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Abstract

Mathematical reasoning in Large Language001
Models (LLMs) is often evaluated using bench-002
marks with limited numerical ranges, failing003
to reflect real-world problem-solving across di-004
verse scales. Furthermore, most existing evalu-005
ation methods only compare model outputs to006
ground-truth answers, obscuring insights into007
reasoning processes. To address these limi-008
tations, we introduce GSM-Ranges, a dataset009
generator derived from GSM8K that systemati-010
cally perturbs numerical values in math prob-011
lems to assess model robustness across varying012
numerical scales. Additionally, we propose a013
novel grading methodology that distinguishes014
between logical and non-logical errors, offer-015
ing a more precise evaluation of reasoning pro-016
cesses beyond computational accuracy. Our017
experiments with various models reveal a sig-018
nificant increase in logical error rates—up to019
14 percentage points—as numerical complexity020
rises, demonstrating a general weakness in rea-021
soning with out-of-distribution numerical val-022
ues. Moreover, while models demonstrate high023
accuracy on standalone arithmetic tasks, their024
performance deteriorates substantially when025
computations are embedded within word prob-026
lems. These findings provide a comprehensive027
evaluation of LLMs’ mathematical reasoning028
capabilities and inform future research direc-029
tions for improving numerical generalization in030
language models. 1031

1 Introduction032

Mathematical reasoning with Large Language033

Models (LLMs) has recently been the subject of sig-034

nificant attention (Wei et al., 2022; OpenAI, 2024;035

Ahn et al., 2024). However, the current evaluation036

methodologies for these systems exhibit notable037

limitations. First, existing benchmarks primarily038

focus on problems with limited numerical ranges039

1Code and relevant dataset available at https://
anonymous.4open.science/r/GSM-Ranges-F384

GSM8K
Judy teaches 5 dance classes every day on the week-
days and 8 classes on Saturday. If each class has
15 students and she charges $15 per student, how
much money does she make in 1 week?

GSM-Ranges (Level 6 Perturbation)

Judy teaches 3,124,213 dance classes every day on
the weekdays and 7,832,129 classes on Saturday.
If each class has 25 students and she charges $35
per student, how much money does she make in 1
week?

Table 1: An example of a question generated by GSM-
Ranges tool, derived from a base problem from the
GSM8K dataset.

(Madaan and Yazdanbakhsh, 2022), leaving a sig- 040

nificant gap between the controlled evaluations and 041

real-world settings. Second, traditional grading ap- 042

proaches typically compare LLMs’ final answers 043

directly with the ground truth answers (Hong et al., 044

2024; Shakarian et al., 2023), a practice that con- 045

flates logical and numerical errors, thereby obscur- 046

ing a deep understanding of the LLM’s reasoning 047

capabilities. This motivates the need for a better 048

evaluation approach that not only handles numbers 049

across wide numerical ranges but also distinguishes 050

between logical and arithmetic errors. 051

This paper makes three contributions. First, we 052

introduce publicly available GSM-Ranges, a tool 053

for generating datasets that are designed to eval- 054

uate error rates and error types across diverse nu- 055

merical ranges. Derived from the GSM8K dataset 056

(Cobbe et al., 2021), GSM-Ranges systematically 057

organizes problems into distinct numerical inter- 058

vals. Specifically, GSM-Ranges applies six distinct 059

levels of perturbations to GSM8K questions, replac- 060

ing existing numbers with random values across 061
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six distinct scales.062

