
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

Optimistic Gradient Learning
with Hessian Corrections for
High-Dimensional Black-Box Optimization

Anonymous authors
Paper under double-blind review

Abstract

Black-box algorithms are designed to optimize functions without relying
on their underlying analytical structure or gradient information, making
them essential when gradients are inaccessible or difficult to compute. Tra-
ditional methods for solving black-box optimization (BBO) problems pre-
dominantly rely on non-parametric models and struggle to scale to large
input spaces. Conversely, parametric methods that model the function
with neural estimators and obtain gradient signals via backpropagation
may suffer from significant gradient errors. A recent alternative, Explicit
Gradient Learning (EGL), which directly learns the gradient using a first-
order Taylor approximation, has demonstrated superior performance over
both parametric and non-parametric methods. In this work, we propose
two novel gradient learning variants to address the robustness challenges
posed by high-dimensional, complex, and highly non-linear problems. Op-
timistic Gradient Learning (OGL) introduces a bias toward lower regions
in the function landscape, while Higher-order Gradient Learning (HGL)
incorporates second-order Taylor corrections to improve gradient accuracy.
We combine these approaches into the unified OHGL algorithm, achiev-
ing state-of-the-art (SOTA) performance on the synthetic COCO suite.

Additionally, we demonstrate OHGL’s applicability to high-dimensional
real-world machine learning (ML) tasks such as adversarial training and
code generation. Our results highlight OHGL’s ability to generate stronger
candidates, offering a valuable tool for ML researchers and practitioners
tackling high-dimensional, non-linear optimization challenges.

1 Introduction

Black-box optimization (BBO) is the process of searching for optimal solutions within a
system’s input domain without access to its internal structure or analytical properties Audet
et al. (2017c). Unlike gradient-based optimization methods that rely on the calculation of
analytical gradients, BBO algorithms query the system solely through input-output pairs,
operating agnostically to the underlying function. This feature distinguishes BBO from
traditional ML tasks, such as neural network training, where optimization typically involves
backpropagation-based gradient computation.
Many real-world physical systems naturally fit into the BBO framework because their ana-
lytical behavior is difficult or impossible to model explicitly. In these cases, BBO algorithms
have achieved remarkable success in diverse fields, such as ambulance deployment Zhen et al.
(2014), robotic motor control Gehring et al. (2014); Prabhu et al. (2018), parameter tuning
Olof (2018); Rimon et al. (2024), and signal processing Liu et al. (2020), among others
Alarie et al. (2021). BBO applications extend beyond physical systems; many ML problems
exhibit a black-box nature when the true gradient is absent. Examples include hyperparam-
eter tuning Bischl et al. (2023), contextual bandit problems Bouneffouf et al. (2020), and
large language model training with human feedback Bai et al. (2022), to name a few.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

As the scale of data continues to grow, the dimensionality of the problem space increases in
tandem. This trend is particularly evident in ML, where model architectures, embedding and
latent representation sizes, and the number of hyperparameters are continually expanding.
High-dimensional optimization challenges traditional BBO algorithms, which often require
the number of collected samples at each step, ns, to scale proportionally with the problem
size, N . Parametric neural models, however, have shown that reusing past samples can
effectively reduce the required sample size such that ns ≪ N Sarafian et al. (2020); Lu et al.
(2023). Building on this, we propose a sampling profiler that further reduces the number of
samples needed at each step while maintaining performance.
While problem dimensions increase, the cost of evaluating intermediate solutions remains a
critical constraint, especially in real-world settings where interaction with the environment is
expensive or in ML tasks where larger models counterbalance gains in computational power.
Therefore, modern BBO algorithms must not only reduce evaluation steps but also converge
more quickly Hansen et al. (2010). Achieving this requires algorithms capable of more
accurately predicting optimization directions, either through better gradient approximation
Anil et al. (2020); Lesage-Landry et al. (2020) or momentum-based strategies to handle non-
convexity and noise. In this paper, we propose two key improvements to Explicit Gradient
Learning (EGL): (1) Optimistic Gradient Learning (OGL), a weighted gradient estimator
that biases toward promising solutions and (2) Higher-Order Gradient Learning (HGL),
which incorporates Hessian corrections to yield more accurate gradient approximations.
We combine the strengths of OGL and HGL to a unified algorithm termed OHGL which
exhibits four key advantages:

• Robustness: OHGL consistently outperforms baseline algorithms across a diverse
range of benchmark problems, including synthetic test suites and real-world ML
applications. Its ability to handle noisy and non-convex environments.

• Gradient Precision: By integrating the second-order information via Hessian
corrections, OHGL achieves significantly more accurate gradient approximations
than standard EGL.

• Convergence Rate: OHGL demonstrates faster convergence rate.
• Utilizing the sampling profiler and the optimistic approach, OGL is able to solve

high-dimensional problems with smaller budget and converge faster than
baseline algorithms.

Related works: Black-box optimization (BBO) algorithms have a long history, with vari-
ous approaches developed over the years. Some of the foundational techniques include grid
search, coordinate search Audet et al. (2017e), simulated annealing Busetti (2003), and
direct search methods like Generalized Pattern Search and Mesh Adaptive direct search Au-
det et al. (2017a), Gradient-less descent Golovin et al. (2019), and ZOO Chen et al. (2017).
These approaches iteratively evaluate potential solutions and decide whether to continue
in the same direction. However, they resample for every step and don’t use the sampled
budget from previous iterations, wasting a lot of budget.
Another prominent family of BBO algorithms is the genetic algorithm family Back (1996).
This includes methods such as Covariance Matrix Adaptation (CMA) Hansen (2016) and
Particle Swarm Optimization (PSO) Clerc (2010). These algorithms simulate the process of
natural evolution, where a population of solutions evolves through mutation and selection
Audet et al. (2017b). They are considered state-of-the-art (SOTA) in optimization due
to their effectiveness in tackling complex problems. However, they come with significant
drawbacks, particularly the need for extensive fine-tuning of parameters like generation
size and mutation rates. CMA, for example, struggles in higher-dimensional environments
and requires careful adjustment of hyperparameters and guidance to perform optimally
Loshchilov et al. (2013); Tang (2021). In this work, we propose a simpler method to enhance
the performance of CMA, particularly in high-dimensional settings.
Then there are model-based methods Audet et al. (2017d), which attempt to emulate the
behavior of the function using a surrogate model. These models provide important analytical
information, such as gradients Bertsekas (2015), to guide the optimization process and help

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

find a minimum. Within this class, we can further distinguish two sub-classes. To address
the issue of dimensionality, Explicit Gradient Learning (EGL) was proposed by Sarafian
et al. (2020). While many model-based methods focus on learning the function’s structure to
derive analytical insights (e.g., Indirect Gradient Learning or IGL Lillicrap (2015); Sarafian
et al. (2020)), EGL directly learns the gradient information. EGL uses Taylor’s theorem to
estimate the gradient. The authors also emphasize the importance of utilizing a trust region
to handle black-box optimization problems. However, EGL has some drawbacks: it often
uses the available budget inefficiently, disregarding both the complexity and dimensionality
of the environment. Additionally, the datasets created by EGL can be naive, leading to
over-fitting or improper network learning. This work tackles these issues by showing the
importance of proper algorithm calibration and optimization.
Recent work also highlights the limitations of common assumptions in BBO algorithms,
such as continuity or Gaussian distributions of functions, which can hinder optimization.
For instance, OPT-GAN Tang (2021), a generative model, seeks to bypass these assumptions
by learning a function’s distribution and generating better candidate solutions based on that
knowledge.
The paper is organized as follows: Section 2 covers the algorithm’s theoretical back-
ground and mathematical foundations. Sections 3 and 4 present our two enhanced variants
of the gradient learning algorithm: OGL and HGL, these are followed by section 5 where we
present the full algorithm OHGL. Section 6 provides experimental results on the synthetic
COCO test suite and Section 7 highlights 2 real-world high-dimensional applications and
potential uses. Finally, section 8 concludes and suggests future research directions. Our
code, experiments, and environment setup are available in the supplementary material.

