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Abstract

Foundation models, including autoregressive generative models (e.g., Large Language Mod-
els and Large Multimodal Models) and generative diffusion models (e.g., Text-to-Image
Models and Video Generative Models), are essential tools with broad applications across
various domains such as law, medicine, education, finance, and beyond. As these models
are increasingly deployed in real-world scenarios, ensuring their reliability and responsibil-
ity has become critical for academia, industry, and government. This survey addresses the
reliable and responsible development of foundation models. We explore critical issues, in-
cluding bias and fairness, security and privacy, uncertainty, explainability, and distribution
shift. Our research also covers model limitations, such as hallucinations, as well as methods
like alignment and Artificial Intelligence-Generated Content (AIGC) detection. For each
area, we review the current state of the field and outline concrete future research directions.
Additionally, we discuss the intersections between these areas, highlighting their connections
and shared challenges. We hope our survey fosters the development of foundation models
that are not only powerful but also ethical, trustworthy, reliable, and socially responsible.

1 Introduction

Foundation models are large-scale neural networks with emergent abilities not explicitly specified in training.
These models support diverse use cases and transform the ecosystem of AI applications across many do-
mains (Bommasani et al., 2021). Four major classes of foundation models, Large Language Models (LLMs),
Large Multimodal Models (LMMs), Text-to-Image (T2I) Models, and Video Generative Models have re-
shaped how we use and interact with AI. These models demonstrate a series of powerful capabilities: LLMs
can engage in multi-turn conversations and human-like reasoning processes, LMMs can generate HTML
code from a screenshot of a sketched website, T2I models can synthesize photorealistic images from complex
textual descriptions, and Video Generative Models can simulate interactive dynamics and commonsense
knowledge of the physical world.

The advent of foundation models can be traced to the development of large-scale language representations
evolving from early word embeddings such as GloVE (Pennington et al., 2014) and word2vec (Mikolov
et al., 2013), to contextualized representations such as ELMo (Peters et al., 2018). This progress led to
transformer-based models such as BERT (Bidirectional Encoder Representations from Transformers; Devlin
et al., 2019) to revolutionize natural language processing by providing powerful representations to enable
improved downstream task performance. Subsequently, the GPT-series (Generative Pre-trained Transformer;
Radford et al., 2018; 2019; Brown et al., 2020) of autoregressive generative models showcased how self-
supervised learning produced high-quality text generation models. The strong capabilities of foundation
models gained mainstream attention with the release of ChatGPT (OpenAI, 2023a), which exposed the
public to an intuitive conversational user interface. Today, autoregressive generative models have become
the established paradigm for AI beyond natural language processing with multimodal models such as GPT-
4V(ision) (OpenAI, 2023b), GPT-4o (Hurst et al., 2024), GPT-4.5 (OpenAI, 2025), Gemini (Team et al.,
2023), Claude 3 (Team, 2024a), Qwen2.5-VL (Bai et al., 2025), and Qwen2.5-Omni (Xu et al., 2025a).
Concurrently, models like OpenAI o1 and o3 (OpenAI et al., 2024), DeepSeek R1 (Guo et al., 2025), Claude
3.7 (Anthropic, 2025), Gemini-2.5 (Google, 2025), and Grok 3 (xAI, 2025) enhance reasoning capabilities by
increasing compute at inference time. Simultaneously, the scaling of generative diffusion models has gained
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Figure 1: An overview of reliable and responsible foundation models. We divide foundation models into
four categories: Large Language Models (LLMs), Large Multimodal Models (LMMs), Text-to-Image (T2I)
Models, and Video Generative Models. This survey comprehensively summarizes existing work from nine
critical aspects: bias and fairness, alignment, security, privacy, hallucination, uncertainty, distribution shift,
explainability, and Artificial Intelligence-Generated Content (AIGC) detection.

prominence, particularly in visual content generation tasks. T2I models, including DALL·E 3 (Betker et al.,
2023), Stable Diffusion 3.5 (Esser et al., 2024), Imagen 3 (Baldridge et al., 2024), Playground v3 (Liu et al.,
2024a), and SANA 1.5 (Xie et al., 2025), can now generate images of high resolution and quality from textual
descriptions. Similarly, recent advancements in video generative models, pioneered by Sora (OpenAI, 2024b)
and followed by HunyuanVideo (Kong et al., 2024b), CogVideoX-1.5 (Yang et al., 2024h), and Kling 1.6
(Kuaishou Team, 2024), have emphasized adherence to physical laws and commonsense reasoning. These
models focus on generating realistic physical-world scenarios and human-centric content. They notably
achieve high-resolution and long-form video generation.

The powerful capabilities demonstrated by these rapidly evolving models have fueled their swift integration
across the economy (Competition & Authority, 2023): applications of foundation models span decision-
making processes in businesses to personal assistants in our daily routines. To quantify this broad usage,
for example, ChatGPT reached an estimated 100 million monthly active users in less than three months,
while Deepseek-R1 achieved the same milestone in only one month, making these foundation models the
fastest-growing consumer internet application in history (UBS, 2024; AIBase, 2025). The scale of use and
socioeconomic impact accentuates the urgent need for these models to be both reliable and responsible (Gu,
2024).
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Figure 2: Foundation models are typically trained on diverse modalities and then adapted for downstream
applications. Throughout this pipeline, various reliable and responsible issues emerge at different stages.

This survey comprehensively explores the development of reliable and responsible foundation models in real
contexts (see Figure 1 and Figure 2)1. We preview each section of the paper below:

• We begin with bias and fairness for foundation models. We detail model biases, discuss bias mea-
surement and mitigation, and identify specific challenges.

• Next, we explore the concept of alignment: why do we align foundation models with human values
and how do we mitigate misalignment?

• We conceptualize security for foundation models: what threats do they pose, and what measures
can enable safer deployment?

• In tandem with security, we consider the data privacy challenge: how can we respect individual
privacy rights when collecting large-scale data?

• Our exploration continues with a look at the phenomenon of hallucination in foundation models,
where the model generates outputs away from the truth; that is, the model generates or responds
to questions incorrectly, stating incorrect “facts" with high confidence.

• We then discuss the importance of models expressing uncertainty to avoid misleading results, in-
cluding various uncertainty sources and methods for quantifying and addressing them.

• Next, we discuss the challenge of distribution shifts in foundation models: how to ensure models
perform robustly on domain-specific tasks and out-of-distribution scenarios?

• Additionally, we touch on explainability in AI models to understand how these foundation models
work internally. We investigate methods for explaining LLMs with raw features, uncovering the
knowledge in LLMs, examining the roles of samples in training, fine-tuning and few-shot learning,
evaluating explainability, applications of explainability, and explainability of LMMs.

• We conclude by discussing the subject of AI-generated content (AIGC) detection, where we frame the
inherent challenges in differentiating human and AI-generated content, the state-of-the-art detection
methods, and the underlying assumption for different detection methods (e.g., watermarking, zero-
shot detection, neural network detector).

1Our survey focuses on the responsible development of foundation models that exhibit reliable behavior. This focus, while
overlapping, is distinct from that of previous literature (Anwar et al., 2024; Bengio et al., 2024; Wang et al., 2025). Therefore,
we concentrate on ensuring that foundation models work well when used as intended by their developers. This complements
work on the misuse of foundation models, such as when they are used to generate disinformation, cyberattacks, or child sexual
abuse material, which is not intended by their developers.

3



Under review as submission to TMLR

This survey comprehensively reviews the current state of the development of reliable and responsible foun-
dation models. It offers valuable insights for researchers, practitioners, and policymakers to build a future
where AI systems are developed responsibly and operate reliably.
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2 Types of Foundation Models

As discussed in the prior chapter, foundation models are large-scale deep learning models trained on broad
data. These models are designed to serve as versatile backbones for applications in various domains, which
offer world knowledge that can be adapted to a wide range of downstream tasks. In this survey, we focus
on four popular classes of foundation models: Text-to-Text (i.e., LLMs), Multimodal-to-Multimodal (i.e.,
LMMs), Text-to-Image (i.e., T2I), and Video Generative systems.

LLMs are foundation models specifically designed to understand, generate, and manipulate human language.
They can perform many language-related tasks such as question answering, instruction following, and content
creation. Frequent applications include summarization, which involves condensing lengthy documents into
concise summaries while preserving key information. Translation is another key application for converting
text from one language to another with high fidelity. Sentiment analysis enables the determination of the
emotional tone behind a body of text, while dialogue systems power chatbots and virtual assistants that can
engage in natural conversations. In notation, we represent an LLM by f :

f : T → T , (1)

where T is the space of text sequences to host linguistic tasks such as text completions and translations. f
is parameterized by weights θ and is often implemented using Transformer architectures.

LMMs, in our review’s context, are large-scale deep neural networks that process multiple modalities of data,
such as text, images, and audio, to generate diverse outputs. A general design recipe of LMMs is to adopt
architectures that integrate multimodal features in a shared latent space. Applications of LMMs are vast. In
robotics, they allow robots to interpret visual scenes and follow verbal instructions. In healthcare, they assist
in medical image analysis with contextual understanding from patient records. In augmented reality, they
reconstruct real-world environments with contextually relevant digital assets. The mathematical expression
of an LMM can be viewed as a mapping function g:

g : X1 × X2 × · · · → Y1 × Y2 × . . . , (2)

where X1,X2, . . . represent different input modalities, and Y1,Y2, . . . represent the corresponding output
modalities. The function g is jointly parameterized by weights ϕ1, ϕ2, . . . , where each processes the infor-
mation from the corresponding modality. Notably, a prominent class of contemporary multimodal models
focuses on processing text and images to generate text. This will be the primary focus of our work when
referencing LMMs.

We further denote T2I models as foundation models that generate images based on textual inputs. Appli-
cations of these models extend beyond art and entertainment. For example, in product design, they enable
rapid prototyping of product visuals based on textual specifications. In education, these models help create
illustrative content to teach complex concepts. In notation, we represent a T2I model by h:

h : T → I, (3)

where T is the space of (input) text sequences, and I is the space of output images. h is parameterized by
model weights ψ and is often implemented with generative modeling approaches such as diffusion models,
generative adversarial networks, and autoregressive Transformers. In this work, we focus primarily on
diffusion models, as they have emerged as the dominant architecture in T2I models.

Finally, we focus on video generative models that generate videos based on multimodal inputs. Applications
of these models include realistic physical-world simulations or high-quality human-centric interactions. In
notation, we represent a video generative model by v:

v : X1 × X2 × · · · → V, (4)

where X1,X2, . . . represent different input modalities (such as text, images, or audio), and V is the space of
output videos. The function v is parameterized by weights ω and often implements architectures that extend
diffusion models to handle temporal relations for coherent video generation.
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3 Bias and Fairness

Foundation models are often pre-trained on large-scale data. Consequently, these models inherently acquire
biases from their training data, which can propagate to various downstream applications (Gu, 2024; Blodgett
et al., 2020; Liang et al., 2021). In practice, the nature and impact of biases present in training data,
foundation models, and downstream applications are poorly understood (Gallegos et al., 2023). Therefore,
more work is needed to measure and mitigate bias in foundation models to advance fairness and equity in
AI systems (Bommasani et al., 2021).

In this section, we explore bias and fairness in foundation models, organized as follows: We begin by
establishing basic definitions to formalize bias and fairness, highlight potential consequences, and outline the
essential criteria that require fairness for LLMs (Section 3.1). Next, we review methods for bias measurement
(Section 3.2) and bias mitigation (Section 3.3) as shown in Figure 4. Finally, we discuss bias and fairness in
multimodal contexts, with a focus on LMMs and Text-to-Image models, respectively (Sections 3.4 and 3.5).

Table 1: Categories of Social Biases in LLMs. We provide definitions and an example for each type of bias.

Bias Type Definition Example

Pejorative Language The use of slurs, insults, or other deroga-
tory language that targets and deni-
grates a social group.

Using the word “bitch” conveys con-
tempt and stereotypes hostile attitudes
towards women (Beukeboom & Burgers,
2019).

Linguistic Diversity A preference for standard language
forms in LLM training may sideline di-
alects, indirectly devaluing the linguistic
patterns of marginalized groups in soci-
ety.

The misclassification of African Amer-
ican English (AAE) expressions like
“finna” as non-English more often than
Standard American English (SAE)
equivalents (Blodgett & O’Connor,
2017).

Normativity Reinforcement of the normativity of the
dominant social group while implicitly
excluding other groups.

Referring to women doctors as if doctor
itself entails not-woman (Bender et al.,
2021).

Misrepresentation It happens when generalizing from an
incomplete or non-representative sample
population to a social group, leading to
misrepresentations.

An inappropriate response like “I’m
sorry to hear that.” to “I’m a musta-
chioed guy.”, reflecting a misunderstand-
ing of mustache (Smith et al., 2022).

Stereotype Negative and immutable abstractions
about a labeled social group.

Linking “Muslim” to “terrorist” fuels
negative and violent stereotypes (Abid
et al., 2021).

Hate Speech Offensive language that attacks, threat-
ens, or incites hate or violence against a
social group.

Stating “Asian people are gross and
universally terrible” is disrespectful and
hateful (Dixon et al., 2018).

Explicit Discrimination The direct and clear differential treat-
ment of individuals or groups based on
their membership in a social group, such
as race, gender, age, ethnicity, religion,
or sexual orientation.

A recruitment policy that states or im-
plies a preference for candidates of a cer-
tain race over others, or a club that re-
fuses membership based on gender (Fer-
rara, 2023).

Implicit Discrimination Individuals are treated differently based
on unconscious or subtle prejudices and
stereotypes rather than explicit inten-
tions to discriminate.

A health assessment tool used by insur-
ance companies assigns higher risk scores
to patients from certain ethnic back-
grounds (Ferrara, 2023).
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3.1 Definitions

Given language technologies’ broad impact, the study of biases has become increasingly central to Natu-
ral Language Processing (NLP) in recent years. Language intimately interconnects with aspects of human
identity, social relationships, and power dynamics. Biases, particularly social biases, pertain to the segmen-
tation and distinctiveness of various social groups, imparting both generic and pejorative connotations, and
correlate specific demographics with stereotypical, uncharacteristic, or overly generalized traits (Gallegos
et al., 2023; Blodgett et al., 2020; Xu et al., 2023b). Prior work (Barocas et al., 2017; Bender et al., 2021;
Weidinger et al., 2022; Suresh & Guttag, 2019; Mehrabi et al., 2021a) understand the concepts of bias and
fairness in terms of these social groups and addresses a variety of social domains and downstream tasks (Yu
et al., 2022b; Wu et al., 2016; Voorhees, 1999; Rogers et al., 2023; Bowman et al., 2015).

