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Abstract
We study online adversarial regression with convex losses against a rich class of
continuous yet highly irregular competitor functions,modeled by Besov spaces
Bspq with general parameters 1 ⩽ p, q ⩽ ∞ and smoothness s > d

p
. We introduce

an adaptive wavelet-based algorithm that performs sequential prediction without
prior knowledge of (s, p, q), and establish minimax-optimal regret bounds against
any comparator in Bspq. We further design a locally adaptive extension capable of
sequentially adapting to spatially inhomogeneous smoothness. This adaptive mech-
anism adjusts the resolution of the predictions over both time and space, yielding
refined regret bounds in terms of local regularity. Consequently, in heterogeneous
environments, our adaptive guarantees can significantly surpass those obtained by
standard global methods.

1 Introduction
We consider the online regression framework [5, 6], where inputs x1, . . . , xt, . . . ∈ X arrive in a stream,
and the task is to sequentially predict a response f̂t(xt) ∈ R using an online predictive algorithm
f̂t : X → R based on past observations s = 1, . . . , t− 1 and the current input xt. The goal is to design
a sequence of predictors (f̂t) in the competitive approach, i.e., with guarantees that hold uniformly
over all individual (and potentially adversarial) data sequences. Prediction accuracy is assessed
over time using a sequence of convex loss functions (ℓt)t⩾1, for instance ℓt(f̂t(xt)) = |f̂t(xt) − yt|
or (f̂t(xt) − yt)2, where yt is the observed response associated with xt. After T ⩾ 1 rounds, the
performance of the algorithm is measured through its regret with respect to competitive continuous
functions f ,

RT (f) :=

T∑
t=1

ℓt(f̂t(xt))−
T∑
t=1

ℓt(f(xt)). (1)

Much of the early literature [7, 17, 23, 25] focuses on competitors f belonging to smooth benchmark
classes, such as Lipschitz or kernel-based functions. In this work, we extend this setting by designing
constructive algorithms that are competitive with a much richer class of prediction rules, namely
functions in general Besov spaces [20, 37, 40]. Building on wavelet-based representations, we design
an adaptive algorithm that achieves optimal regret performance (1), against broad classes of prediction
rules, modeled by Besov spaces. Wavelets [8, 11] are indeed a powerful and widely used tool for
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capturing local features and regularities in signals. Their applications range from image segmentation
and change point detection to EEG analysis and financial time series. Moreover, in many practical
scenarios, the environment may exhibit spatial heterogeneity, with varying degrees of regularity
across the domain. This motivates the need for methods that can adapt locally to different smoothness
levels. To tackle this challenge, we develop a locally adaptive algorithm [28, 29] that sequentially
adjusts the resolution of its predictions over space, effectively adapting to inhomogeneous regularity.
Our analysis provides minimax optimal regret guarantees that depend on the local smoothness of the
target function, improving upon globally-tuned algorithms.

Wavelets and multiscale approaches. Classical wavelet-based methods for statistical function
estimation have been primarily developed and analyzed in the batch (i.i.d.) setting, where the entire
dataset is available upfront. Notable examples include the wavelet shrinkage procedure of [15], which
achieves near-minimax estimation rates over Besov spaces. More generally, wavelets play a central
role in the signal processing and compressed sensing framework developed by [30], where they
are well understood and widely applied. In the context of adaptive and nonparametric estimation,
[1, 2] introduced universal algorithms based on tree-structured approximations, closely related in
spirit to wavelet thresholding. While these methods are computationally efficient and amenable to
online implementation, their theoretical analysis is performed in the batch statistical learning setting
and focuses on specific classes of approximation spaces. Multiscale and chaining ideas have also
emerged in the online learning literature, beginning with the early work of [5] and continuing more
recently in [34] (in a non-constructive fashion) and [17], although typically without relying on explicit
wavelet constructions. Recently, [43] studied an online algorithm that combines discrete wavelets
with parameter-free learning to minimize dynamic regret under general convex losses. Beyond this,
the combination of wavelet-based representations with principled online nonparametric learning
guarantees remains largely unexplored. Our work contributes to this direction by developing an
online algorithm that leverages multiscale wavelet structures with theoretical regret guarantees over
large nonparametric Besov function classes.

Online nonparametric regression. A classical line of work in online regression focuses on
competing with smooth benchmark functions with a given degree of smoothness s > 0. For instance,
[7, 17, 29] design constructive online algorithms that achieve optimal regret against Lipschitz
functions (s ⩽ 1) by using chaining-based techniques and exploiting regularity properties such
as uniform continuity to build refined predictors. Much of the early literature also focused on
reproducing kernel Hilbert spaces (RKHS) [3, 4, 19, 25, 38], which correspond to the case where
the smoothness index satisfies s > d

2
and p = 2. This setting offers convenient geometric properties,

such as inner products and representer theorems, but it excludes many natural function classes of
interest, e.g. general Lp(X ) spaces with p ⩾ 1, Sobolev spaces with low smoothness s, or more
generally Besov spaces. A key milestone in the direction of generalizing beyond RKHS is the work
[40], which introduces the method of defensive forecasting to compete with wild prediction rules,
i.e., rules drawn from general Banach spaces (e.g., Lp(X ), p ⩾ 2). Their framework shows that
online learning is possible in highly irregular settings and provides regret bounds that depend on the
geometry of the underlying Banach space. However, their analysis yields bounds that depend solely
on the integrability parameter p ⩾ 2, and does not account for any additional smoothness structure
that the benchmark functions may possess. This motivates the need for online learning strategies that
adapt not only to integrability, but also to spatial regularity or smoothness. Another paper in this
line is [42], where they study the performance of Sobolev kernels on restricted classes of Sobolev
spaces W s

p (X ) with integrability p ⩾ 2 and smoothness s > d
p
. Going one step further, our paper

proposes an algorithm with regret guarantees against any competitor in general Besov spaces Bspq,
for any integrability parameters 1 ⩽ p, q ⩽∞ and smoothness s > d

p
. This generalizes and improves

upon previous methods by addressing a broad range of function spaces. More importantly, none
of the constructive methods mentioned above provide the minimax optimal rate for generic Besov
spaces, as established by [34]. To the best of our knowledge, we present the first constructive and
adaptive algorithm that bridges wavelet theory with online nonparametric learning, while providing
minimax optimal regret guarantees against functions in general Besov spaces. Table 1 summarizes
our contributions and the corresponding regret rates in the literature.

Local adaptivity in inhomogeneous smoothness regimes. Many real-world functions exhibit
spatially varying regularity, motivating the development of locally adaptive methods. In the batch
setting, [14] pioneered spatially adaptive wavelet estimators that adjust to unknown smoothness.
Bayesian approaches such as [36] further model locally Hölder functions with hierarchical priors. In a
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Table 1: Comparison of regret rates and parameter requirements for online regression.
Paper Setting ((ℓt) square losses, s > d

p
) Input Parameters Regret Rate

Vovk [39] f ∈ Bspq, p, q ⩾ 1 s, p,B ⩾ ∥f∥∞ T 1− s
s+d

Vovk [40]
f ∈ Bspq, p ⩾ 2, q ∈ [ p

p−1
, p]

s, p, B ⩾ ∥f∥∞
T

1− 1
p

f ∈W s
∞ = C s, p =∞, s ∈ [ d

2
, 1] T 1− s

d
+ε

Gaillard and Gerchinovitz [17]
f ∈W s

p , p ⩾ 2, s ⩾ d
2 s, p, B ⩾ ∥f∥∞

T 1− 2s
2s+d

f ∈W s
p , p > 2, s < d

2
T 1− s

d

Zadorozhnyi et al. [42]
f ∈W s

p , p ⩾ 2, s ⩾ d
2 s, p

T 1− 2s
2s+d

+ε

f ∈W s
p , p > 2, s < d

2
T

1− s
d

p−d/s
p−2

+ε

This work - Alg. 2
f ∈ Bspq, p, q ⩾ 1, s ⩾ d

2
or p ⩽ 2

S ⩾ s, ε < s− d
p
, B ⩾ ∥f∥∞

T 1− 2s
2s+d

f ∈ Bspq, p > 2, q ⩾ 1, s < d
2

T 1− s
d

distribution-free framework, [21, 27] introduced the notion of average smoothness, based on averaging
local Hölder semi-norms at a fixed degree of regularity. In the online setting, [28, 29] developed
algorithms that sequentially adapt to local smoothness across time. However, these approaches
typically focus on adapting to local norms while assuming a fixed degree of regularity. In contrast, our
method jointly adapts to both the local regularity norm and the local smoothness exponent, enabling
a data-driven compromise that is well suited to highly inhomogeneous environments.

Context and notation. Throughout the paper, we assume the following. X denotes a compact
domain of Rd, d ⩾ 1. For any subset X ′ ⊆ X , we set its diameter as |X ′| = supx,y∈X ′ ∥x − y∥∞.
Without loss of generality, we assume that X is a regular hypercube of volume |X |d. We denote the
horizon of time by T ⩾ 1. The sequence losses (ℓt) are assumed to be convex and G-Lipschitz for
some G > 0. For any natural integer k ∈ N, we denote [k] := {0, . . . , k}.

2 Background and function representation
We consider compactly supported functions f : X → R that lie in L2(X ) equipped with the standard
inner product ⟨f, g⟩ =

∫
X f(x)g(x) dx. To design a sequential algorithm we rely on a multiscale

representation of f based on an orthonormal wavelet basis. For a chosen starting scale j0 ∈ N, we
write:

f =
∑
k∈Λ̄j0

αj0,kϕj0,k +
∑∞
j=j0

∑
k∈Λj

βj,kψj,k, (2)

where the families (ϕj0,k)k∈Λ̄j0
and (ψj,k)k∈Λj ,j⩾j0 form an orthonormal basis of L2(X ). We now

highlight the key properties of the expansion (2), and refer the interested reader to Appendix E for
further details.

Scaling (coarse-scale) component. The functions ϕj0,k(x) := 2j0d/2ϕ(2j0x − k) are the scaling
functions at resolution level j0, constructed from a fixed father wavelet ϕ. They span

Vj0 := span{ϕj0,k : k ∈ Λ̄j0},

where the index set Λ̄j0 satisfies |Λ̄j0 | ⩽ λ2j0d for some constant λ > 0. The corresponding coefficients
αj0,k := ⟨f, ϕj0,k⟩ are known as the scaling coefficients.

Wavelet (detail-scale) components. The functions ψj,k(x) := 2jd/2ψ(2jx − k) are the wavelet
functions at scale j, obtained from a fixed mother wavelet ψ. Here, the multi-index k encodes both
spatial position and directional information in d dimensions - see Appendix E for a brief summary of
the tensor-product construction used to define such wavelets in dimension d ⩾ 1. The detail space at
level j is defined as

Wj := span{ψj,k : k ∈ Λj},

where Λj indexes the active wavelet functions whose supports intersect X , and |Λj | ⩽ λ2jd, j ⩾ j0,
for the same constant λ > 0 as above with no loss of generality. The coefficients βj,k := ⟨f, ψj,k⟩
are called detail coefficients at scale j. Within the multiresolution analysis framework, the sequence
of spaces (Vj)j∈Z forms a nested hierarchy with Vj ⊂ Vj+1 and dense union in L2(Rd), while the
wavelet spaces Wj are orthogonal complements such that Vj+1 = Vj ⊕Wj . Figure 1 illustrates the
hierarchical, stage-wise approximation process over levels j that enables multiresolution analysis.
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Figure 1: Approximation with
Daubechies wavelets of regularity
S = 1 (top) and S = 5 (bottom) at
levels J = 1, . . . , 5.

The decomposition (2) is a classical result from multiresolu-
tion analysis (see [22, Chap. 3] for a deeper introduction), and
holds for all functions in L2(X ) when the basis functions are
derived from appropriately constructed wavelets. More gener-
ally, similar dyadic expansions can also be built from splines or
piecewise polynomial systems. In this work, we focus on the
wavelet setting as described above; we refer to [11, Chap. 6]
and [8] for further details.
One property of this representation (2) is that it can begin at
any arbitrary scale j0 ∈ N, offering flexibility to adapt the
starting resolution level. In particular, we will later allow j0 to
be selected in a data-driven and local fashion.
Throughout the paper, we do not rely on a specific wavelet basis,
but require that it satisfies the standard S-regularity property for
some S ∈ N∗, as recalled in Definition 2 in Appendix E. This
condition ximplies compact support, smoothness, vanishing
moments, and bounded overlap. Notable examples include the
compactly supported orthonormal wavelets of Daubechies [11,
Chap. 7], and the biorthogonal, symmetric, and highly regular
wavelet bases of Cohen et al. [9] - see Figure 1 for an illustration
of approximation with S-regular Daubechies wavelets. When
working with S-regular wavelet bases, the expansion in (2) converges not only in L2(X ) but also
in other function spaces, such as Lp(X ) for p ⩾ 1 (or the space of uniformly continuous functions)
depending on whether f ∈ Lp(X ), p ⩾ 1. This broader convergence behavior is a key reason for
adopting such bases.

Approximation results with wavelets. Approximation properties of wavelet expansions are by
now classical and well understood; see, e.g., [8, 13, 20] for reviews. In particular, for functions f
belonging to smoothness spaces such as Besov spaces Bspq with s > d

p
(so that f ∈ L∞(X )), one can

construct an approximation f̂ using nonlinear methods — see [12]. For instance, the so-called best
N-term approximant f̂ in a S-regular wavelet basis (S > s, see Definition 2) achieves the bound
∥f − f̂∥∞ ≲ N−s/d, where the hidden factor depends on the wavelet basis and the norm of the target
function f . The precise construction of f̂ and justification of this rate are provided in the Appendix
(see the proof of Theorem 1). These rates will serve as a benchmark in our analysis of the regret (1).

3 Parameter-free online wavelet decomposition
In this section, we develop a sequential algorithm that performs an online, parameter-free decomposi-
tion of incoming data using wavelets. The key idea is to learn wavelet coefficients incrementally -
without prior knowledge of the function’s regularity or the optimal resolution depth - while obtaining
strong regret guarantees over broad function classes.

3.1 Algorithm: Online Wavelet Decomposition
Let {ϕj0,k, ψj,k} denote an S-regular wavelet basis as introduced in the previous section. We consider
an online predictor based on a wavelet expansion (2) that begins at scale j0 ∈ N and is truncated at
level J ⩾ j0, where the predictor at time t ⩾ 1 takes the form:

f̂t(x) =
∑
k∈Λ̄j0

αj0,k,tϕj0,k(x) +

J∑
j=j0

∑
k∈Λj

βj,k,tψj,k(x), (3)

where the scaling and detail coefficients {αj0,k,t, βj,k,t} are updated sequentially over time.

