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Abstract

Mathematical reasoning in Large Language
Models (LLMs) is often evaluated using bench-
marks with limited numerical ranges, failing
to reflect real-world problem-solving across di-
verse scales. Furthermore, most existing evalu-
ation methods only compare model outputs to
ground-truth answers, obscuring insights into
reasoning processes. To address these limi-
tations, we introduce GSM-Ranges, a dataset
generator derived from GSMS8K that systemati-
cally perturbs numerical values in math prob-
lems to assess model robustness across varying
numerical scales. Additionally, we propose a
novel grading methodology that distinguishes
between logical and non-logical errors, offer-
ing a more precise evaluation of reasoning pro-
cesses beyond computational accuracy. Our
experiments with various models reveal a sig-
nificant increase in logical error rates—up to
14 percentage points—as numerical complexity
rises, demonstrating a general weakness in rea-
soning with out-of-distribution numerical val-
ues. Moreover, while models demonstrate high
accuracy on standalone arithmetic tasks, their
performance deteriorates substantially when
computations are embedded within word prob-
lems. These findings provide a comprehensive
evaluation of LLMs’ mathematical reasoning
capabilities and inform future research direc-
tions for improving numerical generalization in
language models. !

1 Introduction

Mathematical reasoning with Large Language
Models (LLMs) has recently been the subject of sig-
nificant attention (Wei et al., 2022; OpenAl, 2024;
Ahn et al., 2024). However, the current evaluation
methodologies for these systems exhibit notable
limitations. First, existing benchmarks primarily
focus on problems with limited numerical ranges

!Code and relevant dataset available at https://
anonymous . 4open.science/r/GSM-Ranges-F384

GSMSK

Judy teaches S dance classes every day on the week-
days and 8 classes on Saturday. If each class has
15 students and she charges $15 per student, how
much money does she make in 1 week?

GSM-Ranges (Level 6 Perturbation)

Judy teaches 3,124,213 dance classes every day on
the weekdays and 7,832,129 classes on Saturday.
If each class has 25 students and she charges $35
per student, how much money does she make in 1
week?

Table 1: An example of a question generated by GSM-
Ranges tool, derived from a base problem from the
GSMBSK dataset.

(Madaan and Yazdanbakhsh, 2022), leaving a sig-
nificant gap between the controlled evaluations and
real-world settings. Second, traditional grading ap-
proaches typically compare LLMs’ final answers
directly with the ground truth answers (Hong et al.,
2024; Shakarian et al., 2023), a practice that con-
flates logical and numerical errors, thereby obscur-
ing a deep understanding of the LLM’s reasoning
capabilities. This motivates the need for a better
evaluation approach that not only handles numbers
across wide numerical ranges but also distinguishes
between logical and arithmetic errors.

This paper makes three contributions. First, we
introduce publicly available GSM-Ranges, a tool
for generating datasets that are designed to eval-
uate error rates and error types across diverse nu-
merical ranges. Derived from the GSM8K dataset
(Cobbe et al., 2021), GSM-Ranges systematically
organizes problems into distinct numerical inter-
vals. Specifically, GSM-Ranges applies six distinct
levels of perturbations to GSM8K questions, replac-
ing existing numbers with random values across


https://anonymous.4open.science/r/GSM-Ranges-F384
https://anonymous.4open.science/r/GSM-Ranges-F384

six distinct scales.

Second, we introduce a novel grading method-
ology that distinguishes between logical and non-
logical errors. We claim that a solution should
be deemed logically valid if computational inac-
curacies can be corrected and the revised answer
matches the ground truth. Conversely, if the final
answer remains incorrect despite eliminating such
errors, we infer a fundamental flaw in the reasoning
process. To automate this assessment, our method-
ology employs GPT-40 model (OpenAl, 2024) to
translate a LL.M-generated response into Python
code that accurately captures the underlying logic.
By executing this code, we isolate non-logical er-
rors and compute the corrected final answer, which
is then compared with the ground truth to assess
logical correctness. We also perform a careful eval-
uation of our automated grading methodology, and
confirm its high level of accuracy for distinguishing
between the two error types.

Third, using our grading methodology and our
GSM-Ranges tool, we analyze various open-source
and proprietary LLM models. This leads to several
findings:

* Previous works have shown that arithmetic
errors become more pronounced for larger
numbers (Qian et al., 2023; Feng et al., 2024).
We find that this trend applies to logical er-
rors as well, with the worst-case logical error
rate increasing by up to 14 absolute percent-
age points as perturbation levels rise. This is
surprising since the logical reasoning process
required to solve the problems remains un-
changed despite the numerical modifications.
Nevertheless, we still observe an increase in
logical errors as perturbation levels rise, sug-
gesting that the logical reasoning in LLMs
tends to exacerbate for out-of-distribution nu-
merical values, compromising their robust-
ness in handling broader numerical scales.

* Previous studies have demonstrated that
LLMs achieve high accuracy on standalone
arithmetic tasks with in-distribution numbers
(e.g., “36x6=7") (Yang et al., 2023; Maltoni
and Ferrara, 2024; Yuan et al., 2023; Mirzadeh
et al., 2024; Xie et al., 2024). While we con-
firm these findings, our results further reveal
that the accuracy of arithmetic computations
significantly deteriorates when the calcula-
tions are embedded within word problems
(e.g., “36 apples from Jackx6 = ? apples”).