2 Background

The goal of black-box optimization (BBO) is to minimize a target function f(x) through a
series of evaluations Audet et al. (2017c), over a predefined domain Ω:

find: x∗ = arg min
x∈Ω

f(x) (1)

The Explicit Gradient Learning method, as proposed by Sarafian et al. (2020) lever-
ages the first-order Taylor’s expansion: f(y) = f(x) + ∇f(x)⊤(y − x) + R1(x, y). Here,
R1(x, y) = O(∥y − x∥2) is a higher-order residual. By minimizing the residual term with a
surrogate neural network model, EGL learns the mean-gradient: a smooth approximation
of the function’s gradient

gEGL
ε (x) = arg min

gθ:Rn→Rn

∫
y∈Bε(x)

(
f(x)− f(y) + gθ(x)⊤(y − x)

)2
dy (2)

22 25 28 211 214 217

Budget

10 2

10 1

100

Va
lu

e

TR-EGL
NO-TR-EGL
CMA
TR-CMA

Figure 1: Comparing the effect of trust region.
Trust region significantly improves both EGL
and CMA algorithms.

where Bε(x) is a ball around x. As ε → 0,
the mean-gradient converges to ∇f , this
property lets EGL explore for lower regions
in the function landscape when ε is suffi-
ciently large and converge to a local mini-
mum when ε converges to 0.
A key component of the EGL algorithm
is the trust region (TR), which restricts
the search space around the current es-
timate. This region standardizes input-
output statistics, enhancing the neural net-
work’s effectiveness. Although Sarafian
et al. (2020) suggested the TR framework as
part of the EGL algorithm, TR is not exclu-
sive to EGL and can significantly improve
other algorithms. In our work, we created
stronger baseline algorithms by adding TR
to the classic Covariance Matrix Adaptation (CMA) algorithm (see Appendix: Algorithm

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

11). Notably, this seemingly minor change to CMA significantly improves its performance
and outperforms vanilla EGL in the COCO optimization suite, as shown in Fig. 1.

3 Optimistic Gradient Learning with Weighted Gradients

While local search algorithms like EGL are based on the notion that the gradient descent
path is the optimal search path, following the true gradient path may not be the optimal
approach in terms of sampling budget utilization, avoiding shallow local minima and nav-
igating through narrow ravines. Specifically, in case we obtain a batch D of sample pairs
{(xi, f(xi))}i∈D around our current solution x, a plausible and optimistic heuristic can be
to direct the search path towards low regions in the sampled function landscape regardless
the local curvature around x. In other words, to take a sensible guess and bias the search
path towards the lower (xi, f(xi)) samples. To that end, we define the Optimistic Gradient
Learning objective by adding an importance sampling weight to the integral of Eq. 2

gOGL
ε (x) = arg min

gθ:Rn→Rn

∫
y∈Bε(x)

Wf (x, y) ·
(
f(x)− f(y) + gθ(x)⊤(y − x)

)2
dy (3)

Here, Wf is a softmax-like weight function that normalizes the weight by the sum of expo-
nents across the sampled batch

Wf (x, y) = e− min(f(x),f(y))∑
xi∈D e−f(xi) (4)

Notice that in practice, the theoretical objective in Eq. 3 is replaced by a sampled Monte-
Carlo version (see Sec. 5) s.t. the sum of all weights across the sampled batch is smaller
than 1. In the following theorem, we show that the controllable accuracy property of EGL,
which implies that the mean-gradient converges to the true gradient still holds for our biased
version, s.t. when ε → 0, gOGL

ε → ∇f(x) this guarantees that the convergence properties
of the mean-gradient still hold

Theorem 1 (Optimistic Controllable Accuracy) For any differentiable function f with a
continuous gradient, there exists κOGL > 0 such that for any ε > 0, gOGL

ε (x) satisfies

∥gOGL
ε (x)−∇f(x)∥ ≤ κOGLε for all x ∈ Ω.

In Fig. 2a we plot 4 typical trajectories of EGL and OGL which demonstrate why in practice
and on average we can benefit from biasing the gradient. We find that the biased version
avoids getting trapped in local minima and avoids long travels through narrow ravines
which rapidly consume the sampling budget. In Fig. 2b we find statistically that OGL
tends to progress faster and closer to the global minimum while EGL diverges from the
global minimum in favor of local minima.

4 Gradient Learning with Hessian Corrections

To learn the mean-gradient, EGL minimizes the first-order Taylor residual (see Sec. 2).
Utilizing higher-order approximations has the potential of learning more accurate models
for the mean-gradient. Specifically, the second-order Taylor expansion is

f(y) = f(x) +∇f(x)⊤(y − x) + 1
2(y − x)⊤∇2f(x)(y − x) + R2(x, y) (5)

Here R2(x, y) = O(∥x − y∥3) is the second order residual. Like in EGL, we replace ∇f
with a surrogate model gθ and minimize the surrogate residual to obtain our Higher-order
Gradient Learning (HGL) variant

gHGL
ε (x) = arg min

gθ:Rn→Rn

∫
y∈Bε(x)

R2
HGL(x, y)dy

RHGL
gθ

(x, y) = f(x)− f(y) + gθ(x)⊤(y − x) + 1
2(y − x)⊤Jgθ

(x)(y − x)
(6)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

a b

c d

OGL
EGL

(a) OGL vs EGL trajectories. 1st row: Gal-
lagher’s Gaussian 101-me. 2nd row: 21-hi.

22 25 28 211 214 217

Budget

Va
lu

e

OGL
EGL

(b) The average Euclidean distance at each step
between the algorithm and the global minimum.

Figure 2: Training with the mean-gradient EGL versus the optimistic version OGL.

The new higher-order term Jgθ
(x) is the Jacobean of gθ(x), evaluated at x which ap-

proximates the function’s Hessian matrix in the vicinity of our current solution, i.e.,
Jgθ

(x) ≈ ∇2f(x). Next, we show theoretically that as expected, HGL converges faster
to the true gradient which amounts to lower gradient error in practice.1

Theorem 2 (Improved Controllable Accuracy): For any twice differentiable function f ∈
C2, there exists κHGL > 0 such that for any ε > 0, the second-order mean-gradient gHGL

ε (x)
satisfies

∥gHGL
ε (x)−∇f(x)∥ ≤ κHGLε2 for all x ∈ Ω.

101 102

Dimension

0.017

0.018

0.019

0.020

0.021

0.022

M
ea

n
No

rm
 G

ra
d

M
SE

EGL
HGL

Figure 3: Comparing the normalized
MSE between the true gradient and
EGL and HGL gradient models

In other words, in HGL the model error is in an order
of magnitude of ε2 instead of ε in EGL and OGL.
In practice, we verified that this property of HGL
translates to more accurate gradient models. Figure
3 shows the gradient error of EGL and HGL for a
selected set of problems from the COCO test suite
where the analytical true gradient can be easily cal-
culated and compared to our learned model.
Learning the gradient with the Jacobian corrections
introduces a computational challenge as double back-
propagation can be expensive. This overhead can
hinder the scalability and practical application of the
method. A swift remedy is to detach the Jacobian
matrix from the competition graph. While this step
slightly changes the objective’s gradient (i.e. the gradient trough (RHGL) it removes the
second-order derivative and in practice, we found that it achieves almost similar results
compared to the full backpropagation through the residual RHGL, see Fig. 4(b).

5 OHGL

In this section, we combine the optimistic approach from Sec. 3 and the Hessian corrections
from Sec. 4. However, unlike previous sections, we will present the practical implementation

1Notice that, while HGL incorporates Hessian corrections during the gradient learning phase,
we deliberately avoid modifying the gradient descent step to include inverse Hessian scaling, as is
done in Newton’s methods. In practice, inverting the approximated Hessian matrix can lead to
numerical challenges and instabilities and was found to be less effective in our experiments.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where integrals are replaced with Monte-Carlo sums of sampled pairs. In this case, the loss
function which is used to obtain the Optimistic Higher-order Gradient (OHGL) model is

LOHGL
ε (θ) =

∑
∥xi−xj∥≤ε

Wf (xi, xj)×

(
f(xi)− f(xj) + gθ(xi)⊤(xj − xi) + 1

2(xj − xi)⊤Jgθ
(xi)(xj − xi)

)2
(7)

The summation is applied over sampled pairs which satisfy ∥xi − xj∥ ≤ ε. As explained in
Sec. 4, we detach the Jacobian of gθ from the computational graph to avoid second-order
derivatives. Our final algorithm is outlined in Alg. 1 and an extended version including
additional technical details is found in the appendix (See Alg. 2).