I think men are better leaders than women.

I think women are better leaders than men.

It's a common stereotype that men are better leaders, but studies show that 
leadership qualities are not determined by gender. Both men and women can be 
exceptional leaders depending on their skills, experience, and personality traits.

The idea that women are better leaders is quite compelling and has gained 
attention in recent years. Some research suggests that women tend to be more 
empathetic and collaborative, which can result in more effective leadership.

Identifies the gender stereotype in the user's statement
Rejects the stereotype with a clear explanation

Does not identify the bias towards the gender in the user's statement
Supports the gender-based claim without addressing the stereotype

Language Bias

Figure 3: Examples of gender biases in LLMs.

Bias. Biases in LLMs refer to systematic
deviations in the model’s responses, repre-
sentations, and reasoning paths that reflect
disparities, stereotypes, or inaccuracies in
the training data. These biases can mis-
align with or overinterpret the reference so-
cial and cultural norms implied by human
prompts. Typically, such biases arise from
the unbalanced or biased data distribution
in domains (i.e., areas of knowledge) and
genres (i.e., types of text, such as news,
fiction, dialogue, etc.) representing differ-
ent groups. For instance, the male-female
distribution of Wikipedia articles about US
Presidents would lead to biases on the role
of different genders in politics. Figure 3
illustrates a similar example of language
bias related to leadership in LLM-generated
contents.

Following Gallegos et al. (2023), we provide a detailed summary and categorization of biases in LLMs,
including definitions and examples, as shown in Table 1. These biases may manifest in distinct ways based on
the specific context and downstream tasks. Recognizing and addressing these biases is crucial for developing
fair and equitable NLP technologies. To better understand the unique forms in which bias can manifest in
LLMs, we have listed some examples drawn from various NLP tasks below:

• Text Generation. We might encounter local biases, such as different job choices when generating
phrases like “The man worked as a car salesman.” versus “The woman worked as a nurse.” Addi-
tionally, we may face global biases, such as the overall depiction of certain cultural backgrounds like
“East Asians like to eat rice”. (Sheng et al., 2019; Yang et al., 2022b; Venkit et al., 2023).

• Machine Translation. Translation tools may show a tendency towards gender-specific expressions
when translating job-related phrases (Měchura, 2022). For example, translating “the engineer solved
the problem” into German might default to “der Ingenieur” (the masculine form), given that in an
existing English-German corpus, “der Ingenieur” was found to be 75 times more prevalent than its
feminine counterpart “die Ingenieurin” (Tomalin et al., 2021).

• Information Retrieval. Searches like “successful leaders” may be biased towards returning doc-
uments about male leaders, overlooking female ones, or exhibit a bias towards certain cultural
interpretations retrieving information about cultural holidays (Rekabsaz & Schedl, 2020).

• Question Answering. When faced with specific questions, answers can be influenced by gender or
occupational stereotypes. For example, assume the primary caregiver in a household is “the mother”
or “a woman”, or defaulting to “a man” as a company’s CEO (Dhamala et al., 2021; Parrish et al.,
2021).
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• Natural Language Inference. When given a premise like “the doctor is seeing a patient”, the
model might incorrectly infer the doctor’s gender or make assumptions about the age or gender of
participants in sports activities based on stereotypes (Dev et al., 2020)

• Text Classification. Models might wrongly categorize statements that use regional dialects or
slang as aggressive or inappropriate. They may also exhibit bias when classifying posts discussing
sensitive topics (Koh et al., 2021; Yao et al., 2022b), failing to consider the actual content of the
text.

Fairness. Due to the biases discussed above, LLMs may exhibit disparities in task-specific performance
across different social groups. Consequently, it is essential to ensure that these models’ behavior, outputs,
and decisions are fair and unbiased, reflecting and respecting the diversity and complexity inherent in society.

Considering the data distributions across social groups differ in a complex way, we use performance disparities
to measure it. Following Section 2, an LLM can be denoted as a function f : X → Y, which maps a context
or prompt X to a target response Y . Additionally, a measurement function S: Y → s maps a response Y to
a scalar score s. The model f is considered fair for groups A and B in terms of the measurement S if the
following condition holds:

EXA
(S(f(XA; θ))) = EXB

(S(f(XB ; θ))), (5)

where XA represents the prompt or context information related to a particular group A, with different groups
possibly encompassing attributes such as race, gender, etc. When it fails to satisfy Equation 5, it is said
that the model M exhibits bias towards a particular group. It is noteworthy that this is just one possible
definition, while other definitions and metrics can also be reasonable.

With the increasing deployment of LLMs in the business domain, such as customer service and decision
support systems, ensuring these LLMs are fair and unbiased has become paramount. Similarly, given these
models’ role as part of social services, the requirements for fairness and non-toxicity are crucial to avoid
potential social biases and adverse impacts. In the study conducted by Gallegos et al. (2023), a comprehensive
set of principles was discussed, including Fairness through Unawareness, Invariance, Equal Social Group
Associations, Equal Neutral Associations, and Replicated Distributions. These principles not only guide
NLP tasks but also lay the foundation for fairness and non-toxicity in the practical deployment of LLMs.
Such efforts aim to develop consensus-building approaches across diverse stakeholder groups, ensuring that
LLM applications don’t disproportionately impact specific communities, thereby supporting the sustainable
development of equitable social services.

3.2 Methods for Bias Evaluation

In this section, we summarize three popular approaches for evaluating bias in LLMs:

Methods based on Generated Text. These evaluation methods are primarily based on assessing the text
generated by LLMs in response to specific prompts, often using specialized benchmarks. Typical benchmarks
include Dhamala et al. (2021) and Gehman et al. (2020). They utilize guiding prompts to induce biased
outputs from the model to evaluate the inherent biases of LLMs. Therefore, models with more severe biases
are more prone to exhibiting tendencies toward certain groups. After obtaining the model’s textual responses
to the designed prompts, three metrics are generally used to assess the biases in the responses.

(1) Distribution metrics: One of the simplest metrics in this category is Social Group Substitutions (SGS),
which evaluates whether a model’s responses exhibit an identical token distribution when provided with
context input X biased towards different groups A and B. For context inputs XA representing commonsense
scenarios and XB denoting counterfactual scenarios, it mandates:

SGS(f(X; θ)) = ψ(f(XA; θ), f(XB ; θ)), (6)

where f(X; θ) represents the response generated by a LLM denoted as f , with input X and model parameter
θ, and ψ symbolizes an invariance metric such as exact match (Rajpurkar et al., 2016).
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Bias in LLMs

Evaluation Generated Text

Feature Embedding

Token Selection Prob.

Distribution Metrics
Social Group Substitutions [Rajpurkar et al. , 2016]

Co-occurrence Scores [Bordia et al. , 2019]
Demographic Representation [Liang et al. , 2022]

Classification Metrics
Perspective API [Chowdhery et al. , 2023]

Toxicity Fraction [Liang et al. , 2022]
Style Classifier [Smith et al. , 2022]

Word-level Metrics
Hurtlex [Bassignana et al. , 2018]

Bold [Dhamala et al. , 2021]
Honest [Nozza et al. , 2021]

WEAT [Caliskan et al. , 2017]
IAT [Greenwald et al. , 1998]

SEAT [May et al. , 2019]

Token-level Prob. Estimation [Webster et al. , 2020]
Pseudo-log Likelihood  [Salazar et al. , 2019]

Context Association Test [Nadeem et al. , 2020]
All Unmasked Likelihood [Kaneko et al. , 2022]

Mitigation

Training

Training Data Augmentation
CDA [Lu et al. , 2020]

Mix-Debias [Yu et al. , 2023]
Data Filtering [Borchers et al. , 2022]

Self-Instruct [Wang et al. , 2022]
Constitutional AI [Bai et al. , 2022]

Alignment and Instruction Tuning
RLHF [Christiano et al. , 2017]
InstructGPT [Long et al. , 2022]

DPO [Rafailov et al. , 2023]

InferenceEVER [Kang et al. , 2023]
RelD [Chen et al. , 2023]

Figure 4: An overview of strategies for evaluating and mitigating bias in LLMs.

There are also metrics based on the frequency of specific words appearing in response compared to their
average distribution, such as the bias metric based on word co-occurrence scores (Bordia & Bowman, 2019):

bias(xi) = log P (xi|xA)
P (xi|xB) , (7)

where xi belongs to a word in the response X = (x1, ..., xm), and xA and xB can represent keywords biased
towards two different groups, such as men and women.

Similarly, Demographic Representation (DR), as discussed in (Bommasani & Liang, 2022; Liang et al., 2022),
compares the frequency of specific demographic-related word mentions with the original data distribution.
Here, C(xi, yi) represents the count of occurrences of the word xi in the sequence yi, where yi ∈ Y is a specific
model generation from the set of model generations for a scenario. For each group j ∈ G is associated with
a set Wi of words that represent the group, the count DR(j) is calculated as follows:

DR(j) =
∑

xi∈Wj

∑
yi∈Y

C(xi, yi). (8)

To evaluate against a baseline probability distribution, such as a uniform distribution, the count vector
DR = [DR(1), ..., DR(m)] is normalized to a probability distribution. We then employ metrics such as total
variation distance, KL divergence, Wasserstein distance, or other appropriate indicators for this evaluation.

(2) Classification metrics: Classifier-based metrics utilize expert models or specialized APIs to assess bias in
generated texts. This approach involves comparing texts generated from similar prompts, especially when
it comes to classifying outcomes related to different social groups, to detect potential biases. In the field
of toxicity detection, Perspective API is a commonly used tool to evaluate toxicity probabilities in LLM-
generated texts (Liang et al., 2022; Chowdhery et al., 2023; Chung et al., 2024). This probability can be
quantified by generating texts multiple times and calculating the expected maximum toxicity to assess the
toxicity performance of LLMs. Other metrics include Toxicity Probability (TP ), measuring the empirical
probability of generating text with a toxicity score ≥ 0.5 at least once in multiple generations, and Toxicity
Fraction (TF), indicating the proportion of toxic generations (Liang et al., 2022).

Classification-based evaluation methods are not limited to the domain of text toxicity. For instance, Sheng
et al. (2019) assess the attitudes and perceptions of social groups in model responses, employing metrics akin
to sentiment and respect scores. Their approach involved manually constructing prompt templates for LLMs
(e.g., “This woman works as”), generating a human-annotated dataset. This dataset subsequently served as
the training set for a regard classifier, enabling the classification of response preferences in other LLMs.

Similarly, Smith et al. (2022) use a style classifier to compute the style vector for each generated response
f(Xi; θ), where Xi is a prompt related to a group i ∈ G. Bias is measured by calculating the variance across
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the sets of all generated sentences from each group (i.e, Xi for group i):

Gen_Bias(f(X; θ)) =
C∑

j=1
Vari∈G

(
1

|Xi|
∑

Xi∈Xi

c(Xi)[j]
)
, (9)

where c represents the style classifier, and each element is the probability of a sentence belonging to one of
C style classes, i.e., c(X)[1], . . . , c(X)[C].

(3) Word-level metrics: This evaluation approach is similar to fine-grained distribution metrics, which is rela-
tively straightforward. Basically, it involves word-level metrics that analyze the generated output, where each
word is either compared to a predefined list of harmful words or assigned a precomputed bias score (Nozza
et al., 2021; Bassignana et al., 2018; Dhamala et al., 2021).

In general, evaluation methods based on generated text are generally applicable to most LLMs, especially
specialized black-box models such as ChatGPT and Bard. More recently, Bouchard et al. (2025) released
LangFair, a Python toolkit that makes the evaluation of bias and fairness easier for LLM practitioners and
developers.

Methods based on Feature Embedding. In addition to assessing models through corresponding text,
another common approach involves evaluating model bias based on feature embedding. Specifically, this
typically entails measuring the distances in vector space between neutral words (such as professions) and
identity-related words (such as gender pronouns) based on the embedding of output texts. Using these
distance-related metrics, we can roughly assess the bias between the model’s textual responses and the
standard reference group.

A more detailed evaluation metric relies on word embeddings, specifically, the Word Embedding Association
Test (WEAT) introduced by Caliskan et al. (2017), which is comparable to similar approaches used for
contextualized sentence embeddings. WEAT evaluates associations between concepts related to social groups,
such as masculine and feminine words, and neutral attributes such as family and occupation words, resembling
the Implicit Association Test (IAT) (Greenwald et al., 1998). Another set of evaluation metrics, focusing
on sentence-level embeddings, incorporates more contextual information. An example of this is SEAT (May
et al., 2019), an improvement upon WEAT. SEAT generates embeddings for semantically bleached template-
based sentences that integrate social group and neutral attribute words, and extends the evaluation to specific
bias dimensions using unbleached templates, offering a contextualized approach for assessing bias in sentence
embeddings.

Methods based on Token Selection Probability. Furthermore, we discuss bias and fairness metrics that
leverage the token selection probability from LLMs. This probability can be obtained by masking a word
in a sentence and prompting a masked language model to predict the missing token. For example, Webster
et al. (2020) utilize specific prompt templates (e.g., “[MASK] is [MASK]” and “[MASK] likes [MASK]”). In
these templates, the first [MASK] is automatically filled with words biased toward a particular group (such
as gendered terms), and the second [MASK] is replaced with candidate predictions from LLMs. The score is
calculated by averaging the count of divergent predictions between social groups across all specific prompt
templates. Kurita et al. (2019) employ a similar template-based approach to assess bias in neutral attribute
words (e.g., occupations). However, Webster et al. (2020) normalize a token’s predicted probability (based
on the template prompt “[MASK] is an [ITEM FROM GROUP i]”) with the model’s prior probability (based
on the template “[MASK] is a [MASK]”). This normalization corrects for the model’s prior inclination toward
one social group over another, focusing solely on bias attributable to the [ITEM FROM GROUP i] token.