By introducing GSM-Ranges and a novel grading
methodology, this work aims to provide a more
comprehensive evaluation of mathematical reason-
ing in LLMs. Our approach not only isolates log-
ical and arithmetic errors but also assesses model
robustness across a broad range of numerical val-
ues. These insights pave the way for future research
on improving LLMs’ mathematical reasoning capa-
bilities and developing models that can generalize
more effectively across diverse mathematical prob-
lem settings.

2 Related Work

LLM Sensitivity to Perturbations. Several prior
studies (Stolfo et al., 2022; Hooda et al., 2024,
Jiang et al., 2024; Guo et al., 2024) have explored
the sensitivity of LLMs to perturbations in input
problems, demonstrating significant performance
degradation even when the underlying logic
remains the same. In the domain of mathematical
word problems (MWPs), particularly on the
GSMS8K benchmark, this degradation has been
observed when numbers are slightly changed
from the original question. (Li et al., 2024a;
Mirzadeh et al., 2024; Shi et al., 2023). However,
existing approaches often constrain substituted
values to a limited numerical range (Stolfo et al.,
2022) or use numbers that remain comparable
to the original values, which tend to be small
(Li et al., 2024a; Mirzadeh et al., 2024; Madaan
and Yazdanbakhsh, 2022). In this paper, we
go beyond the narrow constraints previously
studied, providing a comprehensive investigation
into how different numerical ranges can impact
mathematical abilities in LLMs.

Evaluation of Mathematical Correctness. Prior
correctness evaluations (grading) predominantly
rely on ground-truth comparisons (Shakarian et al.,
2023; Fu et al., 2023; Hong et al., 2024; Frieder
et al., 2024). However, such a straightforward ap-
proach does not distinguish between logical and
non-logical errors, and therefore cannot alone ac-
curately assess an LLM’s mathematical reasoning
capabilities. Previous studies have explored sim-
ple prompting strategies for evaluation, finding that
while LLMs perform well in generating correct
answers to benchmark questions, they struggle to
identify and diagnose errors in solutions to those
same questions. This difficulty is particularly pro-
nounced for non-logical errors, highlighting a fun-



damental gap in their problem comprehension (Li
et al., 2024b; Zeng et al., 2024). A straightforward
alternative involves using external tools, such as
calculators, to mitigate non-logical errors. How-
ever, this approach requires fine-tuning models to
follow a specific format and does not always pro-
duce reliable results (Schick et al., 2023; Cobbe
et al., 2021). To address these challenges, we intro-
duce a novel automated grading methodology that
eliminates the need for fine-tuning while effectively
differentiating between logical and non-logical er-
rors. This enables a more precise assessment of
how mathematical reasoning deteriorates under var-
ious numerical conditions.

Arithmetic Errors Due to Perturbations. Past
studies have shown that LLMs handle basic arith-
metic reasonably well when the arithmetic involves
small numbers in standalone queries like "What
is x + y?", a skill often linked to memorization
(Yang et al., 2023; Maltoni and Ferrara, 2024; Yuan
et al., 2023; Qian et al., 2023; Feng et al., 2024).
Performance drops significantly in more complex
cases, such as multi-step equations, large numbers,
and multiplication (Kao et al., 2024; Yuan et al.,
2023; Yang et al., 2023; Feng et al., 2024; Qian
et al., 2023). Background context can further affect
arithmetic reasoning, introducing additional incon-
sistencies (Abedin et al., 2025). Current research
applying perturbations to widely used benchmarks
like GSMS8K involve basic arithmetic; thus, arith-
metic errors are assumed to be minimal. (Mirzadeh
et al., 2024; Xie et al., 2024; Anand et al., 2024).
However, a deeper understanding of the nature
and frequency of arithmetic errors remains lack-
ing. This study addresses this gap by systematically
quantifying arithmetic errors in mathematical word
problems and conducting a qualitative analysis to
identify underlying error patterns.

3 GSM-Ranges

The majority of existing mathematical benchmarks
are constrained to relatively limited numerical
ranges. For instance, Madaan and Yazdanbakhsh
(2022) reported that single-digit numbers constitute
approximately 50% of the problems in the GSM8K
dataset. To further investigate this trend, we ana-
lyzed cumulative frequency distribution of numer-
ical values across three widely used benchmarks:
GSMBS8K (Cobbe et al., 2021), SVAMP (Patel et al.,
2021), MATH (Hendrycks et al., 2021). As shown
in Figure 1, our analysis reveals that in all three
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Figure 1: Cumulative frequency distribution of nu-
merical values in questions and ground truth answers.
Numbers <1,000 account for 94.9% (GSMS8K), 97.8%
(SVAMP), and 98.0% (MATH) of the values.

datasets, numbers below 1,000 (i.e., three digits
or fewer) account for 94.9% of values in GSM8K,
97.8% in SVAMP, and 98.0% in MATH. These find-
ings indicate that the mathematical capabilities of
current LL.Ms have primarily been evaluated within
a limited numerical range. To assess robustness
across wider ranges, we introduce GSM-Ranges,
a tool for generating datasets which encompass a
wider distribution of numerical values.

