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Abstract

Black-box algorithms are designed to optimize functions without relying
on their underlying analytical structure or gradient information, making
them essential when gradients are inaccessible or difficult to compute. Tra-
ditional methods for solving black-box optimization (BBO) problems pre-
dominantly rely on non-parametric models and struggle to scale to large
input spaces. Conversely, parametric methods that model the function
with neural estimators and obtain gradient signals via backpropagation
may suffer from significant gradient errors. A recent alternative, Explicit
Gradient Learning (EGL), which directly learns the gradient using a first-
order Taylor approximation, has demonstrated superior performance over
both parametric and non-parametric methods. In this work, we propose
two novel gradient learning variants to address the robustness challenges
posed by high-dimensional, complex, and highly non-linear problems. Op-
timistic Gradient Learning (OGL) introduces a bias toward lower regions
in the function landscape, while Higher-order Gradient Learning (HGL)
incorporates second-order Taylor corrections to improve gradient accuracy.
We combine these approaches into the unified OHGL algorithm, achiev-
ing state-of-the-art (SOTA) performance on the synthetic COCO suite.

Additionally, we demonstrate OHGL’s applicability to high-dimensional
real-world machine learning (ML) tasks such as adversarial training and
code generation. Our results highlight OHGL’s ability to generate stronger
candidates, offering a valuable tool for ML researchers and practitioners
tackling high-dimensional, non-linear optimization challenges.

1 Introduction

Black-box optimization (BBO) is the process of searching for optimal solutions within a
system’s input domain without access to its internal structure or analytical properties Audet
et al. (2017c). Unlike gradient-based optimization methods that rely on the calculation of
analytical gradients, BBO algorithms query the system solely through input-output pairs,
operating agnostically to the underlying function. This feature distinguishes BBO from
traditional ML tasks, such as neural network training, where optimization typically involves
backpropagation-based gradient computation.
Many real-world physical systems naturally fit into the BBO framework because their ana-
lytical behavior is difficult or impossible to model explicitly. In these cases, BBO algorithms
have achieved remarkable success in diverse fields, such as ambulance deployment Zhen et al.
(2014), robotic motor control Gehring et al. (2014); Prabhu et al. (2018), parameter tuning
Olof (2018); Rimon et al. (2024), and signal processing Liu et al. (2020), among others
Alarie et al. (2021). BBO applications extend beyond physical systems; many ML problems
exhibit a black-box nature when the true gradient is absent. Examples include hyperparam-
eter tuning Bischl et al. (2023), contextual bandit problems Bouneffouf et al. (2020), and
large language model training with human feedback Bai et al. (2022), to name a few.
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As the scale of data continues to grow, the dimensionality of the problem space increases in
tandem. This trend is particularly evident in ML, where model architectures, embedding and
latent representation sizes, and the number of hyperparameters are continually expanding.
High-dimensional optimization challenges traditional BBO algorithms, which often require
the number of collected samples at each step, ns, to scale proportionally with the problem
size, N . Parametric neural models, however, have shown that reusing past samples can
effectively reduce the required sample size such that ns ≪ N Sarafian et al. (2020); Lu et al.
(2023). Building on this, we propose a sampling profiler that further reduces the number of
samples needed at each step while maintaining performance.
While problem dimensions increase, the cost of evaluating intermediate solutions remains a
critical constraint, especially in real-world settings where interaction with the environment is
expensive or in ML tasks where larger models counterbalance gains in computational power.
Therefore, modern BBO algorithms must not only reduce evaluation steps but also converge
more quickly Hansen et al. (2010). Achieving this requires algorithms capable of more
accurately predicting optimization directions, either through better gradient approximation
Anil et al. (2020); Lesage-Landry et al. (2020) or momentum-based strategies to handle non-
convexity and noise. In this paper, we propose two key improvements to Explicit Gradient
Learning (EGL): (1) Optimistic Gradient Learning (OGL), a weighted gradient estimator
that biases toward promising solutions and (2) Higher-Order Gradient Learning (HGL),
which incorporates Hessian corrections to yield more accurate gradient approximations.
We combine the strengths of OGL and HGL to a unified algorithm termed OHGL which
exhibits four key advantages:

• Robustness: OHGL consistently outperforms baseline algorithms across a diverse
range of benchmark problems, including synthetic test suites and real-world ML
applications. Its ability to handle noisy and non-convex environments.

• Gradient Precision: By integrating the second-order information via Hessian
corrections, OHGL achieves significantly more accurate gradient approximations
than standard EGL.

• Convergence Rate: OHGL demonstrates faster convergence rate.
• Utilizing the sampling profiler and the optimistic approach, OGL is able to solve

high-dimensional problems with smaller budget and converge faster than
baseline algorithms.

Related works: Black-box optimization (BBO) algorithms have a long history, with vari-
ous approaches developed over the years. Some of the foundational techniques include grid
search, coordinate search Audet et al. (2017e), simulated annealing Busetti (2003), and
direct search methods like Generalized Pattern Search and Mesh Adaptive direct search Au-
det et al. (2017a), Gradient-less descent Golovin et al. (2019), and ZOO Chen et al. (2017).
These approaches iteratively evaluate potential solutions and decide whether to continue
in the same direction. However, they resample for every step and don’t use the sampled
budget from previous iterations, wasting a lot of budget.
Another prominent family of BBO algorithms is the genetic algorithm family Back (1996).
This includes methods such as Covariance Matrix Adaptation (CMA) Hansen (2016) and
Particle Swarm Optimization (PSO) Clerc (2010). These algorithms simulate the process of
natural evolution, where a population of solutions evolves through mutation and selection
Audet et al. (2017b). They are considered state-of-the-art (SOTA) in optimization due
to their effectiveness in tackling complex problems. However, they come with significant
drawbacks, particularly the need for extensive fine-tuning of parameters like generation
size and mutation rates. CMA, for example, struggles in higher-dimensional environments
and requires careful adjustment of hyperparameters and guidance to perform optimally
Loshchilov et al. (2013); Tang (2021). In this work, we propose a simpler method to enhance
the performance of CMA, particularly in high-dimensional settings.
Then there are model-based methods Audet et al. (2017d), which attempt to emulate the
behavior of the function using a surrogate model. These models provide important analytical
information, such as gradients Bertsekas (2015), to guide the optimization process and help
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find a minimum. Within this class, we can further distinguish two sub-classes. To address
the issue of dimensionality, Explicit Gradient Learning (EGL) was proposed by Sarafian
et al. (2020). While many model-based methods focus on learning the function’s structure to
derive analytical insights (e.g., Indirect Gradient Learning or IGL Lillicrap (2015); Sarafian
et al. (2020)), EGL directly learns the gradient information. EGL uses Taylor’s theorem to
estimate the gradient. The authors also emphasize the importance of utilizing a trust region
to handle black-box optimization problems. However, EGL has some drawbacks: it often
uses the available budget inefficiently, disregarding both the complexity and dimensionality
of the environment. Additionally, the datasets created by EGL can be naive, leading to
over-fitting or improper network learning. This work tackles these issues by showing the
importance of proper algorithm calibration and optimization.
Recent work also highlights the limitations of common assumptions in BBO algorithms,
such as continuity or Gaussian distributions of functions, which can hinder optimization.
For instance, OPT-GAN Tang (2021), a generative model, seeks to bypass these assumptions
by learning a function’s distribution and generating better candidate solutions based on that
knowledge.
The paper is organized as follows: Section 2 covers the algorithm’s theoretical back-
ground and mathematical foundations. Sections 3 and 4 present our two enhanced variants
of the gradient learning algorithm: OGL and HGL, these are followed by section 5 where we
present the full algorithm OHGL. Section 6 provides experimental results on the synthetic
COCO test suite and Section 7 highlights 2 real-world high-dimensional applications and
potential uses. Finally, section 8 concludes and suggests future research directions. Our
code, experiments, and environment setup are available in the supplementary material.