Algorithm 1 OHGL (Optimistic Higher-Order Gradient Learning)
Require: x0, Ω, α, ϵ0, γα, γϵ, nmax, λ, Budget

k = 0, j = 0, Ωj ← Ω
while Budget > 0 do

Explore: Generate and evaluate samples Dk = {x̃i, yi}m
i=1

Create Dataset: Select m tuples T from Dk

Weighted Output: Assign weights wi and apply squashing function ỹi = rk(wiyi)
Higher-Order Gradient Learning: Minimize the loss of θk (Eq. 7)
Gradient Descent: Update solution: xk+1 ← xk − αg̃θk

(xk)
if f(h−1

j (x̃k+1)) > f(h−1
j (x̃k)) for nmax times then

Generate new trust region Ωj+1 and update ϵj

end if
if f(h−1

j (x̃k)) < f(h−1
j (x̃best)) then

Update xbest
end if
k ← k + 1; Budget = Budget−m

end while
return xbest

6 Experiments in the COCO test suite

We evaluated the OGL, HGL and OHGL algorithms on the COCO framework Hansen et al.
(2021) and compared them to EGL and other strong baselines: (1) CMA and its trust
region variants L-CMA (linear trust region mapping function) and T-CMA (tanh trust
region mapping function) and (2) Implicit Gradient Learning (IGL) Sarafian et al. (2020)
where we follow the EGL protocol but train a model for the objective function and obtain
the gradient estimation by backpropagation as in DDPG Lillicrap (2015). We also adjusted
EGL hyper-parameters A.4 and improved the trust region A.5 to reduce the budget usage
by our algorithms.
We use the following evaluation metrics:

• Convergence Rate: Speed of reaching the global optimum.
• Success Rate: Percentage of problems solved within a fixed budget.
• Robustness: Performance stability across different hyperparameter settings.

Performance was normalized against the best-known solutions to minimize bias:
normalized value = y−ymin

ymax−ymin
. A function was considered solved if the normalized value

was below 0.01.

6.1 Success and Convergence Rate

Figure 4(c) illustrates the success rate of each algorithm relative to the distance from the
best point required for solving a function. The results show that both OGL and OHGL

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Metric T-CMA L-CMA EGL OGL HGL OHGL
Budget to reach 0.01 17,828 ± 32648 6497 ± 19731 24,102 8981 ± 9177 22,146 ± 29757 26,706 ± 32676
Mean 0.01 ± 0.05 0.01 ± 0.05 0.01 ± 0.03 0.003 ± 0.02 0.006 ± 0.03 0.002 ± 0.02
Solved Functions 0.86±0.023 0.88±0.023 0.83±0.023 0.92±0.022 0.89±0.022 0.926±0.022

Table 1: Comparison of different metrics: Budget used to reach 0.99 of the final score (↓),
the mean normalized results (↓), std (↓); and percentage of solved problems (↑).

22 25 28 211 214 217

Budget

10 2

10 1

Va
lu

e

(a)

OGL
OHGL
HGL
EGL
CMA
T-CMA
L-CMA

100 101 102 103 104 105

Budget
(b)

EGL-OPTIMIZED
EGL
OGL
IGL
HGL
HGL-DETACHED

10 3 10 2 10 1 100

Normalized distance from best point

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s R

at
e

(c)

IGL
OGL
OHGL

HGL
EGL
CMA

T-CMA
L-CMA

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.93 0.92

0.89 0.88
0.86

0.83 0.82

0.73

(d)

OHGL
OGL
HGL
L-CMA
T-CMA
EGL
IGL
CMA

Figure 4: Experiment results against the baseline: (a) Convergence for all our algorithms
against baseline algorithms, (b) ablation test for EGL enhancements, (c) Success rate of
algorithms as a function of the normalized distance from the best-known solution, (d) Per-
centage of solved algorithms when the distance from the best point is 0.01

consistently outperform all other algorithms. In particular where the error should be small
(<0.01), with t-tests yielding p-values approaching 1, indicating strong statistical confidence
(see the complete list of t-test p-values in Table 4 in the appendix).
Figure 4(a) presents the convergence rates for the seven algorithms, where OGL, HGL,
and OHGL demonstrate superior convergence compared to the other methods. OHGL, in
particular, consistently ranks among the top performers across most metrics, as seen in Table
1, which compares multiple performance indicators. Although OGL achieves better initial
results, as it searches longer for the space with the optimal solution, making it a worse fit for
problems with a low budget, it ultimately reaches superior results. Additionally, Figure 4(b)
shows an ablation test, confirming that the core components of our work: the optimistic
approach (OGL) and the Higher-order corrections (HGL) contributed substantially much
more to the overall performance than other technical improvements to the algorithm (with
respect to vanilla EGL), these technical improvements are denoted as EGL-OPTIMIZED
and they amount to better trust-region management and more efficient sampling strategies
which mainly helps in faster learning rate at the beginning of the process (as described in
Sec. A.4 and A.5 in the appendix).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

6.2 Hyperparameter Tolerance

In this part, we evaluate the robustness of our algorithm to hyperparameter tuning. Our
objective is to demonstrate that variations in key hyperparameters have minimal impact on
the algorithm’s overall performance. To assess this, we conducted systematic experiments,
modifying several hyperparameters and analyzing their effects. Table 2 (and Table 6 in the
appendix) reports the coefficient of variation (CV), defined as CV = σ

µ , across different
hyperparameter sweeps, highlighting the algorithm’s stability under varying conditions.
Our findings indicate that certain hyperparameters—such as the epsilon factor, shrink fac-
tor, and value normalizer learning rate (LR)—exhibit cumulative effects during training.
While small variations in these parameters may not have an immediate impact, their influ-
ence can accumulate over time, potentially leading to significant performance changes. In
A.11.2, we establish the relationship between the step size and the epsilon factor necessary
for ensuring progress toward a better optimal solution. When selecting these parameters,
this relationship must be considered. Additionally, the shrink factor for the trust region
should be chosen relative to the budget, enabling the algorithm to explore the maximum
number of sub-problems. This underscores the importance of fine-tuning these parameters
for optimal results. Conversely, we found that the structural configuration of the neural
network, including the number and size of layers, had minimal effect on performance. This
suggests that the algorithm’s reliance on Taylor loss enables effective learning even with
relatively simple network architectures, implying that increasing model complexity does not
necessarily yield substantial improvements.

Metric Networks Epsilon Epsilon Factor Training Bias Perturbation
CV 0.0167 0.0339 0.2361 0.1292 0.1642
Metric TR Shrink Method Normalizer LR Normalizer Outlier TR Shrink Factor Optimizer LR
CV 0.0333 0.1618 0.0333 0.4894 0.5625

Table 2: Coefficient of Variation (CV = σ
µ) over a Hyperparameter sweep experiment.

7 High Dimensional Applications

7.1 Adversarial Attacks

As powerful vision models like ResNet Targ et al. (2016) and Vision Transformers (ViT)
Han et al. (2022) grow in prominence, adversarial attacks have become a significant con-
cern. These attacks subtly modify inputs, causing models to misclassify them, while the
perturbation remains imperceptible to both human vision and other classifiers Tang et al.
(2019). Formally, an adversarial attack is defined as:

x∗
a = arg min

x
d(x, xa) s.t.f(x) ̸= f(xa) (8)

Where f is the classifier and d is some distance metric between elements.
Recent studies have extended adversarial attacks to domains like AI-text detection Sadasivan
et al. (2024) and automotive sensors Mahima et al. (2024). These attacks prevent tracking
and detection, posing risks to both users and pedestrians. Adversarial attacks are classified
into black-box and white-box methods. Black-box attacks only require query access, while
white-box methods use model gradients to craft perturbations Machado et al. (2021); Cao
et al. (2019). Despite some black-box methods relying on surrogate models Dong et al.
(2018); Xiao et al. (2018); Madry et al. (2017); Goodfellow et al. (2014), approaches like
AutoZOOM Tu et al. (2019) generate random samples to approximate gradient estimation,
though they are computationally expensive. Other methods use GAN networks to search
latent spaces for adversarial examples Liu et al. (2021); Sarkar et al. (2017). Still, they
depend on existing GANs and their latent space diversity.
Our Enhanced Gradient Learning method offers a true black-box approach with precise
perturbation control, avoiding gradient back-propagation. OGL directly optimizes pertur-
bations to maintain low distortion while fooling the model, handling high-dimensional spaces
with over 30,000 parameters.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Original CMA OGL HGL

Figure 5: Adversarial examples generated by OGL and CMA against the ImageNet model.

Methodology: We applied OGL to classifiers trained on MNIST, CIFAR-10, and Ima-
geNet, aiming to minimize equation 8. To generate adversarial images with minimal distor-
tion, we developed a penalty that jointly minimizes MSE and CE-loss A.9. This approach
successfully fooled the model, evading the top 5 classifications.
Results: We evaluated four different configurations: CMA, OGL, HGL, and a combination
of both (CMA+OGL) where the CMA run provides the initial guess for an OGL run. While
CMA alone was not able to converge to a satisfying adversarial example, the combined
CMA+OGL enjoyed the rapid start of CMA with the robustness of OGL s.t. it was able to
find a satisfying adversarial example in 50% of the time used by OGL and HGL.