Online optimization of wavelet coefficients. Our algorithm maintains and updates the collection
of scaling and detail coefficients {αj0,k,t, βj,k,t} in (3) across scales j and positions k. At each round
t ⩾ 1, after observing a new input xt, the prediction is computed using only the coefficients and basis
functions whose support intersects xt. This defines the active index set at time t:

Γt :=
{
(j0, k) : ϕj0,k(xt) ̸= 0

}
∪

J⋃
j=j0

{
(j, k) : ψj,k(xt) ̸= 0

}
⊊ Λ̄j0 ∪

J⋃
j=j0

Λj . (4)
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Only the coefficients indexed by Γt are updated at time t, based on gradient feedback from the loss.
The full procedure is summarized in Algorithm 1.

Algorithm 1: Online Wavelet Decomposition at time t
Input :Current coefficients {αj0,k,t, βj,k,t}; active index set Γt defined in (4).

1 Predict with coefficients in Γt

f̂t(xt) =
∑

(j,k)∈Γt
cj,k,t φj,k(xt)

where φj,k stands for either ϕj0,k or ψj,k; similarly, cj,k,t = αj0,k,t or βj,k,t;
2 Receive gradients {gj,k,t} associated with the active coefficients, defined in Eq. (5);
3 for (j, k) ∈ Γt do
4 Update cj,k,t to cj,k,t+1 by approximately minimizing

c 7→ ℓt
(
f̂t(xt)− cj,k,tφj,k(xt) + c φj,k(xt)

)
using corresponding gradient gj,k,t and a parameter-free update rule satisfying
Assumption 1;

Output :Updated coefficients {αj0,k,t+1, βj,k,t+1}.

Computation of gradients. We assume that after making its prediction, the algorithm receives
first-order feedback in the form of gradients {gj,k,t} with respect to each active coefficient cj,k,t,
where cj,k,t denotes either a scaling coefficient αj0,k,t or a wavelet coefficient βj,k,t. These gradients
are efficiently computed using the chain rule:

gj,k,t =
[
∇cℓt

(
f̂t(xt)− cj,k,tφj,k(xt) + c φj,k(xt)

)]
c=cj,k,t

= ℓ′t(f̂t(xt)) · φj,k(xt), (5)

where φj,k is either ϕj0,k or ψj,k depending on the scale, and ℓ′t is the derivative of the loss function
with respect to its prediction argument. Note that the gradient expression in (5) vanishes whenever
the corresponding basis function satisfies φj,k(xt) = 0. This justifies restricting the optimization step
at round t to the active set Γt defined in (4).

Assumption on the gradient step. To analyze the regret (1) of our method, we assume that the
update rule used in Algorithm 1 satisfies a parameter-free regret guarantee of the following form.
Assumption 1 (Parameter-free regret bound). Let T ⩾ 1 and suppose g1, . . . , gT ∈ [−Ĝ, Ĝ] are the
gradients observed over time. We assume that the coefficient update rule satisfies, for any c ∈ R,

T∑
t=1

gt(ct − c) ⩽ |c− c1|
(
C1

√∑T
t=1 |gt|

2 + C2Ĝ

)
for some C1, C2 > 0.

This regret bound holds with an additional term Ĝε, ε > 0 as small as possible, for a broad class of
first-order online learning algorithms, such as online mirror descent with self-tuned learning rates or
coin-betting style updates [33]. For simplicity we consider that Assumption 1 holds omitting this
additional term and the dependence in the hyperparameter ε > 0 in the sequel. These algorithms
are referred to as “parameter-free”, and they provide optimal adaptivity to |c|, at the expense of
logarithmic factors absorbed in C1 and C2 (see, e.g., [10, 32]). Note also that this type of algorithms
are explicit and maintain their iterates through a closed-form update, resulting in low computational
complexity—see, for instance, the update rule in [32, Eq. (9)].

3.2 Regret analysis of Online Wavelet Decomposition (Alg. 1)
In this section, we analyze the regret performance of Algorithm 1 under general convex losses (ℓt),
and against a broad class of potentially irregular prediction rules, specifically those lying in Besov
spaces Bspq(X ), which we introduce later. We focus in particular on the case s > d

p
, ensuring that the

competing functions are continuous and bounded; see the standard embedding results in [20, 37].
As a corollary, we show that Algorithm 1 achieves minimax-optimal rates when competing against
functions in Hölder spaces, while automatically adapting to the unknown regularity of the target
function.
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Besov spaces. Besov spaces Bspq(X ) constitute a classical family of function spaces indexed
by three parameters: a smoothness parameter s > 0, an integrability parameter p ∈ [1,∞],

1
p

s

1
∞

1
2

1
0

1

2

Intermediate optimal regret
T 1− s

d

Smooth functions

Fast optimal regret

ℓt convex:
√
T

ℓt exp-concave: T 1−2s/(2s+d)

Wild non-continuous functions
See Appendix D

s = d
2

s =
d
p

L∞C 0

C 1

C 2

C ∞
...

C α

C 1,α

C 2,α

s = α

L2 L1Lp

1
p

Figure 2: Diagram (d/p, s) of regret
regimes against Besov spaces.

and a summability parameter q ∈ [1,∞]. For those un-
familiar with Besov spaces, this space can be intuitively
viewed as the space of functions with s > 0 derivatives
in Lp(X ), with p ⩾ 1, and parameter q ⩾ 1 allows for
additional finer control of the regularity of the underlying
functions. These spaces interpolate between Sobolev and
Hölder spaces and are designed to capture both smooth and
non-smooth behaviors in functions. There exist several
equivalent definitions of Besov spaces (e.g. using differ-
ences, or interpolation theory): we refer to [20, 22, 37] for
detailed and general background on Besov spaces. In this
work, we adopt the wavelet characterization, which is par-
ticularly well suited for the analysis of our wavelet-based
algorithm.
Let s > 0 and let {ϕj0,k, ψj,k} be an orthonormal S-regular
wavelet basis with S > s (see Definition 2). We say that a
function f belongs to the Besov space Bspq if the following
wavelet-based norm is finite, with s′ = s+ d

2
− d

p
:

∥f∥Bs
pq

:= ∥αj0∥p +
(∑
j⩾j0

2jqs
′
∥βj∥qp

)1/q

, if 1 ⩽ q <∞,

∥f∥Bs
p
:= ∥αj0∥p + sup

j⩾j0

2js
′
∥βj∥p, if q =∞,

(6)

where αj0 = (⟨f, ϕj0,k⟩)k∈Λ̄j0
denotes the vector of scaling coefficients at level j0, and βj =

(⟨f, ψj,k⟩)k∈Λj are the wavelet coefficients at scale j ⩾ j0.
We now present our first result, establishing regret guarantees for Algorithm 1 when competing
against irregular but bounded prediction rules.
Theorem 1 (Regret against Besov predictors). Let T ⩾ 1, s > 0, 1 ⩽ p, q ⩽ ∞ with s − d

p
> ε > 0.

Let {ϕj0,k, ψj,k} be an S-regular wavelet basis (Definition 2) for some S > s. Suppose Algorithm 1 is
run with updates satisfying Assumption 1, starting at αj0 = 0,βj = 0, j ⩾ j0 and using a wavelet
expansion (3) from scale j0 = 0 to J = ⌈ S

dε
log2 T ⌉. Then, for any f ∈ Bspq(X ), the regret satisfies:

RT (f) ⩽ CG∥f∥Bs
pq

{√
T if s ⩾ d

2
or p < 2

T 1−s/d else,

where C = C(λ, ψ, s, p, C1, C2) > 0 depend only on s, p, the wavelet basis, and the C1, C2 in
Assumption 1.

Theorem 1 is proved in Appendix A, where we provide the full statement including explicit constants.
Our bounds are minimax-optimal in the regimes s > d

p
when facing convex losses; see [35]. Note

that logarithmic factors in T may be absorbed into the constant in the regret bound of Theorem 1,
typically in the case p < q. The details are provided in Appendix A.

Adaptivity and tradeoff. Importantly, our procedure is adaptive to the Besov norm ∥f∥Bs
pq

, and the
parameters (s, p, q) whenever s < S. Notably, via the usual embeddings, f can belong simultaneously
to several Besov spaces Bsp∞ with different norms ∥f∥Bs

p∞ depending on s and p. Remarkably, our
algorithm effectively competes against any oracle associated to the best (which are not necessarily
the largest) values of (s, p), yielding a regret bound of type:

RT (f) ⩽ inf
s,p
CG∥f∥Bs

p∞T
r(s,p) (7)

where the infimum is taken over all admissible pairs (s, p) such that f ∈ Bsp∞(X ), the exponent
r(s, p) reflects the rate in each regime according to (s, p) (see Theorem 1), and the constant C =
C(λ, ψ, s, p, C1, C2) detailed in Appendix A.

Complexity and choice of wavelet basis. While one can use wavelets with infinite regularity
(i.e., S = ∞), such as Meyer wavelets, these are not compactly supported in space and thus lack
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good localization properties. In practice, it is more common to use compactly supported wavelets
that offer a good trade-off between smoothness and spatial localization. Their compact support
implies that most basis functions ψj,k vanish at any given input xt: only the indices k ∈ Λj such
that xt ∈ supp(ψj,k) contribute to the prediction. For example, Daubechies wavelets of regularity
S are supported on the hypercube [0, S]d, so at most O(Sd) coefficients per scale j are nonzero at
any point xt. Among all wavelet families, the Haar basis (corresponding to S = 1) yields the most
efficient updates, as its basis functions are non-overlapping, but it is limited to capturing piecewise
constant (i.e., Lipschitz-1) regularity; see [29] for an algorithm exploiting this structure and Figure 1
for an illustration in the cases S = 1 and S = 5. Each wavelet coefficient is updated through a
closed-form function of its scalar gradient, satisfying Assumption 1 and leading to O(1) cost per
coefficient and keeping the overall update as light as standard gradient descent (see [10, 32]). As
a result, the per-round computational cost of our algorithm scales as O(JSd), where J is the total
number of levels.

The case of Hölder function spaces C s(X ) = Bs∞∞(X ). We previously showed that Algorithm 1
effectively competes against any comparator in the broad class of Besov spaces Bspq. In particular, by
classical embedding results, when p = q = ∞ one has the identification C s(X ) = Bs∞∞(X ) where
C s(X ) is the set of Hölder continuous functions. A function f ∈ C s(X ) with s ∈ (0, 1] if it satisfies
the Hölder condition:

|f(x)− f(y)| ⩽ L∥x− y∥s∞ for all x, y ∈ X , (8)
where L > 0 is the smallest such constant, denoted |f |s. For s > 1, we extend the definition by
requiring that all derivatives Dmf exist and satisfy (8) with exponent s− ⌊s⌋ for any multi-indices
m ∈ Nd such that |m| = ⌊s⌋.
We now state a corollary of Theorem 1 for Hölder continuous functions, expressed in terms of the
Hölder semi-norm |f |s and sup norm ∥f∥∞.
Corollary 1 (Regret against Hölder predictors). Let T ⩾ 1 and s > 0. Let {ϕj0,k, ψj,k} be an
S-regular wavelet basis with S > s. Under the same assumptions as in Theorem 1, Algorithm 1 has
regret bounded for any f ∈ C s(X ) as

RT (f) ⩽ CG∥f∥∞
√
T + CG|f |s ·


√
T if s > d

2
,

log2(T )
√
T if s = d

2
,

T 1− s
d if s < d

2
.

where C = C(C1, C2, λ, ϕ, ψ, s) is a constant independent of T and f , and depend only on s, p, the
wavelet basis, and Assumption 1.

We prove Corollary 1 in Appendix B. Our results are minimax-optimal for general convex losses, as
established in [34, 35], and improve over the guarantees of [29], which are restricted to functions
with at most Lipschitz regularity (s ⩽ 1). In contrast, our method adapts to any smoothness level
s > 0. Moreover, Corollary 1 shows that Algorithm 1 adapts simultaneously to both the smoothness
s and the Hölder semi-norm |f |s of any competitor f ∈ C s. As in the Besov case, our algorithm
automatically trades off between leveraging higher smoothness s and benefiting from smaller |f |s,
see (7). This tradeoff will be discussed and exemplified in the next section.

4 Adaptive learning in inhomogeneous regularity regimes
In this section, we extend Algorithm 1 to enable local adaptivity, with a particular focus on settings
where the target function exhibits spatially inhomogeneous regularity; see Figure 3 for an illustration.
Our method is inspired by the localized chaining approach of [29], and we show that it can adapt to
local variations in regularity across a broad class of functions in Besov spaces Bspq. This adaptive
procedure also yields improved global regret rates over those of Theorem 1 for exp-concave loss
functions with optimal guarantees formally established in Theorem 2.

4.1 Adaptive Online Wavelet Regression
We begin by describing the partitionning process we use in our strategy, and we further describe the
aggregation procedure leading to our adaptive Algorithm 2.

Partitioning tree. A common strategy to construct partitions of X is via hierarchical refinement,
with dyadic partitions being a canonical example. Fix J0 ∈ N∗. For each j0 ∈ [J0], let Dj0 = Dj0(X )
denote the collection of dyadic subcubes of X at resolution level j0, where each subcube has side
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length |X |2−j0 . We define the full multiscale dyadic collection as D =
⋃J0
j0=0Dj0 , spanning scales

j0 = 0, . . . , J0. This collection is naturally aligned with a tree structure T = T (D) with node set
N (T ). Each node n ∈ N (T ) is associated with a unique cube Xn ∈ D at some level l(n) ∈ [J0], such
that Xn ∈ Dl(n). For any fixed scale j0 ∈ [0, J0], the cubes in Dj0 form a uniform partition of X , and
each cube Xn ∈ Dj0 with l(n) = j0 has side length |Xn| = |X |2−j0 . Furthermore, each node n at
level l(n) = j0 has 2d children corresponding to the dyadic subcubes Xn′ ⊂ Xn at level l(n′) = j0 + 1.
Finally, we refer to any subtree T ′ ⊂ T that shares the same root and whose leaves or terminal nodes
L(T ′) form a (potentially non-uniform) partition of X as a pruning of T ; see [29, Def. 2]. The goal is
to design an algorithm that effectively tracks the best partition induced by such prunings T ′.