2 Background

The goal of black-box optimization (BBO) is to minimize a target function f(x) through a
series of evaluations Audet et al. (2017c), over a predefined domain Ω:

find: x∗ = arg min
x∈Ω

f(x) (1)

The Explicit Gradient Learning method, as proposed by Sarafian et al. (2020) lever-
ages the first-order Taylor’s expansion: f(y) = f(x) + ∇f(x)⊤(y − x) + R1(x, y). Here,
R1(x, y) = O(∥y − x∥2) is a higher-order residual. By minimizing the residual term with a
surrogate neural network model, EGL learns the mean-gradient: a smooth approximation
of the function’s gradient

gEGL
ε (x) = arg min

gθ:Rn→Rn

∫
y∈Bε(x)

(
f(x)− f(y) + gθ(x)⊤(y − x)

)2
dy (2)
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Figure 1: Comparing the effect of trust region.
Trust region significantly improves both EGL
and CMA algorithms.

where Bε(x) is a ball around x. As ε → 0,
the mean-gradient converges to ∇f , this
property lets EGL explore for lower regions
in the function landscape when ε is suffi-
ciently large and converge to a local mini-
mum when ε converges to 0.
A key component of the EGL algorithm
is the trust region (TR), which restricts
the search space around the current es-
timate. This region standardizes input-
output statistics, enhancing the neural net-
work’s effectiveness. Although Sarafian
et al. (2020) suggested the TR framework as
part of the EGL algorithm, TR is not exclu-
sive to EGL and can significantly improve
other algorithms. In our work, we created
stronger baseline algorithms by adding TR
to the classic Covariance Matrix Adaptation (CMA) algorithm (see Appendix: Algorithm
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11). Notably, this seemingly minor change to CMA significantly improves its performance
and outperforms vanilla EGL in the COCO optimization suite, as shown in Fig. 1.

3 Optimistic Gradient Learning with Weighted Gradients

While local search algorithms like EGL are based on the notion that the gradient descent
path is the optimal search path, following the true gradient path may not be the optimal
approach in terms of sampling budget utilization, avoiding shallow local minima and nav-
igating through narrow ravines. Specifically, in case we obtain a batch D of sample pairs
{(xi, f(xi))}i∈D around our current solution x, a plausible and optimistic heuristic can be
to direct the search path towards low regions in the sampled function landscape regardless
the local curvature around x. In other words, to take a sensible guess and bias the search
path towards the lower (xi, f(xi)) samples. To that end, we define the Optimistic Gradient
Learning objective by adding an importance sampling weight to the integral of Eq. 2

gOGL
ε (x) = arg min

gθ:Rn→Rn

∫
y∈Bε(x)

Wf (x, y) ·
(
f(x)− f(y) + gθ(x)⊤(y − x)

)2
dy (3)

Here, Wf is a softmax-like weight function that normalizes the weight by the sum of expo-
nents across the sampled batch

Wf (x, y) = e− min(f(x),f(y))∑
xi∈D e−f(xi) (4)

Notice that in practice, the theoretical objective in Eq. 3 is replaced by a sampled Monte-
Carlo version (see Sec. 5) s.t. the sum of all weights across the sampled batch is smaller
than 1. In the following theorem, we show that the controllable accuracy property of EGL,
which implies that the mean-gradient converges to the true gradient still holds for our biased
version, s.t. when ε → 0, gOGL

ε → ∇f(x) this guarantees that the convergence properties
of the mean-gradient still hold

Theorem 1 (Optimistic Controllable Accuracy) For any differentiable function f with a
continuous gradient, there exists κOGL > 0 such that for any ε > 0, gOGL

ε (x) satisfies

∥gOGL
ε (x)−∇f(x)∥ ≤ κOGLε for all x ∈ Ω.

In Fig. 2a we plot 4 typical trajectories of EGL and OGL which demonstrate why in practice
and on average we can benefit from biasing the gradient. We find that the biased version
avoids getting trapped in local minima and avoids long travels through narrow ravines
which rapidly consume the sampling budget. In Fig. 2b we find statistically that OGL
tends to progress faster and closer to the global minimum while EGL diverges from the
global minimum in favor of local minima.

4 Gradient Learning with Hessian Corrections

To learn the mean-gradient, EGL minimizes the first-order Taylor residual (see Sec. 2).
Utilizing higher-order approximations has the potential of learning more accurate models
for the mean-gradient. Specifically, the second-order Taylor expansion is

f(y) = f(x) +∇f(x)⊤(y − x) + 1
2(y − x)⊤∇2f(x)(y − x) + R2(x, y) (5)

Here R2(x, y) = O(∥x − y∥3) is the second order residual. Like in EGL, we replace ∇f
with a surrogate model gθ and minimize the surrogate residual to obtain our Higher-order
Gradient Learning (HGL) variant

gHGL
ε (x) = arg min

gθ:Rn→Rn

∫
y∈Bε(x)

R2
HGL(x, y)dy

RHGL
gθ

(x, y) = f(x)− f(y) + gθ(x)⊤(y − x) + 1
2(y − x)⊤Jgθ

(x)(y − x)
(6)
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a b
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(a) OGL vs EGL trajectories. 1st row: Gal-
lagher’s Gaussian 101-me. 2nd row: 21-hi.
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(b) The average Euclidean distance at each step
between the algorithm and the global minimum.

Figure 2: Training with the mean-gradient EGL versus the optimistic version OGL.

The new higher-order term Jgθ
(x) is the Jacobean of gθ(x), evaluated at x which ap-

proximates the function’s Hessian matrix in the vicinity of our current solution, i.e.,
Jgθ

(x) ≈ ∇2f(x). Next, we show theoretically that as expected, HGL converges faster
to the true gradient which amounts to lower gradient error in practice.1

Theorem 2 (Improved Controllable Accuracy): For any twice differentiable function f ∈
C2, there exists κHGL > 0 such that for any ε > 0, the second-order mean-gradient gHGL

ε (x)
satisfies

∥gHGL
ε (x)−∇f(x)∥ ≤ κHGLε2 for all x ∈ Ω.