7.2 Code generation

The development of large language models (LLMs) such as Transformers Vaswani (2017)
have advanced code generation Dehaerne et al. (2022). Despite these strides, fine-tuning
outputs based on parameters measured post-generation remains challenging. Recent algo-
rithms have been developed to generate code tailored for specific tasks using LLMs. For
instance, FunSearch Romera-Paredes et al. (2024) generates new code solutions for complex
tasks, while Chain of Code Li et al. (2023) incorporates reasoning to detect and correct
errors in the output code. Similarly, our method uses black-box optimization to guide code
generation for runtime efficiency. Building on Zhang et al. (2024), which links LLM exper-
tise to a small parameter set, we fine-tuned the embedding layer to reduce Python code
runtime. Using LoRA Hu et al. (2021), we optimized the generated code based on execution
time, scaling up to ∼ 200k parameters.
Fibonacci: We tested this approach by having the model generate a Fibonacci function.
Initially incorrect, optimization guided the model to a correct and efficient solution. Figure
1 illustrates this progression, with the 25th step showing an optimized version.
Line-Level Efficiency Enhancements: We tested the model’s ability to implement small
code efficiencies, such as replacing traditional for-loops with list comprehensions. The algo-
rithm optimized the order of four functions—‘initialize‘, ‘start‘, ‘activate‘, and ‘stop‘—each
with eight variants, minimizing overall runtime by optimizing the function order.
Code Force Challenge: For a more complex problem, we used the Count Triplets chal-
lenge from Codeforces2. While the model initially struggled, once it found a correct solution,
the algorithm further optimized it for runtime performance A.3.

2https://codeforces.com/

Metric CMA OGL HGL CMA+OGL
Accuracy 0.02 0.02 0.02 0.02
MSE 0.05 0.001 0.002 0.001
Time (Until Convergence) 20m 6H 7H 3H

Table 3: Comparison of methods on Accuracy, MSE, and Time.

9

https://codeforces.com/

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

def fib(n):
"""
Returns the n number in

the Fibonacci series↪→
"""
return fib1(n-1) + fib2(n)

Step 1 - Starting point

def fib(n):
"""
Returns the n number in

the Fibonacci series↪→
"""
if n==1:

return 0
if n==2:

return 1
return fib(n-1) + fib(n-2)

Step 7 - First correct
code

def fib(n):
"""
Returns the n number in

the Fibonacci series↪→
"""
if n <= 1:

return n
a, b = 0, 1
for i in range(2, n + 1):

a, b = b, a + b
return b

Step 25 - Convergence

Figure 6: Generated code samples by OGL algorithm

0 10 20 30 40 50
Epoch

0

2

4

6

8

10

Pe
na

lty
Functional Code Reward Threshold

OGL-Fibonacci
OGL-Line-Level Efficiency
OGL-Count triplets
CMA-Fibonacci
CMA-Count triplets
CMA-Line-Level Efficiency

Figure 7: Code generation experiments:
penalty over time.

Discussion: Our method demonstrates the
ability to generate correct solutions while
applying micro-optimizations for efficiency.
In simple tasks like Fibonacci, OGL con-
verged on an optimal solution 7, and in
more complex problems, it improved the
initial solutions. However, in more com-
plex tasks, the LLM may generate code that
fails to solve the problem, hindering the
optimization of the run-time. To address
this, either stronger models or methods fo-
cused on optimizing solution correctness are
needed. This would ensure that valid solu-
tions are generated first, which can then be further optimized for performance.

8 Conclusion

In this work, we introduced several key enhancements to the EGL algorithm, resulting
in OHGL, a powerful black-box optimization tool capable of addressing various complex
problems. We demonstrated improvements such as second-order gradient approximation,
optimistic gradients, and trust region enhancements, which collectively led to faster conver-
gence and more robust performance, particularly in high-dimensional and intricate tasks.
Our experiments showcased OHGL’s superiority over state-of-the-art methods, especially
in tasks where computational efficiency and precision are paramount, such as adversarial
attacks on vision models and optimizing code generation. OHGL’s ability to navigate com-
plex optimization spaces while minimizing computational cost demonstrates its utility across
various applications.
Looking ahead, Future research should explore new applications of black-box optimization
algorithms like OHGL. While OHGL has shown promise in high-dimensional tasks, its effi-
ciency could be further improved. Our research utilized dimension-reduction methods such
as Hu et al. (2021). Similar techniques (Zhao et al. (2024); Anil et al. (2020)) can help
calculate the Hessian more efficiently.
In conclusion, OHGL represents a significant advancement in BBO algorithm design, pro-
viding a robust framework for solving complex optimization problems. However, the true
potential of BBO algorithms lies in their broader applicability, and future research should
focus on unlocking new avenues for their use, especially in generative models and other
cutting-edge areas.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

References
Stéphane Alarie, Charles Audet, Aı̈men E Gheribi, Michael Kokkolaras, and Sébastien Le Di-

gabel. Two decades of blackbox optimization applications. EURO Journal on Computa-
tional Optimization, 9:100011, 2021.

Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram Singer. Scalable second
order optimization for deep learning. arXiv preprint arXiv:2002.09018, 2020.

Charles Audet, Warren Hare, Charles Audet, and Warren Hare. Direct search in derivative-
free and blackbox optimization. Derivative-Free and Blackbox Optimization, pp. 93–156,
2017a.

Charles Audet, Warren Hare, Charles Audet, and Warren Hare. Genetic methods in
derivative-free and blackbox optimization. Derivative-Free and Blackbox Optimization,
pp. 57–73, 2017b.

Charles Audet, Warren Hare, Charles Audet, and Warren Hare. Chapter 1: The begining of
dfo algorithms in derivative-free and blackbox optimization. Derivative-Free and Blackbox
Optimization, pp. 11–15, 2017c.

Charles Audet, Warren Hare, Charles Audet, and Warren Hare. Model-based methods in
derivative-free and blackbox optimization. Derivative-Free and Blackbox Optimization,
pp. 156–218, 2017d.

Charles Audet, Warren Hare, Charles Audet, and Warren Hare. Chapter 3: The begining of
dfo algorithms in derivative-free and blackbox optimization. Derivative-Free and Blackbox
Optimization, pp. 33–47, 2017e.

Thomas Back. Evolutionary algorithms in theory and practice: evolution strategies, evolu-
tionary programming, genetic algorithms. Oxford university press, 1996.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma,
Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful
and harmless assistant with reinforcement learning from human feedback. arXiv preprint
arXiv:2204.05862, 2022.

Dimitri Bertsekas. Convex optimization algorithms. Athena Scientific, 2015.

Bernd Bischl, Martin Binder, Michel Lang, Tobias Pielok, Jakob Richter, Stefan Coors,
Janek Thomas, Theresa Ullmann, Marc Becker, Anne-Laure Boulesteix, et al. Hyper-
parameter optimization: Foundations, algorithms, best practices, and open challenges.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 13(2):e1484,
2023.

Djallel Bouneffouf, Irina Rish, and Charu Aggarwal. Survey on applications of multi-armed
and contextual bandits. In 2020 IEEE Congress on Evolutionary Computation (CEC),
pp. 1–8. IEEE, 2020.

Franco Busetti. Simulated annealing overview. World Wide Web URL www. geocities.
com/francorbusetti/saweb. pdf, 4, 2003.

Yulong Cao, Chaowei Xiao, Dawei Yang, Jing Fang, Ruigang Yang, Mingyan Liu, and
Bo Li. Adversarial objects against lidar-based autonomous driving systems. arXiv preprint
arXiv:1907.05418, 2019.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order
optimization based black-box attacks to deep neural networks without training substitute
models. In Proceedings of the 10th ACM workshop on artificial intelligence and security,
pp. 15–26, 2017.

Maurice Clerc. Particle swarm optimization, volume 93. John Wiley & Sons, 2010.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Enrique Dehaerne, Bappaditya Dey, Sandip Halder, Stefan De Gendt, and Wannes Meert.
Code generation using machine learning: A systematic review. Ieee Access, 10:82434–
82455, 2022.

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo
Li. Boosting adversarial attacks with momentum. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 9185–9193, 2018.

Christian Gehring, Stelian Coros, Marco Hutter, Michael Bloesch, Péter Fankhauser,
Markus A Hoepflinger, and Roland Siegwart. Towards automatic discovery of agile gaits
for quadrupedal robots. In 2014 IEEE international conference on robotics and automa-
tion (ICRA), pp. 4243–4248. IEEE, 2014.

Daniel Golovin, John Karro, Greg Kochanski, Chansoo Lee, Xingyou Song, and Qiuyi
Zhang. Gradientless descent: High-dimensional zeroth-order optimization. arXiv preprint
arXiv:1911.06317, 2019.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua Liu, Yehui
Tang, An Xiao, Chunjing Xu, Yixing Xu, et al. A survey on vision transformer. IEEE
transactions on pattern analysis and machine intelligence, 45(1):87–110, 2022.