Local adaptation via multi-scale expert aggregation. Our objective is to identify the optimal
starting scale j0 locally over X , in order to adapt to the spatial variability in function regularity.
Intuitively, allowing finer-scale precision in regions with lower regularity can significantly improve
prediction accuracy. To this end, we launch a family of global predictors f̂j0 of the form (3), each
initialized at a different starting scale j0 ∈ [J0] and sharing a common maximum scale J = ⌈ S

dε
log2 T ⌉.

Following the tree structure T of depth J0 we associate each node n ∈ N (T ) to starting scale j0 = l(n)
and a local expert predictor f̂n,an := f̂j0 |Xn as the restriction of the global predictor f̂j0 to the
subregion Xn and whose scaling coefficients are set to αj0 = an in (3). The scaling coefficients an
are supported on a grid A of precision T−1/2. The local predictor is then associated with a restricted
scaling index set Λ̄j0,n ⊂ Λ̄j0 and wavelet index set Λj,n ⊂ Λj for j ⩾ j0, both supported on Xn.
For simplicity, we define the tuples e = (n,an) belonging to some expert set E ⊂ N (T )×A whose
cardinal is bounded as |E| ⩽ |N (T )||A|λ.
At each time t ⩾ 1, we define the set of active experts at round t as Et := {e = (n,an) ∈ E : xt ∈ Xn}.
The prediction is then formed by aggregating the outputs of active local multi-scale experts in Et,
yielding:

f̂t(xt) =
∑
e∈Et

we,t [f̂e,t(xt)]B , where we,t ∈ [0, 1],
∑
e∈Et

we,t = 1, (9)

and [·]B = max(−B,min(B, ·)) denotes the clipping operator in [−B,B]. Each localized expert
f̂e,t = f̂n,an,t is trained independently using Algorithm 1, with scaling coefficients initialized at
some an, and contributes only within its local region Xn. This framework mirrors an instance of
the sleeping expert problem, as described for example in [18], and requires a standard sleeping
reduction, such as the one in line 4, and then used in lines 5-7 of Algorithm 2. The weights (we,t)e∈E
are updated over time in line 7 using a weight procedure based on gradients ∇t ∈ [−G̃, G̃]|E| that
satisfies Assumption 2. The overall procedure is summarized in Algorithm 2.

Algorithm 2: Adaptive Online Wavelet Regression
Input :Bounds G,B > 0; Set of experts E;
Initial uniform weights w̃1 = (w̃e,1)e∈E ; Initial prediction functions (f̂e,1)e∈E ;

1 for t = 1 to T do
2 Receive xt;
3 Reveal active expert set Et and local active index set

Γe,t := Γt ∩ Λ̄j0,n ∩ ∪Jj⩾j0Λj,n, for every e = (n,an) ∈ Et, j0 = l(n)

with Γt as in (4);
4 Reduce weights we,t ← w̃e,t/

∑
e∈Et

w̃e,t if e ∈ Et and wt,e = 0 else ;
5 Predict f̂t(xt) =

∑
e∈Et

we,t[f̂e,t(xt)]B using active weights (we,t)e∈Et ;
6 Reveal gradient ∇t = ∇w̃tℓt

(∑
e∈Et

w̃e,t[f̂e,t(xt)]B +
∑
e/∈Et

w̃e,tf̂t(xt)
)
;

7 Update w̃t+1 ← weight(w̃t,∇t) with weight satisfying Assumption 2 ;
8 for e ∈ Et do
9 Reveal gradient ge,t = (gj,k,t)(j,k)∈Γe,t as in (5), on active index set Γe,t;

10 Update f̂e,t using Algorithm 1 with input Γe,t and ge,t;

Output : f̂T+1 =
∑
e∈E we,T+1[f̂e,T+1]B

Assumption on the aggregation algorithm. Our method relies on any expert-aggregation algo-
rithm satisfying a second-order regret bound, stated in Assumption 2. State-of-the-art aggregation
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algorithms, such as those proposed in [18, 26, 41], satisfy this second-order regret bound and are
compatible with the sleeping expert setting.
Assumption 2. Let ∇1, . . . ,∇T ∈ [−G̃, G̃]|E| for T ⩾ 1 and G̃ > 0. Assume that the weight vectors
w̃t = (w̃e,t)e∈E , initialized with a uniform distribution w̃1, are updated via the weight function in
Algorithm 2 and satisfy the following second-order regret bound:

T∑
t=1

∇⊤
t w̃t −∇e,t ⩽ C3

√√√√log(|E|)
T∑
t=1

(∇⊤
t w̃t −∇e,t)2 + C4G̃,

for all e ∈ E , where C3, C4 > 0 are constants.
Note that for Assumption 2 to hold, the loss gradients ∇t must be uniformly bounded in the sup-norm
by G̃. Indeed, this is ensured by two factors: first, we consider oracle prediction rules in L∞(X ),
ensuring that their outputs are also uniformly bounded, and second the predictions produced in (9)
are clipped to a bounded range.

4.2 Regret guarantees under spatially inhomogeneous smoothness (Alg. 2)
Local Besov regularity. Let f ∈ Bspq for some fixed 1 ⩽ p, q ⩽∞ and s > d

p
. Let T ′ be a pruning

of T and (Xn)n∈L(T ′) be the associated partition of X . To model spatially varying smoothness,

s1 = 0.5

X1

s2 = 0.8

X2

s3 = 3

X3

s4 = 5
6

X4

s5 = 0.9

X5
X

f

Figure 3: Example of inhomogeneous func-
tion (d = 1).

we define the local Besov regularity of a function f
over each region Xn as

sn := sup
{
α : f|Xn ∈ B

α
pq(Xn)

}
⩾ s, (10)

where the restriction f|Xn belongs to the Besov space
Bsnpq over the domain Xn for fixed global parameters
1 ⩽ p, q ⩽ ∞. For each region, we denote by ∥f∥sn
the corresponding local Besov norm (6).
More generally, one could define ’fully’ local Besov
spaces via triplets (sn, pn, qn), allowing both the
smoothness and the integrability parameters to vary
across regions. We leave the analysis of such fully

adaptive schemes to future work, and we focus on local adaptation in terms of smoothness only.
We prove a regret bound for Algorithm 2, expressed in terms of the local regularity of any competitor
in a Besov space and that achieves minimax-optimal rates with convex or exp-concave loss functions.
Theorem 2. Let T ⩾ 1, 1 ⩽ p, q ⩽ ∞, s > d

p
> ε. Let f ∈ Bspq(X ) and B ⩾ ∥f∥∞. Let T ′ be any

pruning of T , together with a collection of local smoothness indices (sn)n∈L(T ′) and of local norms
(∥f∥sn)n∈L(T ′) defined as in (10). Then, under the same assumptions of Theorem 1 and Assumption 2,
Algorithm 2 satisfies

RT (f) ≲ G
∑

n∈L(T ′)

(
B

1− d
2sn (2−l(n)sn∥f∥sn)

d
2sn

√
|Tn|1sn⩾ d

2

+
(
2−l(n)sn∥f∥sn |Tn|

1− sn
d
)
1sn< d

2
+B

√
|Tn|

)
and moreover we also have, if (ℓt) are exp-concave:

RT (f) ≲ G
∑

n∈L(T ′)

(
B

1− 2d
2sn+d

(
2−l(n)sn∥f∥sn

) 2d
2sn+d |Tn|

d
2sn+d1sn⩾ d

2

+ 2−l(n)sn∥f∥sn |Tn|
1− sn

d 1sn< d
2
+B

)
,

where ≲ hides logarithmic factors in T , and constants independent of f or T .
The proof of Theorem 2 is deferred to Appendix C. Taking T ′ as the pruning corresponding to the
root of T , Theorem 2 yields minimax-optimal rates in the case s = minn sn >

d
p
, both for convex

and exp-concave losses simultaneously. Importantly, the local adaptivity of Algorithm 2 is reflected
in the regret bounds in Theorem 2, which now depend on the local Besov regularity of the target
function. This is especially advantageous in inhomogeneous settings where the function alternates
between smooth and highly irregular regions; see Figure 3 for an illustrative example. In such cases,
our approach can substantially improve the overall regret compared to classical global adaptive
methods that aim to recover the largest (but worst case) smoothness exponent s such that f ∈ Bspq(X ),
assuming the semi-norm ∥f∥Bs

pq
is uniformly bounded.
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Adaptive trade-off between smoothness and norm. To illustrate the benefit of our strategy,
consider the function f : x ∈ [0, 1] 7→ xs, with s ∈ (1, 2). We have f ∈ C s(X ), with global semi-norm
|f |s < ∞ (as defined in (8)). However, the semi-norm |f |s becomes large near x = 0 due to the
unbounded second derivative, which equals s(s− 1)xs−2 with s < 2 and explodes when x→ 0. As
a result, this directly affects the regret bound of non-local algorithms. Now consider a partition
X1 = [0, δ] and X2 = (δ, 1] induced by some pruning, with δ = 2−j0 for some j0 ⩾ 1. The function f
belongs to C s(X1) near x = 0, and to C 2(X2) with bounded semi-norm |f |2 over X2. Estimating f
under this higher regularity on X2 yields improved guarantees. Our adaptive algorithm automatically
exploits this spatial inhomogeneity by focusing on the relevant local smoothness and local semi-norm,
leading to improved overall performance. Indeed, applying Theorem 2 to functions in C s(X ), with
s > 1

2
and exp-concave losses, yields:

RT (f) ≲ (|f |s|X1|s)
2

2s+1 |T1|
1

2s+1 + (|f |2|X2|2)
2
5 |T2|

1
5 , (11)

where |f |2 = supx∈(δ,1] |f ′′(x)| = s(s− 1)δs−2, and |f |s <∞ by definition. Equation (11) illustrates
a trade-off: if |T1| is negligible — i.e., only a small fraction of the data falls near 0 — then the second
term dominates, and we obtain a regret rate of O(T

1/5). Conversely, we incur the worst-case rate
O(T

1/(2s+1)), but it is diluted by the small measure of |X1| = δ. Finally, consider the case where the
data are uniformly distributed, i.e., |T1| ≈ δT and |T2| ≈ (1− δ)T . We obtain:

RT (f) ≲ δ
2s

2s+1 (δT )
1

2s+1 + δ
2(s−2)

5 (1− δ)T
1
5 ⩽ δT

1
2s+1 + δ

2(s−2)
5 T

1
5 .

Optimizing over δ, which is automatically handled by our procedure that selects the best pruning,
yields a regret rate of O(T r) with r ∈ (1/5, 1/(2s+1)), improving upon the worst-case rate O(T

1/(2s+1))
achieved by any non-local algorithm.

Conclusion and perspectives
We proposed adaptive wavelet-based algorithms and analyzed them in the competitive online learning
framework against comparator functions in general Besov spaces. Our algorithms achieve minimax-
optimal regret guarantees while adapting simultaneously to the regularity of the target function,
the convexity properties of the loss functions, and spatially inhomogeneous smoothness - resulting
in significant improvements over globally-tuned methods. A limitation of our algorithm, which is
common with wavelet-based methods, is the exponential increase in dimensional complexity with the
regularity parameter S. An interesting parallel can be drawn with traditional wavelet thresholding
methods [15] used in the batch setting: in an online manner, our parameter-free algorithm implicitly
mimics their behavior by selectively updating coefficients across scales, without requiring explicit
thresholds or prior knowledge of the function’s regularity. Finally, like most prior work, we focused
on functions embedded in L∞ (i.e., with s > d

p
). A natural and compelling direction for future

research is to extend this analysis to competitors in general Lp spaces with p < ∞, which would
likely require new analytical tools beyond those used here.
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A Proof of Theorem 1
Let 1 ⩽ p, q ⩽ ∞, 0 < s < S and f ∈ argminf∈Bs

pq(X )

∑T
t=1 ℓt(f(xt)) the best function to fit the T

data over X × [−B,B]. We start the proof with a decomposition of regret, with any oracle function
f∗ ∈ RX , as

RT (f) =

T∑
t=1

ℓt(f̂t(xt))− ℓt(f(xt))

=

T∑
t=1

ℓt(f̂t(xt))− ℓt(f∗(xt)) +

T∑
t=1

ℓt(f
∗(xt))− ℓt(f(xt))

= estimation regret + approximation regret.

Nonlinear oracle. Let j0 ∈ N and J ⩾ j0 to be optimized. We first recall that we use a wavelet
development defined for any J ⩾ j0 as

fJ(x) :=
∑
k∈Λ̄j0

αj0,kϕj0,k(x) +

J∑
j=j0

∑
k∈Λj

βj,kψj,k(x), (12)

with αj0,k = ⟨f, ϕj0,k⟩ and βj,k = ⟨f, ψj,k⟩, j ⩾ j0, is a truncated wavelet expansion up to level J ⩾ j0.
Using a truncated approximation fJ with a large value of J in (12) can lead to suboptimal regret
performance, as it requires estimating a large number of wavelet coefficients, thereby incurring a
high estimation error. To address this, we introduce a nonlinear oracle f∗ that depends only on a
selected subset of coefficients across the J levels. This approach, known as best-term or nonlinear
approximation, is surveyed in the textbook [12], while constructions close to us in spirit can be found
in [15, 16]. We now make this oracle explicit and show that it balances approximation and estimation
errors, in particular achieving minimax optimality in our setting. We define the oracle as

f∗ = fJ∗ + fΛ∗ , (13)

where fJ∗ is a truncated wavelet expansion up to level J∗ ⩽ J , as in (12) (i.e. we keep all the detail
coefficients up to level J∗), and the nonlinear part

fΛ∗ =
∑

(j,k)∈Λ∗

βj,kψj,k, Λ∗ ⊂ {(j, k) : k ∈ Λj , J
∗ < j ⩽ J},

uses only wavelet coefficients indexed by an oracle set Λ∗ drawn from the finer scales j ∈ (J∗, J ].
The cardinality of Λ∗, i.e., the number of retained coefficients, will be optimized in the analysis.
Intuition: The component fΛ∗ of the oracle consists of the |Λ∗| largest coefficients chosen adaptively
from the fine scales greater than J∗. The procedure is termed nonlinear because the choice of
coefficients varies with the function f , rather than being a fixed linear rule, contrary to the first J∗

levels which keep all coefficients independently of the function.
For any k ∈ Λj , j > j0, define vj,k := βj,k2

js′ with s′ = s+ d
2
− d
p

as in (6). Observe that the definition
of the Besov norm (6) allows a control over the set {vj,k : k ∈ Λj , J

