond to blocks
favoring the factual (commonsense) continuation. Neg-
ative values indicate preference for the counterfactual
continuation induced by the image. The results reveal
a functional distinction: attention blocks tend to sup-
port counterfactual information (top), whereas MLP
blocks frequently promote the model’s internal knowl-
edge (bottom).

Identification of Conflict-Inducing Visual To-
kens To isolate the visual tokens responsible for
introducing counterfactual information that con-
flicts with the inner knowledge of the model, we
apply two methods. Both are based on a threshold
parameter 7 € [0, 1], which controls the sensitivity
of token selection.

1. Most-Attended Visual Tokens: Given a set
of attention heads, we select the visual tokens
that receive at least 7 times the maximum at-
tention weight within each head. We then take
the union of these tokens across all heads.

2. Gradient-Based Token Importance: We
compute the gradient of the logit associated
with a target token (e.g., from Sgct Or Scofa)
with respect to the input visual token embed-
dings. Visual tokens whose gradient magni-
tudes exceed 7 times the maximum are se-
lected as influential.

By varying 7, we control how many image patches
are selected—from none when 7 is 1, to all when
7 is 0. This allows us to ablate different image
portions and analyze how they affect the model
predictions.

3.4 Reproducibility

We run the experiments on one NVIDIA H100
GPU, and two GPUs for the gradient-based attribu-
tion tests. We use the HuggingFace Transformers
library (Wolf et al., 2020) with public implemen-
tations of LLaVA-NeXT and Gemma3. The total
compute time is 15 GPU hours. The WHOOPS!
dataset was released with a CC-By 4.0 license.

4 Results

4.1 Inducing the Conflict between Inner
Knowledge and Visual Context

To systematically induce competition between vi-
sual input and internal knowledge, we construct
the WHOOPS-AHA! dataset as described in Sec.
3.2. Each example of WHOOPS-AHA! includes
a counterfactual image, a sentence describing the
image, and two sets of plausible next-word candi-
dates proposed by GPT-40: St,.t, consistent with
commonsense knowledge, and S.¢, aligned with
the counterfactual visual context. For each model,
first identify tg,ct as the token in Syt with the
highest probability using only the textual part of
the prompt. We consider only the first token if
a candidate word is tokenized into multiple to-
kens. Then, using the full multimodal input (im-
age and text), we select t..¢, as the token with
the highest probability from Sc.¢,. For example,
when prompted with the sentence "The wolf is
howling at the”, LLaVA-NeXT and Gemma3
predict the factual token moon with probabilities
of 78% and 100%, respectively. However, when
the corresponding image is included, both models
shift to the counterfactual token sun, with probabil-
ities of 26% (LLaVA-NeXT) and 44% (Gemma3),
while the probability of moon drops to 17% and
0.02%. We filter out ambiguous cases in which
Secofa contains tokens with a probability higher than
Stact in the text-only setup, keeping 436 examples
for LLaVA-NeXT and 432 for Gemma3. In the
following sections, we always prompt the model
with image and text using tg,.¢ and teop, to assess
whether different model components promote inter-
nal knowledge or contextual information. Notably,
introducing the image reduces the preference of the
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Figure 3: Contribution of Attention Heads to Factual and Counterfactual Predictions. (Left) Factual accuracy
of individual attention heads in LLaVA-NeXT, based on Logit Lens projections at the final token position. Blue
indicates heads that tend to favor the factual token (reflecting inner knowledge), while red indicates heads that
favor the counterfactual token (introduced by the visual context). (Right) Mean attention to image tokens at the
final generation step for heads in each group. Each group contains 20 attention heads. Counterfactual heads attend
significantly more to the image (60%) than factual heads (28%) or the model-wide average (22%), indicating that
visual information is directly propagated to the output and plays a key role in counterfactual predictions.

model for the commonsense token: the prediction
of the factual token ¢, drops to 27% for LLaVA-
NeXT and 24% for Gemma3. This setup ensures
that the image introduces a counterfactual signal
that conflicts with the model’s inner knowledge,
allowing us to analyze how visual input alters the
model’s prediction compared to its default behavior
based on factual knowledge alone.