101 102

Dimension

0.017

0.018

0.019

0.020

0.021

0.022

M
ea

n 
No

rm
 G

ra
d 

M
SE

EGL
HGL

Figure 3: Comparing the normalized
MSE between the true gradient and
EGL and HGL gradient models

In other words, in HGL the model error is in an order
of magnitude of ε2 instead of ε in EGL and OGL.
In practice, we verified that this property of HGL
translates to more accurate gradient models. Figure
3 shows the gradient error of EGL and HGL for a
selected set of problems from the COCO test suite
where the analytical true gradient can be easily cal-
culated and compared to our learned model.
Learning the gradient with the Jacobian corrections
introduces a computational challenge as double back-
propagation can be expensive. This overhead can
hinder the scalability and practical application of the
method. A swift remedy is to detach the Jacobian
matrix from the competition graph. While this step
slightly changes the objective’s gradient (i.e. the gradient trough (RHGL) it removes the
second-order derivative and in practice, we found that it achieves almost similar results
compared to the full backpropagation through the residual RHGL, see Fig. 4(b).

5 OHGL

In this section, we combine the optimistic approach from Sec. 3 and the Hessian corrections
from Sec. 4. However, unlike previous sections, we will present the practical implementation

1Notice that, while HGL incorporates Hessian corrections during the gradient learning phase,
we deliberately avoid modifying the gradient descent step to include inverse Hessian scaling, as is
done in Newton’s methods. In practice, inverting the approximated Hessian matrix can lead to
numerical challenges and instabilities and was found to be less effective in our experiments.
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where integrals are replaced with Monte-Carlo sums of sampled pairs. In this case, the loss
function which is used to obtain the Optimistic Higher-order Gradient (OHGL) model is

LOHGL
ε (θ) =

∑
∥xi−xj∥≤ε

Wf (xi, xj)×

(
f(xi)− f(xj) + gθ(xi)⊤(xj − xi) + 1

2(xj − xi)⊤Jgθ
(xi)(xj − xi)

)2
(7)

The summation is applied over sampled pairs which satisfy ∥xi − xj∥ ≤ ε. As explained in
Sec. 4, we detach the Jacobian of gθ from the computational graph to avoid second-order
derivatives. Our final algorithm is outlined in Alg. 1 and an extended version including
additional technical details is found in the appendix (See Alg. 2).

Algorithm 1 OHGL (Optimistic Higher-Order Gradient Learning)
Require: x0, Ω, α, ϵ0, γα, γϵ, nmax, λ, Budget

k = 0, j = 0, Ωj ← Ω
while Budget > 0 do

Explore: Generate and evaluate samples Dk = {x̃i, yi}m
i=1

Create Dataset: Select m tuples T from Dk

Weighted Output: Assign weights wi and apply squashing function ỹi = rk(wiyi)
Higher-Order Gradient Learning: Minimize the loss of θk (Eq. 7)
Gradient Descent: Update solution: xk+1 ← xk − αg̃θk

(xk)
if f(h−1

j (x̃k+1)) > f(h−1
j (x̃k)) for nmax times then

Generate new trust region Ωj+1 and update ϵj

end if
if f(h−1

j (x̃k)) < f(h−1
j (x̃best)) then

Update xbest
end if
k ← k + 1; Budget = Budget−m

end while
return xbest

6 Experiments in the COCO test suite

We evaluated the OGL, HGL and OHGL algorithms on the COCO framework Hansen et al.
(2021) and compared them to EGL and other strong baselines: (1) CMA and its trust
region variants L-CMA (linear trust region mapping function) and T-CMA (tanh trust
region mapping function) and (2) Implicit Gradient Learning (IGL) Sarafian et al. (2020)
where we follow the EGL protocol but train a model for the objective function and obtain
the gradient estimation by backpropagation as in DDPG Lillicrap (2015). We also adjusted
EGL hyper-parameters A.4 and improved the trust region A.5 to reduce the budget usage
by our algorithms.
We use the following evaluation metrics:

• Convergence Rate: Speed of reaching the global optimum.
• Success Rate: Percentage of problems solved within a fixed budget.
• Robustness: Performance stability across different hyperparameter settings.

Performance was normalized against the best-known solutions to minimize bias:
normalized value = y−ymin

ymax−ymin
. A function was considered solved if the normalized value

was below 0.01.

6.1 Success and Convergence Rate

Figure 4(c) illustrates the success rate of each algorithm relative to the distance from the
best point required for solving a function. The results show that both OGL and OHGL

6
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Metric T-CMA L-CMA EGL OGL HGL OHGL
Budget to reach 0.01 17,828 ± 32648 6497 ± 19731 24,102 8981 ± 9177 22,146 ± 29757 26,706 ± 32676
Mean 0.01 ± 0.05 0.01 ± 0.05 0.01 ± 0.03 0.003 ± 0.02 0.006 ± 0.03 0.002 ± 0.02
Solved Functions 0.86±0.023 0.88±0.023 0.83±0.023 0.92±0.022 0.89±0.022 0.926±0.022

Table 1: Comparison of different metrics: Budget used to reach 0.99 of the final score (↓),
the mean normalized results (↓), std (↓); and percentage of solved problems (↑).
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Figure 4: Experiment results against the baseline: (a) Convergence for all our algorithms
against baseline algorithms, (b) ablation test for EGL enhancements, (c) Success rate of
algorithms as a function of the normalized distance from the best-known solution, (d) Per-
centage of solved algorithms when the distance from the best point is 0.01

consistently outperform all other algorithms. In particular where the error should be small
(<0.01), with t-tests yielding p-values approaching 1, indicating strong statistical confidence
(see the complete list of t-test p-values in Table 4 in the appendix).
Figure 4(a) presents the convergence rates for the seven algorithms, where OGL, HGL,
and OHGL demonstrate superior convergence compared to the other methods. OHGL, in
particular, consistently ranks among the top performers across most metrics, as seen in Table
1, which compares multiple performance indicators. Although OGL achieves better initial
results, as it searches longer for the space with the optimal solution, making it a worse fit for
problems with a low budget, it ultimately reaches superior results. Additionally, Figure 4(b)
shows an ablation test, confirming that the core components of our work: the optimistic
approach (OGL) and the Higher-order corrections (HGL) contributed substantially much
more to the overall performance than other technical improvements to the algorithm (with
respect to vanilla EGL), these technical improvements are denoted as EGL-OPTIMIZED
and they amount to better trust-region management and more efficient sampling strategies
which mainly helps in faster learning rate at the beginning of the process (as described in
Sec. A.4 and A.5 in the appendix).
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6.2 Hyperparameter Tolerance

In this part, we evaluate the robustness of our algorithm to hyperparameter tuning. Our
objective is to demonstrate that variations in key hyperparameters have minimal impact on
the algorithm’s overall performance. To assess this, we conducted systematic experiments,
modifying several hyperparameters and analyzing their effects. Table 2 (and Table 6 in the
appendix) reports the coefficient of variation (CV), defined as CV = σ

µ , across different
hyperparameter sweeps, highlighting the algorithm’s stability under varying conditions.
Our findings indicate that certain hyperparameters—such as the epsilon factor, shrink fac-
tor, and value normalizer learning rate (LR)—exhibit cumulative effects during training.
While small variations in these parameters may not have an immediate impact, their influ-
ence can accumulate over time, potentially leading to significant performance changes. In
A.11.2, we establish the relationship between the step size and the epsilon factor necessary
for ensuring progress toward a better optimal solution. When selecting these parameters,
this relationship must be considered. Additionally, the shrink factor for the trust region
should be chosen relative to the budget, enabling the algorithm to explore the maximum
number of sub-problems. This underscores the importance of fine-tuning these parameters
for optimal results. Conversely, we found that the structural configuration of the neural
network, including the number and size of layers, had minimal effect on performance. This
suggests that the algorithm’s reliance on Taylor loss enables effective learning even with
relatively simple network architectures, implying that increasing model complexity does not
necessarily yield substantial improvements.