3.1 Selecting Base Problems from GSM8SK

GSM-Ranges systematically modifies numerical
values in the GSM8K dataset. From the GSM8K
test set of 1,319 questions, we exclude those involv-
ing non-integer values or division in the ground
truth answers, as such cases could potentially cre-
ate logically incoherent problems (e.g., “Assign 5
people evenly to 2 separate rooms”). After filtering,
100 questions are randomly selected, with all num-
bers in the questions being single- or double-digit.

3.2 Perturbation Levels

We convert the 100 sampled questions into
Python templates to systematically adjust the nu-
merical values within the questions across var-
ious ranges. Specifically, we apply 6 levels
of perturbation: same-digit, 100-1,000, 1,000—
10,000, 10,000-100,000, 100,000-1,000,000, and
1,000,000-10,000,00, which we refer to as level 1
to level 6 perturbation, respectively. In same-digit
perturbation (level 1), we randomly replace each
number in the problem with a randomly chosen



number with the same number of digits as the orig-
inal number, thereby maintaining the similarity of
the perturbed problems to the original. Addition-
ally, we ensure that modified numbers are always
different from the original values, preventing any
duplication of the original problems. In 100-1000
perturbation (level 2), we replace each number in
the problem with a number randomly chosen in the
range 100 to 1000. Levels 3-6 are done in similar
manners with their respective ranges.

All perturbations ensure non-negative final an-
swers and intermediate values, as, similar to the
case of fractional values, they can lead to logically
incoherent math problems (e.g. “A store sells -7
items in a day”, “Eat 10 apples out of 3 apples”).
In addition, to prevent extreme scaling of final an-
swers, we apply scaling selectively in cases involv-
ing multiplication. Specifically, when the final an-
swer is derived from a multiplication operation
(e.g., (A+ B) x (C+ D — E)), we scale only one
side of the multiplication—either A and B or C,
D and E—while keeping the other side within the
original numerical ranges. This approach maintains
the final answer within manageable limits while in-
troducing numerical variation in the problem, pre-
venting the inclusion of excessively complex or
computationally infeasible arithmetic operations
for LLMs. An example of a problem generated
with these crafted templates is shown in Table 1.

4 Grading Methodology

While modern LLMs perform well on basic arith-
metic operations, their accuracy is reported to di-
minish substantially as numerical magnitudes in-
crease (Qian et al., 2023). However, conventional
evaluation methods, which primarily compare fi-
nal answers with ground truth values (Hong et al.,
2024; Shakarian et al., 2023), fail to provide a com-
plete picture of LLMs’ mathematical understand-
ing as they do not distinguish computational errors
from reasoning errors. To address this deficiency,
we propose a novel and accurate grading methodol-
ogy which not only determines whether the answer
is correct or erroneous, but also categorizes the
type of error.

4.1 Error Definitions

Our grading methodology first compares the final
answer with the ground truth. If the answers match,
the response is labeled as correct. Otherwise, there
is an error. We define the error types as follows:
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Figure 2: Illustration of grading process for LLM re-
sponses using the GPT-40 model, categorizing outputs
into three labels: correct, non-logical error, and logical
error.

* Non-logical error: Errors that do not stem
from the reasoning process itself, such as arith-
metic errors or number-copy errors. The lat-
ter refers to inaccurately reproducing prob-
lem values (e.g., misrepresenting 1,337,042
as 13,337,042) and is observed in higher-level
perturbations in some models.

* Logical error: All errors not classified as
non-logical, such as but not limited to missing
steps, contradictory steps, or operator misuse.
It should be noted that responses classified
as logical errors may also include non-logical
erTors.

4.2 Methodology Overview

To handle the extensive volume of responses, we
employ the GPT-40 model (OpenAl, 2024) to au-
tomate the evaluation. For a response that fails to
match the ground truth answer, we have GPT-40
model translate the reasoning in the response into
Python code, which is then executed to generate a
new answer. The prompt is provided in Appendix
A.3. If the new answer aligns with the ground truth,



Gemma-2 2b
Mistral-7b-v0.1

I Mathstral-7b-v0.1
Il WizardMath-7b-v1.1

Logical Errors

20
(0]
£
2
A 15
m
I
o 10
[T
0]
©
o 5
(9}
£
X 0

> v > e ‘9 ©
> > > > S >

I Qwen-2.5-7b

N LLaMa-3.2-3b
Il Gpt-3.5-Turbo

I Gpt-4o
Phi-3-mini-4k

Non-Logical Errors
70

60
50

40

> Y > s W) ©
o o o >

Perturbation Level

Figure 3: Logical & non-logical error rates across different perturbation levels. The left panel illustrates the increase
in logical errors across the datasets, while the right panel depicts the rise in non-logical errors. Error rates are
reported relative to the baseline logical and non-logical error rates on the original GSM8K problems.

our methodology classifies the response as contain-
ing a non-logical error; otherwise, it is classified as
a logical error. A detailed illustration of the grading
process is shown in figure 2.