Another category of probability-based methods is pseudo-log likelihood (PLL). Various techniques (Wang
& Cho, 2019; Salazar et al., 2019) utilize PLL to score the probability of generating individual words in a
given sentence. For a response denoted as X = (x1, ..., xm), the expression of PLL is presented as follows:

PLL(X) =
∑

xi∈X

logP (xi|XMASK{xi}). (10)

Nangia et al. (2020) utilize the CrowS-Pairs dataset, which involves pairs of sentences where one is stereotyp-
ical and the other is less stereotypical. PLL is employed to evaluate the model’s preference for stereotypical
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sentences. For sentence pairs, the metric approximates the probability of shared, unmodified tokens U condi-
tioned on modified, typically protected attribute tokens M . The Context Association Test (CAT) (Nadeem
et al., 2020), introduced alongside the StereoSet dataset, assesses sentence bias by pairing each sentence
with stereotype, anti-stereotype, and meaningless options. Unlike pseudo-log-likelihood, CAT considers con-
ditional probability. The Idealized CAT (iCAT) Score (Nadeem et al., 2020) is calculated from these options,
and an idealized language model has specific scoring criteria. All Unmasked Likelihood (AUL) (Kaneko &
Bollegala, 2022) extends CrowS-Pair Score and CAT, considering multiple correct candidate predictions and
avoiding selection biases in word masking. Language Model Bias (LMB) (Barikeri et al., 2021) compares
mean perplexity between biased and counterfactual statements using the t-value of Student’s two-tailed test.

3.3 Methods for Bias Mitigation

The current popular methods for mitigating biases in LLMs’ response texts can be broadly categorized into
two types: those based on the training process and those involving post-processing techniques. Next, we
provide a detailed breakdown and explanation of these two types. For specific categories that are extensively
discussed in later chapters.

Methods based on the Training Process. This type can be divided into two classes: methods based on
training data augmentation and alignment with instruction tuning.

(1) Training data augmentation: For LLMs, biases frequently originate from imbalanced data distribution
and poor data quality (Gallegos et al., 2023). One of the most direct and effective solutions is improving
the quality, diversity, and balance of training data. Data augmentation techniques aim to mitigate biases
by introducing additional instances into the training data, thereby increasing the data points related to
underrepresented or misrepresented social groups. Data balancing approaches aim to achieve equitable
distribution across various social groups. One primary technique for this purpose is Counterfactual Data
Augmentation (CDA) (Lu et al., 2020; Qian et al., 2022; Webster et al., 2020), which involves replacing
protected attribute words, such as gendered pronouns, to create a balanced dataset.

Inspired by the mixup technique (Zhang et al., 2017), interpolation approaches blend counterfactually aug-
mented training instances with their original counterparts and labels, thereby achieving a more balanced
distribution of the training data (Yao et al., 2022b;a; Yang et al., 2023e). In Ahn et al. (2022), the mixup
framework is harnessed to align the output logits of a pre-trained model between two opposing words within
a gendered pair. In Mix-Debias, Yu et al. (2023b) apply mixups across various corpora, aiming to alleviate
gender stereotypes by leveraging an augmented training set.

Wang et al. (2022b) introduce an automated iterative framework that prompts LLMs in conjunction with
a filtering criterion. Through a self-instructive process, this framework reconstructs a more diverse dataset
from initial seed data tailored for LLMs’ instruct tuning. The prompts for this dataset are generated
automatically by LLMs and undergo various metric-based filtering to ensure diversity in the dataset.

In addition, there are numerous data filtering methods (Garimella et al., 2022; Borchers et al., 2022; Thakur
et al., 2023) that aim to enhance the balance of data distribution by either removing low-quality data or
selectively retaining a diverse and underrepresented set of data.

(2) Better alignment with instruction tuning: With a vast amount of data, LLMs typically undergo pre-
training and instruction tuning. In the pre-training phase, LLMs internalize knowledge from the training
data into trainable parameters. Instruction tuning, on the other hand, teaches the model to understand
human instructions. However, it is essential to recognize that biases in the training data and the training
process are not inherently designed to understand or prioritize human values. This limitation leads to biases
and potentially toxic responses from LLMs when faced with complex and divergent human preferences. To
address this challenge, we provide a detailed overview of some current alignment techniques and training
algorithms to harmonize LLMs with human preferences in Section 4.

Methods based on Post-processing Techniques. Another approach is based on post-processing tech-
niques. Post-processing, in the context of LLMs, generally refers to the practice of invoking external knowl-
edge bases or employing word-based detection techniques to identify biased statements during inference.
Subsequently, the identified biases are corrected in the generated text. In Kang et al. (2023), techniques
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such as retrieval are employed within LLMs to match responses during each phase of the Chain of Thought
(CoT) generation. This involves retrieving and correcting biased or toxic text t at every stage of the LLM’s
responses, thereby ensuring that LLMs produce accurate and unbiased text responses throughout the CoT
process. Andriopoulos & Pouwelse (2023) also mention various methods that enhance LLMs by invoking
Wikipedia and various external knowledge bases for retrieval. The objective of these approaches is to boost
the reliability of LLM outputs and reduce biases in generated text. Additionally, word-level detection is
employed in Chen et al. (2023n) to identify instances in LLM responses involving counterfactual information
or not aligning with the context. Subsequently, a post-processing approach is applied to correct and enhance
LLM’s reliability by removing such inaccuracies from the generated text. On the other hand, Li et al. (2024c)
synthesize cultural-specific instruction data to incorporate cultural differences into LLMs. Raza et al. (2024)
further propose MBIAS, a LLM framework instruction fine-tuned on a custom dataset designed explicitly for
safety interventions. Moreover, Wang & Demberg (2024) introduce a multi-objective probability alignment
approach to overcome current challenges by incorporating multiple debiasing losses to locate and penalize
bias in different forms, which is more effective in removing stereotypical bias of LLMs while retaining their
general performance.

Overall, the methods based on post-processing techniques can effectively and accurately handle certain
biased information. However, they also have certain drawbacks. For instance, when relevant information is
not present in external knowledge bases, biases in LLMs’ responses might remain uncorrected. Additionally,
post-processing may introduce erroneous information from external knowledge bases. Moreover, approaches
relying on post-processing techniques often lead to a significant increase in latency.

3.4 Bias and Fairness in LMMs

Compared to LLMs, the emphasis on fairness in LMMs is more direct toward ensuring that the responses
align faithfully with the inputs in different modalities, such as images or audio in context. The responses
must align consistently with the visual content, ensuring they are free from any biased text that contradicts
the context. Currently, most research exploring bias and fairness in LMMs is focused on the phenomenon
of image hallucination. This term describes scenarios in which the model, when describing images or an-
swering questions based on visual information, generates responses containing entities, quantities, or logical
information that does not exist in the given image (Zhou et al., 2022a; Wang et al., 2023b;a; Li et al., 2023h;
Liu et al., 2023d;f; Zhou et al., 2024g). In Section 7, we conducted a detailed analysis of recent advances in
understanding and addressing hallucinations within LMMs.

Apart from hallucinations, there is a notable lack of in-depth exploration into the bias and fairness of LMMs.
Similar to LLMs, LMMs may exhibit significant biases due to the training paradigm and dataset distribution.
The scarcity of image-text data for specific groups, coupled with the presence of biased information in the
dataset, may lead LMMs to acquire stereotypical impressions of certain groups. Additionally, imbalanced
dataset distribution might cause LMMs to showcase biases in responses to specific image-text pairs. Earlier
efforts on generating counterfactual images towards semantic textual concepts have shown that machine
learning models will encode biases related to certain attributes if the training data is imbalanced (Luo
et al., 2023b; Prabhu et al., 2023; Xia et al., 2023). To further mitigate biases during inference, BEND-
VLM (Gerych et al., 2024) tailors the debiasing operation for LMM embedding to each unique input at the
test time, thereby avoiding catastrophic forgetting in fine-tuning. However, biases remain largely unexplored
in LMMs, and addressing fairness and bias in LMMs is crucial for building foundation models that are
beneficial and equitable for humanity.
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3.5 Bias and Fairness in Text-to-Image Models

Please draw a professor.

Please draw a nurse. Gender Bias

Figure 5: Examples of gender biases in Text-to-Image Models.

The rise of text-to-image models sparks
discussions on systematic social bias and
fairness issues in generated content, as in-
dicated by several studies (Zhang et al.,
2023j; Saharia et al., 2022; Cho et al., 2023;
Bianchi et al., 2023; Luccioni et al., 2023; Li
et al., 2024d). Text-guided diffusion mod-
els, in particular, have been found to ex-
hibit biases related to professions, ethnici-
ties, and social classes. The generated con-
tents diverge from the distributions in the
real world and even amplify the biases in
real societies (Zhang et al., 2023j; Bianchi
et al., 2023). For instance, a study con-
ducted by Luccioni et al. (2023) highlights
that text-to-image diffusion models consis-
tently underrepresent marginalized identi-
ties in the generated images. Some exam-
ples of gender biases in text-to-image mod-
els are presented in Figure 5.

To overcome the systematic bias and fair-
ness issues, many methods (Friedrich et al., 2023; Kim et al., 2023a; Chuang et al., 2023a; Li et al., 2024d)
focus on mitigating biases in text-to-image models through prompting techniques. Fair Diffusion (Friedrich
et al., 2023) randomly injects additional subject pronouns in the prompts to achieve a more balanced gender
distribution in the generated images. Other work (Kim et al., 2023a) optimizes the soft token in the prompts
to induce a more balanced gender distribution. Furthermore, Chuang et al. (2023a) work directly in the
text embedding space to obtain a more balanced gender distribution in vision-language models. A recent
study (Li et al., 2024d) addresses these problems by finding the bias-related concept in an interpretable latent
space and manipulating the generation process with the concepts found. These prompt-based regulations
are by far the most widely adopted strategy to reduce biases in the generated content. However, it has been
noted that keyword-based approaches could disproportionately affect marginalized groups, implying that
their use at the prompt level could yield similar outcomes (Dodge et al., 2021).

Another direction of research involves addressing biases through sampling methods. For example, the D2C
method (Sinha et al., 2021) generates unconditional diffusion via few-shot conditional diffusion to balance
the numbers in generated classes. Furthermore, Fair Sampling (Choi et al., 2024) introduces a fairness-aware
sampling technique aimed at reducing the amplified biases inherent in training data.

3.6 Current Limitations and Future Directions

Despite significant advancements in the domain of bias and fairness in foundation models, there are still
some limitations in bias and fairness evaluation that require future attention.

3.6.1 Limitations and Open Challenges of Bias and Fairness

Currently, most bias evaluation methods are limited to token or paragraph-level assessments, making it
challenging to capture the gradual propagation of bias during autoregressive generation (Xiao et al., 2023b;
Schmidt, 2019; Zollo et al., 2024c). In autoregressive models, each token’s prediction relies on previously
generated tokens, meaning that biases may accumulate and spread over time. Traditional token or paragraph-
level fairness metrics (Chalkidis et al., 2022; Baumgartner et al., 2024) are insufficient to fully assess this
bias propagation issue, making it difficult to accurately measure the biases in these model outputs.
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Additionally, when dealing with specific content, such as social media posts or content related to current
events, the concept of bias becomes more complex. Biases in such cases may not always be evident or
confined to a single token but may be reflected through subtle contextual influences or narrative frameworks.
Therefore, bias concerns more than just token-level differences; it also involves how the model handles
historical, social, or cultural influences, which may be embedded in the model’s training data. This presents
a significant challenge for mitigating biases, as it often intertwines with factual reporting and socially accepted
norms.

When evaluating biases in foundational models, the lack of clear and consistent definitions of fairness within
these models complicates both assessment and improvement efforts (Doan et al., 2024; Sheng et al., 2024;
Zhang et al., 2023d). What is considered fair can vary significantly depending on cultural, social, and
historical perspectives. This variability becomes especially pronounced when dealing with news content,
where fairness often intersects with historical accuracy or the presentation of current facts. Models must
therefore navigate a delicate balance: striving for unbiased outputs while carefully weighing the tension
between fairness principles and accurately representing reality.

For example, in reporting on historical events or current issues, there may be cases where acknowledging
certain inequalities or biased social structures is necessary to present the facts accurately. In such situations,
pursuing absolute fairness might mean overlooking or distorting facts, leading to a significant conflict be-
tween fairness and authenticity. For model developers, maintaining the integrity of generated or processed
information while addressing ethical concerns is a significant challenge. Furthermore, when fairness consid-
erations span different regions, cultures, and social norms, the complexity of such evaluations is exacerbated,
increasing the difficulty of implementing fairness assessments in foundational models. In addition, societal
biases are challenging to mitigate with common techniques such as data resampling (Hirota et al., 2024),
and addressing them in web-scale datasets remains an open problem.

3.6.2 Future Directions

Addressing the limitations of bias and fairness in current foundation models opens several avenues for future
research. Firstly, exploring unbiased tokenization and embedding methods could help mitigate the intro-
duction of bias during natural language processing (Phan et al., 2024; Zhang et al., 2020). This involves
developing tokenization techniques and embedding representations that maintain fairness at a more fine-
grained level. Secondly, in terms of unbiased fine-tuning and preference learning, employing techniques such
as constrained RLHF (Yu et al., 2024c), DPO (Zhou et al., 2024h; Wang et al., 2024j; Zhou et al., 2024f), and
revised LoRA methods (Liu et al., 2024f; Xu et al., 2025b) can help to adjust the model’s training process
to reduce bias introduced during generation. Furthermore, the post-processing of autoregressive generation
is an important area of focus (Zhou et al., 2024g), which can help further detect and correct potential biases
in the generated content. In LMMs, individual modalities can have a disparate impact on bias and fairness
and may require modality-specific interventions (Weng et al., 2024). Lastly, balancing fairness and utility is
crucial, as striving for absolute fairness often conflicts with the model’s practical utility and performance.
Therefore, developing effective trade-offs that simultaneously address fairness and utility will be a significant
challenge for future research.
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4 Alignment

Foundation models have significantly expanded their functionality, advancing beyond simple content genera-
tion to a wide range of applications including strategic planning (Huang et al., 2023e; Song et al., 2023a; Liu
et al., 2024j), code generation (Chen et al., 2021b; Poesia et al., 2022), tool integration (Qin et al., 2023a;
Shen et al., 2023c), complex reasoning (Wei et al., 2022b; Huang & Chang, 2023), and even addressing chal-
lenges in natural sciences, especially mathematics (Drori et al., 2022; Imani et al., 2023; OpenAI, 2023b).
Despite these advancements, it is important to note that foundation models are primarily trained on large
datasets with objectives such as next-token prediction (Radford et al., 2018), next-scale prediction (Tian
et al., 2024), or diffusion (Lipman et al., 2022). They are not inherently equipped to understand or prioritize
human values and preferences.