∗ < j ⩽ J} in terms of ℓp-norm
since∑
J∗<j⩽J

∑
k∈Λj

|vj,k|p ⩽ (J−J∗)
(1− p

q
)+

( ∑
J∗<j⩽J

( ∑
k∈Λj

|vj,k|p
) q

p
) p

q

⩽
[
(J−J∗)

( 1
p
− 1

q
)+∥f∥Bs

pq

]p
=: Cpf ,

(14)
by Hölder’s inequality if q > p, else by convexity with q ⩽ p.
Let Λ∗ denote the set of indices corresponding to the |Λ∗| largest wavelet coefficients (in absolute
value) among all (vj,k) with j ∈ [J∗ + 1, J ] and k ∈ Λj . The cardinality |Λ∗| - that is, the number
of wavelet coefficients retained in the nonlinear component of the oracle estimator (13)—will be
selected later in the analysis as a tuning parameter. Let j > J∗. We have that

|Λ∗| · min
(j,k)∈Λ∗

|vj,k|p ⩽
∑

(j,k)∈Λ∗

|vj,k|p ⩽ Cpf <∞,

and in particular since ∀(j, k) ̸∈ Λ∗, |vj,k| ⩽ min(j′,k′)∈Λ∗ |vj′,k′ | one has

∀(j, k) ̸∈ Λ∗, |Λ∗||vj,k|p ⩽ Cpf =⇒ ∀(j, k) ̸∈ Λ∗, |βj,k| ⩽ Cf2
−js′ |Λ∗|−

1
p . (15)

We are now ready to analyze the regret in two steps—that is an estimation error and an approximation
error.
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Step 1: Bounding the estimation regret. We set

R1 :=

T∑
t=1

ℓt(f̂t(xt))− ℓt(f∗(xt)) =

T∑
t=1

ℓt
(∑

(j,k) cj,k,tφj,k(xt)
)
− ℓt

(∑
(j,k) cj,kφj,k(xt)

)
,

where the sum is over all scaling and detail coefficients with indices in {(j0, k) : k ∈ Λ̄j0} ∪ {(j, k) :
j ⩾ j0, k ∈ Λj}, where cj,k stands for either the scaling coefficient αj0,k or the detail coefficient βj,k
(and their sequential counterparts cj,k,t depend on t), and φj,k denotes either the scaling function
ϕj0,k or the wavelet function ψj,k.
Since ŷ 7→ ℓt(ŷ) is convex and both f̂t, f∗ are linear in the {cj,k}, then ℓt ◦ f̂ and ℓt ◦ f∗ are convex in
{cj,k} and we have by convexity:

R1 ⩽
T∑
t=1

∑
j,k

gj,k,t(cj,k,t − cj,k),

where gj,k,t = ℓ′t(f̂t(xt))φj,k(xt) by Equation (5). Observe that maxt gj,k,t ⩽ 2
dj
2 G∥φ∥∞ =: Ĝj for

any j, k. Then, first by Assumption 1, and second by the structure of the oracle (13) — namely, that
∀j > J∗ such that (j, k) ̸∈ Λ∗, we have cj,k = 0 — we get:

R1 ⩽
∑
j,k

T∑
t=1

gj,k,t(cj,k,t − cj,k)

⩽
∑
j,k

|cj,k|
(
C1

√∑T
t=1 |gj,k,t|

2 + C2Ĝj

)

=
∑

j⩽J∗, k

|cj,k|
(
C1

√∑T
t=1 |gj,k,t|

2 + C2Ĝj

)
︸ ︷︷ ︸

:=R1(fJ∗ )

+
∑

(j,k)∈Λ∗

j>J∗

|cj,k|
(
C1

√∑T
t=1 |gj,k,t|

2 + C2Ĝj

)
︸ ︷︷ ︸

:=R1(fΛ∗ )

(16)

where C1, C2 > 0 are factors (possibly including log T ; see Assumption 1). The estimation regret
R1 is thus controlled in (16) by a sum of individual regrets over the nonzero coefficients cj,k that
define f∗ = fJ∗ + fΛ∗ . The sum naturally splits into two parts: the linear part R1(fJ∗) over
{(j0, k) : k ∈ Λ̄j0} ∪ {(j, k) : j0 ⩽ j ⩽ J∗, k ∈ Λj}, and the nonlinear part R1(fΛ∗) over the indices in
Λ∗.
• Linear part: bounding R1(fJ∗). The wavelet basis {ϕj0,k, ψj,k} is assumed to be S-regular with
S > s, so we can invoke the characterization of Besov spaces with ∥f∥Bs

pq
<∞ (see Eq. (6)). Let

p, p′ ⩾ 1 be such that 1
p
+ 1

p′ = 1. Applying Hölder’s inequality to the detail coefficients at levels

j ∈ [j0, J
∗], we obtain, with Ĝj = G2

jd
2 ∥ψ∥∞, j ⩾ j0:∑

j0⩽j⩽J∗

∑
k∈Λj

|βj,k|
(
C1

√∑T
t=1 |gj,k,t|

2 + C2G∥ψ∥∞2
jd
2

)

⩽
∑

j0⩽j⩽J∗

(∑
k∈Λj

|βj,k|p
) 1

p

(
C1

( ∑
k∈Λj

(√∑T
t=1 |gj,k,t|

2
)p′) 1

p′
+ C2G∥ψ∥∞2

jd
2 |Λj |

1
p′

)

=
∑

j0⩽j⩽J∗

∥βj∥p
(
C1

√(∑
k∈Λj

(∑T
t=1 |gj,k,t|

2
) p′

2

) 2
p′

+ C2G∥ψ∥∞2
jd
2 |Λj |

1
p′

)

⩽
∑

j0⩽j⩽J∗

∥βj∥p
(
C1|Λj |(

1
2
− 1

p
)+
√∑

k∈Λj

∑T
t=1 |gj,k,t|2 + C2G2

jd
2 |Λj |1−

1
p

)
(17)

where the last inequality uses ∥x∥ p′
2

⩽ |Λj |(
2
p′ −1)+∥x∥1 for a vector x of dimension |Λj | and

(·)+ := max{·, 0}.
Repeating for the scaling coefficients for k ∈ Λ̄j0 , summing in j = j0, . . . , J

∗ and bounding
|Λj | ⩽ λ2dj and |Λ̄j0 | ⩽ λ2dj0 , we get:

R1(fJ∗) ⩽ ∥αj0∥p
(
C1λ2

dj0(
1
2
− 1

p
)+
√∑

k∈Λj

∑T
t=1 |gj0,k,t|2 + C2G∥ϕ∥∞2

j0d
2 λ2

dj0(1− 1
p
)

)
+
∑J∗

j=j0
∥βj∥p

(
C1λ2

dj( 1
2
− 1

p
)+
√∑

k∈Λj

∑T
t=1 |gj,k,t|2 + C2G∥ψ∥∞2

jd
2 λ2

dj(1− 1
p
)

)
(18)
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where we recall the scaling coefficients are αj0 = (αj0,k) and the detail coefficients at scale j are
βj = (βj,k).
On the other hand, over each level j ⩾ j0, one has√√√√∑

k∈Λj

T∑
t=1

|gj,k,t|2 =

√√√√∑
k∈Λj

T∑
t=1

|ℓ′t(f̂t(xt))ψj,k(xt)|2

⩽ G

√√√√∑
k∈Λj

T∑
t=1

|ψj,k(xt)|2

= G2
dj
2

√√√√ T∑
t=1

∑
k∈Λj

|ψ(2jxt − k)|2 , (19)

where we used the fact that |ℓ′(f̂t(xt))| ⩽ G (since ŷ 7→ ℓt(ŷ) is G-Lipschitz), the definition of ψj,k
and we applied Jensen’s inequality. Equation (19) also holds for the scaling level, replacing ψj,k
by ϕj0,k over the index set Λ̄j0 .
By D.2, one has

supx
∑
k |ϕ(x− k)|

2 ⩽Mϕ∥ϕ∥∞ and supx
∑
k |ψ(x− k)|

2 ⩽Mψ∥ψ∥∞.

With 1− 1
p
⩽ 1

2
+ ( 1

2
− 1

p
)+ we get from (18) and (19)

R1(fJ∗) ⩽ λG

[(
C1(Mϕ∥ϕ∥∞)

1
2

√
T + C2∥ϕ∥∞2

d
2
j0
)
∥αj0∥p2

dj0(
1
2
+( 1

2
− 1

p
)+)

(
C1(Mψ∥ψ∥∞)

1
2

√
T + C2∥ψ∥∞2

d
2
J∗) J∗∑

j=j0

∥βj∥p2dj(
1
2
+( 1

2
− 1

p
)+)

]
. (20)

Then since ∥f∥Bs
pq
<∞ in (6), we apply Hölder’s inequality with q, q′ ⩾ 1 that entails

J∗∑
j=j0

∥βj∥p2jd(
1
2
+( 1

2
− 1

p
)+)

=

J∑
j=j0

2
−j(s+ d

2
− d

p
)
2
j(s+ d

2
− d

p
)∥βj∥p2jd(

1
2
+( 1

2
− 1

p
)+)

⩽

( J∗∑
j=j0

2
−jq′(s− d

p
−d( 1

2
− 1

p
)+)

) 1
q′
( J∑
j=j0

2
jq(s+ d

2
− d

p
)∥βj∥qp

) 1
q

⩽ ∥f∥Bs
pq

J∗∑
j=0

2
−j(s− d

p
−d( 1

2
− 1

p
)+)
, since ∥ · ∥q′ ⩽ ∥ · ∥1, q′ ⩾ 1.

Finally, we get from (20) with ∥αj0∥p ⩽ ∥f∥Bs
pq

:

R1(fJ∗) ⩽ λG∥f∥Bs
pq
M

((
C1

√
T + C22

d
2
j0
)
2
dj0(

1
2
+( 1

2
− 1

p
)+)

+
(
C1

√
T + C22

d
2
J∗) J∗∑

j=j0

2−jβ
)
, (21)

with β := s− d
p
− d( 1

2
− 1

p
)+ and M :=

(
max(Mϕ∥ϕ∥∞,Mψ∥ψ∥∞, ∥ϕ∥2∞, ∥ψ∥2∞)

) 1
2 <∞

• Nonlinear part: bounding R1(fΛ∗). Let Λ∗ = ∪Jj=J∗+1Λ
∗
j where |Λ∗

j | ⩽ |Λj | is now the oracle
sparse set made of positions k at level j. One has by (17) on the levels j = J∗ + 1, . . . , J ,

R1(fΛ∗) ⩽
∑

J∗<j⩽J

∥βj∥p
(
C1|Λ∗

j |(
1
2
− 1

p
)+

√∑
k∈Λ∗

j

∑T
t=1 |gj,k,t|

2 + C2G2
jd
2 ∥ψ∥∞|Λ∗

j |1−
1
p

)
⩽ GM

∑
J∗<j⩽J

∥βj∥p
(
C1|Λ∗

j |(
1
2
− 1

p
)+2

dj
2

√
T + C22

jd
2 |Λ∗

j |1−
1
p
)
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where second inequality follows from (19). Then, using Hölder’s inequality with q ⩾ 1 one has∑
J∗<j⩽J

2
dj
2 ∥βj∥p|Λ∗

j |(
1
2
− 1

p
)+ =

∑
J∗<j⩽J

2
j(s+ d

2
− d

p
)∥βj∥p · 2−j(s−

d
p
)|Λ∗

j |(
1
2
− 1

p
)+

⩽ ∥f∥Bs
pq

∑
J∗<j⩽J

2
−j(s− d

p
)|Λ∗

j |(
1
2
− 1

p
)+ .

Finally, since
∑
J∗<j⩽J |Λ

∗
j | = |Λ∗|, one has∑

J∗<j⩽J

2
−j(s− d

p
)|Λ∗

j |(
1
2
− 1

p
)+ ⩽ |Λ∗|(

1
2
− 1

p
)+

∑
J∗<j⩽J

2
−j(s− d

p
) ⩽ |Λ∗|(

1
2
− 1

p
)+ 2

−J∗(s− d
p
)

2
s− d

p − 1
,

by Hölder’s inequality in the case p ⩾ 2 and since s > d
p

. Similarly, for the second term we have

∑
J∗<j⩽J

2
dj
2 ∥βj∥p|Λ∗

j |1−
1
p ⩽ ∥f∥Bs

pq

2
−J∗(s− d

p
)

2
s− d

p − 1
|Λ∗|1−

1
p .

All in one, with |Λ∗|1−
1
p ⩽ |Λ∗|

1
2
+( 1

2
− 1

p
)+ one has

R1(fΛ∗) ⩽ GM∥f∥Bs
pq

C1

√
T + C2|Λ∗|

1
2

2
s− d

p − 1
· 2−J

∗(s− d
p
)|Λ∗|(

1
2
− 1

p
)+ . (22)

• Bound on R1: We use (21) and (22) and we reach

R1 ⩽ R1(fJ∗) +R1(fΛ∗)

⩽ G∥f∥Bs
pq
M

[
λ
(
C1

√
T + C22

d
2
j0
)
2
dj0(

1
2
+( 1

2
− 1

p
)+)

+ λ
(
C1

√
T + C22

d
2
J∗) J∗∑

j=j0

2−jβ

+
(
C1

√
T + C2|Λ∗|

1
2
)
|Λ∗|(

1
2
− 1

p
)+ 2

−J∗(s− d
p
)

2
s− d

p − 1

]
, (23)

where we recall β := s− d
p
− d( 1

2
− 1

p
)+ and s′ = s+ d

2
− d

p
and |Λ∗| is the number of ’non-linear’

coefficients we keep below level J∗.