4.3 Number-Copy Errors

Apart from arithmetic errors, we observe that
number-copy errors are non-trivially present in
some models under higher levels of perturbations
(Appendix A.1.5). For instance, in the case of the
Qwen 2.5 7B model (Qwen, 2024), 4 out of 100
randomly sampled responses under level 6 pertur-
bation demonstrate number-copy errors. To en-
able the GPT-40 model to identify such errors, the
model requires access to the numbers provided in
the problem. Instead of providing the entire prob-
lem, we supply the model with a list of extracted
numbers from the problem text. This approach is
motivated by our observation that providing the full
problem tends to lead the model to revise logically
flawed answers into logically correct ones. This be-
havior aligns with the known tendency of LLMs to
exhibit biases toward generating correct responses
and their difficulty in intentionally producing incor-
rect answers (Tjuatja et al., 2023; Kumar and Jain,
2024). By limiting access to the original question,
we minimize this undesired bias while enabling
number-copy error correction.

4.4 Validation

To validate our grading methodology, we perform a
careful manual analysis. We collect responses gen-
erated by nine models across six perturbation levels
from the experiments in Section 5, along with the
corresponding Python code produced by GPT-4o.
We randomly sample 200 of these responses and
and manually classify each one. We found that our
grading methodology correctly classified 197 of
the responses correctly, achieving a high accuracy
of 98.5%. Furthermore, we assessed GPT-40’s abil-
ity to correct number-copy errors when going from
response to Python code. We identify 50 responses
across different models that contain such errors and
evaluate whether the generated code correctly fixes
them. Our manual review confirms that all 50 er-
rors are successfully corrected. These evaluation
results establish the reliability of our methodology.

S Experiments and Results

Using GSM-Ranges and our proposed grading
methodology, we evaluate the mathematical rea-
soning capabilities of nine distinct models, includ-
ing both open-source and closed-source variants.
Recall that we begin with 100 randomly selected
GSMSK questions. For each question and for each
of the six perturbation levels, we generate 50 ran-
dom variations of the question. This process yields
a dataset of 5,000 problems per perturbation level.
For each perturbation level and each model, we
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Figure 4: Logical error gaps across perturbation levels.
For each model, the top bar represents the percentage
point difference in logical errors between Level 6 and
Level 1 perturbations, while the bottom bar indicates
the percentage point difference between Level 1 and the
original GSMS8K questions.

obtain responses to the 5,000 questions and clas-
sify the responses using our grading methodology.
We then determine the percentages of correct an-
swers, logical errors, and non-logical errors across
the 5,000 responses. To compute confidence in-
tervals, we leverage the structure of our dataset:
each perturbation level consists of 50 distinct sets
of questions derived from the original 100. We
calculate the proportion of each error type within
each set and then use these 50 sample proportions
to estimate the corresponding confidence intervals,
thereby quantifying the variability in model per-
formance across perturbation instances. Addition-
ally, we assess each model on the 100 unmodified
base questions from GSMS8K, providing a standard
reference point for performance comparison. All
inferences are done in the greedy decoding setting.

5.1 Logical Errors
5.1.1 Rising Trend of Logical Errors

Since the perturbations alter only the numerical
values while keeping the question structure intact,
the logical reasoning required to solve the prob-
lems remains unchanged across all perturbation
levels. In principle, all perturbation levels should
demand the same level of logical reasoning abil-

ity. Surprisingly, however, while the degree varies
among the models, we observe a consistent upward
trend in logical errors as the perturbation level in-
creases, across all nine evaluated models (Figure
3) except GPT-40. To quantify this trend, we cal-
culate the difference in logical error rates between
level 6 (1IM—10M) and level 1 (same digit) pertur-
bations for each model (Figure 4). The most pro-
nounced discrepancy is exhibited by the Gemma 2
2B model, which shows a 14% absolute increase
in logical error rate. Similarly, the WizardMath 7B
v1.1 model demonstrates a substantial increase of
10%. Even the relatively more robust models, such
as Phi-3 Mini 4K and GPT-3.5 Turbo, still exhibit
an increase of approximately 4%, which remains
a significant deviation. GPT-40, one of the most
advanced models at the time of our study, stands
out as the only model with a near-zero gap. These
results reveal the sensitivity of the models’ logical
reasoning to numerical scales. We conjecture this
phenomenon occurs because the models are mostly
trained with lower-range numbers, and test prob-
lems with large numbers are out of distribution. (A
qualitative analysis of additional logical errors in-
duced by increasing numerical values is provided
in Appendix A.4.)

Another noteworthy observation is that the in-
crease in logical errors becomes more gradual at
higher perturbation levels. Across all nine models,
the gap between level 3 and level 1 is generally
larger than that between level 6 and level 3. This
trend aligns with the cumulative frequency patterns
observed in Figure 1, which shows that low-range
values account for majority of numbers across the
most widely used benchmark datasets. While the
exact composition of training data for the models
remains unknown, if math-problem training data is
predominantly concentrated in the lower numerical
ranges, it is plausible that beyond a certain thresh-
old, further increases in numerical magnitude do
not lead to a significant difference in model perfor-
mance. Once numbers exceed this threshold, they
may all be similarly unfamiliar to the model due
to their low presence in the training data. Further
investigation is needed to validate this hypothesis.