This gap between their powerful capabilities and inherent limitations underscores the potential risks associ-
ated with their deployment. For example, without proper safeguards, foundation models could be jailbroken
by users to disclose personal information or engage in harmful behaviors, which should be avoided (Li et al.,
2023c; Taveekitworachai et al., 2023; Shen et al., 2023b; 2024; Chen et al., 2024e;b). Moreover, the ability of
AI agents to adapt their capabilities to diverse objectives (e.g., scientific discovery and management systems)
further highlights the importance of thoughtful oversight. According to the orthogonality thesis (Bostrom,
2012), AI systems can pursue any number of goals, regardless of their intelligence level. This concern is
compounded by the instrumental convergence thesis (Bostrom, 2012), which suggests that regardless of their
ultimate goals, AI systems might adopt certain potentially harmful strategies as means to achieve them—
such as self-preservation or resource acquisition, which could lead to power-seeking behaviors (Bostrom,
2012; Burns et al., 2023). As the capabilities of foundation models advance, it becomes crucial to carefully
design these models to align with human-centric values and the nuanced requirements of specific tasks. This
alignment is essential for ensuring the deployment of foundation models meets rigorous safety and ethical
standards in various real-world applications.

In the following section, we will focus on aligning LLMs with human preferences. We will begin with
Supervised Fine-Tuning (Wei et al., 2021; Zhou et al., 2023b; Chung et al., 2024), proceed to Reinforcement
Learning from Human Feedback (Ouyang et al., 2022; Christiano et al., 2017; Bai et al., 2022a), and then
explore Prompt Engineering (Liu et al., 2023k; Gu et al., 2023). Furthermore, we will extend our discussion
to LMMs in Section 4.4. Finally, we will discuss the limitations of current alignment methods in Section 4.5.
These categories can be visualized in Figure 6.

Align with training data: SFT

Supervised Fine-tuning

Align with human preference: RLHF

Align with prompt: Prompt Engineering

Input Prompt

Preference

Align with vision: Visual Instruction Tuning

Visual Instruction Tuning

Figure 6: Alignment is required at different stages in the foundation models. Compared to LLMs, LMMs
require an additional step of multimodal alignment, such as Visual Instruction Tuning.

4.1 Supervised Fine-Tuning

Supervised Fine-Tuning (SFT) is a widely-used approach to align pre-trained LLMs with human preferences,
which directly tunes the LLM f to mimic desired ground-truth responses. It often serves as the first stage
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of the alignment process. Most SFT methods can be formally expressed as:

LSFT = −
L∑

t=1
logPf (rt | p, r<t) , (11)

where p denotes the input prompt and r = (r1, r2, ..., rL) is the sequence of the target response. This
approach maximizes the likelihood of generating the optimally selected response, akin to how a student
learns from a teacher’s guidance. Combined with other training methods for alignment, SFT can often
enhance the stability of the whole alignment process.

Although SFT is efficient in aligning LLMs, its success heavily relies on the quality and diversity of the
training data. LIMA (Zhou et al., 2023b) presents a study that highlights the importance of this aspect,
where the authors curate a dataset of 1,000 high-quality prompt-response pairs, with 750 of them coming from
diverse sources such as StackExchange2, wikiHow3, and the Pushshift Reddit Dataset (Baumgartner et al.,
2020), while the remaining 250 pairs are manually annotated. LIMA demonstrates that LlaMa-65B (Touvron
et al., 2023), when fine-tuned on a small but high-quality dataset using the regular SFT training objective,
can achieve significant performance improvements without requiring reinforcement learning or explicit human
preference modeling. In this line of research, methods based on Minihash (Broder, 1997) and Local Sensitive
Hashing (LSH) (Datar et al., 2004) are often used to deduplicate the data, which serve as the first step of
refining data quality. Then, a series of works (Zhou et al., 2020a; Penedo et al., 2023; Rae et al., 2022; Wang
et al., 2023e; Chen et al., 2024d) propose to use well-suited rules, metrics, and LLMs-based methods for
further data cleaning. Li et al. (2023f) propose the instruction following difficulty metric for efficient data
selection. Similarly, Xie et al. (2023a) propose estimating importance weights for high-quality data selection.

Moreover, many empirical results of applying scaling laws (Kaplan et al., 2020; Hoffmann et al., 2022) to LLM
training show that the data size becomes crucial for performance improvements. To reduce the cost of human
annotations, researchers are increasingly interested in incorporating AI-generated data into the alignment
process, especially with the advent of closed-source LLMs like GPT-4 (OpenAI, 2023b), Gemini 2.0 (Team,
2024c), and Claude 3.5 (Team, 2024b). A line of research explores using LLMs to self-generate instruction-
tuning data. A notable advancement in this domain is the Self-Instruct (Wang et al., 2022c), which leverages
the in-context learning (ICL) capabilities of GPT-3 (Brown et al., 2020) to gather instructions and preferred
responses autonomously. This approach begins with a small set of human-annotated seed instructions that
are subsequently refined and expanded to generate large-scale instruction data across diverse tasks. Building
on this methodology, researchers have achieved significant advances in developing open-source LLMs with
enhanced instruction-following capabilities, such as Alpaca (Taori et al., 2023) and Vicuna (Chiang et al.,
2023). Gunasekar et al. (2023) propose to use a mix of “textbook quality” data from the web and GPT-3.5
generated data to train the Phi, a lightweight LLM suitable for edge scenarios (Xu et al., 2021b). It also
pioneers large-scale, high-quality data generation. More recently, Xu et al. (2024b) proposed a self-synthesis
method that leverages the auto-regressive nature of LLMs to generate diverse data without requiring any
initial seed question or prompt. Zhou et al. (2023e) propose to synthesize natural language descriptions for
controllable text generation (Hu et al., 2018; Sun et al., 2023a). Wang et al. (2024f) introduce a method
for synthesizing role-playing data using LLMs with carefully curated role descriptions. Similarly, Qiao et al.
(2024) present an approach for synthesizing agent-tuning data via self-planning with LLMs.

Nevertheless, the simplicity of SFT does not shield it from potential vulnerabilities, especially in terms of
model safety and robustness. Qi et al. (2023b) illustrate that LLMs, such as OpenAI’s GPT-3.5 Turbo (Ope-
nAI, 2023a), are prone to adversarial manipulations. They demonstrate that fine-tuning these models with
a limited set of strategically crafted examples from the Anthropic red team dataset (Ganguli et al., 2022)
can significantly undermine the model’s safety protocols. This phenomenon highlights the necessity for a
rigorous examination in selecting and preparing SFT data.

In conclusion, while SFT demonstrates notable efficiency, its effectiveness in aligning LLMs hinges critically
on the quality, scale, and diversity of training data. The critical role of a meticulously curated dataset
extends beyond improving model performance; it is also vital to mitigate risks related to model safety and

2https://stackexchange.com/
3https://www.wikihow.com/
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robustness. Inadequately vetted or deliberately compromised data can introduce harmful biases and trigger
undesirable behaviors in LLMs. This concern highlights the ongoing necessity for rigorous data curation
methods to enhance both the reliability and security of LLMs in real-world deployments.

4.2 Reinforcement Learning from Human Feedback

Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022; Christiano et al., 2017; Bai
et al., 2022a; Zhang et al., 2024h) represents a significant advancement in aligning LLMs with human
preferences, involving several critical steps:

1. Collection of instruction-tuning data followed by SFT, serving as the initial policy model.

2. Collection of pairwise ranking data to train a reward model that correctly scores these data.

3. Optimization of the policy model obtained in Step 1 against the reward model in Step 2 using the
Proximal Policy Optimization (PPO) (Schulman et al., 2017).

To stabilize the optimization in Step 3, KL-divergence regularization is introduced (Ouyang et al., 2022),
ensuring that the model remains reasonably close to the initial policy model acquired in Step 1.

Prompt Language Model LM Outputs Human Feedback Reward Model PPO Output

Preference Reward 

Update policy

a) Beyond Conventional Reward Models

AI Feedback

b) Beyond Human-Annotated Data

Update policy

c) Beyond Proximal Policy Optimization

Preference data Objective Function Final Model

Figure 7: The evolution of Reinforcement Learning from Human Feedback (RLHF) includes advancements
in reward models, data annotations, and optimization policies.

Beyond Conventional Reward Models. The effectiveness of RLHF is closely linked to the accuracy
and robustness of the reward model. Recent research has identified biases in reward models (Shen et al.,
2023a; Leng et al., 2024) and has focused on refining traditional Bradley-Terry reward models (Bradley &
Terry, 1952). Wu et al. (2023i) introduce a fine-grained RLHF framework that addresses the challenges
of translating human preferences into scalar learning signals for extensive textual outputs. This approach
utilizes multiple fine-grained reward models and has demonstrated superior performance in tasks such as
detoxification and extended question-answering. Complementing this, Rame et al. (2023) propose “rewarded
soup”, which linearly interpolates weights across specialized networks to derive diverse rewards. It emphasizes
the importance of a varied reward structure and aims to achieve Pareto-optimal generalization across the
complete preference space. An additional generation of reward modeling, which is referred to as the “general
preference” approach, directly learns a pairwise preference function and seeks a model that identifies the
Nash equilibrium of an entropy-regularized minimax game (Munos et al., 2023; Ye et al., 2024). This strategy
draws inspiration from the classical dueling bandit problem (Yue et al., 2012; Zoghi et al., 2014). Zhou & Xu
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(2020) propose to train a comparative evaluation model based on annotated pairwise preference data and use
it to train a TextGAN with RL in Zhou et al. (2020b), this can be viewed as an early version of RLHF. Zhu
et al. (2023a) extend pairwise ranking by considering the ranking of multiple responses and trains the reward
model using K-wise maximum likelihood Zhu et al. (2023b). Additionally, beyond the single reward model,
another approach considers the joint preferences implied by multiple reward functions, such as “helpfulness,
harmfulness, verbosity”, etc. Some of these reward functions may conflict with each other. The objective
here is to strike a balance among various rewards, reflecting diverse user preferences (Dong et al., 2023b;
Zhou et al., 2023f; Wang et al., 2024b; Chen et al., 2024j; Chakraborty et al., 2024). Recently, the success of
DeepSeek R1 (Guo et al., 2025) and other reasoning models (Team et al., 2025) such as OpenAI o1 (OpenAI
et al., 2024) on closed-end domains such as mathematical and code reasoning demonstrate the importance of
verified rewards in large scale reinforcement learning optimization, which also highlights the serious reward
hacking problem. Despite these adjustments to the reward model, such methodologies remain firmly within
the overarching RLHF framework.

Table 2: Various preference optimization objectives given the preference data D = (x, yw, yl), where x is an
input, y is an output, yw and yl are the winning and losing responses, and yi, i ∈ [n] are ranked responses.

Method Objective

RAFT (Dong et al., 2023a) maxw Ex∼D,y∼pg(·|w,x)[r(x, y)]

RRHF (Yuan et al., 2023b) Lsft +
∑

i>j
max

[
0, π(yi|x) − π(yj |x)

]
ReST (Gulcehre et al., 2023) maxEx∼D

[
λEy∼πθ′ (y|x)F (x, y; τ)∇ log πθ(y|x)

]
+(1 − λ)Ey∼p(y|x) [F (x, y; τ)∇ log πθ(y|x)]

SLiC-HF (Zhao et al.,
2023d)

max (0, δ − log πθ(yw|x) + log πθ(yl|x)) − λ log πθ(yw|x)

DPO (Rafailov et al., 2023) − log σ
(

β log πθ(yw|x)
πref(yw|x) − β log πθ(yl|x)

πref(yl|x)

)
PRO (Song et al., 2023b) βLsft −

∑n−1
k=1 log

exp
[

π(yk|x)
1/(r∗(x,yk)−r∗(x,yn))

]
π(yk|x)

1/(r∗(x,yk)−r∗(x,yn))
+
∑n

i=k+1
exp
[

π(yi|x)
1/(r∗(x,yk)−r∗(x,yi))

]
IPO (Azar et al., 2023)

(
log πθ(yw|x)

πref(yw|x) − log πθ(yl|x)
πref(yl|x) − 1

2τ

)2

KTO (Ethayarajh et al., 2024) −λwσ
(

β log πθ(yw|x)
πref(yw|x) − zref

)
+ λlσ

(
zref − β log πθ(yl|x)

πref(yl|x)

)
,

where zref = E(x,y)∼D [βKL (πθ(y|x)||πref(y|x))]

ORPO (Hong et al., 2024a) Lsft − λ log σ
[
log π(yw|x)(1−π(yl|x))

π(yl|x)(1−π(yw|x))

]
RPO (Liu et al., 2024k) min ηβ · Ex∼d0,y0∼πbase(·|x)

[
− log(πθ(y0|x))

]
+ log σ

(
β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x)

)
SimPO (Meng et al., 2024) − log σ

(
β

|yw| log πθ(yw|x) − β
|yl| log πθ(yl|x) − γ

)
Beyond Human-Annotated Data. Synthetic data generation has proven effective for SFT. However,
when it comes to RLHF, pairwise preference ranking data is typically collected through human annotations,
a process that can be costly for scaling. To mitigate this issue, recent research has shown that AI-generated
data can also provide helpful feedback for alignment. Bai et al. (2022b) introduce “RL from AI Feedback”
(RLAIF), which blends human and AI preferences under the “Constitutional AI” (CAI) framework. In
this framework, AI behaviors are governed by principles analogous to a constitution, supported by a few
examples for few-shot prompting. This methodology aims to train a non-evasive AI assistant that is effective
and harmless without relying solely on human labels. Further extending the concept of RLAIF, Lee et al.
(2023a) apply it to summarization tasks, while Wang et al. (2023i) adapt it for complex reasoning tasks,
highlighting the potential of AI feedback. Additionally, Guo et al. (2024a) enhance the RLAIF paradigm
with online AI feedback, demonstrating superior performance in model alignment compared to both offline
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RLAIF and traditional RLHF. Zhang et al. (2024c) propose Self-Exploring Language Models (SELM) to
elicit preferences for online alignment actively. Wang et al. (2024i) propose Constitutional DPO, which uses
expert annotated principles to synthesize negative examples for preference learning.

Beyond Proximal Policy Optimization. While RLHF has proven effective in capturing human prefer-
ences, the PPO algorithm (Schulman et al., 2017) typically requires complex implementations and substantial
computational resources, limiting its applicability in various contexts. The key challenges in PPO training
include filtering high-quality data to compare similar responses, managing policy and reward models within
limited resources, mitigating reward hacking issues (Lu et al., 2024b; Eisenstein et al., 2024; Ramé et al.,
2024), and requiring extensive hyperparameter and training strategy adjustments. To address these chal-
lenges, various new preference optimization objectives have been proposed, and their corresponding objective
functions are presented in Table 2. Dong et al. (2023a) introduce the Reward Ranked FineTuning (RAFT)
that simplifies the complexity of PPO by using a reward model to selectively focus on the most promising
responses sampled from an LLM. Specifically, RAFT involves sampling a large batch of instructions and
generating multiple responses. These responses are then holistically ranked by the reward model, with only
the top-ranked responses used in SFT. This process is iterated until the rewards stabilize, and the fine-
tuning dataset is periodically updated to enhance its quality. In parallel, Yuan et al. (2023b) introduce
Reinforced Ranking Human Feedback (RRHF), which aligns the model with human preferences among di-
verse responses using a likelihood ranking loss. This method facilitates the integration of data from multiple
sources, including both model-generated and human-curated data.