Second, we introduce a novel grading method-063

ology that distinguishes between logical and non-064

logical errors. We claim that a solution should065

be deemed logically valid if computational inac-066

curacies can be corrected and the revised answer067

matches the ground truth. Conversely, if the final068

answer remains incorrect despite eliminating such069

errors, we infer a fundamental flaw in the reasoning070

process. To automate this assessment, our method-071

ology employs GPT-4o model (OpenAI, 2024) to072

translate a LLM-generated response into Python073

code that accurately captures the underlying logic.074

By executing this code, we isolate non-logical er-075

rors and compute the corrected final answer, which076

is then compared with the ground truth to assess077

logical correctness. We also perform a careful eval-078

uation of our automated grading methodology, and079

confirm its high level of accuracy for distinguishing080

between the two error types.081

Third, using our grading methodology and our082

GSM-Ranges tool, we analyze various open-source083

and proprietary LLM models. This leads to several084

findings:085

• Previous works have shown that arithmetic086

errors become more pronounced for larger087

numbers (Qian et al., 2023; Feng et al., 2024).088

We find that this trend applies to logical er-089

rors as well, with the worst-case logical error090

rate increasing by up to 14 absolute percent-091

age points as perturbation levels rise. This is092

surprising since the logical reasoning process093

required to solve the problems remains un-094

changed despite the numerical modifications.095

Nevertheless, we still observe an increase in096

logical errors as perturbation levels rise, sug-097

gesting that the logical reasoning in LLMs098

tends to exacerbate for out-of-distribution nu-099

merical values, compromising their robust-100

ness in handling broader numerical scales.101

• Previous studies have demonstrated that102

LLMs achieve high accuracy on standalone103

arithmetic tasks with in-distribution numbers104

(e.g., “36×6=?”) (Yang et al., 2023; Maltoni105

and Ferrara, 2024; Yuan et al., 2023; Mirzadeh106

et al., 2024; Xie et al., 2024). While we con-107

firm these findings, our results further reveal108

that the accuracy of arithmetic computations109

significantly deteriorates when the calcula-110

tions are embedded within word problems111

(e.g., “36 apples from Jack×6 = ? apples”).112

By introducing GSM-Ranges and a novel grading 113

methodology, this work aims to provide a more 114

comprehensive evaluation of mathematical reason- 115

ing in LLMs. Our approach not only isolates log- 116

ical and arithmetic errors but also assesses model 117

robustness across a broad range of numerical val- 118

ues. These insights pave the way for future research 119

on improving LLMs’ mathematical reasoning capa- 120

bilities and developing models that can generalize 121

more effectively across diverse mathematical prob- 122

lem settings. 123

2 Related Work 124

LLM Sensitivity to Perturbations. Several prior 125

studies (Stolfo et al., 2022; Hooda et al., 2024; 126

Jiang et al., 2024; Guo et al., 2024) have explored 127

the sensitivity of LLMs to perturbations in input 128

problems, demonstrating significant performance 129

degradation even when the underlying logic 130

remains the same. In the domain of mathematical 131

word problems (MWPs), particularly on the 132

GSM8K benchmark, this degradation has been 133

observed when numbers are slightly changed 134

from the original question. (Li et al., 2024a; 135

Mirzadeh et al., 2024; Shi et al., 2023). However, 136

existing approaches often constrain substituted 137

values to a limited numerical range (Stolfo et al., 138

2022) or use numbers that remain comparable 139

to the original values, which tend to be small 140

(Li et al., 2024a; Mirzadeh et al., 2024; Madaan 141

and Yazdanbakhsh, 2022). In this paper, we 142

go beyond the narrow constraints previously 143

studied, providing a comprehensive investigation 144

into how different numerical ranges can impact 145

mathematical abilities in LLMs. 146

147

Evaluation of Mathematical Correctness. Prior 148

correctness evaluations (grading) predominantly 149

rely on ground-truth comparisons (Shakarian et al., 150

2023; Fu et al., 2023; Hong et al., 2024; Frieder 151

et al., 2024). However, such a straightforward ap- 152

proach does not distinguish between logical and 153

non-logical errors, and therefore cannot alone ac- 154

curately assess an LLM’s mathematical reasoning 155

capabilities. Previous studies have explored sim- 156

ple prompting strategies for evaluation, finding that 157

while LLMs perform well in generating correct 158

answers to benchmark questions, they struggle to 159

identify and diagnose errors in solutions to those 160

same questions. This difficulty is particularly pro- 161

nounced for non-logical errors, highlighting a fun- 162
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damental gap in their problem comprehension (Li163

et al., 2024b; Zeng et al., 2024). A straightforward164

alternative involves using external tools, such as165

calculators, to mitigate non-logical errors. How-166

ever, this approach requires fine-tuning models to167

follow a specific format and does not always pro-168

duce reliable results (Schick et al., 2023; Cobbe169

et al., 2021). To address these challenges, we intro-170

duce a novel automated grading methodology that171

eliminates the need for fine-tuning while effectively172

differentiating between logical and non-logical er-173

rors. This enables a more precise assessment of174

how mathematical reasoning deteriorates under var-175

ious numerical conditions.176

Arithmetic Errors Due to Perturbations. Past177

studies have shown that LLMs handle basic arith-178

metic reasonably well when the arithmetic involves179

small numbers in standalone queries like "What180

is x + y?", a skill often linked to memorization181

(Yang et al., 2023; Maltoni and Ferrara, 2024; Yuan182

et al., 2023; Qian et al., 2023; Feng et al., 2024).183

Performance drops significantly in more complex184

cases, such as multi-step equations, large numbers,185

and multiplication (Kao et al., 2024; Yuan et al.,186

2023; Yang et al., 2023; Feng et al., 2024; Qian187

et al., 2023). Background context can further affect188

arithmetic reasoning, introducing additional incon-189

sistencies (Abedin et al., 2025). Current research190

applying perturbations to widely used benchmarks191

like GSM8K involve basic arithmetic; thus, arith-192

metic errors are assumed to be minimal. (Mirzadeh193

et al., 2024; Xie et al., 2024; Anand et al., 2024).194

However, a deeper understanding of the nature195

and frequency of arithmetic errors remains lack-196

ing. This study addresses this gap by systematically197

quantifying arithmetic errors in mathematical word198

problems and conducting a qualitative analysis to199

identify underlying error patterns.200

3 GSM-Ranges201

The majority of existing mathematical benchmarks202

are constrained to relatively limited numerical203

ranges. For instance, Madaan and Yazdanbakhsh204

(2022) reported that single-digit numbers constitute205

approximately 50% of the problems in the GSM8K206

dataset. To further investigate this trend, we ana-207

lyzed cumulative frequency distribution of numer-208

ical values across three widely used benchmarks:209

GSM8K (Cobbe et al., 2021), SVAMP (Patel et al.,210

2021), MATH (Hendrycks et al., 2021). As shown211

in Figure 1, our analysis reveals that in all three212
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Figure 1: Cumulative frequency distribution of nu-
merical values in questions and ground truth answers.
Numbers <1,000 account for 94.9% (GSM8K), 97.8%
(SVAMP), and 98.0% (MATH) of the values.