Metric Networks Epsilon Epsilon Factor Training Bias Perturbation
CV 0.0167 0.0339 0.2361 0.1292 0.1642
Metric TR Shrink Method Normalizer LR Normalizer Outlier TR Shrink Factor Optimizer LR
CV 0.0333 0.1618 0.0333 0.4894 0.5625

Table 2: Coefficient of Variation (CV = σ
µ ) over a Hyperparameter sweep experiment.

7 High Dimensional Applications

7.1 Adversarial Attacks

As powerful vision models like ResNet Targ et al. (2016) and Vision Transformers (ViT)
Han et al. (2022) grow in prominence, adversarial attacks have become a significant con-
cern. These attacks subtly modify inputs, causing models to misclassify them, while the
perturbation remains imperceptible to both human vision and other classifiers Tang et al.
(2019). Formally, an adversarial attack is defined as:

x∗
a = arg min

x
d(x, xa) s.t.f(x) ̸= f(xa) (8)

Where f is the classifier and d is some distance metric between elements.
Recent studies have extended adversarial attacks to domains like AI-text detection Sadasivan
et al. (2024) and automotive sensors Mahima et al. (2024). These attacks prevent tracking
and detection, posing risks to both users and pedestrians. Adversarial attacks are classified
into black-box and white-box methods. Black-box attacks only require query access, while
white-box methods use model gradients to craft perturbations Machado et al. (2021); Cao
et al. (2019). Despite some black-box methods relying on surrogate models Dong et al.
(2018); Xiao et al. (2018); Madry et al. (2017); Goodfellow et al. (2014), approaches like
AutoZOOM Tu et al. (2019) generate random samples to approximate gradient estimation,
though they are computationally expensive. Other methods use GAN networks to search
latent spaces for adversarial examples Liu et al. (2021); Sarkar et al. (2017). Still, they
depend on existing GANs and their latent space diversity.
Our Enhanced Gradient Learning method offers a true black-box approach with precise
perturbation control, avoiding gradient back-propagation. OGL directly optimizes pertur-
bations to maintain low distortion while fooling the model, handling high-dimensional spaces
with over 30,000 parameters.

8
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Original CMA OGL HGL

Figure 5: Adversarial examples generated by OGL and CMA against the ImageNet model.

Methodology: We applied OGL to classifiers trained on MNIST, CIFAR-10, and Ima-
geNet, aiming to minimize equation 8. To generate adversarial images with minimal distor-
tion, we developed a penalty that jointly minimizes MSE and CE-loss A.9. This approach
successfully fooled the model, evading the top 5 classifications.
Results: We evaluated four different configurations: CMA, OGL, HGL, and a combination
of both (CMA+OGL) where the CMA run provides the initial guess for an OGL run. While
CMA alone was not able to converge to a satisfying adversarial example, the combined
CMA+OGL enjoyed the rapid start of CMA with the robustness of OGL s.t. it was able to
find a satisfying adversarial example in 50% of the time used by OGL and HGL.

7.2 Code generation

The development of large language models (LLMs) such as Transformers Vaswani (2017)
have advanced code generation Dehaerne et al. (2022). Despite these strides, fine-tuning
outputs based on parameters measured post-generation remains challenging. Recent algo-
rithms have been developed to generate code tailored for specific tasks using LLMs. For
instance, FunSearch Romera-Paredes et al. (2024) generates new code solutions for complex
tasks, while Chain of Code Li et al. (2023) incorporates reasoning to detect and correct
errors in the output code. Similarly, our method uses black-box optimization to guide code
generation for runtime efficiency. Building on Zhang et al. (2024), which links LLM exper-
tise to a small parameter set, we fine-tuned the embedding layer to reduce Python code
runtime. Using LoRA Hu et al. (2021), we optimized the generated code based on execution
time, scaling up to ∼ 200k parameters.
Fibonacci: We tested this approach by having the model generate a Fibonacci function.
Initially incorrect, optimization guided the model to a correct and efficient solution. Figure
1 illustrates this progression, with the 25th step showing an optimized version.
Line-Level Efficiency Enhancements: We tested the model’s ability to implement small
code efficiencies, such as replacing traditional for-loops with list comprehensions. The algo-
rithm optimized the order of four functions—‘initialize‘, ‘start‘, ‘activate‘, and ‘stop‘—each
with eight variants, minimizing overall runtime by optimizing the function order.
Code Force Challenge: For a more complex problem, we used the Count Triplets chal-
lenge from Codeforces2. While the model initially struggled, once it found a correct solution,
the algorithm further optimized it for runtime performance A.3.

2https://codeforces.com/

Metric CMA OGL HGL CMA+OGL
Accuracy 0.02 0.02 0.02 0.02
MSE 0.05 0.001 0.002 0.001
Time (Until Convergence) 20m 6H 7H 3H

Table 3: Comparison of methods on Accuracy, MSE, and Time.
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def fib(n):
"""
Returns the n number in

the Fibonacci series↪→
"""
return fib1(n-1) + fib2(n)

Step 1 - Starting point

def fib(n):
"""
Returns the n number in

the Fibonacci series↪→
"""
if n==1:

return 0
if n==2:

return 1
return fib(n-1) + fib(n-2)

Step 7 - First correct
code

def fib(n):
"""
Returns the n number in

the Fibonacci series↪→
"""
if n <= 1:

return n
a, b = 0, 1
for i in range(2, n + 1):

a, b = b, a + b
return b

Step 25 - Convergence

Figure 6: Generated code samples by OGL algorithm
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Figure 7: Code generation experiments:
penalty over time.

Discussion: Our method demonstrates the
ability to generate correct solutions while
applying micro-optimizations for efficiency.
In simple tasks like Fibonacci, OGL con-
verged on an optimal solution 7, and in
more complex problems, it improved the
initial solutions. However, in more com-
plex tasks, the LLM may generate code that
fails to solve the problem, hindering the
optimization of the run-time. To address
this, either stronger models or methods fo-
cused on optimizing solution correctness are
needed. This would ensure that valid solu-
tions are generated first, which can then be further optimized for performance.