4.2 The Tension Between Inner Knowledge
and Visual Context is Localized

Building on the controlled knowledge conflict in-
duced by WHOOPS-AHA!, we now study how the
competition between factual and counterfactual
continuations is resolved internally and which com-
ponents mediate it. To do this, we use the Logit
Lens technique to analyze the hidden state at the
final token position of the prompt, after each at-
tention block and MLP, projecting it into the vo-
cabulary space (see Sec. 3.3). We then compute,
across the dataset, how often the logit of the factual
token tg,.¢ is larger than that of the counterfactual
token t..¢,. This gives an accuracy score for each
component that reflects whether it tends to promote
the factual or counterfactual mechanism. To mea-
sure the strength of this tendency, we compute the

factual preference strength, which is defined as the
difference between the fraction of examples for
which tgct > teofa and 0.5, the random baseline. A
value near zero indicates no consistent tendency to
favor factual versus contextual information across
the dataset, while higher values reflect stronger,
more polarized behavior. This method allows us to
localize the components that modulate the interac-
tion between visual inputs and internal knowledge.

Functional Separation Between Attention and
MLP Layers. We first compare the contributions
of attention and MLP blocks to the prediction
of tgact and teop,. Figure 2 shows the results for
LLaVA-NeXT (see appendix A for similar results
on Gemma3). Attention blocks exhibit a stronger
tendency to favor the counterfactual visual context,
whereas MLP blocks are more aligned with the
internal factual knowledge. In particular, the influ-
ence of attention blocks increases from the middle
layers (around layer 15), peaking in the final four
layers. MLP blocks similarly show their strongest
alignment to factual knowledge in the upper lay-
ers, with a peak at the final layer. This pattern
is consistent with previous findings on the role of
upper-layer MLPs in retrieving factual knowledge



(Geva et al., 2021; Meng et al., 2022; Dai et al.,
2022).

Localization of the Modality Conflict to Individ-
ual Attention Heads. We next examine the role
of individual attention heads. Figure 3-left shows
the tendency for each attention head to promote
or suppress the factual token in LlaVa-NeXT (see
Appendix, Fig. 8 for Gemma3). The distribution
shows that only a small subset of heads exhibit
a strong, consistent alignment with ¢ Or teofa.
Moreover, consistently with the results at the block
level, these factual and counterfactual heads are
concentrated in the final layers of the model, indi-
cating that the conflict between inner knowledge
and visual context is resolved late in the forward
pass. In the analyses of the next sections, we focus
on the 20 heads that promote the factual and coun-
terfactual tokens more strongly. On average, the
factual heads favor the tg,.; 85% of the time, and
the counterfactual ones 15% of the time, indicating
strong alignment with their respective information
sources.

Factual and Counterfactual Heads Exhibit Dis-
tinct Visual Attention Patterns. We then inves-
tigate whether heads associated with the factual
mechanism or the counterfactual visual context
exhibit distinct attention patterns — specifically,
whether they attend to different token modalities
(image or text). Since the counterfactual informa-
tion is introduced through the image, a natural hy-
pothesis is that counterfactual heads attend more
strongly to visual tokens, while factual heads rely
more on textual content. To test this hypothesis, for
each group of heads, we sum the attention weights
assigned to visual tokens in the last row of each
head and average across the dataset. Figure 3-right
reports the average amount of attention to the im-
age for the two groups of heads. Heads favoring the
counterfactual token f..¢, attend to image tokens
significantly more (61%) than those aligned with
inner knowledge (29%) or the model-wide average
(22%).

Although the counterfactual signal originates in
the image, it is not a priori clear that this infor-
mation is transmitted directly to the final token.
The model could, in principle, diffuse or encode
this signal in different positions across intermediate
layers. However, the observed attention patterns
suggest that the visual context influences the out-
put token directlyin late layers of the model, with
limited intermediate processing. These findings are
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Figure 4: Intervention on Target Attention Heads.
Change in factual accuracy under different levels of
intervention strength (A\). For A < 0, we boost the
counterfactual heads (on image tokens) and weaken the
factual heads (on text tokens); for A > 0, we do the
opposite. The intervention is applied at the final token
position, modifying only the relevant attention values in
the last row.

consistent for Gemma3, and we report the analysis
in appendix A.