datasets, numbers below 1,000 (i.e., three digits 213

or fewer) account for 94.9% of values in GSM8K, 214

97.8% in SVAMP, and 98.0% in MATH. These find- 215

ings indicate that the mathematical capabilities of 216

current LLMs have primarily been evaluated within 217

a limited numerical range. To assess robustness 218

across wider ranges, we introduce GSM-Ranges, 219

a tool for generating datasets which encompass a 220

wider distribution of numerical values. 221

3.1 Selecting Base Problems from GSM8K 222

GSM-Ranges systematically modifies numerical 223

values in the GSM8K dataset. From the GSM8K 224

test set of 1,319 questions, we exclude those involv- 225

ing non-integer values or division in the ground 226

truth answers, as such cases could potentially cre- 227

ate logically incoherent problems (e.g., “Assign 5 228

people evenly to 2 separate rooms”). After filtering, 229

100 questions are randomly selected, with all num- 230

bers in the questions being single- or double-digit. 231

3.2 Perturbation Levels 232

We convert the 100 sampled questions into 233

Python templates to systematically adjust the nu- 234

merical values within the questions across var- 235

ious ranges. Specifically, we apply 6 levels 236

of perturbation: same-digit, 100–1,000, 1,000– 237

10,000, 10,000–100,000, 100,000–1,000,000, and 238

1,000,000–10,000,00, which we refer to as level 1 239

to level 6 perturbation, respectively. In same-digit 240

perturbation (level 1), we randomly replace each 241

number in the problem with a randomly chosen 242
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number with the same number of digits as the orig-243

inal number, thereby maintaining the similarity of244

the perturbed problems to the original. Addition-245

ally, we ensure that modified numbers are always246

different from the original values, preventing any247

duplication of the original problems. In 100-1000248

perturbation (level 2), we replace each number in249

the problem with a number randomly chosen in the250

range 100 to 1000. Levels 3-6 are done in similar251

manners with their respective ranges.252

All perturbations ensure non-negative final an-253

swers and intermediate values, as, similar to the254

case of fractional values, they can lead to logically255

incoherent math problems (e.g. “A store sells -7256

items in a day”, “Eat 10 apples out of 3 apples”).257

In addition, to prevent extreme scaling of final an-258

swers, we apply scaling selectively in cases involv-259

ing multiplication. Specifically, when the final an-260

swer is derived from a multiplication operation261

(e.g., (A+B)× (C +D−E)), we scale only one262

side of the multiplication—either A and B or C,263

D and E—while keeping the other side within the264

original numerical ranges. This approach maintains265

the final answer within manageable limits while in-266

troducing numerical variation in the problem, pre-267

venting the inclusion of excessively complex or268

computationally infeasible arithmetic operations269

for LLMs. An example of a problem generated270

with these crafted templates is shown in Table 1.271

4 Grading Methodology272

While modern LLMs perform well on basic arith-273

metic operations, their accuracy is reported to di-274

minish substantially as numerical magnitudes in-275

crease (Qian et al., 2023). However, conventional276

evaluation methods, which primarily compare fi-277

nal answers with ground truth values (Hong et al.,278

2024; Shakarian et al., 2023), fail to provide a com-279

plete picture of LLMs’ mathematical understand-280

ing as they do not distinguish computational errors281

from reasoning errors. To address this deficiency,282

we propose a novel and accurate grading methodol-283

ogy which not only determines whether the answer284

is correct or erroneous, but also categorizes the285

type of error.286

4.1 Error Definitions287

Our grading methodology first compares the final288

answer with the ground truth. If the answers match,289

the response is labeled as correct. Otherwise, there290

is an error. We define the error types as follows:291

Question
Numbers


List

Extract

 Generate Response

LLM 
Response

 Evaluate

GPT-4o

 Generate and 

      Execute Code

Code Output

 Evaluate

Correct
Non-logical


Error
Logical

Error

Response Grades

Matches with 
Ground Truth?

Yes

Yes

No

Matches with 
Ground Truth?

Yes No

Figure 2: Illustration of grading process for LLM re-
sponses using the GPT-4o model, categorizing outputs
into three labels: correct, non-logical error, and logical
error.

• Non-logical error: Errors that do not stem 292

from the reasoning process itself, such as arith- 293

metic errors or number-copy errors. The lat- 294

ter refers to inaccurately reproducing prob- 295

lem values (e.g., misrepresenting 1,337,042 296

as 13,337,042) and is observed in higher-level 297

perturbations in some models. 298

• Logical error: All errors not classified as 299

non-logical, such as but not limited to missing 300

steps, contradictory steps, or operator misuse. 301

It should be noted that responses classified 302

as logical errors may also include non-logical 303

errors. 304

4.2 Methodology Overview 305

To handle the extensive volume of responses, we 306

employ the GPT-4o model (OpenAI, 2024) to au- 307

tomate the evaluation. For a response that fails to 308

match the ground truth answer, we have GPT-4o 309

model translate the reasoning in the response into 310

Python code, which is then executed to generate a 311

new answer. The prompt is provided in Appendix 312

A.3. If the new answer aligns with the ground truth, 313
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Figure 3: Logical & non-logical error rates across different perturbation levels. The left panel illustrates the increase
in logical errors across the datasets, while the right panel depicts the rise in non-logical errors. Error rates are
reported relative to the baseline logical and non-logical error rates on the original GSM8K problems.