5.1.2 Potential Data Contamination with
GSMSK Dataset

We also observe a notable logical error gap between
level 1 perturbation and the original questions for
many of the evaluated models (Figure 4). The
Gemma 2 2B model exhibits the largest gap at 6%,



followed by Mistral 7B v0.1 with a 4% discrepancy.
However, this pattern is not consistent across all
models. For instance, Qwen 2.5 7B and GPT-40
show a gap of only about 1%, demonstrating better
robustness. Moreover, Llama 3.2 3B and Phi-3
Mini 4K exhibit a -2% gap, indicating an opposite
trend.

This result points to possibility of data contami-
nation to the GSM8K dataset in certain models. No-
tably, a similar finding was previously reported by
Mirzadeh et al. (2024), but our study explores this
issue in more depth by providing an explicit defini-
tion of numerical-range similarity and establishing
a clear distinction between logical and non-logical
errors, further validating their conclusions.

5.2 Arithmetic Errors
5.2.1 Rising Trend of Arithmetic Errors

Previous studies have shown that LLMs exhibit
a significant decline in arithmetic accuracy as nu-
merical values grow (Qian et al., 2023; Feng et al.,
2024), and our result further confirms this trend.
As shown in Figure 3, we also observe a consistent
increase in non-logical errors. Given that number-
copy errors account for only a small portion (Table
7), the majority of these errors stem from arith-
metic errors. Furthermore, because some responses
classified as logical errors also include arithmetic
errors, the true prevalence of arithmetic errors ex-
ceeds what is suggested in the figure.

5.2.2 Arithmetic Errors with Small Numbers

Previous studies have found that state-of-the-art
models have arithmetic accuracy on low-range
numbers (Henighan et al., 2020; Yuan et al., 2023;
Qian et al., 2023; Feng et al., 2024). However, we
find that some models still show non-trivial per-
centages of non-logical errors at level 1, such as
Mistral 7B v0.1 at 9% and WizardMath 7B v1.1 at
4%. This motivates further analysis on the patterns
of these errors, which is discussed in section 6.3.

6 In-depth Analysis
6.1 Is the Correct Logic Present in the LLM?

We observe that larger numerical values in math
questions increase the likelihood of logical errors.
However, although a sampled response may have
a logical error, the correct logic may nevertheless
be present in the model’s distribution. To inves-
tigate this issue, we measure recall rates defined
as follows: for each of 100 randomly generated
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Figure 6: Results of 03-mini across perturbation levels.
The left plot displays the logical and non-logical error
counts, while the right plot shows the mean token counts
per 100 responses at each perturbation level.

questions, we obtain n responses (i.e., perform n-
passes) in a non-zero temperature setting (temper-
ature = 0.8, top_p = 0.95) and, using our grading
methodology, count the number of questions for
which the correct logic appears in at least one of
the passes. We perform this experiment over all six
perturbation levels, and for a varying number of
passes ranging fromn = 1 to n = 48.

As shown in Figure 5, for all four models, as
the number of passes n increases, we observe (1)
a higher recall rate, and (2) smaller gaps across
perturbation levels. At the highest sample size of
48, the gap between level 1 and 6 is no more than
2 for any model, indicating that the correct logic
exists within the model’s distribution despite larger
numerical values. This suggests that training on
broader numerical ranges or leveraging test-time
computation could improve numerical consistency.

6.2 Performance of Reasoning Model

The growing prominence of reasoning models
(OpenAl, 2025; Guo et al., 2025) naturally raises



Model

Gemma 2 2B
WizardMath 7B v1.1
Mistral 7B v0.1

Level 1

15/134 (11.2%)
41/117 (35.0%)
73/299 (21.4%)

Level 2

126/735 (17.1%)
186/806 (23.1%)
274/1313 (20.9%)

Mathstral 7B v0.1 31/77 (40.2%)  126/509 (24.8%)
Llama 3.2 3B 3/72 (4.2%) 127/1480 (8.6%)
Qwen 2.5 7B 7/18 (38.9%) 52/155 (33.5%)
Phi 3 Mini 4K 9/22 (40.9%) 89/281 (31.7%)
GPT-3.5 Turbo 10/18 (55.6%)  92/224 (41.1%)
GPT-40 1/3 (33.3%) 20/40 (50%)

Table 2: Results of a standalone arithmetic assessment
on arithmetic errors made by models under Level 1 and
Level 2 perturbations.

the question of their performance across different
perturbation levels. To explore this, we evaluate 03-
mini—one of the most advanced reasoning models
at the time of our study—on a set of 100 problems
for each perturbation level. As shown in Figure
6, 03-mini maintains consistently low logical and
non-logical error rates across perturbation levels,
demonstrating its robustness to varying numerical
scales.

We also record the average token count for 100
responses at each perturbation level and observe
that the model generates more tokens as the per-
turbation level increases (Figure 6). While this
increase may partly stem from larger numerical val-
ues requiring more tokens for representation and
complex arithmetic, it also suggests that changes
in numerical scale might lead the model to per-
ceive the tasks as more challenging, possibly due to
its training data being primarily focused on lower-
range numbers. Additionally, the model produces
more tokens for same-digit perturbations compared
to the original GSM8K questions. This raises
the possibility of data contamination, allowing the
model to arrive at the correct final answer with less
reasoning.