N. Hansen, A. Auger, R. Ros, O. Mersmann, T. Tušar, and D. Brockhoff. COCO: A platform
for comparing continuous optimizers in a black-box setting. Optimization Methods and
Software, 36:114–144, 2021. doi: https://doi.org/10.1080/10556788.2020.1808977.

Nikolaus Hansen. The cma evolution strategy: A tutorial. arXiv preprint arXiv:1604.00772,
2016.

Nikolaus Hansen, Anne Auger, Raymond Ros, Steffen Finck, and Petr Poš́ık. Comparing
results of 31 algorithms from the black-box optimization benchmarking bbob-2009. In
Proceedings of the 12th annual conference companion on Genetic and evolutionary com-
putation, pp. 1689–1696, 2010.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021.

Antoine Lesage-Landry, Joshua A Taylor, and Iman Shames. Second-order online nonconvex
optimization. IEEE Transactions on Automatic Control, 66(10):4866–4872, 2020.

Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen, Karol Hausman, Dorsa Sadigh, Sergey
Levine, Li Fei-Fei, Fei Xia, and Brian Ichter. Chain of code: Reasoning with a language
model-augmented code emulator. arXiv preprint arXiv:2312.04474, 2023.

TP Lillicrap. Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Bingyu Liu, Yuhong Guo, Jianan Jiang, Jian Tang, and Weihong Deng. Multi-view corre-
lation based black-box adversarial attack for 3d object detection. In Proceedings of the
27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1036–1044,
2021.

Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan Zhang, Alfred O. Hero III, and
Pramod K. Varshney. A primer on zeroth-order optimization in signal processing and
machine learning: Principals, recent advances, and applications. IEEE Signal Processing
Magazine, 37(5):43–54, 2020. doi: 10.1109/MSP.2020.3003837.

Ilya Loshchilov, Marc Schoenauer, and Michèle Sebag. Bi-population cma-es agorithms
with surrogate models and line searches. In Proceedings of the 15th annual conference
companion on Genetic and evolutionary computation, pp. 1177–1184, 2013.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Minfang Lu, Shuai Ning, Shuangrong Liu, Fengyang Sun, Bo Zhang, Bo Yang, and Lin
Wang. Opt-gan: a broad-spectrum global optimizer for black-box problems by learning
distribution. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37,
pp. 12462–12472, 2023.

Gabriel Resende Machado, Eugênio Silva, and Ronaldo Ribeiro Goldschmidt. Adversarial
machine learning in image classification: A survey toward the defender’s perspective.
ACM Computing Surveys (CSUR), 55(1):1–38, 2021.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
Vladu. Towards deep learning models resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083, 2017.

K. T. Yasas Mahima, Asanka G. Perera, Sreenatha Anavatti, and Matt Garratt. Toward
robust 3d perception for autonomous vehicles: A review of adversarial attacks and coun-
termeasures. IEEE Transactions on Intelligent Transportation Systems, pp. 1–27, 2024.
doi: 10.1109/TITS.2024.3456293.

Skogby Steinholtz Olof. A comparative study of black-box optimization algorithms for
tuning of hyper-parameters in deep neural networks, 2018.

Shanker G Radhakrishna Prabhu, Richard C Seals, Peter J Kyberd, and Jodie C Wetherall.
A survey on evolutionary-aided design in robotics. Robotica, 36(12):1804–1821, 2018.

Zohar Rimon, Tom Jurgenson, Orr Krupnik, Gilad Adler, and Aviv Tamar. Mamba:
an effective world model approach for meta-reinforcement learning. arXiv preprint
arXiv:2403.09859, 2024.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Ba-
log, M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming
Wang, Omar Fawzi, et al. Mathematical discoveries from program search with large lan-
guage models. Nature, 625(7995):468–475, 2024.

Vinu Sankar Sadasivan, Aounon Kumar, Sriram Balasubramanian, Wenxiao Wang, and
Soheil Feizi. Can ai-generated text be reliably detected?, 2024. URL https://arxiv.
org/abs/2303.11156.

Elad Sarafian, Mor Sinay, Yoram Louzoun, Noa Agmon, and Sarit Kraus. Explicit gradient
learning for black-box optimization. In ICML, pp. 8480–8490, 2020.

Sayantan Sarkar, Ankan Bansal, Upal Mahbub, and Rama Chellappa. Upset and angri:
Breaking high performance image classifiers. arXiv preprint arXiv:1707.01159, 2017.

Sanli Tang, Xiaolin Huang, Mingjian Chen, Chengjin Sun, and Jie Yang. Adversarial attack
type i: Cheat classifiers by significant changes. IEEE transactions on pattern analysis and
machine intelligence, 43(3):1100–1109, 2019.

Yunhao Tang. Guiding evolutionary strategies with off-policy actor-critic. In AAMAS, pp.
1317–1325, 2021.

Sasha Targ, Diogo Almeida, and Kevin Lyman. Resnet in resnet: Generalizing residual
architectures. arXiv preprint arXiv:1603.08029, 2016.

Chun-Chen Tu, Paishun Ting, Pin-Yu Chen, Sijia Liu, Huan Zhang, Jinfeng Yi, Cho-Jui
Hsieh, and Shin-Ming Cheng. Autozoom: Autoencoder-based zeroth order optimization
method for attacking black-box neural networks. In Proceedings of the AAAI conference
on artificial intelligence, volume 33, pp. 742–749, 2019.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems,
2017.

Chaowei Xiao, Bo Li, Jun-Yan Zhu, Warren He, Mingyan Liu, and Dawn Song. Generating
adversarial examples with adversarial networks. arXiv preprint arXiv:1801.02610, 2018.

13

https://arxiv.org/abs/2303.11156
https://arxiv.org/abs/2303.11156

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Wei Zhang, Chaoqun Wan, Yonggang Zhang, Yiu-ming Cheung, Xinmei Tian, Xu Shen, and
Jieping Ye. Interpreting and improving large language models in arithmetic calculation.
arXiv preprint arXiv:2409.01659, 2024.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuan-
dong Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv
preprint arXiv:2403.03507, 2024.

Lu Zhen, Kai Wang, Hongtao Hu, and Daofang Chang. A simulation optimization framework
for ambulance deployment and relocation problems. Computers & Industrial Engineering,
72:12–23, 2014.

A Appendix

A.1 Full OHGL Algorithm

Algorithm 2 OHGL (Hessian Weighted Gradient Learning)
Require: x0, Ω, α, ϵ0, γα < 1, γϵ < 1, nmax, λ

k = 0
j = 0
Ωj ← Ω
Map h0 : Ω→ Rn

Map W0 : R→ R
while Budget > 0 do

Explore:
Generate samples Dk = {x̃i}m

i=1, x̃i ∈ Vϵk
(x̃k)

Evaluate samples yi = f(h−1
0 (x̃i)), i = 1, . . . , m

Add tuples to the replay buffer: D = D ∪Dk

Create Dataset of Tuples:
T ← {(x̃i, x̃j) | ∥x̃i − x̃j∥2 < ϵ,∀i, j}
Select the first m tuples from T

Weighted Output Map:
Assign weights wi = Wk(yi) to samples based on function values
Apply squashing function to the outputs: ỹi = rk(wiyi), i = 1, . . . , m

Higher-Order Gradient and Hessian Learning:
Calculate the Hessian from the Jacobian of the network: Hk(x) = J(gθk

(x))
Optimize the network with GD using the formula in 7

Gradient Descent:
Update the current solution using second-order information:
xk+1 ← xk − α · g̃θk

(xk)
if f(h−1

j (x̃k+1)) > f(h−1
j (x̃k)) for nmax times in a row then

Generate a new trust region: Ωj+1 = γα|Ωj | with center at xbest
Map hj : Ω→ Rn

Map Wj : R→ R
j ← j + 1
ϵj ← γϵϵj

end if
if f(h−1

j (x̃k)) < f(h−1
j (x̃best)) then

xbest = h−1
j (x̃k)

end if
k ← k + 1; Budget← Budget−m

end while
return xbest

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.2 Statistical Analysis

Table 4: T-test of our algorithms against the benchmark in dimension 40

Metric OGL HOGL HGL
IGL 1.000000 1.000000 1.000000
OGL 0.500000 0.278378 0.334161
OHGL 0.721622 0.500000 0.473754
HGL 0.665839 0.526246 0.500000
EGL 0.999961 0.999975 0.999098
CMA 1.000000 1.000000 1.000000
T-CMA 0.999934 0.999911 0.999788
L-CMA 0.999859 0.999843 0.998842

A.3 Generated code from Code Force Example

def count_triplets(n: int, x: int) -> int:
"""
This function calculates the number of triplets (a, b, c) of positive integers such that:
1. a*b + a*c + b*c â‰¤ n
2. a + b + c â‰¤ x
where the order of triplets matters (e.g., (1, 1, 2) and (1, 2, 1) are different triplets)
and a, b, c must be strictly greater than 0.
"""
pass

def check_function():
assert count_triplets(10, 5) == 3, 'Test case 1 failed'
assert count_triplets(15, 10) == 6, 'Test case 2 failed'
assert count_triplets(20, 15) == 10, 'Test case 3 failed'
assert count_triplets(100, 50) == 50, 'Test case 4 failed'
print('All test cases passed!')