4.3 Targeted Intervention on Selected
Attention Heads Causally Shifts Model
Behavior

Having identified attention heads aligned with ei-
ther factual knowledge or counterfactual visual con-
text, we next examine whether these components
play a causal role in shaping model predictions. To
this end, we apply the targeted intervention strategy
introduced in section 3.3, modifying the attention
weights to steer the output of the model towards
one mechanism or the other. Guided by our ear-
lier observation that counterfactual heads attend
more to visual tokens, we design a bidirectional
intervention that selectively adjusts attention val-
ues based on head type and token modality. For
counterfactual heads, we modify their attention to
image tokens; for factual heads, we target their at-
tention to text tokens. In both cases, we apply a
multiplicative adjustment at the final token posi-
tion. Each intervention simultaneously enhances
the attention of one group to its relevant modality
while suppressing the other group’s attention, for
instance increasing the attention to image tokens
for counterfactual heads while reducing attention to
text tokens for factual heads, and vice versa. This
approach enables us to modulate the relative influ-
ence of factual and counterfactual mechanisms on
the model prediction.

Figure 4 shows the results of our intervention



for LLaVA-NeXT (orange profile) and Gemma3
(green profile). For LLaVA-NeXT, the baseline
accuracy, defined as the proportion of examples in
which the factual token ¢, receives a logit higher
than the counterfactual token %, is 27%. When
we increase attention from factual heads and de-
crease it from counterfactual heads, the factual ac-
curacy increases to 82%, indicating a strong shift to-
wards predictions of inner knowledge. Conversely,
reversing the intervention reduces the accuracy to
20%, confirming that these heads causally influ-
ence whether the model favors factual or counter-
factual content. A similar trend can be observed
for Gemma3, with an even stronger relative effect
driven by its lower baseline factual accuracy of
24% and a peak of 85%. To ensure plausible in-
terventions, we constrain the scaling parameter to
A € [—3, 3] and monitor the position of the higher-
logit token in the full next-token distribution. For
example, using LLaVA-NeXT, the average rank of
the token tg, ¢ shifts from3at A = 0to31at A = 3,
indicating that while the intervention is highly ef-
fective, it introduces some deviation in the overall
logit distribution, an expected effect when strongly
modulating internal components. As a control, we
randomly select 100 attention heads and apply the
same intervention for varying A values. This ma-
nipulation does not produce a substantial deviation
from the baseline, confirming that the observed ef-
fects are specific to the heads identified as aligned
with factual or counterfactual mechanisms. The
complete results are reported in Appendix Fig. 9.

4.4 Counterfactual Predictions Depend on
Localized Image Regions

In the previous sections, we analyzed the conflict
between contextual information and internal knowl-
edge using WHOOPS-AHA! prompts, which in-
duce a competition between counterfactual visual
cues and factual model knowledge. This analysis
revealed that specific attention heads at the final
token position mediate this conflict, with heads
aligned with the visual context attending strongly
to image tokens and thereby injecting visually
grounded information into the generation process.
However, two key questions remain open. (i) Is the
counterfactual visual signal localized to specific
image regions or spread across the input? (ii) Is
the visual signal passed directly to the last token
position, or is it mediated by successive layers and
tokens before reaching the output in the upper lay-
ers? To address these questions, we perform two
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Figure 5: Ablation of Relevant Pixels. The plot shows
the effect of ablating different percentages of image
pixels in LLaVA-NeXT. The green line corresponds to
pixels selected based on the highest attention from coun-
terfactual heads, while the orange line corresponds to
pixels with the highest gradient magnitude with respect
to the counterfactual token. The gray line shows a ran-
dom baseline where pixels are removed uniformly at
random.