6.3 Arithmetic Error Patterns

Previous studies have evaluated the arithmetic ac-
curacy of LLMs in a standalone setting, i.e., di-
rectly posing arithmetic questions like "Whatis 1 +
27" (Yang et al., 2023; Maltoni and Ferrara, 2024;
Yuan et al., 2023; Qian et al., 2023; Feng et al.,
2024). However, little attention has been paid to
whether their arithmetic performance remains ro-
bust when these operations are embedded within
natural language responses. To investigate this, we
conduct an experiment by collecting all responses
containing arithmetic errors from all models under
level 1 and 2 perturbations, and then extracting the

specific arithmetic operations that were answered
incorrectly. We subsequently prompt the models
to solve these arithmetic operations in a standalone
setting.

As shown in Table 2, while the extent varies,
the models perform significantly better when the
arithmetic task is isolated. We hypothesize that this
phenomenon occurs because LLMs predominantly
rely on memorization for arithmetic operations,
since they train largely on standalone arithmetic
data (Yuan et al., 2023; Yang et al., 2023; Mal-
toni and Ferrara, 2024). This results in degraded
performance when these operations are integrated
into a natural language context, which is out-of-
distribution for the LLMs.

7 Conclusion

In this work, we introduce GSM-Ranges, a bench-
mark designed to evaluate LLLMs’ reasoning abili-
ties across diverse numerical scales. Additionally,
we propose a novel grading methodology that clas-
sifies erroneous into logical and non-logical cate-
gories. Through extensive experiments on various
models using GSM-Ranges and our grading frame-
work, we find that logical accuracy tend to degrade
significantly as perturbation level rises, revealing
LLMs’ sensitivity to numerical scales. Further-
more, while LL.Ms perform well on isolated arith-
metic tasks, their accuracy declines significantly
when calculations are integrated into natural lan-
guage contexts. This study provides a more precise
assessment of LLMs’ mathematical reasoning and
paves the way for future research on improving
mathematical reasoning capabilities and develop-
ing models that can generalize more effectively
across diverse mathematical problem settings.

8 Limitations

Due to resource constraints, our study primarily
focuses on small, lightweight models. While we
have evaluated GPT-40 and 03-mini, future work
could extend the analysis to other advanced models.
Additionally, our perturbation study is conducted
on the GSMB8K dataset, and exploring the impact of
varying numerical ranges on performance in more
complex mathematical tasks would further enrich
the findings. Lastly, while our grading methodol-
ogy distinguishes between logical and non-logical
errors, a more granular grading methodology could
offer deeper insights into model performance and
refinement.
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A Appendix

A.1 Experiment Results
A.1.1 Logical Error Rates

Perturbation Levels

Model Baseline Lv.1 Lv.2 Lv.3 Lv4 Lv.5 Lv.6
Gemma 2 2B 18 24.3(0.8) 30.9(0.6) 32.3(0.7) 35.1(0.6) 36.8(0.8) 38.5(0.8)
GPT-3.5 Turbo 11 13.5(0.5) 15.0(0.8) 17.5(0.6) 17.3(0.7) 16.9(0.6) 17.3(0.6)
GPT-40 4 5.1(04) 69(0.3) 690.3) 6.2(0.3) 5.00.3) 5.3(0.3)
Llama 3.2 3B 17 14.5(0.5) 17.0(0.6) 19.3(0.7) 18.7(0.7) 19.4(0.6) 19.4(0.6)
Mathtral 7B vO0.1 7 9.0(0.5) 11.6(0.5) 12.4(0.5) 13.9(0.5) 15.2(0.6) 14.8(0.6)
Mistral 7B v0.1 29 33.3(0.9) 37.5(0.9) 38.5(0.9) 40.7(0.7) 42.4(0.8) 43.3(0.8)
Phi 3 Mini 4K 10 7.7004) 9.1(0.4) 10.7(0.4) 11.2(0.5) 11.2(0.5) 12.2(0.5)
Qwen 2.5 7B 4 5.0(0.4) 7.8(0.5) 9.0(0.5) 10.2(0.5) 10.1(0.6) 9.9(0.5)
Wizardmath 7B v1.1 7 8.1(0.5) 14.0(0.6) 15.7(0.7) 16.4(0.7) 17.6(0.6) 19.1(0.6)
03-mini 5 5 6 5 4 6 4

Table 3: Logical error rates and confidence intervals across different GSM-Ranges perturbation levels.

A.1.2 Non-Logical Error Rates

Perturbation Levels

Model Baseline ) Lv.2 Lv.3 Lv.4 Lv.5 Lv.6
Gemma 2 2B 3 3.6(04) 14.7(0.9) 21.600.8) 25.9(0.9) 29.6(1.1) 37.2(1.2)
GPT-3.5 Turbo 0 05(02) 5.100.5 12.7(0.8) 18.1(0.8) 35.0(1.0) 38.6(1.0)
GPT-40 0 0.1(0.1) 0.8(0.2) 2.7(0.3) 3.6(03) 52(04) 5.2(0.6)
Llama 3.2 3B 2 19(0.3) 25.1(1.1) 49.5(1.2) 59.1(1.2) 61.8(0.9) 68.8(0.9)
Mathtral 7B v0.1 2 2.0004) 10.100.8) 14.8(0.8) 19.3(1.1) 23.0(0.9) 27.6(1.0)
Mistral 7B v0.1 12 9305 251(12) 31.0(1.1) 349(12) 38.6(1.2) 42.0(1.1)
Phi 3 Mini 4K 1 05(02) 62(0.4) 10.50.7) 15.8(1.0) 21.4(0.9) 28.0(1.1)
Qwen 2.5 7B 0 04(02) 3.8(0.5 7.000.6) 9.9(0.7) 12.1(0.9) 16.4(0.9)
Wizardmath 7B v1.1 2 41(0.6) 155(0.7) 243(1.2) 31.01.0) 35.6(1.2) 42.5(1.3)
03-mini 0 0 0 0 1 2 0