Step 2: Bounding the approximation regret. We now bound the term incurred by approximating
f by its nonlinear wavelet approximation f∗. Using the G-Lipschitz property of each loss ℓt and the
uniform bound on the approximation error, we obtain:

R2 :=

T∑
t=1

(
ℓt(f

∗(xt))− ℓt(f(xt))
)
⩽ G

T∑
t=1

|f∗(xt)− f(xt)| ⩽ GT∥f∗ − f∥∞. (24)

With f∗ = fJ∗ + fΛ∗ and fJ the truncated wavelet expansion (12) at level J ⩾ J∗ ⩾ j0 we have with
the triangle inequality

R2 ⩽ GT (∥(fJ∗ + fΛ∗)− fJ∥∞ + ∥fJ − f∥∞)

First, since fJ∗ , fJ are both wavelet expansion truncated respectively at level J∗ and J , one has

∥(fJ∗ + fΛ∗)− fJ∥∞ =

∥∥∥∥ ∑
(j,k)̸∈Λ∗

βj,kψj,k

∥∥∥∥
∞

⩽
∑

(j,k)̸∈Λ∗

∥βj,kψj,k∥∞

⩽
J∑

j=J∗+1

2j
d
2 sup
k:(j,k)̸∈Λ∗

|βj,k| · ∥
∑
k∈Λj

|ψ(2j · −k)|∥∞ ← by definition of ψj,k

⩽MψCf |Λ∗|−
1
p

J∑
j=J∗+1

2j
d
2 2−js

′
← by Definition D.2 and (15)

⩽MψCf |Λ∗|−
1
p
2
−J∗(s− d

p
)

2
s− d

p − 1
← replacing s′ and with s > d

p
. (25)
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Second, with s > d
p
, using the characterizations of Besov spaces and classical results on Sobolev

embeddings (see, e.g., [20, Prop. 4.3.8] or [8, 13]), Bspq(X ) ⊂ B
s− d

p
∞∞ (X ) and one has

∥fJ − f∥∞ ⩽Mψ∥f∥Bs
pq

∑
j>J

2
−j(s− d

p
) ⩽Mψ∥f∥Bs

pq

2
−J(s− d

p
)

2
s− d

p − 1
, (26)

where s > d
p

.
Finally, with (25) and (26) one has

R2 ⩽
GMψ∥f∥Bs

pq

2
s− d

p − 1

(
2
−J(s− d

p
)
T + (J − J∗)

( 1
p
− 1

q
)+2

−J∗(s− d
p
)|Λ∗|−

1
p T
)
. (27)

Step 3: Optimization on J∗, J, |Λ∗| and conclusion. Let j0 = 0. From (23) and (27) we reach the
following regret bound

RT (f) = R1 +R2 ⩽ CG∥f∥Bs
pq

[(
C1

√
T + C22

d
2
J∗
)(

1 +

J∗∑
j=0

2−jβ
)

+

(
C1

√
T + C2|Λ∗|

1
2

)
2
−J∗(s− d

p
)|Λ∗|(

1
2
− 1

p
)+

)
+ 2

−J(s− d
p
)
T + (J − J∗)

( 1
p
− 1

q
)+2

−J∗(s− d
p
)|Λ∗|−

1
p T

]
, (28)

with C some constant that can change from a line to another (depending on λ, ∥ψ∥∞,M,Mψ,...),
β = s− d

p
−d( 1

2
− 1
p
)+. We keep the explicit dependence on J , J∗, and |Λ∗|, as we now aim to optimize

the upper bound with respect to these parameters. We have three different regimes depending on the
sign of β in (28). Observe that

β =

{
s− d

2
if p ⩾ 2,

s− d
p

if p < 2,

and we also have s > d
p

.

Case 1: β > 0. This regime corresponds to sufficiently regular functions: since s > d
p
, this

corresponds to the case

p < 2, or s >
d

2
.

In this case, the geometric sum is bounded by
J∗∑
j=0

2−jβ ⩽
1

1− 2−β
.

Choosing 
J∗ =

⌈
1
d
log2(T )

⌉
,

|Λ∗| = 2J
∗d,

J =
⌈ S

d
ε
log2(T )

⌉
,

=⇒


2
−J∗(s− d

p
)|Λ∗|−

1
p T = 2−sJ

∗
T = T 1− s

d ,

2
−J∗(s− d

p
)|Λ∗|(

1
2
− 1

p
)+ ⩽ T

1
2
− s

d ,

2
−J(s− d

p
)
T ⩽ T 1− s

d ,

|Λ∗|
1
2 = 2

d
2
J∗

=
√
T

(29)

with s− d
p
> ε > 0 and S > s, and this entails a total regret

RT (f) ⩽ CG∥f∥Bs
pq

[(
C1 + C2

)√
T

(
2 +

1

1− 2−β
+ T

1
2
− s

d

)
+ T 1− s

d

(
1 +

(
1

d

(
S

ε
− 1

)
log2(T )

)( 1
p
− 1

q
)+
)]
. (30)

With s ⩾ d/2, we have T 1−s/d ⩽
√
T and RT (f) = O(G∥f∥Bs

pq

√
T ).

Remark. The notation O(·) here hides log2(T ) factors that appear when p < q. This originates from
the nonlinear oracle construction in the analysis (see Inequality (14)). In addition, log terms may also
be absorbed into the constants C1, C2 coming from the parameter-free subroutine (see Assumption 1).
This remark also holds for the remaining cases.
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Case 2: β = 0. This critical regime occurs when p ⩾ 2 and s = d
2
. The sum becomes:

J∗∑
j=0

2−jβ = J∗ + 1.

Choosing J∗, |Λ∗| and J as in (29) yields the bound:

RT (f) ⩽ CG∥f∥Bs
pq

[
(C1 + C2)

√
T

(
2 +

1

d
log2 T + T

1
2
− s

d

)
+
√
T

(
1 +

(
1

d

(
S

ε
− 1

)
log2(T )

)( 1
p
− 1

q
)+
)]
. (31)

That is RT (f) = O(G∥f∥Bs
pq

log2(T )
√
T ).

Case 3: β < 0. This corresponds to the low regularity case: β = s− d
2

and

p ⩾ 2 and d

p
< s <

d

2
.

Here, the geometric sum is bounded as:

J∗∑
j=0

2−jβ ⩽
2−J

∗β

2−β − 1
.

With J∗, |Λ∗| and J as in (29), the regret bound becomes:

RT (f) ⩽ CG∥f∥Bs
pq

[
(C1 + C2)

√
T

(
1 +

T− β
d

2−β − 1
+ T

1
2
− s

d

)
+ T 1− s

d

(
1 +

(
1

d

(
S

ε
− 1

)
log2(T )

)( 1
p
− 1

q
)+
)]
. (32)

With
√
TT− β

d =
√
TT

1
2
− s

d = T 1− s
d , one has RT (f) = O(G∥f∥Bs

pq
T 1− s

d ).
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B Proof of Corollary 1
The proof is based on that of Theorem 1, in Appendix A, case p = q =∞.
Let s > 0, f ∈ argminf∈Cs(X )

∑T
t=1 ℓt(f(xt)) the best function to fit the T data over X × R and

f∗ = fJ defined as in (12). One key point is that in the case of Hölder-smooth function (p = q =∞),
the nonlinear set Λ∗ of wavelet coefficients will not be needed to achieve optimal rates.
We start with a decomposition of regret with the oracle f∗ = fJ as in the proof of Theorem 1 in
Appendix A and we have:

RT (f) =

T∑
t=1

ℓt(f̂t(xt))− ℓt(fJ(xt))︸ ︷︷ ︸
=:R1

+

T∑
t=1

ℓt(fJ(xt))− ℓt(f(xt))︸ ︷︷ ︸
=:R2

Step 1: Bounding estimation regret R1. From (16), one has

R1 ⩽
∑
k∈Λ̄j0

|αj0,k|
(
C1

√∑T
t=1 |gj,k,t|2 + C2G∥ϕ∥∞2

j0d
2

)

+

J∑
j=j0

∑
k∈Λj

|βj,k|
(
C1

√∑T
t=1 |gj,k,t|2 + C2G∥ψ∥∞2

jd
2

)
(33)

where C1, C2 > 0 are relative to Assumption 1, αj,k refers to the scaling coefficients and βj,k the
detail coefficients.
Since the wavelet basis {ϕj0,k, ψj,k} is assumed to be S-regular with S > s (Definition 2) and
f ∈ C s(X ), by Proposition 1, the detail coefficients at every level j ⩾ j0 are bounded as:

|βj,k| = |⟨f, ψj,k⟩| ⩽ C(ψ, s)|f |s2−j(s+d/2) ,
where C(ψ, s) is a positive constant that only depends on the S-regular wavelet basis and |f |s refers
to the semi-norm of f defined in (8).
For the scaling level j0, then for every k, one has:

|αj0,k| = |⟨f, ϕj0,k⟩| ⩽ ∥f∥∞ · ∥ϕj0,k∥1 ⩽ 2−
j0d
2 ∥ϕ∥1∥f∥∞,

where we used

∥ϕj0,k∥1 ⩽
∫
Rd

2j0d/2ϕ(2j0x− k) dx u=2j0x−k
= 2j0

d
2 2−j0d

∫
Rd

|ϕ(u)| du = 2−
j0d
2 ∥ϕ∥1

and ∥ϕ∥1 <∞ since the scaling function ϕ is assumed to be localized (e.g. compactly supported).
Then, plugging the above upper bound, we get with gj0,k,t ⩽ G∥ϕ∥∞2

j0d
2 :

R1 ⩽ G∥ϕ∥1∥f∥∞2−
j0d
2 · |Λ̄j0 | · ∥ϕ∥∞

(
C12

j0d
2

√
T + C22

j0d
2
)

+ C(ψ, s)|f |s
J∑

j=j0

2−j(s+d/2)

C1

∑
k∈Λj

√√√√ T∑
t=1

|gj,k,t|2 + C2G∥ψ∥∞2
jd
2 |Λj |

 ,

Using Cauchy-Schwarz’s inequality as long as the form of the gradients in (5) and the bound (19),
we have over each level j ∈ [j0, J ],∑

k∈Λj

√√√√ T∑
t=1

|gj,k,t|2 ⩽ Gλ
1
2 2dj

√√√√ T∑
t=1

∑
k∈Λj

|ψ(2jxt − k)|2

⩽ G(λ∥ψ∥∞Mψ)
1
2 2dj
√
T

where ∥
∑
k∈Λj

|ψ(· − k)|2∥∞ ⩽ ∥ψ∥∞Mψ < ∞ (see D.2) and |Λj | = λ2dj . Finally, with M =

max(Mψ∥ψ∥∞, ∥ϕ∥2∞, ∥ψ∥2∞)
1
2

R1 ⩽ GMλ

(
∥f∥∞∥ϕ∥1 2j0d (C1

√
T + C2) + C(ψ, s) |f |s

(
C1

√
T + C22

d
2
J) J∑

j=j0

2−j(s−d/2)
)

(34)

Setting j0 = 0, the sum can be upper-bounded with 3 different cases as

J∑
j=0

2−j(s−
d
2
) ⩽


(1− 2−(s− d

2
))−1 if d < 2s ,

J + 1 if d = 2s ,

2−(J+1)(s− d
2
)(2−(s− d

2
) − 1)−1 if d > 2s .
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Step 2: Bounding the approximation regret. Following (27), one has:

R2 :=

T∑
t=1

ℓt(f̂
∗(xt))−ℓt(f(xt)) ⩽ G

T∑
t=1

|f̂∗(xt)−f(xt)| ⩽ GT∥KJf−f∥∞ ⩽ C4GT |f |s2−sJ , (35)

where C4 = C4(ψ, s) - see [20, Prop. 4.1.5] for instance with assumption D.3.

Step 3: upper-bounding RT (f). We need to balance (34) and (35), and finding the optimal J ⩾ 0.
Taking j0 = 0 — i.e. |Λ̄j0 | ⩽ λ — and J = ⌈ 1

d
log2(T )⌉ entails the desired bound in the 3 cases

d < 2s, d = 2s and d > 2s.

Remark. In the preceding proof we showed that a single (linear) global resolution level J =⌈
1
d
log2 T

⌉
suffices to attain the minimax regret for Hölder-smooth competitors, in contrast to general

competitors in Bspq(X ), which require a nonlinear mechanism (see Appendix A). Nevertheless, even
in the Hölder-smooth case one may take a larger level J =

⌈
S
dε

log2 T
⌉
⩾
⌈
1
d
log2 T

⌉
as in Theorem 1.

In the analysis, set the oracle coefficients βj,k = 0 for levels j >
⌈
1
d
log2 T

⌉
; the estimation regret,

combined with Assumption 1, reduces to a sum over the remaining nonzero coefficients—namely,
those in the linear part—and leads to the same rates.
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C Proof of Theorem 2
The proof uses a first key result that we state and prove right after.

Theorem 3 (Local regret over Besov spaces). Let T ⩾ 1, 1 ⩽ p, q ⩽∞, s > d
p

and f ∈ Bspq. Under
the same assumptions of Theorem 1 and Assumption 2, Algorithm 2 with ∥f∥∞ ⩽ B has regret

RT (f) ≲ G infT ′
{∑

n∈L(T ′)B
√
|Tn|+ ∥f∥sn · 2−l(n)sn · |Tn|r(sn,p)

}
,

and if (ℓt) are exp-concave:

RT (f) ≲ G infT ′
{
B|L(T ′)|+

∑
n∈L(T ′) ∥f∥sn · 2

−l(n)sn · |Tn|r(sn,p)
}
,

where ≲ hides logarithmic factors in T , and constants independent of f or T , L(T ′) denotes the set
of leaves in a pruning T ′ ⊂ T , ∥f∥sn are local Besov norms, l(n) is the level of node n ∈ L(T ′), and
the local rate exponent is given by

r(sn, p) =

{
1
2

if sn ⩾ d
2

or p < 2,

1− sn
d

otherwise.

Remark. Theorem 3 holds for any pruning T ′ of T . In particular, our procedure effectively
competes against the best pruning with respect to the profile of the competitor f . Intuitively,
Algorithm 2 achieves a spatial trade-off over the input space: it can refine locally by going deeper
with high l(n) at the cost of increasing the number of leaves |L(T ′)|, while remaining coarser and
less accurate in other regions, with fewer leaves to compete against. In particular, when applying
the result to a specific pruning, we show in Theorem 4 that Algorithm 2 achieves minimax-optimal
(local) regret when facing exp-concave losses.

Proof of Theorem 3. Let 1 ⩽ p, q ⩽∞, s > d
p
, f ∈ Bspq such that B := ∥f∥∞ <∞ - this is possible

since f is continuous over X with the condition s > d/p and embedding of Bspq in L∞.

Grid for scaling coefficients at starting scale j0. Observe that

|αj0,k| = |⟨f, ϕj0,k⟩| ⩽ ∥f∥∞ · ∥ϕj0,k∥1 ⩽ 2−
j0d
2 ∥ϕ∥1B.

Let εj0 > 0. We define the regular grid Aj0 of εj0-precision, used to learn the scaling coefficients at
level j0, denoted (αj0,k), with

|Aj0 | =
⌈
2−j0

d
2 2B ∥ϕ∥1 ε−1

j0

⌉
points, regularly spaced in the interval [−B2−j0

d
2 ∥ϕ∥1, B2−j0

d
2 ∥ϕ∥1]. In the following, we will use

a local grid Al(n) to learn scaling coefficient αn,k at a scale j0 = l(n) locally over the space X . In
particular, we will carefully set the local precision εl(n) to handle regret terms.