8 Conclusion

In this work, we introduced several key enhancements to the EGL algorithm, resulting
in OHGL, a powerful black-box optimization tool capable of addressing various complex
problems. We demonstrated improvements such as second-order gradient approximation,
optimistic gradients, and trust region enhancements, which collectively led to faster conver-
gence and more robust performance, particularly in high-dimensional and intricate tasks.
Our experiments showcased OHGL’s superiority over state-of-the-art methods, especially
in tasks where computational efficiency and precision are paramount, such as adversarial
attacks on vision models and optimizing code generation. OHGL’s ability to navigate com-
plex optimization spaces while minimizing computational cost demonstrates its utility across
various applications.
Looking ahead, Future research should explore new applications of black-box optimization
algorithms like OHGL. While OHGL has shown promise in high-dimensional tasks, its effi-
ciency could be further improved. Our research utilized dimension-reduction methods such
as Hu et al. (2021). Similar techniques (Zhao et al. (2024); Anil et al. (2020)) can help
calculate the Hessian more efficiently.
In conclusion, OHGL represents a significant advancement in BBO algorithm design, pro-
viding a robust framework for solving complex optimization problems. However, the true
potential of BBO algorithms lies in their broader applicability, and future research should
focus on unlocking new avenues for their use, especially in generative models and other
cutting-edge areas.
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A Appendix

A.1 Full OHGL Algorithm

Algorithm 2 OHGL (Hessian Weighted Gradient Learning)
Require: x0, Ω, α, ϵ0, γα < 1, γϵ < 1, nmax, λ

k = 0
j = 0
Ωj ← Ω
Map h0 : Ω→ Rn

Map W0 : R→ R
while Budget > 0 do

Explore:
Generate samples Dk = {x̃i}m

i=1, x̃i ∈ Vϵk
(x̃k)

Evaluate samples yi = f(h−1
0 (x̃i)), i = 1, . . . , m

Add tuples to the replay buffer: D = D ∪Dk

Create Dataset of Tuples:
T ← {(x̃i, x̃j) | ∥x̃i − x̃j∥2 < ϵ,∀i, j}
Select the first m tuples from T

Weighted Output Map:
Assign weights wi = Wk(yi) to samples based on function values
Apply squashing function to the outputs: ỹi = rk(wiyi), i = 1, . . . , m

Higher-Order Gradient and Hessian Learning:
Calculate the Hessian from the Jacobian of the network: Hk(x) = J(gθk

(x))
Optimize the network with GD using the formula in 7

Gradient Descent:
Update the current solution using second-order information:
xk+1 ← xk − α · g̃θk

(xk)
if f(h−1

j (x̃k+1)) > f(h−1
j (x̃k)) for nmax times in a row then

Generate a new trust region: Ωj+1 = γα|Ωj | with center at xbest
Map hj : Ω→ Rn

Map Wj : R→ R
j ← j + 1
ϵj ← γϵϵj

end if
if f(h−1

j (x̃k)) < f(h−1
j (x̃best)) then

xbest = h−1
j (x̃k)

end if
k ← k + 1; Budget← Budget−m

end while
return xbest
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A.2 Statistical Analysis

Table 4: T-test of our algorithms against the benchmark in dimension 40

Metric OGL HOGL HGL
IGL 1.000000 1.000000 1.000000
OGL 0.500000 0.278378 0.334161
OHGL 0.721622 0.500000 0.473754
HGL 0.665839 0.526246 0.500000
EGL 0.999961 0.999975 0.999098
CMA 1.000000 1.000000 1.000000
T-CMA 0.999934 0.999911 0.999788
L-CMA 0.999859 0.999843 0.998842

A.3 Generated code from Code Force Example

def count_triplets(n: int, x: int) -> int:
"""
This function calculates the number of triplets (a, b, c) of positive integers such that:
1. a*b + a*c + b*c â‰¤ n
2. a + b + c â‰¤ x
where the order of triplets matters (e.g., (1, 1, 2) and (1, 2, 1) are different triplets)
and a, b, c must be strictly greater than 0.
"""
pass

def check_function():
assert count_triplets(10, 5) == 3, 'Test case 1 failed'
assert count_triplets(15, 10) == 6, 'Test case 2 failed'
assert count_triplets(20, 15) == 10, 'Test case 3 failed'
assert count_triplets(100, 50) == 50, 'Test case 4 failed'
print('All test cases passed!')

Figure 8: Step 1

Figure 9: Generated code samples by the algorithm

def count_triplets(n):
"""

This function calculates the number of triplets (a, b, c) of positive integers such that:
1. a*b + a*c + b*c <= n
2. a + b + c <= x
where the order of triplets matters (e.g., (1, 1, 2) and (1, 2, 1) are different triplets)
and a, b, c must be strictly greater than 0.

"""
count = 0
# Iterate through all possible values of a, b, c
for a in range(1, x + 1):

for b in range(1, x + 1):
for c in range(1, x + 1):

if a * b + a * c + b * c <= n and a + b + c <= x:
count += 1

return count

Figure 10: Step 21

Figure 11: Generated code samples by the algorithm
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def count_triplets(n):
"""

This function calculates the number of triplets (a, b, c) of positive integers such that:
1. a*b + a*c + b*c <= n
2. a + b + c <= x
where the order of triplets matters (e.g., (1, 1, 2) and (1, 2, 1) are different triplets)
and a, b, c must be strictly greater than 0.

"""
count = 0
# Iterate over a
for a in range(1, x + 1):

# Iterate over b
for b in range(1, x - a + 1):

# Find the maximum c based on the condition a + b + c <= x
max_c = min(x - a - b, (n - a * b) // (a + b)) # upper bound for c
# Use list comprehension to count valid triplets
count += sum(1 for c in range(1, max_c + 1) if a * b + a * c + b * c <= n)

return count

Figure 12: Step 50

Figure 13: Generated code samples by the algorithm

A.4 Adaptive Sampling Size

Gradient learning algorithms collect samples to train the surrogate gradient model. While
more samples can potentially lead to more accurate models, it is important to curtail the
number of samples in each training iteration to be able to execute enough optimization steps
before consuming the budget. On the other hand, one advantage that gradient learning has
over direct objective learning is that we train the model with pairs of samples instead of
single evaluation points, s.t. for a sample set of size ns we can draw as many as np = n2

s
pairs to train our model.
We empirically tested the optimal number of exploration size (i.e. ns) in each training step
and the optimal sample pair size (np) and found that a squared root profile is optimal both
hyperparameters. Therefore, we use the following equation to control these parameters:

ns = 8 ·
⌈√

N
⌉

np = 2000 ·
⌈√

N
⌉ (9)

where N is the problem size.

A.5 Trust Region Management

After finding the optimal solution inside the trust region, EGL shifts and scales down (i.e.
shrinks) the trust region so that the optimal solution is centered at its origin. In case the
decent path is long so that the minimum point is far away from the current trust region,
this shrinking has the potential to slow down the learning rate and impede convergence.
To prevent unnecessary shrinking of the trust region, we distinguish between two conver-
gence types: interior convergence: in this case, we shrink the trust region while moving
its center and boundary convergence where we only shift the center without applying
shrinking (When the algorithm reaches the edges of the TR). This adjustment prevents
fast convergence of the step size to zero before being able to sufficiently explore the input
domain.
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A.6 Additional Empirical Results

Table 5: EGL Best Parameters

Parameter Value Description

Exploration size 8 ·
⌈√

dimension
⌉

The number of iterations the al-
gorithm will run.