our methodology classifies the response as contain-314

ing a non-logical error; otherwise, it is classified as315

a logical error. A detailed illustration of the grading316

process is shown in figure 2.317

4.3 Number-Copy Errors318

Apart from arithmetic errors, we observe that319

number-copy errors are non-trivially present in320

some models under higher levels of perturbations321

(Appendix A.1.5). For instance, in the case of the322

Qwen 2.5 7B model (Qwen, 2024), 4 out of 100323

randomly sampled responses under level 6 pertur-324

bation demonstrate number-copy errors. To en-325

able the GPT-4o model to identify such errors, the326

model requires access to the numbers provided in327

the problem. Instead of providing the entire prob-328

lem, we supply the model with a list of extracted329

numbers from the problem text. This approach is330

motivated by our observation that providing the full331

problem tends to lead the model to revise logically332

flawed answers into logically correct ones. This be-333

havior aligns with the known tendency of LLMs to334

exhibit biases toward generating correct responses335

and their difficulty in intentionally producing incor-336

rect answers (Tjuatja et al., 2023; Kumar and Jain,337

2024). By limiting access to the original question,338

we minimize this undesired bias while enabling339

number-copy error correction.340

4.4 Validation 341

To validate our grading methodology, we perform a 342

careful manual analysis. We collect responses gen- 343

erated by nine models across six perturbation levels 344

from the experiments in Section 5, along with the 345

corresponding Python code produced by GPT-4o. 346

We randomly sample 200 of these responses and 347

and manually classify each one. We found that our 348

grading methodology correctly classified 197 of 349

the responses correctly, achieving a high accuracy 350

of 98.5%. Furthermore, we assessed GPT-4o’s abil- 351

ity to correct number-copy errors when going from 352

response to Python code. We identify 50 responses 353

across different models that contain such errors and 354

evaluate whether the generated code correctly fixes 355

them. Our manual review confirms that all 50 er- 356

rors are successfully corrected. These evaluation 357

results establish the reliability of our methodology. 358

5 Experiments and Results 359

Using GSM-Ranges and our proposed grading 360

methodology, we evaluate the mathematical rea- 361

soning capabilities of nine distinct models, includ- 362

ing both open-source and closed-source variants. 363

Recall that we begin with 100 randomly selected 364

GSM8K questions. For each question and for each 365

of the six perturbation levels, we generate 50 ran- 366

dom variations of the question. This process yields 367

a dataset of 5,000 problems per perturbation level. 368

For each perturbation level and each model, we 369
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Figure 4: Logical error gaps across perturbation levels.
For each model, the top bar represents the percentage
point difference in logical errors between Level 6 and
Level 1 perturbations, while the bottom bar indicates
the percentage point difference between Level 1 and the
original GSM8K questions.

obtain responses to the 5,000 questions and clas-370

sify the responses using our grading methodology.371

We then determine the percentages of correct an-372

swers, logical errors, and non-logical errors across373

the 5,000 responses. To compute confidence in-374

tervals, we leverage the structure of our dataset:375

each perturbation level consists of 50 distinct sets376

of questions derived from the original 100. We377

calculate the proportion of each error type within378

each set and then use these 50 sample proportions379

to estimate the corresponding confidence intervals,380

thereby quantifying the variability in model per-381

formance across perturbation instances. Addition-382

ally, we assess each model on the 100 unmodified383

base questions from GSM8K, providing a standard384

reference point for performance comparison. All385

inferences are done in the greedy decoding setting.386

5.1 Logical Errors387

5.1.1 Rising Trend of Logical Errors388

Since the perturbations alter only the numerical389

values while keeping the question structure intact,390

the logical reasoning required to solve the prob-391

lems remains unchanged across all perturbation392

levels. In principle, all perturbation levels should393

demand the same level of logical reasoning abil-394

ity. Surprisingly, however, while the degree varies 395

among the models, we observe a consistent upward 396

trend in logical errors as the perturbation level in- 397

creases, across all nine evaluated models (Figure 398

3) except GPT-4o. To quantify this trend, we cal- 399

culate the difference in logical error rates between 400

level 6 (1M–10M) and level 1 (same digit) pertur- 401

bations for each model (Figure 4). The most pro- 402

nounced discrepancy is exhibited by the Gemma 2 403

2B model, which shows a 14% absolute increase 404

in logical error rate. Similarly, the WizardMath 7B 405

v1.1 model demonstrates a substantial increase of 406

10%. Even the relatively more robust models, such 407

as Phi-3 Mini 4K and GPT-3.5 Turbo, still exhibit 408

an increase of approximately 4%, which remains 409

a significant deviation. GPT-4o, one of the most 410

advanced models at the time of our study, stands 411

out as the only model with a near-zero gap. These 412

results reveal the sensitivity of the models’ logical 413

reasoning to numerical scales. We conjecture this 414

phenomenon occurs because the models are mostly 415

trained with lower-range numbers, and test prob- 416

lems with large numbers are out of distribution. (A 417

qualitative analysis of additional logical errors in- 418

duced by increasing numerical values is provided 419

in Appendix A.4.) 420

Another noteworthy observation is that the in- 421

crease in logical errors becomes more gradual at 422

higher perturbation levels. Across all nine models, 423

the gap between level 3 and level 1 is generally 424

larger than that between level 6 and level 3. This 425

trend aligns with the cumulative frequency patterns 426

observed in Figure 1, which shows that low-range 427

values account for majority of numbers across the 428

most widely used benchmark datasets. While the 429

exact composition of training data for the models 430

remains unknown, if math-problem training data is 431

predominantly concentrated in the lower numerical 432

ranges, it is plausible that beyond a certain thresh- 433

old, further increases in numerical magnitude do 434

not lead to a significant difference in model perfor- 435

mance. Once numbers exceed this threshold, they 436

may all be similarly unfamiliar to the model due 437

to their low presence in the training data. Further 438

investigation is needed to validate this hypothesis. 439

5.1.2 Potential Data Contamination with 440

GSM8K Dataset 441

We also observe a notable logical error gap between 442

level 1 perturbation and the original questions for 443

many of the evaluated models (Figure 4). The 444

Gemma 2 2B model exhibits the largest gap at 6%, 445
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followed by Mistral 7B v0.1 with a 4% discrepancy.446