Definition of the oracle associated to a pruning. Let T ′ be some pruning of T and P(T ′) =
(Xn)n∈L(T ′) be the associated partition of X . Let Al(n) denote the grid of precision εl(n) as described
above. We define the prediction function of pruning T ′, at any time t ⩾ 1

f̂T ′,t(x) =
∑

n∈L(T ′)

[f̂n,an,t(x)]B , x ∈ X ,

where each f̂n,an,t is a sequential predictor of type (3), with starting scale j0 = l(n), restricted to Xn,
and initialized at the oracle scaling coefficients

an = (an,k)k∈Λ̄j0,n
= argmin

a∈Al(n)

∥a−αj0,n∥∞,

that is, the best approximating vector a in the grid Al(n) for the subset of scaling coefficients
αj0,n,k, k ∈ Λ̄j0,n, whose basis functions ϕj0,k are supported on Xn. For simplicity, we slightly abuse
notation by writing a ∈ Al(n), treating the grid as a tensor grid of the same dimension as a. In
particular, the number of coefficients in Λ̄j0 whose supports intersect Xn satisfies

|Λ̄j0,n| ⩽ |Λ̄j0 | 2
−l(n)d ⩽ λ,

since l(n) = j0.
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Decomposition of regret. We have a decomposition of regret as:

RegT (f) =

T∑
t=1

ℓt(f̂t(xt))− ℓt(f̂T ′,t(xt))︸ ︷︷ ︸
=:R1

+

T∑
t=1

ℓt(f̂T ′,t(xt))− ℓt(f(xt))︸ ︷︷ ︸
=:R2

, (36)

R1 is the regret related to the estimation error of the expert-aggregation algorithm compared to some
oracle partition P(T ′) associated to T ′, i.e. the error the algorithm commits while aiming the oracle
partition P(T ′). On the other hand, R2 is related to the error of the model predicting over subregions
in P(T ′), against some function f ∈ Bspq and corresponds to the (localised) regret discussed in
Theorem 1.

Step 1: Upper-bounding R2 as local regrets. Recall that P(T ′) form a partition of X . Hence, for
any xt ∈ X , the prediction at time t is f̂T ′,t(xt) = [f̂j0,n,an,t(xt)]B with n ∈ N (T ′) the unique node
such that xt ∈ Xn at time t. Then, R2 can be written as follows:

R2 =

T∑
t=1

∑
n∈L(T ′)

(ℓt(f̂T ′,t(xt))− ℓt(f(xt)))1xt∈Xn

=
∑

n∈L(T ′)

∑
t∈Tn

ℓt([f̂n,an,t(xt)]B)− ℓt(f(xt))

⩽
∑

n∈L(T ′)

∑
t∈Tn

ℓt(f̂n,an,t(xt))− ℓt(f(xt)), (37)

where we set Tn = {1 ⩽ t ⩽ T : xt ∈ Xn},Xn ⊂ X , n ∈ L(T ′) and (37) is because [f̂n,an,t]B ⩽ f̂n,an,t

and ℓt is convex and has minimum in [−B,B] with B ⩾ ∥f∥∞.
The decomposition in (37) represents a sum of local error approximations of the function f over
the partition P(T ′), using predictors f̂n,an , n ∈ L(T ′). Recall that for every n ∈ L(T ′), f̂n,an is a
prediction function associated to a wavelet decomposition (3), where the scaling coefficients start at
an over Xn and with j0 = l(n). In proof of Theorem 1 (Appendix A) we showed that any wavelet
decomposition adapts to any regularity via ∥f∥Bs

pq
, s of f . Thus, the approximation error of f̂j0,n,an

with respect to f remains similar to that in (27), but now with regard to a Besov function with local
smoothness sn and norm ∥f∥sn := ∥f∥Bsn

pq (Xn) over Xn - see (10). Specifically, from (37), (23), (27),
we get (without applying Hölder’s inequality on the scaling coefficients):

R2 ⩽
∑

n∈L(T ′)

[
G∥ϕ∥∞

∑
k∈Λ̄j0,n

|αj0,k − an,k|
(
C1

√
|Tn|+ C22

l(n)d
2
)

+

l(n)+J∗
n∑

j=l(n)

λ∥βj∥p2dj(
1
2
− 1

p
)+
(
C1

√∑
k∈Λj,n

∑T
t=1 |gj,k,t|

2 + C2G∥ψ∥∞2
jd
2 2

dj(1− 1
p
))

︸ ︷︷ ︸
estimation error on wavelet coefficients as in (23)

+ 2
−(l(n)+J∗

n)(sn− d
p
)|Λ∗

n|(
1
2
− 1

p
)+︸ ︷︷ ︸

estimation error on nonlinear wavelet coefficients

+ C5G∥f∥sn
(
2
−(l(n)+J∗

n)(sn− d
p
)|Λ∗

n|−
1
p |Tn|+ 2

−(l(n)+Jn)(sn− d
p
)|Tn|

)︸ ︷︷ ︸
approximation error (27) over Xn at scale j0 + Jn

]
, (38)

with C1, C2 as in Assumption 1 and C5 a constant that can be deduced from (27) and j0 = l(n) for
each n ∈ L(T ′). In particular, by definition of an = argmina∈Al(n)

∥αj0,n − a∥∞, and given that
Al(n) is a grid with precision εl(n) > 0, one has

|αj0,k − an,k| ⩽
εl(n)
2

for every k ∈ Λ̄j0,n.

From (38), one can bound the absolute values of the scaling terms by εl(n)/2 and using |Λ̄j0,n| ⩽ λ.
For every n ∈ L(T ′), let

εl(n) = B
(
2

l(n)d
2

√
T
)−1
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that gives for every n ∈ L(T ′)∑
k∈Λ̄j0,n

εl(n)
2

(
C1

√
|Tn|+ C22

l(n)d
2
)
⩽
λ

2
B
(
C12

− l(n)d
2 + C2T

− 1
2
)
,

where we used
√
|Tn|/

√
T ⩽ 1. Then, one can factorize the sum in j and the approximation term

by 2−l(n)sn over each n ∈ L(T ′). Finally, applying Hölder’s inequality over the sum in j (see (21))
and following the same optimization steps in J∗

n, Jn, |Λ∗
n| as in Proof of Theorem 1 we get, with M

defined as in (21):

R2 ⩽ λGMB|L(T ′)|
(
C1 + C2T

− 1
2
)

+ λGM
∑

n∈L(T ′)

Cn∥f∥sn2
−l(n)sn

{√
|Tn| if sn ⩾ d

2
or p < 2

|Tn|1−
sn
d else,

(39)

where Cn = Cn(C1, C2, C3, sn, ψ, p) can be deduced from similar calculation as in (30), (31) and (32)
and can include log T dependencies.

Step 2: Upper-bounding the estimation error R1. R1 is due to the error incurred by sequentially
learning the prediction rule f̂T ′ associated with an oracle pruning T ′ of T , along with the best scaling
coefficients (an)n∈L(T ′) selected from the grid (Al(n))n∈L(T ′).
Note that at each time t, only a subset of nodes in T are active and output predictions. Specifically,
for any time t ⩾ 1, we define in Algorithm 2 the set of active experts at round t as

Et = {(n,an) : xt ∈ Xn}.

Moreover, we assume bounded gradients: for any time t ⩾ 1 and expert e ∈ E ,

|∇t,e| =
∣∣ℓ′t(f̂t(xt)) · [f̂e,t(xt)]B∣∣ ⩽ GB,

which satisfies Assumption 2 with G̃ = BG.
Using standard sleeping reduction, one can prove that, for any expert (n,an), n ∈ L(T ′), t ⩾ 1 - see
Proof of Theorem 2 in [29] Eq. (31)-(35):

(ℓt(f̂t(xt))− ℓt(f̂n,an,t(xt)))1xt∈Xn ⩽ ℓ′t(f̂t(xt))(f̂t(xt)− f̂n,an,t(xt))1xt∈Xn ← by convexity of ℓt
= (∇⊤

t w̃t −∇(n,an),t)1xt∈Xn (40)

= ∇⊤
t wt −∇(n,an),t. (41)

Then, with Tn = {1 ⩽ t ⩽ T : xt ∈ Xn}, n ∈ L(T ′):

R1 =

T∑
t=1

∑
n∈L(T ′)

(ℓt(f̂t(xt))− ℓt(f̂n,an,t(xt))1xt∈Xn ← {Xn, n ∈ L(T ′)} partition of X

⩽
∑

n∈L(T ′)

T∑
t=1

(∇⊤
t wt −∇(n,an),t) ← by (41)

⩽
∑

n∈L(T ′)

(
C3

√
log
(
|E|
)√∑T

t=1

(
∇⊤
t wt −∇(n,an),t)2 + C4G̃

)
← by Assumption 2

= C4BG|L(T ′)|+ C3

√
log
(
|E|
) ∑
n∈L(T ′)

√∑
t∈Tn

(
∇⊤
t wt −∇(n,an),t)2, (42)

where the last equality holds because for any n ∈ L(T ′),∇⊤
t wt − ∇(n,an),t = 0 if xt ̸∈ Xn and

G̃ = BG.
The proof goes on with two different cases depending on the losses’ convex properties:

• Case 1: (ℓt)1⩽t⩽T convex.
Observe that at any time t ∈ [T ], ∥∇t∥∞ ⩽ G̃ and ∥wt∥1 = 1, which gives |∇⊤

t wt| ⩽ G̃ = BG.
Then, from (42)

R1 ⩽ C4BG|L(T ′)|+ 2C3

√
log
(
|E|
)
BG

∑
n∈L(T ′)

√
|Tn| (43)
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In case of convex losses, we finally have by (36), (39) and (43):

RegT (f) ⩽ 2C3BG
√

log
(
|E|
) ∑
n∈L(T ′)

√
|Tn|+ λGBM |L(T ′)|

(
C1 + C2T

− 1
2
)

+ λGM
∑

n∈L(T ′)

Cn∥f∥sn2
−l(n)sn

{√
|Tn| if sn ⩾ d

2
or p < 2,

|Tn|1−
sn
d else,

(44)

where |E| ⩽ |N (T )|
(
2∥ϕ∥1T

1
2
)λ since for every n ∈ T one has |Λ̄j0,n| ⩽ λ and

|Al(n)| = ⌈2B∥ϕ∥1/εl(n)⌉ = ⌈2∥ϕ∥1T
1
2 ⌉

by the choice of the precision εl(n) = B2−
l(n)d

2 T− 1
2 . In particular, the grids have a number of points

that does not grow exponentially with T , making the construction computationally feasible.
Finally, since (44) holds for all pruning T ′ of our main tree T , one can take the infimum over all
pruning to get the desired upper-bound.

• Case 2: (ℓt)1⩽t⩽T η-exp-concave.
If the sequence of loss functions (ℓt) is η-exp-concave for some η > 0, then thanks to [24,
Lemma 4.3] we have for any 0 < µ ⩽ 1

2
min{ 1

G̃
, η} and all t ⩾ 1, n ∈ L(T ′), using (41):

(ℓt(f̂t(xt))− ℓt(f̂n,an,t(xt)))1xt∈Xn ⩽ ∇⊤
t wt −∇(n,an),t −

µ

2

(
∇⊤
t wt −∇(n,an),t

)2 (45)

Summing (45) over t ∈ [T ] and n ∈ L(T ′), we get:

R1 ⩽
∑

n∈L(T ′)

∑
t∈Tn

∇⊤
t wt −∇(n,an),t −

µ

2

∑
n∈L(T ′)

∑
t∈Tn

(
∇⊤
t wt −∇(n,an),t

)2
⩽ C4G̃|L(T ′)|+ C̃3

∑
n∈L(T ′)

√∑
t∈Tn

(
∇⊤
t wt −∇(n,an),t)2 −

µ

2

∑
n∈L(T ′)

∑
t∈Tn

(
∇⊤
t wt −∇(n,an),t

)2
,

(46)

where last inequality is by (42) and we set C̃3 = C3

√
log
(
|E|
)

and G̃ = BG. Young’s inequality
gives, for any ν > 0, the following upper-bound:√∑

t∈Tn

(
∇⊤
t wt −∇(n,an),t)2 ⩽

1

2ν
+
ν

2

∑
t∈Tn

(
∇⊤
t wt −∇(n,an),t)

2 . (47)

Finally, plugging (47) with ν = µ/C̃3 > 0 in (46), we get

R1 ⩽ C4BG|L(T ′)|+ C̃3

∑
n∈L(T ′)

(
C̃3

2µ
+

µ

2C̃3

∑
t∈Tn

(
∇⊤
t wt −∇(n,an),t)

2

)

− µ

2

∑
n∈L(T ′)

∑
t∈Tn

(
∇⊤
t wt −∇(n,an),t

)2
=

(
C2

3 log
(
|E|
)

2µ
+ C4BG

)
|L(T ′)|, (48)

again with |E| ⩽ |N (T )|
(
2∥ϕ∥1T

1
2
)λ. Then, one can deduce the final bound from equations (36),

(39) and (48) and taking the infimum over the prunings T ′.

Worst case regret bound. Note that since we assume that ∥f∥∞ ⩽ B, and that all local predictors
f̂e, e ∈ E in Algorithm 2 are clipped in [−B,B], we first have for any x ∈ X ,

|f̂t(x)| =
∑
e∈Et

we,t|[f̂e,t(x)]B | ⩽ B
∑
e∈Et

we,t = B.
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Thus,

RegT (f) =

T∑
t=1

ℓt(f̂t(xt))− ℓt(f(xt))

⩽
T∑
t=1

G|f̂t(xt)− f(xt)| ← ℓt is G-Lipschitz

⩽ G

T∑
t=1

|f̂t(xt)|+ |f(xt)|

= 2BGT (49)

We now restate a complete version of Theorem 2 from the main text and provide its proof below.