Table 4: Non-logical error rates and & confidence intervals across different GSM-Ranges perturbation levels.
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A.1.3 Recall Rates for Correct Logics

Model Samole Size GSMSK Perturbation Levels

p Baseline Lv.l Lv2 Lv3 Lv4 Lv5 Lvo6

1 82 74 69 68 67 61 59

92 89 87 87 87 84 84

Gemma 2 2B 32 95 91 92 89 92 8 92
48 95 92 93 92 92 92 94

1 66 66 61 60 51 59 50

. 8 89 88 82 87 84 81 83
Mistral 7B v0.1 39 97 93 90 93 93 93 93
48 97 95 91 93 96 93 95

1 90 85 82 86 85 86 84

94 92 88 90 92 92 91

Mathtral 7B vO0.1 39 926 93 38 92 94 92 94
48 96 94 89 93 94 93 94

1 92 84 85 83 84 78 78

] 8 98 95 93 94 92 90 94
Wizardmath 7B v1.1 32 99 97 98 95 04 93 95
48 99 97 98 96 94 93 95

Table 5: Recall rates across different sampling sizes and GSM-Ranges perturbation levels. We use

A.1.4 Mean Token Counts of 03-mini Responses

Baseline Levell Level2 Level3 Level4 Level5 Level6
Mean Token Count 252.8 287.6 340.6 378.8 429.3 501.0 579.8

Table 6: Mean token counts across GSM-Ranges perturbation levels for 03-mini responses

A.1.5 Number-Copy Error Analysis

Model Lv.4 Lv.5 Lv.6
Qwen 2.5 7B 0 2 4
Llama 3.2 3B 0
Mathstral 7B v0.1 0
Phi 3 Mini 4K 0
Gemma 2 2B 0
0
0
0
0

GPT-3.5 Turbo
GPT-40

Mistral 7B vO0.1
Wizardmath 7B v1.1

el eoNeBoNoNeNeNe)
S OO OO = = =

Table 7: Occurrences of Number-Copy Errors in 100 Random Samples Across Levels 4, 5, and 6 for Each Model.

For each of the nine base models, we sampled 100 responses per level from the level 4, 5, and 6
perturbations to evaluate number-copy error rates. As shown in Table 7, 4 out of the 8 base models
exhibited number-copy errors under level 6 perturbation, while only one model showed errors under level
5, and none were observed at level 4.
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A.2 Full Prompt for Inference

The full prompt used for inferences in the experiments is shown below:

Zero-shot Prompt for Inferences

As an expert problem solver, solve the following mathematical question step by step.

Q: {Question}
A: Let’s think step by step.

13



A.3 Python Code Generation Prompt

Below is the prompt provided to the GPT-40 model for translating LLMs’ responses into Python code.
We introduce a step to verbalize the response logic prior to code generation, as this process is found to
improve the alignment between the generated code and the original response. The temperature is set to O
in the code generation process.

Python Code Generation Prompt

You are tasked with writing Python code that replicates the logic described in a given response to a
math problem. Your code must strictly follow the exact reasoning steps provided in the response,
regardless of whether the logic is correct, inconsistent, or flawed.

1. Do not fix or modify the reasoning described in the response, even if they seem incorrect or
nonsensical.

2. Develop a Python function named solver () that replicates the logic in the response exactly
as described:

* Define and assign all necessary variables within the function.
* The function must not take any external arguments.
* The function must return the computed final numerical result.

3. Ensure that all arithmetic operations described in the response are explicitly written as code.
Avoid directly copying the results of these operations or the final answer from the response.

4. Refer to the list of numbers extracted from the question provided to ensure any copied
numbers in the response match the original numbers.

 If a number in the response is incorrectly copied (e.g., misrepresenting 1333785 as
133785 or 13333785), correct the number in your code and document the correction as a
comment in the code.

5. Include an explanation in the explain field that describes the steps and logic from the
response, regardless of correctness.

6. Provide the output in the following format:

{
“extracted_answer”: “<final numerical value of the answer>”,
“explain”: “<detailed explanation of the response logic>”,
“python_code”: “° " python\n<generated Python function>\n~~*”
3

* This is the list of numbers extracted from the question: {number_list}.

e This the response: {response}.
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A.4 Various Types of Additional Logical Errors in Level 6 Perturbation

We conducted a qualitative analysis of additional logical errors induced by increasing numerical values,
focusing on cases with the greatest rise in errors across perturbation levels among the questions derived
from the same base GSM8K questions for each model. Our findings reveal a diverse range of errors without
a consistent pattern. Below, we present examples of logical errors exhibited under level 6 perturbation.
While some errors were entirely absent at level 1 and emerged only at level 6, others, though rare at level
1, became significantly more frequent. The displayed LLM responses have been edited for readability,
with any arithmetic errors corrected.