However, this pattern is not consistent across all447

models. For instance, Qwen 2.5 7B and GPT-4o448

show a gap of only about 1%, demonstrating better449

robustness. Moreover, Llama 3.2 3B and Phi-3450

Mini 4K exhibit a -2% gap, indicating an opposite451

trend.452

This result points to possibility of data contami-453

nation to the GSM8K dataset in certain models. No-454

tably, a similar finding was previously reported by455

Mirzadeh et al. (2024), but our study explores this456

issue in more depth by providing an explicit defini-457

tion of numerical-range similarity and establishing458

a clear distinction between logical and non-logical459

errors, further validating their conclusions.460

5.2 Arithmetic Errors461

5.2.1 Rising Trend of Arithmetic Errors462

Previous studies have shown that LLMs exhibit463

a significant decline in arithmetic accuracy as nu-464

merical values grow (Qian et al., 2023; Feng et al.,465

2024), and our result further confirms this trend.466

As shown in Figure 3, we also observe a consistent467

increase in non-logical errors. Given that number-468

copy errors account for only a small portion (Table469

7), the majority of these errors stem from arith-470

metic errors. Furthermore, because some responses471

classified as logical errors also include arithmetic472

errors, the true prevalence of arithmetic errors ex-473

ceeds what is suggested in the figure.474

5.2.2 Arithmetic Errors with Small Numbers475

Previous studies have found that state-of-the-art476

models have arithmetic accuracy on low-range477

numbers (Henighan et al., 2020; Yuan et al., 2023;478

Qian et al., 2023; Feng et al., 2024). However, we479

find that some models still show non-trivial per-480

centages of non-logical errors at level 1, such as481

Mistral 7B v0.1 at 9% and WizardMath 7B v1.1 at482

4%. This motivates further analysis on the patterns483

of these errors, which is discussed in section 6.3.484

6 In-depth Analysis485

6.1 Is the Correct Logic Present in the LLM?486

We observe that larger numerical values in math487

questions increase the likelihood of logical errors.488

However, although a sampled response may have489

a logical error, the correct logic may nevertheless490

be present in the model’s distribution. To inves-491

tigate this issue, we measure recall rates defined492

as follows: for each of 100 randomly generated493
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Figure 5: Recall rates across perturbation levels and
original GSM8K questions for different sampling sizes
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Figure 6: Results of o3-mini across perturbation levels.
The left plot displays the logical and non-logical error
counts, while the right plot shows the mean token counts
per 100 responses at each perturbation level.

questions, we obtain n responses (i.e., perform n- 494

passes) in a non-zero temperature setting (temper- 495

ature = 0.8, top_p = 0.95) and, using our grading 496

methodology, count the number of questions for 497

which the correct logic appears in at least one of 498

the passes. We perform this experiment over all six 499

perturbation levels, and for a varying number of 500

passes ranging from n = 1 to n = 48. 501

As shown in Figure 5, for all four models, as 502

the number of passes n increases, we observe (1) 503

a higher recall rate, and (2) smaller gaps across 504

perturbation levels. At the highest sample size of 505

48, the gap between level 1 and 6 is no more than 506

2 for any model, indicating that the correct logic 507

exists within the model’s distribution despite larger 508

numerical values. This suggests that training on 509

broader numerical ranges or leveraging test-time 510

computation could improve numerical consistency. 511

6.2 Performance of Reasoning Model 512

The growing prominence of reasoning models 513

(OpenAI, 2025; Guo et al., 2025) naturally raises 514

7



Model Level 1 Level 2
Gemma 2 2B 15/134 (11.2%) 126/735 (17.1%)
WizardMath 7B v1.1 41/117 (35.0%) 186/806 (23.1%)
Mistral 7B v0.1 73/299 (21.4%) 274/1313 (20.9%)
Mathstral 7B v0.1 31/77 (40.2%) 126/509 (24.8%)
Llama 3.2 3B 3/72 (4.2%) 127/1480 (8.6%)
Qwen 2.5 7B 7/18 (38.9%) 52/155 (33.5%)
Phi 3 Mini 4K 9/22 (40.9%) 89/281 (31.7%)
GPT-3.5 Turbo 10/18 (55.6%) 92/224 (41.1%)
GPT-4o 1/3 (33.3%) 20/40 (50%)

Table 2: Results of a standalone arithmetic assessment
on arithmetic errors made by models under Level 1 and
Level 2 perturbations.