Maximum movement to shrink 0.2 ·
√

dimension How much distance the algo-
rithm needs to cover to prevent
shrinking when reaching conver-
gence.

Epsilon 0.4 ·
√

dimension Epsilon size to sample data.
Epsilon Factor 0.97 How much we shrink the epsilon

each iteration.
Minimum epsilon 0.0001 The smallest epsilon we use.
Database size 20, 000 ·

⌈√
dimension

⌉
How many tuples we used to
train for each iteration.

Gradient network dimension-10-15-10-dimension What kind of network we use.
Budget 150,000 How much budget the algorithm

uses.

A.7 Benchmark Algorithms

Algorithm 3 CMA with a trust region
Require: total budget, budget = 0, startpointx, δ = 1, µ = 0, γ

while budget ≤ total budget do
new generation, should stop = CMA(x)
new generation = mu + δ ∗ new generation
evalutaions = space(new generation)
budget = budget + len(evalutaions)
UpdateCovarMatrix(evaluations)
if should stop then

δ = δ ∗ γ
µ = argminx new generation(space(x))

end if
end while

A.8 CMA Versions

The trust region is key in the EGL algorithm (see Figures 1). We map between the search
space (Ω) and trust region (Ω∗) using the tanh function, which provides smooth transi-
tions but exhibits logarithmic behavior at the edges, slowing large steps. While helpful for
problems with many local minima, this behavior restricts CMA’s ability to take large steps,
especially in high dimensions (see Figure 14). We developed two CMA variants: one with
linear TR (L-CMA) and one with tanh TR(T-CMA). The linear TR allowed larger steps,
improving exploration, while the tanh TR limited performance.

A.9 Adversarial Attack Implementation

Our adversarial attack leverages the flexibility of black-box optimization (BBO), which is
not constrained by differentiability requirements on the objective function. This allows us
to manipulate the search space freely. Specifically, our attack focuses on modifying the
positions of m fixed-size boxes within the image, along with the permutations applied to
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Figure 14: Comparing CMA with different trust regions types across different dimensions

the pixels inside these boxes. This approach provides two key advantages: it enables us to
limit the extent of the alterations we introduce to the image and simultaneously reduces the
dimensionality of the search space Ω.
The penalty function we use balances two competing goals: minimizing the cross-entropy
loss to ensure misclassification and limiting the perturbation magnitude using the mean
squared error (MSE) loss. To achieve this balance, we define the following loss function:

s(ce) = σ (b · (ce− ϵ))

Penaltymse(ce, mse) (1− s(ce)) ·msen1 + s(ce) · (−msen2)
Penaltyce(ce) (1− s(ce))) · ece∗n1 + s(ce) · (ln(cen2))

Penalty(x) = Penaltymse(ce(x), mse(x))− Penaltyce(ce(x))

In this formulation:

• mse ∈ [0, 1] and ce ∈ (−∞,∞).
• The terms n1 ≤ n2 control the trade-off between the cross-entropy and MSE loss

slopes.
• ϵ defines the minimum required cross-entropy loss to maintain misclassification.
• The parameter b governs the rate of transition between minimizing cross-entropy

and MSE losses.
• The function σ is the sigmoid function, which controls how much focus is given to

minimizing cross-entropy loss over MSE loss as ce increases.

This function balances the CR and the MSE, finding a minimum with CE to prevent detec-
tion by the classifier while minimizing the perturbation of the image.

A.10 Full Robustness Experiment

Table 6: Comparison of Algorithm Versions on coco benchmark, comparing the error, the
std and the budget it takes to finish 99% of the progress

Version Budget Error Std Solved Problems
networks

20 40 20 58447.91 0.0060 0.0325 0.76
40 60 80 40 57960.44 0.0058 0.0325 0.76
60 80 60 58371.31 0.0060 0.0325 0.76
40 80 40 58159.34 0.0061 0.0325 0.76
40 15 10 40 58667.00 0.0061 0.0325 0.76

Epsilon
0.1 39491.81 0.006 0.0325 0.9

Continued on next page
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Version Budget Error Std Solved Problems
0.4 48518.81 0.0057 0.0325 0.93
0.5 49469.81 0.0056 0.0325 0.93
0.6 54271.47 0.0061 0.0326 0.9
0.8 58667.00 0.0061 0.0325 0.9

Epsilon Factor
0.8 39275.72 0.0105 0.0365 0.83
0.9 47930.81 0.0068 0.0327 0.89
0.95 53899.78 0.0060 0.0326 0.9
0.97 58667.00 0.0061 0.0325 0.9
0.99 63676.47 0.0065 0.0326 0.89

Training Weights
50% 58049.50 0.0059 0.0325 0.91
60% 59477.47 0.0066 0.0333 0.89
70% 57831.00 0.0057 0.0325 0.93
83% 58667.00 0.0061 0.0325 0.9
100% 59660.34 0.0061 0.0326 0.9

Perturbation
1 56807.97 0.0066 0.0333 0.89
0.3 58935.38 0.0088 0.0420 0.87
0.1 57699.78 0.0061 0.0325 0.89
0.01 58075.03 0.0060 0.0325 0.89
0 58667.00 0.0061 0.0325 0.89
Euclidean distance of the algorithm before shrinking trust region
0.4 57172.53 0.0061 0.0325 0.9
0.3 57324.53 0.0059 0.0325 0.91
0.2 58667.00 0.0057 0.0325 0.93
0.1 57327.50 0.0061 0.0325 0.89
0.01 57810.81 0.0062 0.0325 0.89

Value Normalizer LR
0.01 58211.59 0.0086 0.0420 0.83
0.05 58576.75 0.0061 0.0326 0.89
0.1 58667.00 0.0057 0.0325 0.93
0.2 59723.88 0.0059 0.0325 0.91
0.3 58194.97 0.0079 0.0370 0.87

Value Normalizer Outlier
0.01 57222.41 0.0059 0.0325 0.91
0.05 57776.38 0.0060 0.0325 0.9
0.1 58667.00 0.0057 0.0325 0.93
0.2 58481.75 0.0061 0.0325 0.9
0.3 58629.59 0.0063 0.0325 0.89

Trust Region Shrink Factor
0.99 103758.16 0.0177 0.0433 0.79
0.95 80660.69 0.0093 0.0346 0.81
0.9 58667.00 0.0057 0.0325 0.93
0.8 43503.22 0.0066 0.0325 0.87
0.7 39790.50 0.0075 0.0326 0.85

Optimizer LR
0.001 101550.59 0.0164 0.0364 0.76
0.005 64988.66 0.0066 0.0325 0.88
0.01 58667.00 0.0057 0.0325 0.93
0.02 62405.84 0.0056 0.0325 0.93

Continued on next page
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Version Budget Error Std Solved Problems
0.03 72041.81 0.0058 0.0325 0.93

Gradient LR
0.0001 63283.41 0.0063 0.0325 0.89
0.0005 59237.59 0.0086 0.0420 0.84
0.001 58667.00 0.0057 0.0325 0.93
0.002 58776.25 0.0061 0.0325 0.9
0.003 57934.91 0.0061 0.0326 0.9

A.11 Theoretical Analysis

A.11.1 Mean Gradient Accuracy

Definition 1 The second-order mean gradient around x of radius ϵ > 0:

g̃ε(x) = arg min
g∈Rn

∫
Vε(x)

∣∣g⊤τ + 1
2 τ⊤J(g)τ − [f(x + τ)− f(x)]

∣∣2
dτ.