Figure 8: Step 1

Figure 9: Generated code samples by the algorithm

def count_triplets(n):
"""

This function calculates the number of triplets (a, b, c) of positive integers such that:
1. a*b + a*c + b*c <= n
2. a + b + c <= x
where the order of triplets matters (e.g., (1, 1, 2) and (1, 2, 1) are different triplets)
and a, b, c must be strictly greater than 0.

"""
count = 0
Iterate through all possible values of a, b, c
for a in range(1, x + 1):

for b in range(1, x + 1):
for c in range(1, x + 1):

if a * b + a * c + b * c <= n and a + b + c <= x:
count += 1

return count

Figure 10: Step 21

Figure 11: Generated code samples by the algorithm

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

def count_triplets(n):
"""

This function calculates the number of triplets (a, b, c) of positive integers such that:
1. a*b + a*c + b*c <= n
2. a + b + c <= x
where the order of triplets matters (e.g., (1, 1, 2) and (1, 2, 1) are different triplets)
and a, b, c must be strictly greater than 0.

"""
count = 0
Iterate over a
for a in range(1, x + 1):

Iterate over b
for b in range(1, x - a + 1):

Find the maximum c based on the condition a + b + c <= x
max_c = min(x - a - b, (n - a * b) // (a + b)) # upper bound for c
Use list comprehension to count valid triplets
count += sum(1 for c in range(1, max_c + 1) if a * b + a * c + b * c <= n)

return count

Figure 12: Step 50

Figure 13: Generated code samples by the algorithm

A.4 Adaptive Sampling Size

Gradient learning algorithms collect samples to train the surrogate gradient model. While
more samples can potentially lead to more accurate models, it is important to curtail the
number of samples in each training iteration to be able to execute enough optimization steps
before consuming the budget. On the other hand, one advantage that gradient learning has
over direct objective learning is that we train the model with pairs of samples instead of
single evaluation points, s.t. for a sample set of size ns we can draw as many as np = n2

s
pairs to train our model.
We empirically tested the optimal number of exploration size (i.e. ns) in each training step
and the optimal sample pair size (np) and found that a squared root profile is optimal both
hyperparameters. Therefore, we use the following equation to control these parameters:

ns = 8 ·
⌈√

N
⌉

np = 2000 ·
⌈√

N
⌉ (9)

where N is the problem size.

A.5 Trust Region Management

After finding the optimal solution inside the trust region, EGL shifts and scales down (i.e.
shrinks) the trust region so that the optimal solution is centered at its origin. In case the
decent path is long so that the minimum point is far away from the current trust region,
this shrinking has the potential to slow down the learning rate and impede convergence.
To prevent unnecessary shrinking of the trust region, we distinguish between two conver-
gence types: interior convergence: in this case, we shrink the trust region while moving
its center and boundary convergence where we only shift the center without applying
shrinking (When the algorithm reaches the edges of the TR). This adjustment prevents
fast convergence of the step size to zero before being able to sufficiently explore the input
domain.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.6 Additional Empirical Results

Table 5: EGL Best Parameters

Parameter Value Description

Exploration size 8 ·
⌈√

dimension
⌉

The number of iterations the al-
gorithm will run.

Maximum movement to shrink 0.2 ·
√

dimension How much distance the algo-
rithm needs to cover to prevent
shrinking when reaching conver-
gence.

Epsilon 0.4 ·
√

dimension Epsilon size to sample data.
Epsilon Factor 0.97 How much we shrink the epsilon

each iteration.
Minimum epsilon 0.0001 The smallest epsilon we use.
Database size 20, 000 ·

⌈√
dimension

⌉
How many tuples we used to
train for each iteration.

Gradient network dimension-10-15-10-dimension What kind of network we use.
Budget 150,000 How much budget the algorithm

uses.

A.7 Benchmark Algorithms

Algorithm 3 CMA with a trust region
Require: total budget, budget = 0, startpointx, δ = 1, µ = 0, γ

while budget ≤ total budget do
new generation, should stop = CMA(x)
new generation = mu + δ ∗ new generation
evalutaions = space(new generation)
budget = budget + len(evalutaions)
UpdateCovarMatrix(evaluations)
if should stop then

δ = δ ∗ γ
µ = argminx new generation(space(x))

end if
end while

A.8 CMA Versions

The trust region is key in the EGL algorithm (see Figures 1). We map between the search
space (Ω) and trust region (Ω∗) using the tanh function, which provides smooth transi-
tions but exhibits logarithmic behavior at the edges, slowing large steps. While helpful for
problems with many local minima, this behavior restricts CMA’s ability to take large steps,
especially in high dimensions (see Figure 14). We developed two CMA variants: one with
linear TR (L-CMA) and one with tanh TR(T-CMA). The linear TR allowed larger steps,
improving exploration, while the tanh TR limited performance.

A.9 Adversarial Attack Implementation

Our adversarial attack leverages the flexibility of black-box optimization (BBO), which is
not constrained by differentiability requirements on the objective function. This allows us
to manipulate the search space freely. Specifically, our attack focuses on modifying the
positions of m fixed-size boxes within the image, along with the permutations applied to

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

0 1000 2000 3000 4000 5000 6000

10 2

10 1

Dimension 2

0 1000 2000 3000 4000 5000 6000

10 2

10 1

100
Dimension 5

0 1000 2000 3000 4000 5000 6000

10 1

100
Dimension 20

0 1000 2000 3000 4000 5000 6000

10 2

10 1

Dimension 40 L-CMA
T-CMA

Figure 14: Comparing CMA with different trust regions types across different dimensions

the pixels inside these boxes. This approach provides two key advantages: it enables us to
limit the extent of the alterations we introduce to the image and simultaneously reduces the
dimensionality of the search space Ω.
The penalty function we use balances two competing goals: minimizing the cross-entropy
loss to ensure misclassification and limiting the perturbation magnitude using the mean
squared error (MSE) loss. To achieve this balance, we define the following loss function:

s(ce) = σ (b · (ce− ϵ))

Penaltymse(ce, mse) (1− s(ce)) ·msen1 + s(ce) · (−msen2)
Penaltyce(ce) (1− s(ce))) · ece∗n1 + s(ce) · (ln(cen2))

Penalty(x) = Penaltymse(ce(x), mse(x))− Penaltyce(ce(x))

In this formulation:

• mse ∈ [0, 1] and ce ∈ (−∞,∞).
• The terms n1 ≤ n2 control the trade-off between the cross-entropy and MSE loss

slopes.
• ϵ defines the minimum required cross-entropy loss to maintain misclassification.
• The parameter b governs the rate of transition between minimizing cross-entropy

and MSE losses.
• The function σ is the sigmoid function, which controls how much focus is given to

minimizing cross-entropy loss over MSE loss as ce increases.

This function balances the CR and the MSE, finding a minimum with CE to prevent detec-
tion by the classifier while minimizing the perturbation of the image.