Theorem 4. Let T ⩾ 1, 1 ⩽ p, q ⩽∞, s > d
p

. Let f ∈ Bspq and B ⩾ ∥f∥∞. Let T ′ be any pruning of T ,
together with a collection of local smoothness indices (sn)n∈L(T ′) defined as in (10) and local norms
∥f∥sn . Then, under the same assumptions of Theorem 1 and Assumption 2, Algorithm 2 satisfies

RT (f) ≲ G
∑

n∈L(T ′)

(
B

1− d
2sn (2−l(n)sn∥f∥sn)

d
2sn

√
|Tn|1sn⩾ d

2

+
(
2−l(n)sn∥f∥sn |Tn|

1− sn
d
)
1sn< d

2
+B

√
|Tn|

)
and moreover we also have, if (ℓt) are exp-concave:

RT (f) ≲ G
∑

n∈L(T ′)

(
B

1− 2d
2sn+d

(
2−l(n)sn∥f∥sn

) 2d
2sn+d |Tn|

d
2sn+d1sn⩾ d

2

+ 2−l(n)sn∥f∥sn |Tn|
1− sn

d 1sn< d
2
+B

)
,

where ≲ hides logarithmic factors in T , and constants independent of f or T .

Proof of Theorem 4.
Let T ′ ⊂ T be some pruning of T . We define T ′

ext the extension of T ′ such that all terminal nodes n ∈
L(T ′) is extended with a tree T ′

n of depth hn ∈ N. In particular, for any n′ ∈ L(T ′
ext), l(n

′) = l(n) + hn
with n ∈ L(T ′). See Figure 4 for an illustrative example.

T ′
2

T ′
5

T ′
1

T ′
3

T ′
4

T ′
6

T ′
7

T ′

Figure 4: Example of an extended tree T ′
ext = T ′ ∪ T ′

1 ∪ · · · ∪ T ′
7 , formed by a subtree T ′ (black

nodes) and its extensions (colored nodes). Each dotted set corresponds to a subtree T ′
n, rooted at a

leaf n ∈ L(T ′) and extended to depth hn. The depths vary: h2 = h5 = 0 (black boxes), h1 = h4 = 1
(orange), h3 = h6 = 2 (blue), and h7 = 3 (green). The leaves of T ′

ext appear at different levels
depending on the values of (hn) and the level l(n) of the leaves n ∈ L(T ′) = {1, 2, 3, 4, 5, 6, 7}.

Observe that the total number of leaves in the extended pruning T ′
ext is

|L(T ′
ext)| =

∑
n∈L(T ′)

|L(T ′
n)|. (50)
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Define
sn := min

n′∈L(T ′
ext)
sn′ , n ∈ N (T ′). (51)

Remark also that by definition of the Besov norm in (6) (and via the usual embedding (p, q) fixed
- see, e.g., [20]), one has for any n ∈ L(T ′), ∥f∥sn ⩾ ∥f∥sn′ , n

′ ∈ L(T ′
ext). In particular, every tree

extension T ′
n at node n ∈ L(T ′) has |L(T ′

n)| = 2hnd leaves.

Case (ℓt) convex. Applying Theorem 3 in the convex case on the extended pruning T ′
ext, gives

RT (f) ⩽ CG
∑

n′∈L(T ′
ext)

(
B
√
|Tn′ |+ ∥f∥sn′ · 2−l(n′)sn′ · |Tn′ |rn′

)
(52)

with C some constant that hides log T terms that can change from an inequality to another and rn′ ∈
{ 1
2
, 1− sn′

d
} is the local rate described in Theorem 3. Note that by (51) one has r′n ⩽ rn, n

′ ∈ L(T ′
n).

Recall that for every n′ ∈ L(T ′
ext), l(n

′) = l(n) + hn for n ∈ L(T ′) and since every leaves in L(T ′
n) is

partitioning each terminal node n ∈ T ′, one has by Jensen’s inequality:∑
n′∈L(T ′

ext)

√
|Tn′ | =

∑
n∈L(T ′)

∑
n′∈L(T ′

n)

√
|Tn′ | ⩽

∑
n∈L(T ′)

√
|L(T ′

n)||Tn|. (53)

Then, by (51),(52) and (53) one gets (with rn′ ⩽ rn, n
′ ∈ L(T ′

n))

RT (f) ⩽ CG
∑

n∈L(T ′)

∑
n′∈L(T ′

n)

(
B
√
|Tn′ |+ ∥f∥sn2

−(l(n)+hn)sn |Tn′ |rn
)

⩽ CG
∑

n∈L(T ′)

(
B
√
|L(T ′

n)||Tn|+ ∥f∥sn2
−(l(n)+hn)sn

∑
n′∈L(T ′

n) |Tn′ |rn
)
. (54)

Further, applying Hölder’s inequality over the sum over n′ ∈ L(T ′
n) in (54) with (1 − rn) + rn = 1

(rn is constant over the sum in n′):

RT (f) ⩽ CG
∑

n∈L(T ′)

(
B
√
|L(T ′

n)||Tn|+ ∥f∥sn2
−l(n)sn2−hnsn |L(T ′

n)|1−rn
(∑

n′∈L(T ′
n) |Tn′ |

)rn)
(55)

= CG
∑

n∈L(T ′)

(
B
√
|Tn|2hnd + ∥f∥sn2

−l(n)sn2dhn(1− sn
d

−rn)|Tn|rn
)

where we used∑
n′∈L(T ′

n)

|Tn′ | = |Tn| and 2−hnsn |L(T ′
n)|1−rn = 2−hnsn(2dhn)1−rn = 2dhn(1− sn

d
−rn).

Define the local regrets under the sum over n ∈ N (T ′) by

Rn(f) := B
√
|Tn|2hnd + ∥f∥sn2

−l(n)sn2dhn(1− sn
d

−rn)|Tn|rn ,

that we now want to optimize in hn ∈ N. This leads to two different cases depending on the values of
the local exponent rn, defined in Theorem 3.

• Case sn ⩾ d
2

or p < 2: rn = 1
2

The local regret grows as:

B
√
|Tn|2hnd + ∥f∥sn2

−l(n)sn2−hn(sn− d
2
)
√
|Tn|.

Therefore, setting hn = max
{
0,
⌈

1
sn

log2
(
2−l(n)sn∥f∥snB−1

)⌉}
this entails

Rn(f) ⩽ Cmax{B,B1− d
2sn (2−l(n)sn∥f∥sn)

d
2sn }

√
|Tn|

• Case sn < d
2
: rn = 1− sn

d

The local regret grows as:

Rn(f) = B
√
|Tn|2hnd + ∥f∥sn2

−l(n)sn |Tn|1−
sn
d ,

and the best choice is hn = 0 in this case that entails

Rn(f) = B
√
|Tn|+ ∥f∥sn2

−l(n)sn |Tn|1−
sn
d
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Finally, in the case (ℓt) are convex losses, we deduce that the regret is upper bounded as

RT (f) ⩽ CG
∑

n∈L(T ′)

Rn(f)

⩽ CG
∑

n∈L(T ′)

((
max{B,B1− d

2sn (2−l(n)sn∥f∥sn)
d

2sn }
√
|Tn|

)
1sn⩾ d

2

+
(
B
√
Tn + 2−l(n)sn∥f∥sn |Tn|

1− sn
d
)
1sn< d

2

)
(56)

Case (ℓt) exp-concave. Applying Theorem 3 in the exp-concave case on the extended pruning T ′
ext,

gives

RT (f) ⩽ CG

(
B|L(T ′

ext)|+
∑

n′∈L(T ′
ext)

∥f∥sn′ · 2−l(n′)sn′ · |Tn′ |rn′

)
(57)

with C some constant that hides log T terms and that can change from an inequality to another and
rn′ ∈ { 1

2
, 1− sn′

d
} is the local rate described in Theorem 3. Note that |L(T ′

ext)| =
∑
n∈L(T ′) |L(T

′
n)|

and again for every n′ ∈ L(T ′
ext), l(n

′) = l(n) + hn for n ∈ L(T ′) and rn′ ⩽ rn, n
′ ∈ L(T ′

n). We get

RT (f) ⩽ CG
∑

n∈L(T ′)

(
B|L(T ′

n)|+ ∥f∥sn2
−(l(n)+hn)sn

∑
n′∈L(T ′

n) |Tn′ |rn
)
. (58)

Using |L(T ′
n)| = 2hnd and applying Hölder’s inequality over the sum over n′ ∈ L(T ′

n) in (58) with
(1− rn) + rn = 1 as in (55) entails

RT (f) ⩽ CG
∑

n∈L(T ′)

(
B2hnd + ∥f∥sn2

−l(n)sn2dhn(1− sn
d

−rn)|Tn|rn
)
.

Again, we define the local regrets under the sum over n ∈ N (T ′) as

Rn(f) := B2hnd + ∥f∥sn2
−l(n)sn2dhn(1− sn

d
−rn)|Tn|rn ,

that we optimize in hn ∈ N. The cases are the same as for the convex case, according to the values of
the local exponent rn, defined in Theorem 3.

• Case sn ⩾ d
2

or p < 2: rn = 1
2

The local regret grows as

Rn(f) = B2hnd + ∥f∥sn2
−l(n)sn2−hn(sn− d

2
)
√
|Tn|.

Afterwards, optimizing in hn such that

B2hnd = 2−l(n)sn∥f∥sn2
−hn(sn− d

2
)
√
|Tn|

leads to hn = max
{
0,
⌈

1
2sn+d

log2
(
(B−12−l(n)sn∥f∥sn)2|Tn|

)⌉}
, that entails

Rn(f) ⩽ Cmax

{
B,B

1− 2d
2sn+d

(
2−l(n)sn∥f∥sn

) 2d
2sn+d |Tn|

d
2sn+d

}
• Case sn < d

2
: rn = 1− sn

d

The local regret grows as

Rn(f) = B2hnd + 2−l(n)sn∥f∥sn |Tn|
1− sn

d ,

and the best choice is hn = 0 which entails
Rn(f) = B + 2−l(n)sn∥f∥sn |Tn|

1− sn
d ,

Finally, with (ℓt) exp-concave losses, the regret is bounded as

RT (f) ⩽ CG
∑

n∈L(T ′)

Rn(f)

⩽ CG
∑

n∈L(T ′)

(
max

{
B,B

1− 2d
2sn+d

(
2−l(n)sn∥f∥sn

) 2d
2sn+d |Tn|

d
2sn+d

}
1sn⩾ d

2
(59)

+
(
B + 2−l(n)sn∥f∥sn |Tn|

1− sn
d
)
1sn< d

2

)
. (60)

Remark. Taking T ′ as the pruning associated to the root, this entails O(T
d

2s+d ) = O(T 1− 2s
2s+d ) which

is minimax-optimal for this case - see [35].
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D Discussion on the unbounded case: s < d
p

As in most previous works in statistical learning, this paper primarily considers competitive functions
f ∈ Bspq(X ) with s > d

p
, which ensures that f ∈ L∞(X ) with ∥f∥∞ <∞.

A natural question is whether our Algorithm 1 remains competitive - that is, achieves sublinear regret
- in the more challenging regime where s < d

p
. Indeed, in the case s < d

p
, prediction rules may no

longer be bounded in sup-norm. For example, the function f(x) = x−
1/21x∈(0,1] belongs to Lp([0, 1])

for p < 2 but not to L∞([0, 1]), illustrating the type of singularity permitted when s < d
p
. In such

cases, the boundedness condition ∥fJ − f∥∞ <∞ required in (24) may fail, where fJ denotes the
truncated J-level wavelet expansion defined in (2). Nevertheless, we discuss how Algorithm 1 can
still offer performance guarantees in certain settings, particularly when the input data {xt} are well
distributed over X .
Indeed, by Hölder’s inequality, (24) can be upper bounded as:

T∑
t=1

|fJ(xt)− f(xt)| ⩽ T

(
1

T

T∑
t=1

|fJ(xt)− f(xt)|p
) 1

p

, (61)

where the sum on the right-hand side defines an empirical ℓp semi-metric over the input data {xt}Tt=1,
denoted:

dpT (fJ , f) :=

(
1

T

T∑
t=1

|fJ(xt)− f(xt)|p
) 1

p

.

The upper bound (61) suggests that tighter control may be obtained by focusing on the empirical
norm dpT (fJ , f) rather than on the sup-norm, which may not be finite.

First case: the empirical semi-norm dpT approximates the Lp norm. Assume that the semi-norm
dpT (fJ , f) is close to the true Lp norm ∥fJ − f∥Lp . Such an equivalence is expected when the data
{xt} are well distributed over X , for example when xt ∼ U(X ) i.i.d., or when xt are equally spaced,
such as xt = t

T
for t = 1, . . . , T . By the law of large numbers or standard concentration arguments,

one typically has dpT (fJ , f) ≈ ∥fJ − f∥Lp in expectation or with high probability.
Classical approximation results (e.g., [20, Prop. 4.3.8]) then yield ∥fJ − f∥Lp ≲ 2−Js for f ∈
Bspq(X ) ⊂ Lp(X ). Optimizing over J to balance estimation and approximation regrets leads to a
regret bound of O(T 1− s

d ) - see the proof of Theorem A, last case β < 0. This regret is sublinear as
soon as s > 0 and becomes linear when s = 0, as is typical for f ∈ Lp.
Nevertheless, minimax analysis from [34, 35] shows that a regret of O(T 1−1/p) is possible, which
improves upon our bound whenever s < d

p
. Whether a constructive algorithm achieving this minimax

regret exists in the regime s < d
p

remains, to the best of our knowledge, an open and interesting
question.

Second case: the semi-norm dpT fails to approximate the Lp norm. If the data points {xt} are
concentrated near singularities (e.g., near 0 in the example above), the empirical norm dpT (fJ , f) can
differ significantly from the true norm ∥fJ − f∥Lp , making the latter less informative in practice.
In such adversarial or non-uniform settings, it seems preferable to control the empirical norm dpT (fJ , f)
directly, as it more accurately reflects the distribution of the observed data. Addressing this challenge
may require adaptive sampling strategies, localization techniques, or alternative norms that account
for the geometry or density of the input distribution.
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E Review of multi-resolution analysis
In this section we present some of the basic ingredients of wavelet theory. Let’s assume we have a
multivariate function f : Rd → R.
Definition 1 (Scaling function). We say that a function ϕ ∈ L2(Rd) is the scaling function of a
multiresolution analysis (MRA) if it satisfies the following conditions:

1. the family
{x 7→ ϕ(x− k) =

∏d
i=1 ϕ(xi − ni) : k ∈ Zd}

is an ortho-normal basis, that is ⟨ϕ(· − k), ϕ(· − n)⟩ = δk,n;
2. the linear spaces

V0 =
{
f =

∑
k∈Zd ckϕ(· − k), (ck) :

∑
k∈Zd c

2
k <∞

}
, . . . , Vj = {h = f(2j ·) : f ∈ V0}, . . . ,

are nested, i.e. Vj−1 ⊂ Vj for all j ⩾ 0.