the question of their performance across different515

perturbation levels. To explore this, we evaluate o3-516

mini—one of the most advanced reasoning models517

at the time of our study—on a set of 100 problems518

for each perturbation level. As shown in Figure519

6, o3-mini maintains consistently low logical and520

non-logical error rates across perturbation levels,521

demonstrating its robustness to varying numerical522

scales.523

We also record the average token count for 100524

responses at each perturbation level and observe525

that the model generates more tokens as the per-526

turbation level increases (Figure 6). While this527

increase may partly stem from larger numerical val-528

ues requiring more tokens for representation and529

complex arithmetic, it also suggests that changes530

in numerical scale might lead the model to per-531

ceive the tasks as more challenging, possibly due to532

its training data being primarily focused on lower-533

range numbers. Additionally, the model produces534

more tokens for same-digit perturbations compared535

to the original GSM8K questions. This raises536

the possibility of data contamination, allowing the537

model to arrive at the correct final answer with less538

reasoning.539

6.3 Arithmetic Error Patterns540

Previous studies have evaluated the arithmetic ac-541

curacy of LLMs in a standalone setting, i.e., di-542

rectly posing arithmetic questions like "What is 1 +543

2?" (Yang et al., 2023; Maltoni and Ferrara, 2024;544

Yuan et al., 2023; Qian et al., 2023; Feng et al.,545

2024). However, little attention has been paid to546

whether their arithmetic performance remains ro-547

bust when these operations are embedded within548

natural language responses. To investigate this, we549

conduct an experiment by collecting all responses550

containing arithmetic errors from all models under551

level 1 and 2 perturbations, and then extracting the552

specific arithmetic operations that were answered 553

incorrectly. We subsequently prompt the models 554

to solve these arithmetic operations in a standalone 555

setting. 556

As shown in Table 2, while the extent varies, 557

the models perform significantly better when the 558

arithmetic task is isolated. We hypothesize that this 559

phenomenon occurs because LLMs predominantly 560

rely on memorization for arithmetic operations, 561

since they train largely on standalone arithmetic 562

data (Yuan et al., 2023; Yang et al., 2023; Mal- 563

toni and Ferrara, 2024). This results in degraded 564

performance when these operations are integrated 565

into a natural language context, which is out-of- 566

distribution for the LLMs. 567

7 Conclusion 568

In this work, we introduce GSM-Ranges, a bench- 569

mark designed to evaluate LLMs’ reasoning abili- 570

ties across diverse numerical scales. Additionally, 571

we propose a novel grading methodology that clas- 572

sifies erroneous into logical and non-logical cate- 573

gories. Through extensive experiments on various 574

models using GSM-Ranges and our grading frame- 575

work, we find that logical accuracy tend to degrade 576

significantly as perturbation level rises, revealing 577

LLMs’ sensitivity to numerical scales. Further- 578

more, while LLMs perform well on isolated arith- 579

metic tasks, their accuracy declines significantly 580

when calculations are integrated into natural lan- 581

guage contexts. This study provides a more precise 582

assessment of LLMs’ mathematical reasoning and 583

paves the way for future research on improving 584

mathematical reasoning capabilities and develop- 585

ing models that can generalize more effectively 586

across diverse mathematical problem settings. 587

8 Limitations 588

Due to resource constraints, our study primarily 589

focuses on small, lightweight models. While we 590

have evaluated GPT-4o and o3-mini, future work 591

could extend the analysis to other advanced models. 592

Additionally, our perturbation study is conducted 593

on the GSM8K dataset, and exploring the impact of 594

varying numerical ranges on performance in more 595

complex mathematical tasks would further enrich 596

the findings. Lastly, while our grading methodol- 597

ogy distinguishes between logical and non-logical 598

errors, a more granular grading methodology could 599

offer deeper insights into model performance and 600

refinement. 601
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A Appendix 782

A.1 Experiment Results 783

A.1.1 Logical Error Rates 784

Model Baseline
Perturbation Levels

Lv.1 Lv.2 Lv.3 Lv.4 Lv.5 Lv.6
Gemma 2 2B 18 24.3(0.8) 30.9(0.6) 32.3(0.7) 35.1(0.6) 36.8(0.8) 38.5(0.8)
GPT-3.5 Turbo 11 13.5(0.5) 15.0(0.8) 17.5(0.6) 17.3(0.7) 16.9(0.6) 17.3(0.6)
GPT-4o 4 5.1(0.4) 6.9(0.3) 6.9(0.3) 6.2(0.3) 5.0(0.3) 5.3(0.3)
Llama 3.2 3B 17 14.5(0.5) 17.0(0.6) 19.3(0.7) 18.7(0.7) 19.4(0.6) 19.4(0.6)
Mathtral 7B v0.1 7 9.0(0.5) 11.6(0.5) 12.4(0.5) 13.9(0.5) 15.2(0.6) 14.8(0.6)
Mistral 7B v0.1 29 33.3(0.9) 37.5(0.9) 38.5(0.9) 40.7(0.7) 42.4(0.8) 43.3(0.8)
Phi 3 Mini 4K 10 7.7(0.4) 9.1(0.4) 10.7(0.4) 11.2(0.5) 11.2(0.5) 12.2(0.5)
Qwen 2.5 7B 4 5.0(0.4) 7.8(0.5) 9.0(0.5) 10.2(0.5) 10.1(0.6) 9.9(0.5)
Wizardmath 7B v1.1 7 8.1(0.5) 14.0(0.6) 15.7(0.7) 16.4(0.7) 17.6(0.6) 19.1(0.6)
o3-mini 5 5 6 5 4 6 4

Table 3: Logical error rates and confidence intervals across different GSM-Ranges perturbation levels.