A.10 Full Robustness Experiment

Table 6: Comparison of Algorithm Versions on coco benchmark, comparing the error, the
std and the budget it takes to finish 99% of the progress

Version Budget Error Std Solved Problems
networks

20 40 20 58447.91 0.0060 0.0325 0.76
40 60 80 40 57960.44 0.0058 0.0325 0.76
60 80 60 58371.31 0.0060 0.0325 0.76
40 80 40 58159.34 0.0061 0.0325 0.76
40 15 10 40 58667.00 0.0061 0.0325 0.76

Epsilon
0.1 39491.81 0.006 0.0325 0.9

Continued on next page

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Version Budget Error Std Solved Problems
0.4 48518.81 0.0057 0.0325 0.93
0.5 49469.81 0.0056 0.0325 0.93
0.6 54271.47 0.0061 0.0326 0.9
0.8 58667.00 0.0061 0.0325 0.9

Epsilon Factor
0.8 39275.72 0.0105 0.0365 0.83
0.9 47930.81 0.0068 0.0327 0.89
0.95 53899.78 0.0060 0.0326 0.9
0.97 58667.00 0.0061 0.0325 0.9
0.99 63676.47 0.0065 0.0326 0.89

Training Weights
50% 58049.50 0.0059 0.0325 0.91
60% 59477.47 0.0066 0.0333 0.89
70% 57831.00 0.0057 0.0325 0.93
83% 58667.00 0.0061 0.0325 0.9
100% 59660.34 0.0061 0.0326 0.9

Perturbation
1 56807.97 0.0066 0.0333 0.89
0.3 58935.38 0.0088 0.0420 0.87
0.1 57699.78 0.0061 0.0325 0.89
0.01 58075.03 0.0060 0.0325 0.89
0 58667.00 0.0061 0.0325 0.89
Euclidean distance of the algorithm before shrinking trust region
0.4 57172.53 0.0061 0.0325 0.9
0.3 57324.53 0.0059 0.0325 0.91
0.2 58667.00 0.0057 0.0325 0.93
0.1 57327.50 0.0061 0.0325 0.89
0.01 57810.81 0.0062 0.0325 0.89

Value Normalizer LR
0.01 58211.59 0.0086 0.0420 0.83
0.05 58576.75 0.0061 0.0326 0.89
0.1 58667.00 0.0057 0.0325 0.93
0.2 59723.88 0.0059 0.0325 0.91
0.3 58194.97 0.0079 0.0370 0.87

Value Normalizer Outlier
0.01 57222.41 0.0059 0.0325 0.91
0.05 57776.38 0.0060 0.0325 0.9
0.1 58667.00 0.0057 0.0325 0.93
0.2 58481.75 0.0061 0.0325 0.9
0.3 58629.59 0.0063 0.0325 0.89

Trust Region Shrink Factor
0.99 103758.16 0.0177 0.0433 0.79
0.95 80660.69 0.0093 0.0346 0.81
0.9 58667.00 0.0057 0.0325 0.93
0.8 43503.22 0.0066 0.0325 0.87
0.7 39790.50 0.0075 0.0326 0.85

Optimizer LR
0.001 101550.59 0.0164 0.0364 0.76
0.005 64988.66 0.0066 0.0325 0.88
0.01 58667.00 0.0057 0.0325 0.93
0.02 62405.84 0.0056 0.0325 0.93

Continued on next page

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Version Budget Error Std Solved Problems
0.03 72041.81 0.0058 0.0325 0.93

Gradient LR
0.0001 63283.41 0.0063 0.0325 0.89
0.0005 59237.59 0.0086 0.0420 0.84
0.001 58667.00 0.0057 0.0325 0.93
0.002 58776.25 0.0061 0.0325 0.9
0.003 57934.91 0.0061 0.0326 0.9

A.11 Theoretical Analysis

A.11.1 Mean Gradient Accuracy

Definition 1 The second-order mean gradient around x of radius ϵ > 0:

g̃ε(x) = arg min
g∈Rn

∫
Vε(x)

∣∣g⊤τ + 1
2 τ⊤J(g)τ − [f(x + τ)− f(x)]

∣∣2
dτ.

Theorem 3 (Improved Controllable Accuracy): For any twice differentiable function f ∈
C2, there exists κg(x) > 0 such that for any ε > 0, the second-order mean-gradient g̃ε(x)
satisfies

∥g̃ε(x)−∇f(x)∥ ≤ κg(x)ε2 for all x ∈ Ω.

Proof. Since f ∈ C2, the Taylor expansion around x is

f(x + τ) = f(x) +∇f(x)⊤τ + 1
2 τ⊤H(x)τ + Rx(τ),

where H(x) is the Hessian matrix at x, and the remainder Rx(τ) satisfies

|Rx(τ)| ≤ 1
6 kg∥τ∥3,

By the Definition of gϵ, an upper bound of L(gϵ(x)) is:

L(gϵ(x)) ≤ L(∇f(x)) =
∫

Vε(x)

∣∣∣∇f(x)⊤τ+ 1
2 τ⊤H(x)τ−

(
f(x+τ)−f(x)

)∣∣∣2
dτ =

∫
Vε(x)

|Rx(τ)|2dτ

≤
(1

6 kg

)2
∫

Vε(x)
∥τ∥6dτ =

(1
6 kg

)2 |V1(x)|εn+6.

We now find a lower bound:
lets define for convenience δg = (gε(x)−∇f(x)) , δH = J(gε(x))−H(x)

L(gε(x)) =
∫

Vε(x)
|gε(x)τ −∇f(x)τ +∇f(x)τ + 1

2 τJ(gε(x))τ−

1
2 τH(x)τ + 1

2 τH(x)τ − f(x + τ) + f(x)|2dτ

=
∫

Vε(x)
(δ⊤

g τ + 1
2 τ⊤δHτ −Rx(τ))2dτ

=
∫

Vε(x)
((δ⊤

g τ)2 + 1
4 (τ⊤δHτ)2 + Rx(τ)2 − 2δ⊤

g τRx(τ)− τ⊤δHτRx(τ) + τ⊤δgτ⊤δHτ)dτ

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 15: The search trajectory for an adversarial image generation with OGL

Since a2 + b2 ≥ 2ab we conclude that 1
4 (τ⊤δHτ)2 + Rx(τ)2 − τ⊤δHτRx(τ) ≥ 0

L(gε(x)) =
∫

Vε(x)
((δ⊤

g τ)2 + 1
4 (τ⊤δHτ)2 + Rx(τ)2 − 2δ⊤

g τRx(τ)− τ⊤δHτRx(τ) + τ⊤δgτ⊤δHτ)dτ

≥
∫

Vε(x)
((δ⊤

g τ)2 − 2δ⊤
g τRx(τ) + τ⊤δgτ⊤δHτ)dτ

=
∫

Vε(x)
(δ⊤

g τ)2dτ − 2
∫

Vε(x)
δ⊤

g τRx(τ)dτ +
∫

Vε(x)
τ⊤δgτ⊤δHτdτ

=
∫

Vε(x)
(δ⊤

g τ)2dτ − 2
∫

Vε(x)
δ⊤

g τRx(τ)dτ +
∫

Vε(x)
τ⊤δgτ⊤δHτdτ

We will split the equation into 3 components: First A =
∫

Vε(x)(δ
⊤
g τ)2dτ , is we open this

expression we see that

(δ⊤
g τ)2 =

n∑
i=1

n∑
j=1

(δg)i(δg)jτiτj .

Since Vε(x) is symmetric around x odd moments of τ integrate to zero, therefore

A =
∫

Vε(x)
(δ⊤

g τ)2dτ =
∫

Vε(x)
(

n∑
i=1

n∑
j=1

(δg)i(δg)jτiτj)dτ =
∫

Vε(x)
(

n∑
i=1

(δg)2
i τ2

i)dτ = ||δg||2εn+2|V1(x)|

Let B = 2
∫

Vε(x) δ⊤
g τRx(τ)dτ

B = 2
∫

Vε(x)
δ⊤

g τRx(τ)dτ ≤ 2
∫

Vε(x)
||δg|| · ||τ || · ||Rx(τ)||dτ ≤ 2||δg||

∫
Vε(x)

||τ || 16 kgτ3dτ

≤ 1
3 kg||δg||

∫
Vε(x)

||τ ||4dτ = 1
3 kg||δg||εn+4|V1(x)|

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Finally C =
∫

Vε(x) τ⊤δgτ⊤δHτdτ , we should remember the property derived from Vε(x)
symmetry. If we open the vector multiplication we get

τ⊤δgτ⊤δHτ =
n∑

i=1

n∑
j=1

n∑
k=1

τi(δg)i(δH)jkτjτk =
n∑

i=1

n∑
j=1

n∑
k=1

(δg)i(δH)jkτiτjτk.

Here there is no way for an even moment of τ to exist so C = 0 To sum this up, we get
L(gε(x)) ≥ A−B + C ≥ ||δg||2εn+2|V1(x)| − 1

3 kg||δg||εn+4|V1(x)|
We combine the lower and upper-bound

||δg||2εn+2|V1(x)| − 1
3 kg||δg||εn+4|V1(x)| ≤ (1

6 kg)2|V1(x)|εn+6

||δg||2 − 1
3 kg||δg||ε2 − (1

6 kg)2ε4 ≤ 0

||δg||2 ≤
1
3 kgε2 +

√
1
9 k2

gε4 + 4(1
6 kg)2ε4

2 =
1
3 kgε2 +

√
2 1

9 k2
gε4

2 = 1
3

√
2 kgε2 = kg(x)ε2

A.11.2 Convergence Analysis

Theorem 4 Let f : Ω→ R be a convex function with Lipschitz continuous gradient, i.e. f ∈
C+1 and a Lipschitz constant κf and let f(x∗) be its optimal value. Suppose a controllable
mean-gradient model gε with error constant κg, the gradient descent iteration xk+1 = xk −
αgε(xk) with a sufficiently small α s.t. α ≤ min(1

κg
, 1

κf
) guarantees:

1. For ε ≤ ∥∇f(x)∥
5α , monotonically decreasing steps s.t. f(xk+1) ≤ f(xk)− 2.25 ε2

α .