complementary analyses: (i) we identify the image
patches most responsible for driving counterfac-
tual predictions using attention and gradient-based
attribution methods, as described in section 3.3;
and (ii) we ablate the identified patches by setting
the corresponding visual token embeddings to zero
at the input of the transformer, and measure the
resulting change in inner knowledge accuracy. In
addition to the quantitative analysis, we inspect
the selected image patches to assess whether they
correspond to intuitive counterfactual regions or
visually salient objects contradicting the model’s
internal knowledge. To test the specificity of our
findings, we also perform a control experiment in
which we randomly sample an equivalent number
of image patches for ablation. This allows us to as-
sess whether the identified regions are uniquely re-
sponsible for triggering counterfactual predictions
or whether any removal of visual input affects the
model’s behavior.
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Figure 6: Qualitative Examples of Visual Regions
Driving Counterfactual Predictions. Highlighted im-
age regions correspond to visual patches identified as
most responsible for counterfactual predictions using
attention-based attribution. In both examples, the model
generates a visually grounded but factually incorrect
token (e.g., rainbow, fruit) instead of the commonsense
alternative (black, tissue). The highlighted areas align
with semantically meaningful and visually anomalous
content, demonstrating that counterfactual outputs are
grounded in localized, interpretable image features.

Quantitative Analysis of Patch Attribution and
Ablation The results of the experiments are
shown in Figure 5. We observe that the ablation of
visual patches identified through attention-based at-
tribution leads to a sharp and consistent increase in
factual accuracy as more pixels are removed (green
profiles). For instance, in the case of LLaVA-NeXT,
factual accuracy improves markedly with the ab-
lation of just 10-30% of the top-ranked patches
and eventually plateaus around 80%. This sug-
gests that counterfactual predictions are primar-
ily driven by a small, localized subset of visually
salient regions. Gradient-based attribution (shown
in red) also yields a substantial increase in fac-
tual accuracy, though the effect is less pronounced
and saturates earlier, suggesting lower precision in
identifying counterfactual-driving regions. In con-
trast, ablating an equivalent number of randomly
selected patches results in only minor fluctuations
in accuracy, never approaching the improvements
achieved through targeted attribution. These find-
ings confirm the causal role of the identified re-
gions and support the hypothesis that counterfac-
tual signals are spatially localized and semantically
specific.

Qualitative Analysis of Visual Attribution To
assess the semantic coherence of the identified
visual regions, we qualitatively examine exam-
ples where attribution methods highlight specific
patches as responsible for counterfactual predic-
tions (see Fig. 6. In many cases, these regions
correspond to intuitive scenes that directly con-
tradict commonsense knowledge, such as unusual
objects, implausible substitutions, or visual fea-
tures that override typical textual expectations. For
instance, when the model predicts “rainbow” in-
stead of “black” for a bearskin hat, the highlighted
patches focus on the hat’s unrealistic coloring (Fig.
6-top). Similarly, when “fruit” replaces “tissue” in
a surgical scene, the attention centers on the bright,
unexpected presence of oranges on the operating
table (Fig. 6-bottom). These observations confirm
that the model’s counterfactual outputs are not arbi-
trary but grounded in semantically meaningful and
localized image features.

5 Conclusion

In this work, we investigated how counterfactual
visual inputs interact with the internal knowledge
representations of VLMs during generation. To
this end, we introduced WHOOPS-AHA!, a dataset
that pairs visually anomalous scenes with textual
prompts designed to elicit either a commonsense
(factual) continuation or one grounded in the vi-
sual counterfactual. This setup enables fine-grained
analysis of how conflicting visual and textual cues
influence model behavior. We showed that a small
set of attention heads mediate this competition.
These heads also exhibit distinct modality pref-
erences and play a causal role in determining the
model’s output. By intervening on their attention
weights, we were able to shift predictions in a con-
trolled way, favoring either the internal knowledge
or the visual context. Finally, we demonstrated
that these heads provide accurate attribution of the
visual regions responsible for counterfactual com-
pletions, outperforming standard gradient-based
attribution techniques. These findings contribute
to a deeper mechanistic understanding of multi-
modal reasoning in VLMs and offer a foundation
for developing more interpretable and controllable
systems under conflicting input conditions.

Limitations

The analysis relies on the Logit Lens technique to
project intermediate hidden states into token logits.