We note that under these two conditions, it is immediate that the functions

{ϕj,k = 2dj/2ϕ(2j · −k) , k ∈ Zd}

form an ortho-normal basis of the space Vj , j ∈ N. One can define the projection kernel of f over Vj
(from here we also say kernel projection at scale or level j) as

Kjf(x) :=
∑
k∈Zd

⟨f, ϕj,k⟩ϕj,k(x) =
∫
Rd

Kj(x, y)f(y) dy , (62)

with Kj(x, y) =
∑
n∈Zd ϕj,k(x)ϕj,k(y) =

∑
k∈Zd 2

djϕ(2jx−n)ϕ(2jy−n) (which is not of convolution
type) but has comparable approximation properties that we detail after.

Incremental construction via wavelets. Since the spaces (Vj) are nested, one can define nontrivial
subspaces as the orthogonal complements Wj := Vj+1 ⊖ Vj . We can then telescope these orthogonal
complements to see that each space Vj , j ⩾ j0 can be written as

Vj = Vj0 ⊕
( j⊕
l=j0

Wl

)
for any j0 ∈ N.

Let ψ be a mother wavelet corresponding to the scaling function ϕ. The associated wavelets are
defined as follows: for E = {0, 1}d \ {0}, we set

ψε(x) = ψε1(x1) · · ·ψεd(xd), ψεj,n = 2jd/2ψε(2jx− n), j ⩾ 0, n ∈ Zd,

where ψ0 = ϕ, ψ1 = ψ. For each j, these functions form an orthonormal basis of Wj .
Analogously, one can now observe that for every j ⩾ j0,

Kjf = Kj0f +

j−1∑
l=j0

(Kl+1f −Klf) , (63)

where each increment in the sum can be written as

Kj+1f −Kjf =
∑
k

∑
ε

⟨f, ψεj,k⟩ψεj,k,

where for each j ⩾ 1, the set{
ψej,k = 2dj/2ψε(2jx− k) : ε ∈ E, k ∈ Zd

}
forms a basis of Wj for some wavelet ψ, with E := {0, 1}d \ {0}. For simplicity, we include the index
ε in the multi-index k. Finally, the set {ϕj0,k, ψj,k} constitutes a wavelet basis.
For our results we will not be needing a particular wavelet basis, but any that satisfies the following
key properties.
Definition 2 (S-regular wavelet basis). Let S ∈ N∗ and j0 = 0. The multiresolution wavelet basis

{ϕk = ϕ(· − k), ψj,k = 2jd/2ψ(2d · −k)}

of L2(Rd) with associated projection kernel K(x, y) =
∑
k ϕk(x)ϕk(y) is said to be S-regular if the

following conditions are satisfied:
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(D.1) Vanishing moments and normalization:∫
Rd ψ(x)x

α dx = 0 for all multi-indices α with |α| < S,
∫
Rd ϕ(x) dx = 1.

Moreover, for all v ∈ Rd and α with 1 ⩽ |α| < S,∫
Rd K(v, v + u) du = 1,

∫
Rd K(v, v + u)uα du = 0.

(D.2) Bounded basis sums:
Mϕ := supx∈Rd

∑
k |ϕ(x− k)| <∞, Mψ := supx∈Rd

∑
k |ψ(x− k)| <∞.

(D.3) Kernel decay: For κ(x, y) equal to K(x, y) or
∑
k ψ(x− k)ψ(y − k), there exist constants

c1, c2 > 0 and a bounded integrable function ϕ : [0,∞)→ R such that
supv∈Rd |κ(v, v − u)| ⩽ c1ϕ(c2∥u∥), CS :=

∫
Rd ∥u∥Sϕ(∥u∥) du <∞.

Case of a bounded compact X ⊂ Rd. The above definition applies to wavelet systems on Rd, but
can be extended to compact domains X ⊂ Rd using standard boundary-corrected or periodized con-
structions. Notable examples include the compactly supported orthonormal wavelets of Daubechies
[11, Chapter 7] and the biorthogonal, symmetric, and highly regular wavelet bases of Cohen et al.
[9]. Just as in the case of Rd, we can build a tensor-product wavelet basis {ϕk, ψj,k}, for example
using periodic or boundary-corrected Daubechies wavelets. At the j-th level, there are now O(2jd)
wavelets ψj,k, which we index by k ∈ Λj , the set of indices corresponding to wavelets at level j. This
coincides with the expansion used in Equation (2).

Control of wavelet coefficients and characterization of Hölder spaces. Remarkably, the norm of
the space C s(X ) has a useful characterisation by wavelet bases - see [31] or [20] for a review on the
characterisation of smoothness according to wavelet basis.
Proposition 1. Let s > 0 we thus have the following:

f ∈ C s(X ) =⇒ sup
k
|⟨f, ψj,k⟩| ⩽ C|f |s2−j(s+d/2) , (64)

where C = C(ψ, S) is some constant that depends only on the (S-regular) wavelet basis.

Proof. Let ψ be a compactly supported wavelet in Rd with S vanishing moments, i.e.,∫
Rd

xβψ(x) dx = 0 for all multi-indices β with |β| < S.

Assume that f ∈ C s(Rd) for some s > 0, with s < S, so the wavelet vanishing moments match the
regularity of f . Let ψj,k(x) := 2jd/2ψ(2jx − k) be the wavelet at scale j and location k ∈ Zd. The
wavelet coefficient is given by

cj,k := ⟨f, ψj,k⟩ =
∫
Rd

f(x)ψj,k(x) dx.

We define the center of the wavelet support as xj,k := 2−jk and write a Taylor expansion of f at xj,k:
f(x) = Pxj,k(x) +Rxj,k(x),

where Pxj,k is the Taylor polynomial of degree ⌊s⌋ and |Rxj,k (x)| ⩽ |f |s∥x− xj,k∥
s
∞ for x near xj,k

and where |f |s = sup|m|=⌊s⌋ ∥Dmf∥s−|m|.
Using the vanishing moments of ψ, we have

cj,k =

∫
Rd

Rxj,k(x)ψj,k(x) dx.

Now perform the change of variables u = 2jx− k, so x = 2−ju+ xj,k and dx = 2−jddu:

cj,k = 2−jd/2
∫
Rd

Rxj,k(xj,k + 2−ju)ψ(u) du.

By the Hölder remainder estimate, we have
|Rxj,k (xj,k + 2−ju)| ⩽ |f |s∥2−ju∥s = |f |s2−js∥u∥s.

Therefore,
|cj,k| ⩽ |f |s2−j(s+d/2)

∫
Rd

|ψ(u)|∥u∥s du,

and since ψ is compactly supported and smooth, the integral is finite. Hence, defining C(ψ, s) =∫
Rd |ψ(u)|∥u∥s du <∞ we get the result.

Remark. The smoothness s of f translates into faster decay of the coefficients given sufficiently
(S > s) regular wavelets.
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F Summary of the results and comparison to the literature

Table 2: Regret rates, parameter requirements and time complexity for online regression algorithm with (ℓt)
square losses and s > d/p.

Paper Setting Input Parameters Regret Rate Complexity

Vovk [39] f ∈ Bspq, p, q ⩾ 1 s, p,B ⩾ ∥f∥∞ T 1− s
s+d exp(T ) + Td

Vovk [40] f ∈ Bspq, p ⩾ 2, q ∈ [ p
p−1

, p]
s, p, B ⩾ ∥f∥∞

T
1− 1

p

Not feasible
f ∈ C s, p =∞, s ⩾ d

2
T 1− s

d
+ε

Gaillard and Gerchinovitz [17]
f ∈W s

p , p ⩾ 2, s ⩾ d
2

s, p, B ⩾ ∥f∥∞
T 1− 2s

2s+d exp(dT )

f ∈W s
p , p > 2, s < d

2
T 1− s

d exp(dT )

f ∈ C s, p =∞, d = 1, s > 1
2

T 1− 2s
2s+1 poly(T )

Liautaud et al. [29] f ∈ C s, p =∞, s ∈ (1/2, 1], d = 1 B ⩾ ∥f∥∞ T 1− 2s
2s+1 poly(T )

Zadorozhnyi et al. [42] f ∈W s
p , p ⩾ 2, s ⩾ d

2 s, p
T 1− 2s

2s+d
+ε

poly(T )d
f ∈W s

p , p > 2, s < d
2

T
1− s

d
p−d/s
p−2

+ε

This work
Alg. 1 f ∈ Bspq, p, q ⩾ 1, s ⩾ d

2
or p ⩽ 2

S ⩾ s, ε < s− d
p

√
T

poly(T )Sd
f ∈ Bspq, p > 2, q ⩾ 1, s < d

2
T 1− s

d

Alg. 2 f ∈ Bspq, p, q ⩾ 1, s ⩾ d
2

or p ⩽ 2
S ⩾ s, ε < s− d

p
, B ⩾ ∥f∥∞ T 1− 2s

2s+d

poly(T )Sd
f ∈ Bspq, p > 2, q ⩾ 1, s < d

2
T 1− s

d

Minimax rates f ∈ Bspq, p, q ⩾ 1, s ⩾ d
2 Non constructive T 1− 2s

2s+d

Non constructive
Rakhlin and Sridharan [34, 35] f ∈ Bspq, p > 2, q ⩾ 1, s < d

2
T 1− s

d

Comparison to Vovk [40]. Vovk [40] provide a general analysis for prediction in Banach spaces,
focusing on the regime s > d/p. They achieve regret rates of O(T 1−1/p) for certain Besov spaces Bspq
with p ⩾ 2 and q ∈ [p/(p−1), p]. These rates are independent of the smoothness parameter s, except in
the case p =∞, where they obtain O(T 1− s

d ). However, this remains suboptimal in their setting with
square loss. In contrast, our analysis yields the minimax-optimal rate O(T 1− 2s

2s+d ) over a broader
class of Besov spaces Bspq with arbitrary p, q ∈ [1,∞] and s > d/p.

Comparison to Vovk [39]. Vovk [39] investigates prediction under general metric entropy con-
ditions, proposing algorithms that compete with a reference class of functions in terms of covering
numbers. While their approach is highly general and applies to a broad range of normed spaces, the
regret bounds they derive, of order O(T 1− s

s+d ), still do not match the minimax-optimal rates known
for functions in Bspq.

Comparison to Zadorozhnyi et al. [42]. Their approach focuses on Sobolev spaces W s
p (X ) with

p ⩾ 2 and s > d
p
, and they obtain suboptimal rates, in the regime s < d

2
, of O(T

1− s
d
· p−d/s

p−2
+ε

), for

arbitrarily small ε. In comparison, our rates O(T 1− 2s
2s+d ) are minimax-optimal over a broader class of

Besov spaces Bspq with arbitrary s, p, q satisfying s > d
p

, which include the Sobolev balls considered
in their work.

Computational complexity. Most existing work in online nonparametric regression over Besov
spaces (including Sobolev spaces), such as Rakhlin and Sridharan [34, 35], Vovk [39, 40], does not
provide efficient (i.e., polynomial-time) algorithms. The work by Rakhlin and Sridharan [34, 35]
offers a minimax-optimal analysis, but does not yield constructive procedures - computing the offset
Rademacher complexity, as required by their method, is numerically infeasible in practice. The
approach of using the Exponentiated Weighted Average (EWA) algorithm in nonparametric settings,
as proposed by Vovk [39], suffers from both suboptimal regret rates and prohibitive computational
complexity, since it requires updating the weights of each expert in a covering net, leading to a
total cost of O(exp(T )). Vovk [40] introduce the defensive forecasting approach, which also avoids
efficient implementation as it relies on the so-called Banach feature map - a representation that
is typically inaccessible or intractable in practice. The Chaining EWA forecaster of Gaillard and
Gerchinovitz [17] achieves optimal regret bounds in the online nonparametric setting. However, its
algorithm is provably polynomial-time only in the case p = ∞ and d = 1; in general dimensions
and p, its direct implementation requires O(exp(dT )) operations. Zadorozhnyi et al. [42] propose an
efficient algorithm with total computational complexity of order O(T 3 + dT 2). We note that their
algorithm has a linear cost in d, making it particularly suitable for high-dimensional settings with
smooth competitors in W s

p (X ) (with s > d
2
).
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Finally, our algorithms are both optimal and efficient, with computational costs (after T rounds) of

O(T×J×Sd) = O

(
T
S

dε
log2(T )S

d

)
and O(T×|A|λ×J0×J×Sd) = O

(
T 1+λ

2
S2

d2ε2
log2(T )

2Sd
)

for Algorithm 1 and Algorithm 2 respectively (taking a partitioning tree of maximum depth J0 =
⌈ S
dε

log2 T ⌉).

G Besov embeddings in usual functional spaces
We refer to [8, 13, 20] for precise statements of the classical embedding theorems. For convenience,
we recall some of the most useful embeddings in Table 3.

Table 3: Classical embeddings of Besov spaces Bspq

Condition on (s, p, q) Target Space Embedding Type

s > d
p

L∞ Continuous embedding
s = d

p
, q = 1 L∞ Critical embedding

s > d
(

1
p
− 1

r

)
, p < r Lr Continuous embedding

s1 > s2 Bs2pq Continuous embedding
s = s, p1 ⩽ p2, q1 ⩽ q2 Bsp2q2 Continuous embedding
Bspp W s

p Equivalence (for s ∈ N)
Bs∞∞ C s Norm equivalence with Hölder

H Summary of optimal regret in Online Nonparametric Regression
This section summarizes the results in [34, 35] for mimimax-optimal rate of regret in the adversarial
online nonparametric regression setting.
Proposition 2 ([35]). Assume the sequential entropy at scale ε > 0 is O(ε−α), α > 0 for the target
class function. Optimal regret is then summarized in the table:

Table 4: Optimal regret for different loss functions

Loss Function Range on α Optimal Regret

Absolute loss
α ∈ (0, 2] T

1
2

α > 2 T 1− 1
α

Square loss
α ∈ (0, 2] T

1− 2
2+α

α > 2 T 1− 1
α

In particular, for Hölder functions C s(X ), s > 0, and Bspq(X ), s > d
p

one has α = d
s
.
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depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: We only provide graph to illustrate and explain our theoretical results.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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paper) is recommended, but including URLs to data and code is permitted.
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: No experiment.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: No experiment.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
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• The method for calculating the error bars should be explained (closed form formula,
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: No experiment.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [NA]
Justification: Yes and we have reviewed the NeurIPS Code of Ethics.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact in the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks as it is a general theoretical work.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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Answer: [NA]

Justification: The paper does not involve crowd-sourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
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guidelines for their institution.
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involve LLMs as any important, original, or non-standard components.
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