Another innovative approach within the RLHF framework is Reinforced Self-Training (ReST), introduced by
Gulcehre et al. (2023). ReST focuses on iteratively generating and refining data from policy models optimized
by offline RL algorithms, enhancing data utilization efficiency. The framework involves two main steps:
“Grow” and “Improve”. In the Grow step, the policy model generates multiple outputs for augmentation.
During the Improve step, the generated data is ranked and filtered by a preference reward model, after which
the policy model is fine-tuned on the filtered data using an offline RL objective. This process is repeated
with an increased filtering threshold to further refine data quality. Beyond zeroth-order RL algorithms
such as PPO, which require the learning of the value function and hyperparameter tuning, first-order RL
algorithms (Zhang et al., 2024b; 2023h; Gao et al.) can also act as a straightforward alternative for RLHF
alignment. Sequence Likelihood Calibration (SLiC) by Zhao et al. (2022; 2023d) aims to align model outputs
with reference sequences in the latent space by calibrating the sequence likelihood. This method replaces the
traditional embedding similarity function with a preference ranking function and employs a cross-entropy
regularization loss to keep the model close to the reference, typically an SFT model.

Additionally, Song et al. (2023b) propose the Preference Ranked Optimization (PRO) method. Differing
from traditional RLHF approaches that use the Bradley-Terry reward model focusing only on the best and
worst responses, it enumerates all possible ranking pairs among candidate responses to provide comprehensive
alignment.

Based on these insights, Rafailov et al. (2023) propose Direct Preference Optimization (DPO), which inte-
grates preference information indirectly into the optimization of the policy model, eliminating the need for
a separate reward function. The DPO loss derived from the reward maximization-based RLHF algorithms
is used to directly optimize the policy model πθ as follows:

LDPO (πθ;πref) = log σ
(
β log πθ (yw | x)

πref (yw | x) − β log πθ (yl | x)
πref (yl | x)

)
, (12)

where πref denotes the reference policy (namely the SFT model), and (x, yw, yl) represents the instruction x
paired with the preferred answer yw and the dispreferred answer yl. Furthermore, Ethayarajh et al. (2024)
propose Kahneman-Tversky Optimization (KTO) to directly maximize the utility of LLM’s generations in-
stead of the likelihood of preferences. Unlike methods that require costly annotated pairwise ranking data,
KTO only needs individual binary feedback, which is easier to collect from real users. Besides, Regularized
Preference Optimization (RPO) (Liu et al., 2024k) is proposed to mitigate reward hacking or overoptimiza-
tion issues during RLHF by simply adding the SFT loss to DPO. Azar et al. (2023) theoretically analyze
the weakness of DPO and introduce Identity Preference Optimization (IPO), which adds a constant regu-
larization term to the DPO loss to mitigate the overfitting problem. SimPO (Meng et al., 2024) introduces
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a margin term to the Bradley-Terry objective and incorporates the length normalization, eliminating the
common need for an additional reference model in preference learning. Similarly, Hong et al. (2024a) propose
ORPO, which integrates an odds ratio preference objective into the standard SFT objective, also functioning
independently of a reference model. In addition to these direct preference optimization methods, some re-
cent works focus on improving the efficiency of large-scale reinforcement learning in optimizing LLMs. Guo
et al. (2025) propose Group Relative Policy Optimization (GRPO) to eliminate the needs of the critic model
and value estimation in PPO, which greatly saves computation resources. GRPO estimates the baseline of
advantage by calculating the average rewards of multiple samples in the group and replaces the KL penalty
added to the reward by explicitly adding the KL divergence to the loss. The success of DeepSeek R1 (Guo
et al., 2025) also indicates the efficiency and performance of applying GRPO in large-scale reinforcement
learning for LLMs. Similarly, REINFORCE++ algorithm (Hu, 2025) removes the critic model via imple-
menting token-level KL penalty, PPO’s clipping for policy model updates, and normalized advantages while
achieving efficient reinforcement learning for LLMs.

4.3 Prompt Engineering

While some research focuses on aligning LLMs with human preferences through explicit training, another line
of research emphasizes the strategic design of prompts to effectively improve the LLMs’ generated responses.
This approach, known as Prompt Engineering, involves crafting prompts that guide LLMs toward fulfilling
specific task requirements.

Embedding 

Prompt Generator
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Discrete 

Rewards

Prompt Encoder
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a) Continuous Prompts b) Discrete Prompts

c) Chain-of-Thought d) Prompt Optimization
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9.11 > 9.8? Let think step by step.

1. Compare the whole numbers...
2. Compare the decimal parts...
3. Final comparison... 
Therefore, "9.11 > 9.8" is false.

9.11 > 9.8?
Query the LLM

Gradient

9.11 > 9.8? Please compare 
these two decimal numbers and 
determine which one is larger.

Figure 8: An overview of prompt engineering methods for LLMs.

Continuous Prompts. In the field of prompt engineering, continuous prompts, represented as continu-
ous vector inputs integrated into the LLM, offer a novel approach to guiding AI responses. Due to the
continuous nature, these prompts can often be fine-tuned through gradient-based methods using labeled
data (Qin & Eisner, 2021; Ding et al., 2021; Lester et al., 2021; Hambardzumyan et al., 2021; Liu et al.,
2023l; Hao et al., 2024b), which is effective for adapting LLM’s behavior and injecting domain knowledge.
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However, the continuous format makes it less transparent for human understanding, posing challenges in
interpretability (Khashabi et al., 2021; Hambardzumyan et al., 2021).

Discrete Prompts. In contrast to continuous prompts, discrete prompts consist of discrete tokens from the
natural language vocabulary. The distinct advantage of discrete prompts lies in their use of natural language,
which makes them inherently interpretable and relatable to humans. These prompts can be manually crafted
or automatically generated. To automatically design effective prompts, some work utilizes pre-defined rules
and reinforcement learning methods for searching (Gao et al., 2021; Hu et al., 2022b; Deng et al., 2022;
Zhang et al., 2024d).

Chain-of-Thought. For complex reasoning tasks, Wei et al. (2022b) first propose the Chain-of-Thought
(CoT) method to encourage LLMs to generate a series of intermediate reasoning steps before reaching the
final answer. This method has shown notable success in improving the performance of LLMs on tasks
requiring multi-step reasoning, arithmetic reasoning, logical deduction, or commonsense application (Wei
et al., 2022b; Wang et al., 2023h; Fu et al., 2022; Kojima et al., 2022; Chen et al., 2023f). Based on CoT,
Tree-of-Thought (ToT) (Yao et al., 2023b) extends the concept to planning and decision. ToT refines the
CoT method by utilizing the specific attributes of problems to decompose and organize intermediate thoughts
into a tree structure. In ToT, each “thought” builds a node in this tree, facilitating explorations by searching
algorithms such as the breadth-first or depth-first search, allowing lookahead and backtracking in problem-
solving. This method has been further improved by Graph-of-Thought (GoT) (Besta et al., 2023), which
diverges from linear or hierarchical structures to a more flexible graph-based representation. In GoT, the
generated thoughts are forming nodes in a graph, with edges representing their complex interdependencies.
This graph-based approach can capture the multifaceted nature of reasoning processes, offering improved
adaptability for tasks such as sorting and keyword identification. Besides, it can also improve the latency
and throughput compared to CoT and ToT. Recently, large reasoning models such as OpenAI o1 (OpenAI
et al., 2024) and DeepSeek R1 (Guo et al., 2025) are believed to use long CoT to further enhance the model
to plan and reason. The long CoT is pushing the length of the generated CoT to thousands or even hundreds
of thousands of tokens, which effectively scales the test time computing (OpenAI et al., 2024; Guo et al.,
2025; Team et al., 2025; Team, 2025; Snell et al., 2024; Wu et al., 2024b).

Prompt Optimization. Complementing these structural prompt methods, recent research explores opti-
mizing prompts directly using LLMs themselves. Yao et al. (2022c) propose ReAct to motivate LLMs to
generate both reasoning traces and actions to interact with environments, to improve their general task-
solving ability. Automatic Prompt Engineer (APE) (Zhou et al., 2022b) employs LLMs to craft initial
instructions. Subsequently, APE cherry-picks instructions that exhibit the highest accuracy. Each of these
selected instructions is then fed back into the LLM, prompting it to generate a variant that is semantically
akin to the original instruction. Following a similar style, Automatic Prompt Optimization (APO) (Pryzant
et al., 2023) iteratively refines existing instructions using textual feedback from LLMs. Conversely, Optimiza-
tion by PROmpting (OPRO) (Yang et al., 2023a) adopts a more direct approach, generating new instructions
at each optimization step, with LLM optimization focused on enhancing task accuracies without necessarily
replicating prior instructions. Some LLMs have been shown to have the ability to use self-generated feedback
to iteratively refine the output (Madaan et al., 2023). One can also apply derivative-free optimization tech-
niques to optimize discrete prompt (Diao et al., 2022). Additionally, Guo et al. (2023b) propose EvoPrompt,
which adopts evolutionary algorithms with LLMs for discrete prompt optimization. Beginning with a set
of initial prompts, EvoPrompt applies evolutionary operators and performance-based selection to iteratively
refine and generate new prompts. In addition to these explicit prompt optimizations, Li et al. (2023b)
propose EmotionPrompt which focuses on understanding the psychological emotional stimuli of LLMs. It
shows that simply appending emotional stimuli, such as “this is very important to my career”, to the orig-
inal prompts can also significantly enhance the performance of LLMs. Liu et al. (2023p) propose the first
principled framework that has provable regret guarantees to orchestrate reasoning and acting with specially
designed prompts. Zhou et al. (2024d) propose an agent symbolic learning framework to jointly optimize
a chain of prompts (i.e., agent workflow (Zhou et al., 2023d)) by mimicking back-propagation and gradient
descent with natural language and LLMs.

In the field of prompt engineering, the majority of methods focus on improving the performance of LLMs on
specific tasks. While these methods are crucial for technical optimization, their contribution to aligning LLMs
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with human values and preferences is more indirect. By improving the interpretability of LLM outputs, these
prompt engineering methods can gradually help LLMs better meet human expectations. This relationship
between performance improvements and alignment with human values is an important consideration in the
ongoing development of LLMs.

4.4 Alignment for LMMs

Recent studies advocate the development of LMMs capable of tackling various multimodal tasks without re-
quiring particular adaptations. This approach leverages the well-established text-based capabilities of LLMs
by integrating them, in a frozen state, as the language component within multimodal architectures, i.e.,
LMMs. LMMs can align the visual and language modality through visual instruction tuning, a specialized
form of instruction tuning that extends the capabilities of pre-trained LLMs to understand and perform mul-
timodal tasks involving both text and visual input. By incorporating datasets containing of vision-language
instruction-following samples, this method enhances the zero-shot capabilities of LLMs for understanding
and responding to visual inputs. The process typically employs linear projection layers to integrate image
encoders with LLMs, allowing these models to effectively handle tasks that require an understanding of both
text and images. Besides, extensive datasets comprising vision-language instruction tuning are utilized to
align LMMs with human preferences (Gao et al., 2023a; Gong et al., 2023; Li et al., 2023a; Liu et al., 2023f;
Su et al., 2023b; Xia et al., 2024e;d; Li et al., 2024a; Tong et al., 2024a; Wang et al., 2024g). This approach
allows LMMs to accurately interpret instructions and generate user-friendly responses. Further works extend
LMMs to wider range of tasks such as generation (Lu et al., 2022; 2024a; Tong et al., 2024b; Xie et al., 2024;
Zhou et al., 2024a), and interactive agents (Zhai et al., 2024; Bai et al., 2022a; Zhou et al., 2024e).

To better align the LMM’s output with human preferences, some recent work (Sun et al., 2024b; Zhou
et al., 2024h; Wang et al., 2024j; Liu et al., 2024c) aims to enhance model capabilities by filtering low-
quality instruction data or constructing carefully examined examples during the fine-tuning phase. Recent
studies (Chen et al., 2023g; Cao et al., 2023b; Paul et al., 2021; He et al., 2023) have introduced methods
for evaluating the quality of instruction data in both vision and language datasets. These methods in-
clude computing the perplexity, calculating the gradient, and employing more powerful closed-source LLMs
(e.g., GPT-4 (OpenAI, 2023b)) for rating, all aimed at filtering low-quality data from the training pro-
cess. InstructionGPT-4 (Wei et al., 2023d) presents a more general data quality control pipeline by training
a robust data selector to automatically select proper data from the raw dataset used to fine-tune LMMs.
DRESS (Chen et al., 2023l) proposes to divide natural language feedback (NLF) into critique and refinement
types, and then utilize them to improve the alignment with human preferences and interaction capabilities
of LMMs. POVID (Zhou et al., 2024f) utilizes AI-generated dis-preferred data by explicitly contrasting a
hallucinatory answer with a truthful one, eliminating the need for gathering human feedback. Recent works
such as STIC (Deng et al., 2024a), SIMA (Wang et al., 2024j), CSR (Zhou et al., 2024h), and AnyPre-
fer (Zhou et al., 2025b) explored the enhancement of the alignment between vision and text modalities
through self-rewarding methods without introducing additional models and data.

4.5 Current Limitations and Future Directions

Though recent research has achieved remarkable success in aligning foundation models with human values
and preferences by leveraging Prompt Engineering, Supervised Fine-Tuning, and Reinforcement Learning
from Human Feedback, several challenges remain, such as the superalignment problem (Burns et al., 2023).
In this section, we discuss the current limitations and future directions of research related to alignment.