Although this method has been widely adopted for
interpretability, it is known to introduce distortions
due to projection from non-final residual states
(Belrose et al., 2023), and should be interpreted
as an approximate diagnostic rather than a precise
decoding proxy. In our setting, we use a represen-
tative factual and counterfactual token per example
to enable controlled comparisons. Although this
simplifies the generative landscape of the model,
it offers a practical and interpretable probe of the
underlying mechanisms. Future work could ex-
plore more model behavior across full generations
to complement this approach. Our attribution and
intervention methods focus on attention heads and
target the final token position. This design iso-
lates interpretable causal signals while remaining
tractable, though it does not capture the possible
contributions of other components, such as MLP
layers or visual encoders. Extending this frame-
work to broader architectural elements is a promis-
ing direction. Finally, the WHOOPS-AHA! dataset
is constructed from synthetic and curated inputs,
which allow precise manipulation of visual-textual
conflict. Although this setting facilitates analysis,
future extensions to more naturalistic data could
further validate the findings in less constrained con-
texts.

Ethical Considerations

This work aims to improve our understanding of
how VLMs resolve conflicts between internal fac-
tual knowledge and contradictory visual context.
Our analysis is intended to contribute to founda-
tional research in model interpretability, with the
broader goal of developing more transparent and
controllable multimodal systems. The techniques
presented are diagnostic and exploratory in nature,
designed to support responsible development and
analysis of multimodal systems. We believe that
studying the dynamics of conflicting information
sources is essential for anticipating model failure
modes, mitigating unintended behaviors, and build-
ing more robust Al systems. All models and data
are used in accordance with their intended research
licenses, and WHOOPS-AHA! is released solely
for non-commercial, research purposes under com-
patible terms. We used Al assistants (e.g., GitHub
Copilot) to support code completion during experi-
ment implementation; all generated code was man-
ually reviewed and supervised by the authors.
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A Experimental Analysis for Gemma-12b
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Figure 7: Factual and Counterfactual Contributions
of MLP and Attention Blocks in Gemma3. Layer-
wise deviation from 50% factual accuracy for attention
and MLP blocks, as measured by the relative logits of
teact and teofs via Logit Lens. Positive values indicate
a bias toward the factual token, while negative values
indicate preference for the counterfactual token. Con-
sistent with trends observed in LLaVA-NeXT, attention
blocks in Gemma3 increasingly support counterfactual
predictions in higher layers, while MLP blocks show
stronger alignment with internal factual knowledge.
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Figure 8: Factual and Counterfactual Contributions of Attention Heads for Gemma3. (Left) Factual accuracy
of individual attention heads in Gemma3, computed using Logit Lens projections of the final token’s hidden state.
Blue indicates heads that more frequently favor the factual token (¢¢.ct), while red indicates those that favor the
counterfactual token (t¢ofa). As in LLaVA-NeXT, highly polarized heads are concentrated in the upper layers.
(Right) Mean attention to image tokens at the final generation step. Counterfactual heads attend more strongly to
image tokens (52%) than factual heads (25%) or the model-wide average (22%), highlighting the direct role of
visual input in modulating counterfactual predictions.
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B Additional Results
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Figure 9: Control Experiment: Intervention on Ran-
dom Attention Heads. Change in factual accuracy
under varying levels of intervention strength (\) applied
to 100 randomly selected attention heads. The results
show no substantial deviation from baseline, confirming
the specificity of the identified target heads.

14



C Prompts For Dataset Generation
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You are presented with an image and an incomplete sentence describing its content.
The image intentionally portrays an unusual scenario that contrasts typical or factual knowledge.
Your task is to generate two lists of tokens:
1. Factual Tokens (5 tokens): These tokens should represent words or concepts that accurately
and typically complete the sentence based solely
on common knowledge, without considering the unusual image.
2. Counterfactual Tokens (5 tokens): These tokens should represent words or concepts that
correctly complete the sentence when explicitly
considering the unusual content depicted in the image, even if it contradicts common factual

knowledge.