Example 1: Missing Step Error

Question:

Laurel’s friend gave her 8 852 986 baby outfits that her child no longer needed. At her baby shower,
Laurel received twice that amount in new baby outfits. Then, Laurel’s mom gifted her with another
5309 889 baby outfits. How many outfits does she have for her baby?

Ground Truth:
* Laurel’s friend gave her 8 852 986 outfits.

At the baby shower, she received twice that amount:

2 x 8852986 = 17705972

* Adding all outfits together:

8852986 + 17705972 + 5309889 = 31868847

LLM Response:

1. Compute the baby shower outfits:

8852986 x 2 = 17705972
2. Compute the total outfits:

17705972 + 5309889 = 23015861

Error:
The model ignores the original 8 852 986 outfits from Laurel’s friend.
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Example 2: Operator Error

Question:

Finn watches 9 360 266 tadpoles swimming in the pond. Suddenly, Finn sees 7 180 820 of them
come out of hiding from under a lily pad, then sees 12947 038 of them hide under a rock. How
many tadpoles can Finn see in the pond now?

Ground Truth:
* Initially, Finn sees 9 360 266 tadpoles.

* 7180 820 tadpoles come out from hiding, so the new visible count is:

9360266 + 7180820 = 16541086

* Then, 12947 038 tadpoles hide under a rock, reducing the visible count:

16541086 — 12947038 = 3594048

LLM Response:

1. Compute the new visible tadpoles after some emerge:

9360266 + 7180820 = 16541186

2. Since 12947038 more hide under the rock, add them as well:
16541186 + 12947038 = 29488224
Error:

The model makes an operator error by incorrectly adding the 12 947 038 tadpoles that hid under
the rock instead of subtracting them.
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Example 3: Contextual Value Error

Question:

Gloria is shoe shopping when she comes across a pair of boots that fit her shoe budget. However,
she has to choose between the boots and two pairs of high heels that together cost 4 528 570 dollars
less than the boots. If one pair of heels costs 3 392 343 dollars and the other costs twice as much,
how many dollars are the boots?

Ground Truth:
 The second pair of heels costs:

3392343 x 2 = 6784686

* The total cost of both pairs of heels:

6784686 + 3392343 = 10177029

* The boots cost 4 528 570 dollars more than both pairs of heels:

10177029 + 4528570 = 14705599

LLM Response:

1. Compute the second pair of heels’ cost:

3392343 x 2 = 6784686

2. Compute the total cost of both pairs of heels:

6784686 + 3392343 = 10177029

3. The total cost of the heels is $10177029 less than the boots, so the boots’ price is:

10177029 + 10177029 = 20354058

Error:

The model makes a contextual value error by mismatching the numerical value with the corre-
sponding entity. Instead of using 4 528 570 dollars as the price difference between the boots and
the two pairs of high heels, it incorrectly uses the total cost of the heels.
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Example 4: Question Misinterpretation Error

Question:
Mary is 1922674 years younger than Joan, who is 2112 084 years older than Jessa. If Jessa is
1840103 years old, what is the sum of the ages of the three girls?

Ground Truth:
» Joan’s age:
1840103 + 2112084 = 3952187

e Mary’s age:
3952187 — 1922674 = 2029513

* Sum of all ages:
1840103 + 3952187 + 2029513 = 7821803

LLM Response:
1. Joan is 2112084 years old and Jessa is 1 840 103 years old.
2. Mary is 1922674 years younger than Joan, which means:

2112084 — 1922674 = 1919410

3. Now we can find the sum of their ages:

2112084 + 1840103 + 1919410 = 5861607

Error:

The model misinterprets the question by incorrectly treating Joan’s age difference from Jessa as her
actual age. Instead of computing Joan’s age based on her relationship to Jessa, it directly assigned
2112084 as Joan’s age.
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Example 5: Omitted Information Error

Question:
Mary is 1922674 years younger than Joan, who is 2112 084 years older than Jessa. If Jessa is
1840103 years old, what is the sum of the ages of the three girls?

Ground Truth:
» Joan’s age:
1840103 + 2112084 = 3952187

e Mary’s age:
3952187 — 1922674 = 2029513

* Sum of all ages:
1840103 + 3952187 + 2029513 = 7821803

LLM Response:
1. Mary is 1922674 years younger than Joan, who is 2 112 084 years older than Jessa.

2. This can be written as:
Joan = Jessa + 2112084

Mary = Joan — 1922674 = Jessa + 2112084 — 1922674 = Jessa + 189410
3. Substituting the expressions for Joan and Mary, we get:

Mary + Joan + Jessa = (Jessa + 2112084) + (Jessa + 189410) + Jessa

4. Simplifying this expression, we get:

Mary + Joan + Jessa = 3 x Jessa + 2301494

Error:

The model makes an omitted information error by failing to utilize the given value of Jessa’s age
(1840 103) in the final computation. Instead of calculating the actual sum of their ages, it leaves
the expression in terms of Jessa’s age without substitution, leading to an incomplete and incorrect
result.
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