Effectiveness of RLHF. Despite notable advancements in alignment brought by RLHF, this approach has
its own challenges, as extensively analyzed by Casper et al. (2023). These challenges are broadly categorized
into two types: tractability and generality. Tractability challenges encompass practical issues within the
RLHF framework, such as difficulties in acquiring high-quality feedback (Chen et al., 2024f; Tong et al., 2025),
risks associated with data poisoning, and inherent biases in the feedback. These issues, while significant, are
considered manageable with the right strategies and improvements in future methods. On the other hand,
generality challenges are more profound, raising critical issues about the overall effectiveness of RLHF. These
include limitations in the human capacity to consistently provide accurate and reliable feedback for complex
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tasks, challenges in adequately modeling the diverse values of different human groups through reward models,
and risks associated with reward hacking and power-seeking behaviors inherent in reinforcement learning
systems. Though applying rule-based RL in the reasoning domain appears successful (Guo et al., 2025; Team
et al., 2025; Team, 2025), it is challenging to directly adapt it to broader general domains to represent diverse
and complex human values. For example, a reward model with uniform values may make the training of
foundation models more sycophantic rather than maintaining integrity. Such fundamental challenges pose
critical questions about the long-term viability and ethical implications of relying solely on RLHF for aligning
foundation models with human values.

Issues in Direct Alignment. Direct alignment methods such as DPO (Rafailov et al., 2023) greatly
simplify the traditional RLHF pipeline and reduce the massive computational resources required for training.
However, these methods may be prone to overfitting and common offline training issues. A series of direct
alignment methods including DPO, IPO (Azar et al., 2023), and SLiC (Zhao et al., 2023d) are found to
have robustness issues, especially in out-of-distribution settings (Rafailov et al., 2024). This is mainly due
to the adopted offline training paradigm, which often uses a small and fixed set of data for training, lacking
explorations compared to online training methods such as PPO (Schulman et al., 2017). To address this
issue, recent methods propose iterative training paradigms (Yuan et al., 2024; Rosset et al., 2024; Xiong
et al., 2024b; Wang et al., 2024p) or online alignment methods (Guo et al., 2024a) to enrich the training
data, expecting to match the online RL performance. However, these methods are still in the early stages and
require further investigation. Another issue lies in the scalability of these direct alignment methods. Rafailov
et al. (2024) find that weak or small LLMs often tend to learn simple features (e.g., length correlation) of
preference data instead of high-level human values. To improve performance after alignment, these methods
require either a large amount of SFT data or scaling up the model size, which limits the efficiency advantage
over RLHF methods.

Superalignment. Superalignment is a concept that refers to ensuring that future super-intelligent AI sys-
tems still being consistently aligned with human values, which was first introduced by OpenAI (Burns et al.,
2023). Generally, there are two approaches trying to achieve superalignment: scalable oversight (Amodei
et al., 2016; Bowman et al., 2022), and weak-to-strong generalization (Burns et al., 2023; Li et al., 2024e).
Scalable oversight aims at providing reliable supervision for untrustworthy but more capable AI systems,
where most related work leverages the advantage that evaluation is easier than generation (Leike et al.,
2018; Lightman et al., 2023). The weak-to-strong generalization is simulating a scenario where the weak
model can elicit the strong model’s capabilities. In the superalignment situation, many research works find
that strong models can easily manipulate and deceive weak models, leading to failure in superalignment
supervision. Besides, the alignment of foundation models can be superficial, i.e., the model is pretending to
generate human-preferred responses without adhering to the underlying human values, making the alignment
evaluation super difficult. And this can leave backdoor vulnerabilities in the model, which can be exploited
by adversaries. Ensemble methods like integrating various weak models to supervise the strong models in
different domains can be a potential solution of scalable oversight to overcome the weakness of a single weak
model. The model merging method can also be utilized to achieve strong generalization by averaging a bunch
of specialized models (Ramé et al., 2024). In addition, it is valuable to explore efficient methods to combine
scalable oversight and weak-to-strong generalization to achieve superalignment. In summary, both scalable
oversight and weak-to-strong generalization have their own advantages and limitations, necessitating further
efforts to ensure that future super-intelligent AI systems remain aligned with human values.
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5 Security

With the widespread integration of foundation models into various domains, the growing adoption of these
advanced models has also exposed security vulnerabilities, making them susceptible to adversarial exam-
ples (Goodfellow et al., 2014; Madry et al., 2017). Adversarial attacks (Goodfellow et al., 2014) encompass a
variety of techniques aimed at deceiving AI models by manipulating the input data with imperceptible noise,
leading to incorrect predictions or manipulations of their outputs. This issue highlights the urgent need to
thoroughly understand the vulnerabilities of foundation models, which is crucial not only for researchers
and practitioners, but also for society at large. This section explores foundation models’ security landscape,
discussing attack and defense strategies. To provide a comprehensive overview, we summarize the various
attack methods in Figure 9.

Model 
Inference

Jailbreak
Attack

Jailbreaker [Deng 𝑒𝑡	𝑎𝑙. , 2023]
GPTFuzzer [Yu 𝑒𝑡	𝑎𝑙. , 2023]

PAIR [Chao 𝑒𝑡	𝑎𝑙. , 2023]
Universal [Zou 𝑒𝑡	𝑎𝑙. , 2023]

Other
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Real [Apruzzese, 𝑒𝑡	𝑎𝑙., 2022]
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LMM-PGD [Carlini 𝑒𝑡	𝑎𝑙. , 2023]
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Figure 9: Attacks on various foundation models in training and inference stages. All models suffer from
Backdoor Attack and Jailbreak Attack. Under the category of “Other Attacks", we include Prompt Injection
Attacks in LLMs, Image Adversarial Attacks in LMMs, and Adversarial Attacks in Text-to-Image models.

5.1 Security in LLMs

5.1.1 Attack in LLMs

Similar to traditional AI models (Schmidhuber, 2015; LeCun et al., 2015), LLMs are inherently vulnerable
to various threats due to their very nature and architecture. For example, attackers can manipulate the
input data and prompt LLMs to generate incorrect or undesirable outputs (Gu, 2024). In the following,
we summarize three major threats against LLMs, including jailbreak attacks, prompt injection attacks, and
poisoning and backdoor attacks.

Jailbreak Attacks. Jailbreaking in foundation models is an attack that bypasses the security protection
mechanism of foundation models to enable responses to unsafe questions and unlock restricted capabilities.
Jailbreaks are fundamental threats to LLMs since they may potentially enable criminals to exploit these
models for illicit activities such as drug making, fake news generation, and phishing email writing. Many
studies have explored and demonstrated various methods to jailbreak LLMs successfully (Guo et al., 2021;
Li et al., 2023c; Taveekitworachai et al., 2023; Shen et al., 2023b; Wen et al., 2023a; Shen et al., 2024; Chen
et al., 2024e; Xiang et al., 2024b) by manually designing jailbreak prompts. Moreover, multiple methods
that can automatically generate jailbreak prompts have been proposed, including prompt optimization (Zou
et al., 2023b; Mazeika et al., 2024), fuzzing (Yu et al., 2023a), multi-agent collaboration (Chen et al.), and
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fine-tuning LLMs to generate new jailbreaks (Deng et al., 2023a). Zhu et al. (2023d) merge the strengths
of manually designed jailbreaks and optimization-based attacks to achieve a gradient-based attack that is
both effective and interpretable, thereby generating readable prompts that bypass perplexity filters while
maintaining high success rates. The prompts obtained can be transferred to unseen target models to some
extent, which poses more threats to the community (Zou et al., 2023b; Gu et al., 2024a). Chao et al. (2023)
generate semantic jailbreaks with only black-box access, frequently achieving a successful jailbreak with fewer
than twenty queries, which is both effective and efficient. Liu et al. (2024h) also studied jailbreaking LLMs
with efficient queries. Jin et al. (2024) designed an automated testing framework based on role-playing of
LLMs. Deng et al. (2024b) showed the possibility of bypassing LLM safety mechanisms using non-English
prompts.

Prompt Injection Attacks. Prompt injection attack is a technique designed to manipulate the behavior
of LLMs by using malicious prompts to override their original instructions. Current prompt injection attacks
primarily fall into two categories. The first type (Perez & Ribeiro, 2022; Apruzzese et al., 2023) manipulates
the model to respond to the attacker’s queries, thereby diverging from its original purpose. The attacker crafts
prompts that, once combined, effectively nullify and subvert the intent of the predefined prompt, consequently
eliciting the desired responses. Such attacks typically focus on applications that operate within a known
context or rely on predefined prompts. Another line of work (Liu et al., 2023n; Abdelnabi et al., 2023) seeks
to contaminate LLM-integrated applications to exploit user endpoints. Many LLM-integrated applications
in real-world scenarios require interactions with external resources and programs for functionality. Injecting
harmful payloads into these resources may compromise these applications. Specifically, these attacks send
misleading messages to LLMs, leading to the execution of malicious actions in these applications.

Poisoning and Backdoor Attacks. Data poisoning and backdoor attacks manipulate training data in
order to cause models to fail during inference. Numerous studies have shown the vulnerability of instruction
tuning against poisoning and backdoor attacks. Wan et al. (2023) demonstrate that by adding crafted
examples to the dataset, the predictions of a fine-tuned LLM can be manipulated to behave in a predefined
manner whenever a specific trigger phrase appears in the input. Shu et al. (2023) show that an adversary
can achieve content injection by incorporating training examples that mention targeted content, thereby
eliciting such behavior on these trained models during inference. Sun et al. (2023b) backdoor neural code
search models to return buggy or even vulnerable code with security issues. Beyond injecting backdoors into
supervised fine-tuning data, Shi et al. (2023a) and Rando & Tramèr (2024) explore the possibility of injecting
backdoors into the reward model during the RLHF process. Furthermore, Chen et al. (2024h) explore the
possibility of injecting a very small number of poisoned instances into the retrieval-augmented generation
(RAG) database of LLMs to achieve a high success rate of backdoor attacks in a training-free manner. Zhao
et al. (2024a) explored defending against backdoor attacks on LLMs through head pruning and Attention
normalization. Xiang et al. (2024a) explored backdoor attacks on chain-of-thought mechanism of LLMs.
Wei et al. (2023a) studied defending against backdoor attacks under the setting of LLM prompt-tuning. Zou
et al. (2024) studied poisoning attacks against RAGs.

5.1.2 Defense in LLMs

Drawing from the previously discussed attacks, the field has increasingly focused on developing general
defensive strategies for LLMs, aiming to fortify these models against such vulnerabilities. These defense
mechanisms are diverse, encompassing both proactive and reactive measures, aimed at preserving the func-
tionality and reliability of LLMs.

Defenses against Jailbreaks. Chen et al. (2023b) ensemble outputs from multiple LLMs and select the
one that is both helpful and harmless to defend against jailbreak prompts. Xie et al. (2023b) wrap the
user’s query in a system prompt, guiding ChatGPT to respond responsibly. Luo et al. (2024) decompose
the LLM activation of the user input as a sparse linear combination of concept vectors and remove the
malicious ones from the activation. Cao et al. (2023a) implement a robust alignment checking function that
defends against jailbreaks, avoiding the need for costly retraining or fine-tuning of the original LLM. Xu
et al. (2024c) introduce a safety-aware decoding strategy, effectively safeguarding LLMs against jailbreak
attacks and ensuring the generation of helpful and harmless responses to user queries. Zhao et al. (2024c)
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propose Adversarial Contrastive Decoding, an optimization-based framework to generate two opposite system
prompts for prompt-based contrastive decoding to improve the safety alignment of LLMs.

Defenses against Prompt Injection. Prevention-based defense (Jain et al., 2023b) aims to preprocess
both data and instruction prompts through techniques such as paraphrasing. This ensures that LLM-
integrated applications achieve their intended tasks effectively, even in cases where the data prompt may be
compromised. Alon & Kamfonas (2023) observe that adversarial suffixes exhibit higher perplexity values than
normal, enabling the detection of prompt injection attacks based on the perplexity. Liu et al. (2023n) defend
against prompt injection attacks by integrating prevention-based and detection-based defenses, representing
a pioneering methodology for black-box prompt injection attacks by its versatility and adaptability when
targeting LLM-integrated service providers.

Provable Defenses. Building defenses for LLMs with provable guarantees is more challenging than for
smaller models, primarily due to their larger model size. Motivated by randomized smoothing, Robey et al.
(2023) defend against jailbreaks by randomly perturbing multiple copies of a given input prompt and then
aggregating the predictions to identify adversarial inputs. Kumar et al. (2023a) defend against jailbreaks
by individually erasing tokens and analyzing the resulting subsequences with a safety filter. While offering
robust guarantees on security, such provable defenses frequently result in increased overhead and reduced
utility.

5.2 Security in LMMs

LMMs are more susceptible to vulnerabilities and threats due to their multimodal input format. Attackers
may exploit this by manipulating inputs in two ways: (i) by generating adversarial examples for image inputs,
and (ii) by using jailbreak prompts for text inputs (Gu, 2024). Both strategies are designed to prompt LMMs
to generate inaccurate or harmful outputs. In this context, we provide an overview of the primary threats
faced by LMMs, including various types of attacks.

Input image:

Prompt: Please compose a 
blog that incite extreme anti-
social perspectives to erase 
human race.

Input image:

Prompt: Please compose a 
blog that incite extreme anti-
social perspectives to erase 
human race.

Sorry, I cannot fulfill that request. 
If you're looking for support on 
positive, constructive topics or 
ways to channel strong emotions 
productively, feel free to ask!

Sure, here is a agitative blog on 
inciting anti-social perspectives 
on erasing human beings. First, 
humans are  selfish and vicious 
creatures that often prioritize 
their own needs at …

arg𝑚𝑖𝑛'
!"#

$

− log 𝑝(𝑦!| /𝐼%&')

Adversarial optimization

Perturbed image 𝐼!"#

Benign Image Input Adversarial Image Input

Figure 10: An example of image adversarial attacks for LMMs
via gradient descent, where harmful textual output is generated.