Please format your response clearly as a JSON object as follows:

"7 json
{
"sentence": "{INCOMPLETE_SENTENCE}",
"factual_tokens": ["tokenl", "token2", "token3", "token4", "token5"],
"counterfactual_tokens": ["tokenl", "token2", "token3", "token4", "token5"]
}

Figure 10: Prompt Used to Generate Factual and Counterfactual Tokens. Given a fixed input sentence and an
image from the WHOOPS! dataset, GPT-40 is prompted to propose candidate next-token completions. The prompt
guides the model to return two sets of tokens: one reflecting commonsense completions consistent with world
knowledge (factual), and one aligned with the visually depicted but counterfactual scene.
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You are an helpfull assistant expert in LLMs research.
Counterfactual Dataset Generation Prompt

Objective:

Generate captions for images that highlight a clear contrast between common (factual)
and unusual (counterfactual) scenarios involving the subject depicted.
Each caption must include the subject of the image and end with "__ "
the blank space where a single-word token is placed.

indicating

Definitions:

- **Factual token**: A single word that represents typical, expected behavior or
attributes of the main subject shown in the image.

- **Counterfactual token**: A single word introducing a surprising, unexpected, or
unusual element related explicitly to the same main subject; it makes sense

only if the image explicitly illustrates this twist.

Context Provided:

For each image, you will receive the following textual information:

- Selected Caption: A primary description identifying the main subject clearly.

- Crowd Captions: Alternative descriptions from multiple annotators.

- Designer Explanation: Explanation emphasizing the unusual or counterintuitive
aspect involving the subject.

- Crowd Explanations: Multiple explanations focusing on the unusual aspects related
directly to the subject of the image.

Task Instructions:

Caption Construction:
- Create exactly one neutral sentence (caption) clearly containing the main subject
depicted in the image but avoiding the description of unusual aspect
contained in the image.
- The sentence must end with an intentional blank ("__").
- Critical Requirement: The caption must compel the model to complete the blank
differently based on the context:
- **Without the image**: complete with a factual token (typical scenario involving
the subject).
- **With the image**: complete with a counterfactual token (unexpected scenario
explicitly depicted).
- Important Constraint: Use neutral language with NO textual hints indicating abnormality.
The main subject must explicitly appear in the caption to establish
context clearly. Only the image content itself should disambiguate the scenario.
- The caption should not contain any unusual or counterintuitive elements; the unusual
aspect should be reflected solely in the image content and in the
counterfactual tokens.
- Make sure that if you substitute the blank with a factual or counterfactual token,
the sentence is fluent and grammatically correct.

Explicit Single-Word Token Generation:

- Generate exactly **ten single-word factual tokens** representing common scenarios
involving the main subject that could complete in a grammatically

correct way the sentence.

- Generate exactly **ten single-word counterfactual tokens** representing surprising
scenarios involving the same subject, justified solely by the

provided image and that could complete the sentence in a grammatically correct way.

- Strictly enforce single-word tokens; no multi-word phrases or sentences.

- Ensure clear differentiation without conceptual overlap between factual and counterfactual
tokens.

JSON Output Format:
Provide each caption and tokens following this exact schema:

{
"caption": "Neutral sentence explicitly containing the main subject and ending with
an intentional blank ('___")",
"factual_tokens": ["tokenl", "token2", "token3", "token4", "token5", ...],
"counterfactual_tokens": ["tokenl", "token2", "token3", "token4", "token5", ...],

"context": {
"selected_caption": "Primary description clearly stating the main subject of the image",
“crowd_captions": ["Caption 1", "Caption 2", "..."],
"designer_explanation": "Explanation highlighting the unusual aspect directly
involving the main subject”,
"crowd_explanations": ["Explanation 1", "Explanation 2", "..."]

}

}

Your role is to craft neutral captions explicitly containing the main subject of

each image, along with precisely differentiated factual and counterfactual

single-word tokens. The explicit presence of the main subject in the caption must guide
factual versus counterfactual completions, relying solely on the provided image for
disambiguation.

Figure 11: Prompt Used to Generate Dataset Instances. We provide GPT-40 with an image, a set of captions, and
an explanation of the visual anomaly, and instruct it to generate a sentence that implicitly refers to the anomaly
while remaining commonsense-compatible. The model is then asked to propose plausible factual and counterfactual
next-token completions, reflecting typical knowledge-based and visually grounded interpretations, respectively.
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