2. After a finite number of iterations, the descent process yields x⋆ s.t. ∥∇f(x⋆)∥ ≤ 5ε
α .

Proof. For a convex function with Lipschitz continuous gradient, the following inequality
holds for all xk

f(x) ≤ f(xk) + (x− xk) · ∇f(xk) + 1
2κf∥x− xk∥2 (10)

Plugging in the iteration update xk+1 = xk − αgε(xk) we get

f(xk+1) ≤ f(xk)− αgε(xk) · ∇f(xk) + α2 1
2κf∥gε(xk)∥2 (11)

For a controllable mean-gradient we can write ∥gε(x) − ∇f(x)∥ ≤ ε2κg, therefore we can
write gε(x) = ∇f(x) + ε2κgξ(x) s.t. ∥ξ(x)∥ ≤ 1 so the inequality is

f(xk+1) ≤ f(xk)−α∥∇f(xk)∥2 −αε2κgξ(xk) · ∇f(xk) + α2 1
2κf∥∇f(x) + ε2κgξ(x)∥2 (12)

Using the equality ∥a + b∥2 = ∥a∥2 + 2a · b + ∥b∥2 and the Cauchy-Schwartz inequality
inequality a · b ≤ ∥a∥∥b∥ we can write

f(xk+1) ≤ f(xk)− α∥∇f(xk)∥2 − αε2κg∥ξ(xk)∥ · ∥∇f(xk)∥

+ α2 1
2κf

(
∥∇f(x)∥2 + 2ε2κg∥ξ(x)∥ · ∥∇f(xk)∥+ ε4κ2

g∥ξ(x)∥2)
≤ f(xk)− α∥∇f(xk)∥2 − αε2κg∥∇f(xk)∥

+ α2

2 κf∥∇f(x)∥2 + α2κf ε2κg∥∇f(xk)∥+ α2ε4

2 κf κ2
g

= f(xk)− (α− kf

2 α2)∥∇f(xk)∥2 + (−α + kf α2)∥∇f(xk)∥ε2κg + kf

2 α2ε4κ2
g

(13)

Using the requirement α ≤ min(1
κg

, 1
κf

) it follows that ακg ≤ 1 and ακf ≤ 1 so

f(xk+1) ≤ f(xk)− (α− kf

2 α2)∥∇f(xk)∥2 + (−α + kf α2)∥∇f(xk)∥ε2κg + kf

2 α2ε4κ2
g

= f(xk)− α

2 ∥∇f(xk)∥2 + kf

2 α2ε4κ2
g ≤ f(xk)− α

2 ∥∇f(xk)∥2 + ε4

2 κg

(14)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Now, for x s.t. ∥∇f(x)∥ ≥ 5ε2

α then ε2 ≤ ∥∇f(x)∥α
5 . Plugging it into our inequality we

obtain
f(xk+1) ≤ f(xk)− α

2 ∥∇f(xk)∥2 + α2

50 κg∥∇f(xk)∥2

≤ f(xk)− α

2 ∥∇f(xk)∥2 + α

50∥∇f(xk)∥2

= f(xk)− 0.48α∥∇f(xk)∥2

≤ f(xk)− 12ε4

α

(15)

Therefore, for all x s.t., ∥∇f(x)∥ ≥ 5ε2

α we have a monotonically decreasing step with finite
size improvement, after a finite number of steps we obtain x⋆ for which ∥∇f(x⋆)∥ ≤ 5ε2

α .

A.11.3 Optimistic Gradient Accuracy

Definition 2 The optimistic gradient around x of radius ϵ > 0:

g̃ε(x) = arg min
g∈Rn

∫
Vε(x)

w(τ)
∣∣g⊤τ − [f(x + τ)− f(x)]

∣∣2
dτ.

Theorem 5 (Optimistic gradient controllable Accuracy): For any twice differentiable func-
tion f ∈ C2, there exists κg(x) > 0 such that for any ε > 0, the second-order mean-gradient
g̃ε(x) satisfies

∥g̃ε(x)−∇f(x)∥ ≤ κg(x)ε for all x ∈ Ω.

Proof. Since f ∈ C2the Taylor expansion around x is
f(x + τ) = f(x) +∇f(x)⊤τ + Rx(τ),

where H(x) is the Hessian matrix at x, and the remainder Rx(τ) satisfies
|Rx(τ)| ≤ 1

2 kg∥τ∥2,

By definition gϵ, an upper bound L(gϵ(x)) is:

L(gϵ(x)) ≤ L(∇f(x)) =
∫

Vε(x)

∣∣∣∇f(x)⊤τ −
(
f(x + τ)− f(x)

)∣∣∣2
dτ =

∫
Vε(x)

|Rx(τ)|2dτ

≤
(1

2 kg

)2
∫

Vε(x)
∥τ∥4dτ =

(1
2 kg

)2 |V1(x)|εn+4.

Proof. The optimistic mean gradient around x of radius ϵ > 0:

g̃ε(x) = arg min
g∈Rn

∫
Vε(x)

w(τ)
∣∣g⊤τ − [f(x + τ)− f(x)]

∣∣2
dτ.

L(gε(x)) =
∫

Vε(x)
w(τ)(δ⊤

g τ −Rx(τ))2dτ ≥
∫

Vε(x)
w(τ)(δ⊤

g τ)2 − 2 · w(τ)δ⊤
g Rx(τ) + w(τ)Rx(τ)2dτ

=
∫

Vε(x)
w(τ)(δ⊤

g τ)2 −
∫

Vε(x)
2 · w(τ)δ⊤

g ·Rx(τ)dτ +
∫

Vε(x)
w(τ)Rx(τ)2dτ

≥
∫

Vε(x)
w(τ)(δ⊤

g τ)2 − 2
∫

Vε(x)
w(τ)δ⊤

g ·Rx(τ)dτ

Since Vε(x) is symmetric around x odd moments of τ integrate to zero, therefore

A =
∫

Vε(x)
w(τ)(δ⊤

g τ)2dτ =
∫

Vε(x)
w(τ)(

n∑
i=1

n∑
j=1

(δg)i(δg)jτiτj)dτ

=
∫

Vε(x)
w(τ)(

n∑
i=1

(δg)2
i τ2

i)dτ =
∫

Vε(x)
w(τ)∥δg∥2 · ∥τ∥2dτ

= ∥δg∥2εn+2|V1(x)|
∫

Vε(x)
w(τ) ≤ ∥δg∥2εn+2|V1(x)|Wu

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Let B = 2
∫

Vε(x) w(τ)δ⊤
g τRx(τ)dτ

B = 2
∫

Vε(x)
w(τ)δ⊤

g τRx(τ)dτ ≤ 2
∫

Vε(x)
w(τ)∥δg∥ · ∥τ∥ ·Rx(τ)dτ ≤ 2∥δg∥

∫
Vε(x)

w(τ)∥τ || 12 kgτ2dτ

≤ 1
3 kg∥δg∥

∫
Vε(x)

w(τ)∥τ∥3dτ = kg||δg||εn+3|V1(x)|Wu

To sum this up, we get

L(gε(x)) ≥ A−B ≥ ∥δg∥2εn+2|V1(x)|Wu − kg||δg||εn+3|V1(x)|Wu

We combine the lower and upper-bound

∥δg∥2εn+2|V1(x)|Wu − kg||δg||εn+3|V1(x)|Wu ≤ (1
2 kg)2|V1(x)|εn+4

∥δg∥2Wu − kg∥δg∥εWu − (1
2 kg)2ε2 ≤ 0

∥δg∥ ≤
kgεWu+

√
k2

gε2W 2
u+4Wu(1

2 kg)2ε2

2Wu
= kgε

Wu+
√

W 2
u+Wu

2Wu

24

	Introduction
	Background
	Optimistic Gradient Learning with Weighted Gradients
	Gradient Learning with Hessian Corrections
	OHGL
	Experiments in the COCO test suite
	Success and Convergence Rate
	Hyperparameter Tolerance

	High Dimensional Applications
	Adversarial Attacks
	Code generation

	Conclusion
	Appendix
	Full OHGL Algorithm
	Statistical Analysis
	Generated code from Code Force Example
	Adaptive Sampling Size
	Trust Region Management
	Additional Empirical Results
	Benchmark Algorithms
	CMA Versions
	Adversarial Attack Implementation
	Full Robustness Experiment
	Theoretical Analysis
	Mean Gradient Accuracy
	Convergence Analysis
	Optimistic Gradient Accuracy