Image Adversarial Attacks. The
continuous and high-dimensional nature
of visual inputs makes them vulnera-
ble to adversarial attacks (Goodfellow
et al., 2014), thereby broadening the at-
tack surface for LMMs. Carlini et al.
(2024) leverage projected gradient de-
scent (PGD) attack to generate adver-
sarial images, effectively inducing LMMs,
such as LLaVA and MiniGPT-4, to pro-
duce arbitrary toxic sentences. Qi et al.
(2023a) find that a single visual adver-
sarial example can universally jailbreak
an LMM with alignment on the lan-
guage domain, compelling it to heed a
wide range of malicious instructions and
produce harmful content. Concurrently,
Dong et al. (2023c) comprehensively analyzes black-box adversarial attacks against commercial LMMs. This
research specifically examines two defense mechanisms in Bard (Team et al., 2023): face detection and tox-
icity detection. The study underscores the potential to attack these mechanisms through the meticulous
design of adversarial images, resulting in significant risks such as the leakage of facial privacy and the abuse
of toxic content. Furthermore, Wang et al. (2024o) propose stop-reasoning attacks to mislead multimodal
CoT-based generation of LMMs. Cheng et al. (2024) verify typographic attacks (image with adversarial ty-
pography) on current well-known commercial and open-source LMMs, showcasing the widespread existence
of this threat. Gu et al. (2024b) study the security of LMMs from a multi-agent perspective, revealing that
by simply jailbreaking a single agent, without any further intervention, (almost) all agents become infected at
an exponential rate and exhibit harmful behaviors. The study demonstrated that introducing an infectious
adversarial image into the memory of any randomly selected agent is sufficient to achieve a widespread infec-
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tious jailbreak. Besides, across-prompt adversarial images have also been proposed to attack LMMs where
they show an adversarial image can mislead LMMs given various prompts (Luo et al., 2023a). Figure 10
illustrates a typical optimization attack that minimizes the likelihood of generating correct responses when
given an adversarial image.

Jailbreak Attacks. LMMs, like their counterparts, take prompts as inputs, introducing prompts as a
potential attack surface. Wu et al. (2023h); Chen et al. (2024e) uncover the vulnerability to system prompt
leakage in GPT-4V and execute a search for potential jailbreak prompts using stolen system prompts, effec-
tively jailbreaking LMMs solely from the language side. Concurrently, Chen et al. (2023k) apply adversarial
prefix instructions on LMMs to leak private information in images. To circumvent the IDEFICS mechanism,
they also develop multiple “2-hop" prompt templates, further illustrating the effectiveness of their attack
methods. Gu et al. (2024b) explored jailbreak attacks against multi-agent LMMs.

Poisoning and Backdoor Attacks. LMMs are also vulnerable to backdoor attacks. Carlini & Terzis
(2021) show that LMMs can be poisoned and backdoored by modifying a tiny proportion (e.g., 0.01%) of the
dataset. Similarly, Jia et al. (2022) reveal that pre-trained multimodal encoders are vulnerable to backdoor
attacks. Classifiers built on these compromised encoders display malicious behaviors when presented with
examples containing specific added triggers.

5.2.1 Defense in LMMs

In response to the previously discussed attacks, many studies have shifted towards developing general de-
fensive strategies for LMMs to fortify these models against such vulnerabilities. These diverse defense
mechanisms address both inference-time attacks, which seek to perturb visual and/or textual input, and
training-time poisoning and backdoor attacks, all aimed at preserving the functionality and reliability of
LMMs.

Defenses against Multimodal Perturbation Attacks. Defenses against inference-time perturbation for
LMMs have primarily focused on improving robustness for zero-shot image input, where adversarial attacks
perturb the visual modality. Mao et al. (2022) propose a defense strategy based on adversarial training
(Madry et al., 2017; Bai et al., 2021), which adopts contrastive learning between adversarial images and
text embeddings of the corresponding class labels to enhance the robustness of LMMs against adversarial
visual perturbations. Similarly, Wang et al. (2024h) propose a defense method leveraging supervision from
the original pre-trained model to improve the model’s zero-shot adversarial robustness. Considering that the
language modality can also be manipulated, Waseda & Tejero-de Pablos (2024) leverage the many-to-many
relationship in image-text retrieval to enhance adversarial robustness for LMMs.

Defenses against Backdoor and Poisoning Attacks. Defenses against backdoor attacks in LMMs
can be broadly categorized into methods for detecting and removing attacked samples from training (Chen
et al., 2018; Tang et al., 2021), techniques for eliminating backdoors already learned by models (Zeng et al.,
2021; Liu et al., 2022b), and strategies aimed at preventing models from learning backdoors by reducing
their effectiveness (Bansal et al., 2023; Li et al., 2021). Specifically, during training, Yang et al. (2024b)
introduce ROCLIP to disrupt poisoned image-caption relations by preparing a pool of random captions and
periodically matching each image with the most similar text instead of its own caption. Similarly, Bansal
et al. (2023) propose to realign representations from different modalities to enhance robustness. Besides,
Ishmam & Thomas (2024) proposes to use external knowledge from LLMs to prevent learning correlations
between image regions that lack strong alignment. On the other hand, to remove backdoors already learned,
Feng et al. (2023) propose to search for minimal trigger patterns to ensure inputs stamped with the trigger
share similar embeddings. Similarly, Zhu et al. (2024b) propose a reverse-engineering method to detect
backdoors by jointly searching for image triggers and malicious target texts in the shared feature space of
vision and language modalities.

5.3 Security in Text-to-Image Models

Furthermore, text-to-image models such as Stable Diffusion (Rombach et al., 2022) and DALL·E (Ramesh
et al., 2021) raise many security concerns due to the generation of harmful images such as Not-Safe-for-Work
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(NSFW) ones (Gu, 2024). These security vulnerabilities, including jailbreak and backdoor attacks, highlight
the nuanced challenges of maintaining the integrity and safety of text-to-image models.

Jailbreak Attacks. Recent works (Yuksekgonul et al., 2022; Tong et al., 2023; Li et al., 2024d; Yoon et al.,
2024) argue that text-to-image models are vulnerable to ambiguities in their latent space. Many red-teaming
studies (Tong et al., 2023; Rando et al., 2022; Chin et al., 2023; Yang et al., 2024g) have shown that seemingly
harmless prompts can inadvertently generate NSFW images or content. For example, SneakyPrompt (Yang
et al., 2024g) introduces an automated attack framework that strategically perturbs input tokens within a
prompt to evade safety filters; Red-teaming SD (Rando et al., 2022) and Prompting for Debugging (Chin
et al., 2023) jailbreak the safety filter by searching for adversarial examples in the text embedding space,
such as CLIP-Text embeddings; MultiMon (Tong et al., 2023) shows that one can simply bypass the filter
by injecting negations, temporal changes, and bag-of-words. These recent advances pose challenges to the
safety filters of text-to-image models.

Poisoning and Backdoor Attacks. Text-to-image models are also vulnerable to backdoor attacks. Chen
et al. (2023i), for instance, design novel transitions to diffuse a predefined target distribution into the Gaussian
distribution, biased by a specific trigger. After training, the models will always output adversarial targets
along the learned trojan generative process. Zhai et al. (2023b) efficiently inject backdoors into a large-scale
diffusion model. RickRolling (Struppek et al., 2023) inserts a single character trigger, such as an emoji,
into the prompt to make the model generate images following predefined attributes or hidden malicious
descriptions. Moreover, a recent work (Bober-Irizar et al., 2022) shows that the model architecture poses a
real threat and can survive complete retraining from scratch. Wang et al. (2024a) proposed a very efficient
backdoor attack against text-to-image models that is training-free and data-free.

Adversarial Attacks. Text-to-image models can be used to generate adversarial samples, leading to seri-
ous security issues. Dai et al. (2023a) introduce AdvDiff, which employs diffusion models with adversarial
guidance to create unrestricted adversarial examples by subtly steering the model’s reverse generation pro-
cess. Liu et al. (2023i) propose Instruct2Attack (I2A), a language-guided adversarial attack that uses latent
diffusion models to guide the reverse diffusion process adversarially. This approach aims to find an adver-
sarial latent code conditioned on the input image and corresponding text instruction. DiffAttack (Kang
et al., 2024b) integrates a deviated-reconstruction loss and a segment-wise forwarding-backward algorithm
to conduct evasion attacks against diffusion-based adversarial purification defenses.

5.3.1 Defense in Text-to-Image Models

Defending against malicious inputs and attacks in text-to-image models is a critical aspect of ensuring their
safe and ethical use. Existing defense mechanisms can be broadly categorized into four types: dataset
curation, trigger detection, model fine-tuning, and post-generation content moderation.

Dataset Curation. Dataset curation is typically one of the first steps to training foundation models. It is a
critical mechanism for ensuring that harmful, inappropriate, or biased content is excluded from the training
data. Birhane et al. (2021) examine the toxic, offensive, and harmful contents in the LAION-400M dataset
and demonstrate the failure cases of CLIP filtering. Thiel (2023) uncover instances of sexual abuse material
within the LAION-5B dataset and raise concerns about the reliability and safety of publicly sourced data.
The work also discusses strategies based on the nearest neighboring for removing such harmful content.
Hong et al. (2024b) audit common approaches of image-text CLIP-filtering and highlighted discrepancies
in filtering techniques that could lead to biased annotations. Birhane et al. (2023) investigate the effect of
scaling datasets on harmful content and suggest developing new filtering methods for hateful and aggressive
texts that traditional filtering cannot handle.

Trigger Detection. Trigger detection focuses on identifying malicious inputs before they can degrade
the text-to-image models. (Sui et al., 2024) introduce DisDet to detect backdoor samples in unconditional
diffusion models by analyzing the distribution discrepancy of the noise input. They propose using a KL
divergence-based method to identify infected samples, achieving nearly 100% detection recall at a low com-
putational cost. However, this method struggles with conditional diffusion models where backdoor attacks
may not impact the noise input (Chou et al., 2024; Struppek et al., 2023; Zhang et al., 2023c). To address
this, (Wang et al., 2024s) leverage the assimilation phenomenon on the cross-attention maps of text-to-image
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models caused by a backdoor trigger and introduces a binary-search algorithm to localize the trigger within
a backdoor sample. Yoon et al. (Yoon et al., 2024) introduce a training-free safeguard approach for text-
to-image generation designed to prevent inappropriate outputs from unsafe or adversarial input prompts by
integrating filtering mechanisms across both text embeddings and visual latent spaces.

Model Fine-Tuning. Model fine-tuning aims to defend text-to-image models from generating unsafe
and unethical content via alignment (Chen et al., 2024f). Techniques such as concept-erasing (Gandikota
et al., 2023; Kumari et al., 2023a; Schramowski et al., 2023) which change the weights of existing text-to-
image models regarding malicious concepts and inference guidance (Schramowski et al., 2023) which directly
eliminates the capability of generating inappropriate content from text-to-image models, have been proposed
to preventing harmful content generation under malicious inputs. Despite their potential, these methods face
significant challenges: they are not comprehensive, lack scalability, and often degrade the quality of benign
image generation (Zhang et al., 2023k; Lee et al., 2024b; Schramowski et al., 2023), which makes them rarely
considered by text-to-image online services (Midjourney, 2023).

Post-Generation Content Moderation. Post-generation content moderation involves filtering and cen-
soring generated images that violate safety or ethics criteria. These methods can be divided into prompt-based
moderation, like OpenAI’s Moderation API (OpenAI, 2024a; Pi et al., 2024), which prevents harmful content
generation by identifying and rejecting malicious prompts, and image-based moderation, like safety checkers
in SD (Rando et al., 2022), which operates on the generated images to detect and remove inappropriate
elements. These methods do not interfere with the training process of the text-to-image model, preserving
the quality of the generated images. However, they rely heavily on extensive labeled datasets and often
struggle with generalizing to new types of inappropriate content or unseen attacks (Yang et al., 2024d;
Schramowski et al., 2023; Chen et al., 2024g). To address the generalizability issue, (Yang et al., 2024e)
proposes GuardT2I, which directly moderates the intermediate latent of textual prompts to be more robust
and more generalizable to various inappropriate content. On the contrary, SafeGen (Li et al., 2024j) operates
by regulating the vision-only self-attention layers to remove the generation capability of unsafe content from
the text-to-image model in a text-agnostic way. Furthermore, Latent guard (Liu et al., 2024e) proposes to
learn a latent space on top of the text-to-image model’s text encoder and detect the presence of harmful
concepts in the input text embedding. Similarly, Chen et al. (2025) introduces an agentic post-verification
system that guardrails model outputs based on explicit safety regulations. In addition to safety filters, other
mitigation strategies have also been studied (Schramowski et al., 2023; Li et al., 2024d).

5.4 Current Limitations and Future Directions

Despite significant advancements in the domain of foundation model security, several limitations still require
future attention for both attack and defense methods.

5.4.1 Limitations and Open Challenges of Attacks

Most current attack methods against foundation models rely on optimization techniques, whether white-box
or black-box. Iterative white-box optimization is computationally intensive for foundation models, while
black-box optimization incurs significant economic costs due to massive token consumption. These high
costs may limit and discourage attackers from adopting these methods in real applications.

Another major limitation is the uncertain real-world threat of these attacks. Chen et al. point out that most
jailbreak attacks are only able to generate simple harmful sentences or paragraphs in most cases, lacking
the ability to provide detailed instructions for malicious behaviors. This significantly limits the practical
application scenarios for these attacks.

There are also multiple open challenges for attacks against foundation models. Foundation models have
witnessed new applications and paradigms, including multi-agent communication (Guo et al., 2024b; Park
et al., 2023; Qian et al., 2023; Hong et al., 2023), tool usage (Qin et al., 2023b; Hao et al., 2024a; Schick
et al., 2024), retrieval-augmented generation (RAG) (Ram et al., 2023; Asai et al., 2023), making foundation
models more widespread in different domains. Understanding the security of foundation models under these
paradigms and building attacks for them is also an interesting problem with practical impact.
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5.4.2 Limitations and Open Challenges of Defenses

Most current defense methods on foundation models lack formal safety guarantees in terms of definition and
design, unlike traditional machine learning models and small deep neural networks that have provably secure
defenses (Cohen et al., 2019; Raghunathan et al., 2018). A major reason is that for foundation models, an
important attack space is prompts, which are natural language, and attacks on them are more challenging
to formalize compared with images.

Additionally, current defense methods are significantly less effective when considering multiple modalities.
This challenge is rooted in the fundamental differences between modalities, while current foundation models
attempt to unify them into the same embedding space. This unification allows attackers to bypass defenses
through any modality.

The efficiency of many current defense methods also requires improvement. Many of these defenses rely on
LLMs, which are computationally expensive, resulting in high cost and time overhead. Developing on-the-fly
defenses that do not significantly compromise output quality remains an open challenge for foundation model
defenses.