A.1.2 Non-Logical Error Rates 785

Model Baseline
Perturbation Levels

Lv.1 Lv.2 Lv.3 Lv.4 Lv.5 Lv.6
Gemma 2 2B 3 3.6(0.4) 14.7(0.9) 21.6(0.8) 25.9(0.9) 29.6(1.1) 37.2(1.2)
GPT-3.5 Turbo 0 0.5(0.2) 5.1(0.5) 12.7(0.8) 18.1(0.8) 35.0(1.0) 38.6(1.0)
GPT-4o 0 0.1(0.1) 0.8(0.2) 2.7(0.3) 3.6(0.3) 5.2(0.4) 5.2(0.6)
Llama 3.2 3B 2 1.9(0.3) 25.1(1.1) 49.5(1.2) 59.1(1.2) 61.8(0.9) 68.8(0.9)
Mathtral 7B v0.1 2 2.0(0.4) 10.1(0.8) 14.8(0.8) 19.3(1.1) 23.0(0.9) 27.6(1.0)
Mistral 7B v0.1 12 9.3(0.5) 25.1(1.2) 31.0(1.1) 34.9(1.2) 38.6(1.2) 42.0(1.1)
Phi 3 Mini 4K 1 0.5(0.2) 6.2(0.4) 10.5(0.7) 15.8(1.0) 21.4(0.9) 28.0(1.1)
Qwen 2.5 7B 0 0.4(0.2) 3.8(0.5) 7.0(0.6) 9.9(0.7) 12.1(0.9) 16.4(0.9)
Wizardmath 7B v1.1 2 4.1(0.6) 15.5(0.7) 24.3(1.2) 31.0(1.0) 35.6(1.2) 42.5(1.3)
o3-mini 0 0 0 0 1 2 0

Table 4: Non-logical error rates and & confidence intervals across different GSM-Ranges perturbation levels.
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A.1.3 Recall Rates for Correct Logics786

Model Sample Size
GSM8K Perturbation Levels
Baseline Lv.1 Lv.2 Lv.3 Lv.4 Lv.5 Lv.6

Gemma 2 2B

1 82 74 69 68 67 61 59
8 92 89 87 87 87 84 84
32 95 91 92 89 92 89 92
48 95 92 93 92 92 92 94

Mistral 7B v0.1

1 66 66 61 60 51 59 50
8 89 88 82 87 84 81 83
32 97 93 90 93 93 93 93
48 97 95 91 93 96 93 95

Mathtral 7B v0.1

1 90 85 82 86 85 86 84
8 94 92 88 90 92 92 91
32 96 93 88 92 94 92 94
48 96 94 89 93 94 93 94

Wizardmath 7B v1.1

1 92 84 85 83 84 78 78
8 98 95 93 94 92 90 94
32 99 97 98 95 94 93 95
48 99 97 98 96 94 93 95

Table 5: Recall rates across different sampling sizes and GSM-Ranges perturbation levels. We use

A.1.4 Mean Token Counts of o3-mini Responses787

Baseline Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
Mean Token Count 252.8 287.6 340.6 378.8 429.3 501.0 579.8

Table 6: Mean token counts across GSM-Ranges perturbation levels for o3-mini responses

A.1.5 Number-Copy Error Analysis788

Model Lv. 4 Lv. 5 Lv. 6
Qwen 2.5 7B 0 2 4
Llama 3.2 3B 0 0 1
Mathstral 7B v0.1 0 0 1
Phi 3 Mini 4K 0 0 1
Gemma 2 2B 0 0 0
GPT-3.5 Turbo 0 0 0
GPT-4o 0 0 0
Mistral 7B v0.1 0 0 0
Wizardmath 7B v1.1 0 0 0

Table 7: Occurrences of Number-Copy Errors in 100 Random Samples Across Levels 4, 5, and 6 for Each Model.

For each of the nine base models, we sampled 100 responses per level from the level 4, 5, and 6789

perturbations to evaluate number-copy error rates. As shown in Table 7, 4 out of the 8 base models790

exhibited number-copy errors under level 6 perturbation, while only one model showed errors under level791

5, and none were observed at level 4.792
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A.2 Full Prompt for Inference 793

The full prompt used for inferences in the experiments is shown below: 794

Zero-shot Prompt for Inferences

As an expert problem solver, solve the following mathematical question step by step.
Q: {Question}
A: Let’s think step by step.

795
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A.3 Python Code Generation Prompt796

Below is the prompt provided to the GPT-4o model for translating LLMs’ responses into Python code.797

We introduce a step to verbalize the response logic prior to code generation, as this process is found to798

improve the alignment between the generated code and the original response. The temperature is set to 0799

in the code generation process.800

Python Code Generation Prompt

You are tasked with writing Python code that replicates the logic described in a given response to a
math problem. Your code must strictly follow the exact reasoning steps provided in the response,
regardless of whether the logic is correct, inconsistent, or flawed.

1. Do not fix or modify the reasoning described in the response, even if they seem incorrect or
nonsensical.

2. Develop a Python function named solver() that replicates the logic in the response exactly
as described:

• Define and assign all necessary variables within the function.
• The function must not take any external arguments.
• The function must return the computed final numerical result.

3. Ensure that all arithmetic operations described in the response are explicitly written as code.
Avoid directly copying the results of these operations or the final answer from the response.

4. Refer to the list of numbers extracted from the question provided to ensure any copied
numbers in the response match the original numbers.

• If a number in the response is incorrectly copied (e.g., misrepresenting 1333785 as
133785 or 13333785), correct the number in your code and document the correction as a
comment in the code.

5. Include an explanation in the explain field that describes the steps and logic from the
response, regardless of correctness.

6. Provide the output in the following format:

{
“extracted_answer”: “<final numerical value of the answer>”,
“explain”: “<detailed explanation of the response logic>”,
“python_code”: “```python\n<generated Python function>\n```”

}

• This is the list of numbers extracted from the question: {number_list}.