Theorem 3 (Improved Controllable Accuracy): For any twice differentiable function f ∈
C2, there exists κg(x) > 0 such that for any ε > 0, the second-order mean-gradient g̃ε(x)
satisfies

∥g̃ε(x)−∇f(x)∥ ≤ κg(x)ε2 for all x ∈ Ω.

Proof. Since f ∈ C2, the Taylor expansion around x is

f(x + τ) = f(x) +∇f(x)⊤τ + 1
2 τ⊤H(x)τ + Rx(τ),

where H(x) is the Hessian matrix at x, and the remainder Rx(τ) satisfies

|Rx(τ)| ≤ 1
6 kg∥τ∥3,

By the Definition of gϵ, an upper bound of L(gϵ(x)) is:

L(gϵ(x)) ≤ L(∇f(x)) =
∫

Vε(x)

∣∣∣∇f(x)⊤τ+ 1
2 τ⊤H(x)τ−

(
f(x+τ)−f(x)

)∣∣∣2
dτ =

∫
Vε(x)

|Rx(τ)|2dτ

≤
( 1

6 kg

)2
∫

Vε(x)
∥τ∥6dτ =

( 1
6 kg

)2 |V1(x)|εn+6.

We now find a lower bound:
lets define for convenience δg = (gε(x)−∇f(x)) , δH = J(gε(x))−H(x)

L(gε(x)) =
∫

Vε(x)
|gε(x)τ −∇f(x)τ +∇f(x)τ + 1

2 τJ(gε(x))τ−

1
2 τH(x)τ + 1

2 τH(x)τ − f(x + τ) + f(x)|2dτ

=
∫

Vε(x)
(δ⊤

g τ + 1
2 τ⊤δHτ −Rx(τ))2dτ

=
∫

Vε(x)
((δ⊤

g τ)2 + 1
4 (τ⊤δHτ)2 + Rx(τ)2 − 2δ⊤

g τRx(τ)− τ⊤δHτRx(τ) + τ⊤δgτ⊤δHτ)dτ
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Figure 15: The search trajectory for an adversarial image generation with OGL

Since a2 + b2 ≥ 2ab we conclude that 1
4 (τ⊤δHτ)2 + Rx(τ)2 − τ⊤δHτRx(τ) ≥ 0

L(gε(x)) =
∫

Vε(x)
((δ⊤

g τ)2 + 1
4 (τ⊤δHτ)2 + Rx(τ)2 − 2δ⊤

g τRx(τ)− τ⊤δHτRx(τ) + τ⊤δgτ⊤δHτ)dτ

≥
∫

Vε(x)
((δ⊤

g τ)2 − 2δ⊤
g τRx(τ) + τ⊤δgτ⊤δHτ)dτ

=
∫

Vε(x)
(δ⊤

g τ)2dτ − 2
∫

Vε(x)
δ⊤

g τRx(τ)dτ +
∫

Vε(x)
τ⊤δgτ⊤δHτdτ

=
∫

Vε(x)
(δ⊤

g τ)2dτ − 2
∫

Vε(x)
δ⊤

g τRx(τ)dτ +
∫

Vε(x)
τ⊤δgτ⊤δHτdτ

We will split the equation into 3 components: First A =
∫

Vε(x)(δ
⊤
g τ)2dτ , is we open this

expression we see that

(δ⊤
g τ)2 =

n∑
i=1

n∑
j=1

(δg)i(δg)jτiτj .

Since Vε(x) is symmetric around x odd moments of τ integrate to zero, therefore

A =
∫

Vε(x)
(δ⊤

g τ)2dτ =
∫

Vε(x)
(

n∑
i=1

n∑
j=1

(δg)i(δg)jτiτj)dτ =
∫

Vε(x)
(

n∑
i=1

(δg)2
i τ2

i )dτ = ||δg||2εn+2|V1(x)|

Let B = 2
∫

Vε(x) δ⊤
g τRx(τ)dτ

B = 2
∫

Vε(x)
δ⊤

g τRx(τ)dτ ≤ 2
∫

Vε(x)
||δg|| · ||τ || · ||Rx(τ)||dτ ≤ 2||δg||

∫
Vε(x)

||τ || 16 kgτ3dτ

≤ 1
3 kg||δg||

∫
Vε(x)

||τ ||4dτ = 1
3 kg||δg||εn+4|V1(x)|
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Finally C =
∫

Vε(x) τ⊤δgτ⊤δHτdτ , we should remember the property derived from Vε(x)
symmetry. If we open the vector multiplication we get

τ⊤δgτ⊤δHτ =
n∑

i=1

n∑
j=1

n∑
k=1

τi(δg)i(δH)jkτjτk =
n∑

i=1

n∑
j=1

n∑
k=1

(δg)i(δH)jkτiτjτk.

Here there is no way for an even moment of τ to exist so C = 0 To sum this up, we get
L(gε(x)) ≥ A−B + C ≥ ||δg||2εn+2|V1(x)| − 1

3 kg||δg||εn+4|V1(x)|
We combine the lower and upper-bound

||δg||2εn+2|V1(x)| − 1
3 kg||δg||εn+4|V1(x)| ≤ ( 1

6 kg)2|V1(x)|εn+6

||δg||2 − 1
3 kg||δg||ε2 − ( 1

6 kg)2ε4 ≤ 0

||δg||2 ≤
1
3 kgε2 +

√
1
9 k2

gε4 + 4( 1
6 kg)2ε4

2 =
1
3 kgε2 +

√
2 1

9 k2
gε4

2 = 1
3

√
2 kgε2 = kg(x)ε2

A.11.2 Convergence Analysis

Theorem 4 Let f : Ω→ R be a convex function with Lipschitz continuous gradient, i.e. f ∈
C+1 and a Lipschitz constant κf and let f(x∗) be its optimal value. Suppose a controllable
mean-gradient model gε with error constant κg, the gradient descent iteration xk+1 = xk −
αgε(xk) with a sufficiently small α s.t. α ≤ min( 1

κg
, 1

κf
) guarantees:

1. For ε ≤ ∥∇f(x)∥
5α , monotonically decreasing steps s.t. f(xk+1) ≤ f(xk)− 2.25 ε2

α .

2. After a finite number of iterations, the descent process yields x⋆ s.t. ∥∇f(x⋆)∥ ≤ 5ε
α .

Proof. For a convex function with Lipschitz continuous gradient, the following inequality
holds for all xk

f(x) ≤ f(xk) + (x− xk) · ∇f(xk) + 1
2κf∥x− xk∥2 (10)

Plugging in the iteration update xk+1 = xk − αgε(xk) we get

f(xk+1) ≤ f(xk)− αgε(xk) · ∇f(xk) + α2 1
2κf∥gε(xk)∥2 (11)

For a controllable mean-gradient we can write ∥gε(x) − ∇f(x)∥ ≤ ε2κg, therefore we can
write gε(x) = ∇f(x) + ε2κgξ(x) s.t. ∥ξ(x)∥ ≤ 1 so the inequality is

f(xk+1) ≤ f(xk)−α∥∇f(xk)∥2 −αε2κgξ(xk) · ∇f(xk) + α2 1
2κf∥∇f(x) + ε2κgξ(x)∥2 (12)

Using the equality ∥a + b∥2 = ∥a∥2 + 2a · b + ∥b∥2 and the Cauchy-Schwartz inequality
inequality a · b ≤ ∥a∥∥b∥ we can write

f(xk+1) ≤ f(xk)− α∥∇f(xk)∥2 − αε2κg∥ξ(xk)∥ · ∥∇f(xk)∥

+ α2 1
2κf

(
∥∇f(x)∥2 + 2ε2κg∥ξ(x)∥ · ∥∇f(xk)∥+ ε4κ2

g∥ξ(x)∥2)
≤ f(xk)− α∥∇f(xk)∥2 − αε2κg∥∇f(xk)∥

+ α2

2 κf∥∇f(x)∥2 + α2κf ε2κg∥∇f(xk)∥+ α2ε4

2 κf κ2
g

= f(xk)− (α− kf

2 α2)∥∇f(xk)∥2 + (−α + kf α2)∥∇f(xk)∥ε2κg + kf

2 α2ε4κ2
g

(13)

Using the requirement α ≤ min( 1
κg

, 1
κf

) it follows that ακg ≤ 1 and ακf ≤ 1 so

f(xk+1) ≤ f(xk)− (α− kf

2 α2)∥∇f(xk)∥2 + (−α + kf α2)∥∇f(xk)∥ε2κg + kf

2 α2ε4κ2
g

= f(xk)− α

2 ∥∇f(xk)∥2 + kf

2 α2ε4κ2
g ≤ f(xk)− α

2 ∥∇f(xk)∥2 + ε4

2 κg

(14)
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Now, for x s.t. ∥∇f(x)∥ ≥ 5ε2

α then ε2 ≤ ∥∇f(x)∥α
5 . Plugging it into our inequality we

obtain
f(xk+1) ≤ f(xk)− α

2 ∥∇f(xk)∥2 + α2

50 κg∥∇f(xk)∥2

≤ f(xk)− α

2 ∥∇f(xk)∥2 + α

50∥∇f(xk)∥2

= f(xk)− 0.48α∥∇f(xk)∥2

≤ f(xk)− 12ε4

α

(15)

Therefore, for all x s.t., ∥∇f(x)∥ ≥ 5ε2

α we have a monotonically decreasing step with finite
size improvement, after a finite number of steps we obtain x⋆ for which ∥∇f(x⋆)∥ ≤ 5ε2

α .

A.11.3 Optimistic Gradient Accuracy

Definition 2 The optimistic gradient around x of radius ϵ > 0:

g̃ε(x) = arg min
g∈Rn

∫
Vε(x)

w(τ)
∣∣g⊤τ − [f(x + τ)− f(x)]

∣∣2
dτ.

Theorem 5 (Optimistic gradient controllable Accuracy): For any twice differentiable func-
tion f ∈ C2, there exists κg(x) > 0 such that for any ε > 0, the second-order mean-gradient
g̃ε(x) satisfies

∥g̃ε(x)−∇f(x)∥ ≤ κg(x)ε for all x ∈ Ω.

Proof. Since f ∈ C2the Taylor expansion around x is
f(x + τ) = f(x) +∇f(x)⊤τ + Rx(τ),

where H(x) is the Hessian matrix at x, and the remainder Rx(τ) satisfies
|Rx(τ)| ≤ 1

2 kg∥τ∥2,

By definition gϵ, an upper bound L(gϵ(x)) is:

L(gϵ(x)) ≤ L(∇f(x)) =
∫

Vε(x)

∣∣∣∇f(x)⊤τ −
(
f(x + τ)− f(x)

)∣∣∣2
dτ =

∫
Vε(x)

|Rx(τ)|2dτ

≤
( 1

2 kg

)2
∫

Vε(x)
∥τ∥4dτ =

( 1
2 kg

)2 |V1(x)|εn+4.

Proof. The optimistic mean gradient around x of radius ϵ > 0:

g̃ε(x) = arg min
g∈Rn

∫
Vε(x)

w(τ)
∣∣g⊤τ − [f(x + τ)− f(x)]

∣∣2
dτ.

L(gε(x)) =
∫

Vε(x)
w(τ)(δ⊤

g τ −Rx(τ))2dτ ≥
∫

Vε(x)
w(τ)(δ⊤

g τ)2 − 2 · w(τ)δ⊤
g Rx(τ) + w(τ)Rx(τ)2dτ

=
∫

Vε(x)
w(τ)(δ⊤

g τ)2 −
∫

Vε(x)
2 · w(τ)δ⊤

g ·Rx(τ)dτ +
∫

Vε(x)
w(τ)Rx(τ)2dτ

≥
∫

Vε(x)
w(τ)(δ⊤

g τ)2 − 2
∫

Vε(x)
w(τ)δ⊤

g ·Rx(τ)dτ

Since Vε(x) is symmetric around x odd moments of τ integrate to zero, therefore

A =
∫

Vε(x)
w(τ)(δ⊤

g τ)2dτ =
∫

Vε(x)
w(τ)(

n∑
i=1

n∑
j=1

(δg)i(δg)jτiτj)dτ

=
∫

Vε(x)
w(τ)(

n∑
i=1

(δg)2
i τ2

i )dτ =
∫

Vε(x)
w(τ)∥δg∥2 · ∥τ∥2dτ

= ∥δg∥2εn+2|V1(x)|
∫

Vε(x)
w(τ) ≤ ∥δg∥2εn+2|V1(x)|Wu
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Let B = 2
∫

Vε(x) w(τ)δ⊤
g τRx(τ)dτ

B = 2
∫

Vε(x)
w(τ)δ⊤

g τRx(τ)dτ ≤ 2
∫

Vε(x)
w(τ)∥δg∥ · ∥τ∥ ·Rx(τ)dτ ≤ 2∥δg∥

∫
Vε(x)

w(τ)∥τ || 12 kgτ2dτ

≤ 1
3 kg∥δg∥

∫
Vε(x)

w(τ)∥τ∥3dτ = kg||δg||εn+3|V1(x)|Wu

To sum this up, we get

L(gε(x)) ≥ A−B ≥ ∥δg∥2εn+2|V1(x)|Wu − kg||δg||εn+3|V1(x)|Wu

We combine the lower and upper-bound

∥δg∥2εn+2|V1(x)|Wu − kg||δg||εn+3|V1(x)|Wu ≤ ( 1
2 kg)2|V1(x)|εn+4

∥δg∥2Wu − kg∥δg∥εWu − ( 1
2 kg)2ε2 ≤ 0

∥δg∥ ≤
kgεWu+

√
k2

gε2W 2
u+4Wu( 1

2 kg)2ε2

2Wu
= kgε

Wu+
√

W 2
u+Wu

2Wu
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