• This the response: {response}.
801
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A.4 Various Types of Additional Logical Errors in Level 6 Perturbation 802

We conducted a qualitative analysis of additional logical errors induced by increasing numerical values, 803

focusing on cases with the greatest rise in errors across perturbation levels among the questions derived 804

from the same base GSM8K questions for each model. Our findings reveal a diverse range of errors without 805

a consistent pattern. Below, we present examples of logical errors exhibited under level 6 perturbation. 806

While some errors were entirely absent at level 1 and emerged only at level 6, others, though rare at level 807

1, became significantly more frequent. The displayed LLM responses have been edited for readability, 808

with any arithmetic errors corrected. 809

Example 1: Missing Step Error

Question:
Laurel’s friend gave her 8 852 986 baby outfits that her child no longer needed. At her baby shower,
Laurel received twice that amount in new baby outfits. Then, Laurel’s mom gifted her with another
5 309 889 baby outfits. How many outfits does she have for her baby?

Ground Truth:

• Laurel’s friend gave her 8 852 986 outfits.

• At the baby shower, she received twice that amount:

2× 8852986 = 17705972

• Adding all outfits together:

8852986 + 17705972 + 5309889 = 31868847

LLM Response:

1. Compute the baby shower outfits:

8852986× 2 = 17705972

2. Compute the total outfits:

17705972 + 5309889 = 23015861

Error:
The model ignores the original 8 852 986 outfits from Laurel’s friend.

810
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Example 2: Operator Error

Question:
Finn watches 9 360 266 tadpoles swimming in the pond. Suddenly, Finn sees 7 180 820 of them
come out of hiding from under a lily pad, then sees 12 947 038 of them hide under a rock. How
many tadpoles can Finn see in the pond now?

Ground Truth:
• Initially, Finn sees 9 360 266 tadpoles.

• 7 180 820 tadpoles come out from hiding, so the new visible count is:

9360266 + 7180820 = 16541086

• Then, 12 947 038 tadpoles hide under a rock, reducing the visible count:

16541086− 12947038 = 3594048

LLM Response:

1. Compute the new visible tadpoles after some emerge:

9360266 + 7180820 = 16541186

2. Since 12947038 more hide under the rock, add them as well:

16541186 + 12947038 = 29488224

Error:
The model makes an operator error by incorrectly adding the 12 947 038 tadpoles that hid under
the rock instead of subtracting them.

811
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Example 3: Contextual Value Error

Question:
Gloria is shoe shopping when she comes across a pair of boots that fit her shoe budget. However,
she has to choose between the boots and two pairs of high heels that together cost 4 528 570 dollars
less than the boots. If one pair of heels costs 3 392 343 dollars and the other costs twice as much,
how many dollars are the boots?

Ground Truth:
• The second pair of heels costs:

3392343× 2 = 6784686

• The total cost of both pairs of heels:

6784686 + 3392343 = 10177029

• The boots cost 4 528 570 dollars more than both pairs of heels:

10177029 + 4528570 = 14705599

LLM Response:

1. Compute the second pair of heels’ cost:

3392343× 2 = 6784686

2. Compute the total cost of both pairs of heels:

6784686 + 3392343 = 10177029

3. The total cost of the heels is $10177029 less than the boots, so the boots’ price is:

10177029 + 10177029 = 20354058

Error:
The model makes a contextual value error by mismatching the numerical value with the corre-
sponding entity. Instead of using 4 528 570 dollars as the price difference between the boots and
the two pairs of high heels, it incorrectly uses the total cost of the heels.

812
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Example 4: Question Misinterpretation Error

Question:
Mary is 1 922 674 years younger than Joan, who is 2 112 084 years older than Jessa. If Jessa is
1 840 103 years old, what is the sum of the ages of the three girls?

Ground Truth:
• Joan’s age:

1840103 + 2112084 = 3952187

• Mary’s age:
3952187− 1922674 = 2029513

• Sum of all ages:
1840103 + 3952187 + 2029513 = 7821803

LLM Response:

1. Joan is 2 112 084 years old and Jessa is 1 840 103 years old.

2. Mary is 1 922 674 years younger than Joan, which means:

2112084− 1922674 = 1919410

3. Now we can find the sum of their ages:

2112084 + 1840103 + 1919410 = 5861607

Error:
The model misinterprets the question by incorrectly treating Joan’s age difference from Jessa as her
actual age. Instead of computing Joan’s age based on her relationship to Jessa, it directly assigned
2 112 084 as Joan’s age.

813
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Example 5: Omitted Information Error

Question:
Mary is 1 922 674 years younger than Joan, who is 2 112 084 years older than Jessa. If Jessa is
1 840 103 years old, what is the sum of the ages of the three girls?

Ground Truth:
• Joan’s age:

1840103 + 2112084 = 3952187

• Mary’s age:
3952187− 1922674 = 2029513

• Sum of all ages:
1840103 + 3952187 + 2029513 = 7821803

LLM Response:

1. Mary is 1 922 674 years younger than Joan, who is 2 112 084 years older than Jessa.

2. This can be written as:
Joan = Jessa + 2112084

Mary = Joan − 1922674 = Jessa + 2112084− 1922674 = Jessa + 189410

3. Substituting the expressions for Joan and Mary, we get:

Mary + Joan + Jessa = (Jessa + 2112084) + (Jessa + 189410) + Jessa

4. Simplifying this expression, we get:

Mary + Joan + Jessa = 3× Jessa + 2301494

Error:
The model makes an omitted information error by failing to utilize the given value of Jessa’s age
(1 840 103) in the final computation. Instead of calculating the actual sum of their ages, it leaves
the expression in terms of Jessa’s age without substitution, leading to an incomplete and incorrect
result.
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