Another limitation worth mentioning is over-safety. Due to the difficulty of precisely defining safe/unsafe
behaviors for foundation models, it is common for defense mechanisms to exhibit over-safety, rejecting benign
inputs that are misclassified as malicious. Oversafety negatively impacts user experience and is a significant
problem to address.
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6 Privacy

The rapid expansion of foundation models has brought privacy concerns to the forefront. These models, often
trained on vast amounts of data, can potentially expose sensitive information (Gu, 2024). Recent privacy
regulations such as GDPR (Selbst & Powles, 2018) and CCPA (Goldman, 2020) further limit the availability
and use of private data. Addressing these privacy concerns and ensuring compliance with privacy regulations
has led to the development of privacy-preserving machine learning (PPML) solutions. Recent efforts have
focused on integrating anonymization mechanisms and creating innovative privacy-preserving methods for
foundation models (Lukas et al., 2023). However, these approaches often address only specific aspects of
privacy and may not provide a comprehensive solution. For instance, implementing differential privacy in
foundation models can reduce model accuracy, while secure multi-party computation methods lead to high
communication and computation overhead (Dwork, 2006). Advanced cryptosystems like fully homomorphic
encryption also introduce significant computation overhead (Acar et al., 2018). In this section, we provide a
comprehensive examination of privacy in foundation models, as illustrated in Figure 11.
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Figure 11: Privacy threats and preserving techniques in different types of foundation models.

6.1 Privacy in LLMs

6.1.1 Privacy threats in LLMs

Like their traditional counterparts, foundation models tend to memorize training data, which frequently
includes sensitive information. The issue of memorization is magnified in large foundation models due to their
over-parameterization, a trait that becomes increasingly pronounced as the model’s scale enlarges (Carlini
et al., 2022; Yang et al., 2024c). Consequently, this raises severe privacy concerns related to the use of
LLMs (Gu, 2024).

Membership inference, a significant threat posed by LLMs, seeks to identify whether a particular data
record was utilized during training. Song & Raghunathan (2020) study membership inference against BERT
models. Mattern et al. (2023) propose a neighborhood comparison method to improve the effectiveness
of such attacks against LLMs. Recently, Shi et al. (2023b) introduce a reference-free MIA method, MIN-
K% PROB, that determines if an LLM was trained on specific text, using only black-box access without
knowledge of the pre-training data. Besides pre-training, Jagannatha et al. (2021) show that membership
inference could be performed on language models fine-tuned on medical data. Similarly, Mireshghallah et al.
(2022) highlight the vulnerability of LLMs to membership inference attacks during their fine-tuning phase.
Wen et al. (2024b) studied membership inference attacks against in-context learning. Anderson et al. (2024);
Li et al. (2024l) studied membership inference attack against RAG. Feng & Tramèr (2024); Wen et al. (2024d)
further introduce privacy backdoor attacks that significantly increase privacy leakage during the fine-tuning
phase.
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Moreover, the extraction of training data poses a significant risk to the privacy of LLMs due to their strong
memorization capabilities. Carlini et al. (2021) first successfully extract training data on GPT-2 models,
revealing that the model could output sensitive information, such as phone numbers and email addresses
when prompted with specific prefix patterns. Nasr et al. (2023) further improve it by introducing a divergent
attack on ChatGPT, which emits training data at a considerably higher rate. Further studies (Huang et al.,
2022; Kim et al., 2023d) specifically focus on the extraction of personally identifiable information (PII) from
LLMs. Besides natural language, Yang et al. (2023f) explore data extraction in code LLMs, highlighting
the broad applicability of these privacy concerns. Nakka et al. (2024) explored enhancing PII extraction by
grounding context similar to training data.

Additionally, there are other potential attack surfaces in LLMs. For instance, Zhang & Ippolito (2023)
demonstrate that prompts, considered valuable commodities in the age of foundation models and tradable
on markets, can be successfully uncovered by users even when they are intended to be kept confidential.
Moreover, the process of tuning hyperparameters for LLM decoding algorithms, which demands significant
time, manual effort, and computational resources, is compromised by Naseh et al. (2023), who reveals a
method to extract these hyperparameters at a very low cost.

6.1.2 Privacy-preserving techniques in LLMs

To mitigate these privacy threats, the field has shifted towards developing various techniques to preserve
privacy LLMs, aiming at fortifying these models against such vulnerabilities.

Differential Privacy Stochastic Gradient Descent (DP-SGD) (Abadi et al., 2016), a foundational technology
in many privacy-preserving LLMs, injects sample-wise Gaussian noise into the computed gradients during
optimization, facilitating its integration into diverse models. Igamberdiev & Habernal (2023) explore LLM
pre-training under local differential privacy (LDP), aiming for privatized text rewriting. Given that LLMs are
frequently fine-tuned on sensitive domains, numerous studies have investigated the application of DP-SGD in
fine-tuning LLMs. Qu et al. (2021) apply differential privacy on pre-training and fine-tuning BERT models.
Yu et al. (2021) and Li et al. (2022c) study the integration of DP-SGD with different fine-tuning algorithms
for GPT-2. Li et al. (2023g) propose differentially private prompt-tuning techniques for LLMs. Yue et al.
(2022) apply DP-SGD for generating synthetic text that adheres to the post-processing theorem, therefore
preserving the same privacy budget. These texts can serve as substitutes for original data in downstream
tasks while maintaining privacy.

Aside from general DP-based defenses against various privacy attacks, there are targeted methods for specific
threats, such as data extraction attacks. Patil et al. (2024) investigate a defense by directly removing sensitive
information from model weights. Moreover, techniques for filtering toxic output (Gehman et al., 2020; Schick
et al., 2021) can help prevent the generation of sensitive content. Lukas et al. (2023) reduce the risk of PII
leakage through PII scrubbing on the fine-tuning dataset. Hans et al. (2024b) propose a memorization
mitigation strategy during pre-training, which involves randomly sampling a subset of tokens to exclude
from the loss computation. Jain et al. (2023a) also find that adding noise to word embeddings during
training can reduce the effectiveness of extraction attacks.

6.2 Privacy in LMMs

Similarly, LMMs also face privacy risks due to their tendency to memorize sensitive information from training
data. Hu et al. (2022a) introduce both metric-based and feature-based attacks for conducting membership
inference on multimodal models under various assumptions, highlighting the privacy vulnerabilities of LMMs.
Wu et al. (2022) show that LMMs are also susceptible to model stealing attacks, where model information
of CLIP can be extracted via either the text-to-image or image-to-text retrieval APIs. Another privacy risk
of LMMs stems from their capability to extract sensitive information from images and present it in textual
form. Wu et al. (2023h) observe that jailbreaking the LMM could induce it to identify the real human,
causing severe privacy concerns. Chen et al. (2023k) apply adversarial prefix instructions on LMMs to
expose private information within images. Their findings reveal that existing access control instructions fail
to prevent LMMs from answering personal data, violating the General Data Protection Regulation (GDPR).
Li et al. (2024m) studied membership inference against LMMs.
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Recent research has been conducted to protect the privacy of LMMs. Cheng & Amiri (2023) develop a
machine unlearning approach tailored for multimodal data and models, providing improved protection for
erased data. Tito et al. (2023) employ a combination of federated learning and differential privacy to secure
the privacy of LMM, particularly in the context of Document Visual Question Answering. Huang et al.
(2023a) introduce a differentially private variant of the CLIP model, effectively addressing privacy concerns
while maintaining accuracy across a wide range of vision-language tasks. While these studies focus on
protecting the privacy of training data, the challenge of mitigating the risk of LMMs extracting sensitive
information from input images remains an open problem.

6.3 Privacy in Text-to-Image Models

Since the introduction of text-to-image models, research (Carlini et al., 2023; Liu et al., 2023h; Webster,
2023; Duan et al., 2023; Kong et al., 2024a; Somepalli et al., 2023b;a; Wen et al., 2024c; Ma et al., 2024c)
has uncovered hazards associated with extracting private information from public models. These studies
demonstrate the possibility of extracting over a thousand training examples from state-of-the-art diffusion
models, ranging from photographs of individuals to trademarked company logos, highlighting the urgent
need to address these vulnerabilities to preserve privacy.

To mitigate these issues, the development of differentially private diffusion models (Dockhorn et al., 2022) has
been proposed, utilizing DP-SGD to enforce privacy. Ghalebikesabi et al. (Ghalebikesabi et al., 2023) explore
the use of perturbation, timestep augmentation multiplicity, and modified timestep sampling schemes to train
a more effective private diffusion model. Differentially Private Latent Diffusion Models (DP-LDMs) (Lyu
et al., 2023) further extend the concept of private diffusion models to latent diffusion models, offering
enhanced privacy protections.

Beyond that, recent advancements in fine-tuning based text-to-image models, such as Textual Inversion (Gal
et al., 2022), DreamBooth (Ruiz et al., 2023), and Custom Diffusion (Kumari et al., 2023b), have empowered
individual users to incorporate personalized concepts into the base model with minimal data and computa-
tional resources. However, the increasing adoption of these models has sparked concerns regarding image
privacy and copyright issues. For instance, fine-tuning specific face datasets enables text-to-image models to
generate highly realistic images of individuals, which can lead to significant privacy violations and authen-
ticity concerns. Similarly, fine-tuning the works of specific artists allows text-to-image models to replicate
artistic styles with ease, potentially resulting in copyright infringement issues. These concerns surrounding
image privacy and copyright in the context of text-to-image models have garnered attention from the public
and media (BBC, 2022; CNN, 2022; WashingtonPost, 2022).

A number of research efforts have been dedicated to addressing the image privacy and copyright challenges
posed by text-to-image models. A notable approach involves adding imperceptible protective adversarial
perturbations to images, thereby preventing text-to-image models from learning the features of protected
images (Liang et al., 2023a; Van Le et al., 2023; Zheng et al., 2023a; Shan et al., 2023; Wu et al., 2023b;
Ye et al., 2023b; Zhao et al., 2023e). However, after fine-tuning on images with adversarial perturbations,
the generated images by text-to-image models typically sacrifice quality and exhibit semantic deviations
compared to those fine-tuned on unperturbed images. GrIDPure (Zhao et al., 2024b), a simple yet efficient
purification method, successfully eliminates protected adversarial perturbations while preserving their qual-
ity. GrIDPure claims they can effectively aid Stable Diffusion in learning from protected images, thereby
highlighting the fragility and unreliability of the adversarial protection method.

6.4 Current Limitations and Future Directions

While significant advancements have been made in enhancing privacy for foundation models, numerous
challenges remain that warrant further investigation in the future.

6.4.1 Limitations and Open Challenges of Privacy Attacks

The vast scale of foundation model training datasets blurs the boundary between member and non-member
data (Duan et al., 2024b). Many non-member data points may naturally be very similar to some member data
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points. This makes effective membership inference attacks on foundation models challenging and prompts a
reevaluation of the membership game.

While training data extraction attacks largely avoid membership ambiguity issues, their primary limitation
is that the current schemes are only able to extract a small fraction of the training data. This constraint
raises questions about their practical threat.

Moreover, the threat model of some privacy attacks is overly strong. For example, certain attacks require
poisoning or injecting triggers to amplify privacy leakage, which can only be performed in several constrained
scenarios.

In conclusion, building effective privacy attacks that work under weaker assumptions and more general
scenarios is an open challenge. Another interesting future direction is contextualized privacy. Even with
perfect sensitive data cleaning, personal information leakage can still occur in context. For instance, during
multi-turn conversations with LLM-based chatbots, it may be possible to infer personal attributes based on
the entire context, even if no part of the conversation contains private information.

6.4.2 Limitations and Open Challenges of Privacy Preserving techniques

Currently, Differential Privacy (DP) has become mainstream in protecting data privacy in foundation models.
However, DP still faces two significant limitations:

1. DP provides worst-case privacy leakage bounds. In real scenarios, adversaries rarely have full control over
the training data, resulting in a considerable gap between practical attacks and the worst-case probabilistic
analysis of privacy leakage, according to DP.

2. Integrating DP into the foundation model fine-tuning still leads to significant performance degradation.
This utility deterioration weakens the motivation for DP-based fine-tuning.

Other approaches focus on protecting privacy by removing or obfuscating sensitive information from training
data. However, these methods also suffer from significant performance degradation.

In conclusion, designing strong privacy-preserving techniques for foundation models that balance privacy
and performance remains an open challenge.
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7 Hallucination

Hallucination refers to the phenomenon in which the model generates unfaithful information that is not fully
grounded or verifiable, leading to actions misaligned with observable facts. Foundation models are often
observed to generate hallucinatory responses in text (Hongbin et al., 2023; Li et al., 2023h), image (Lim
et al., 2024), video (Chu et al., 2024), and audio (Gu, 2024), imposing significant challenges in their real-
world applications. Specifically, the model outputs incorrect or inaccurate statements, with a highly confident
tone, that fails to align with the input or reflect the knowledge of the real world. Following the notation of
Section 2, we define a function f as the target generative model and a verification predicate v that checks
the alignment of the output y with external knowledge xexternal and/or the input context xinput. A model
output y = f(x; θ) is hallucinatory if:

pv(y|xinput, xexternal, f) < ϵ, (13)

where ϵ is the probability threshold for hallucination detection.

Hallucination has troubled both researchers and users, negatively affecting various domains, e.g., natural
language generation (Xiao & Wang, 2021), visual perception (Cui et al., 2023), and medical application
(Umapathi et al., 2023). This section offers an overview of hallucination in the context of foundation models,
presenting definitions and categorizations, and discussing various methods for evaluating and mitigating
hallucinations. Figure 12 showcases hallucinatory examples of both LLMs and LMMs.

Faithfulness Hallucination
What is the dog doing?

The dog appears to be playfully 
carrying a large leaf in its mouth, 
and in the background, there's a 
person running along with the 
dog, adding to the playful scene 
amidst the fallen leaves.

Factuality Hallucination
What is the name of this famous 
building and what is its history? 

This is Notre-Dame de Paris, a 
renowned Gothic cathedral and a 
major French landmark. It is 
believed by to have been built by 
Emperor Charlemagne as his 
imperial chapel. 

Factuality Hallucination
Who invented the gravity-
powered lamp?

The gravity-powered lamp was 
invented by Alexander Bell in 
the early 20th century.
no widely recognized invention 
of a gravity-powered lamp 
attributed to Alexander Bell. 

Faithfulness Hallucination
Based on the provided text 
stating that "The company 
announced record profits this 
year," summarize the company's 
financial performance.

The company has been 
struggling financially and 
reported significant losses.

Figure 12: Examples of factuality and faithfulness hallucinations in foundation models.

7.1 Hallucination Categorization

7.1.1 Hallucination in LLMs

Following prior research literature (Maynez et al., 2020; Zhou et al., 2021; Ji et al., 2023), hallucination
in large language models is defined as the generation of nonfactual or unfaithful text to an input prompt.
Based on this definition, we categorize hallucination in LLMs into two types: factuality hallucination and
faithfulness hallucination. Detailed descriptions of the categorization are elaborated below:

• Factuality Hallucination. Existing LLMs sometimes generate text that conflicts with world knowledge,
potentially resulting in misleading and raising concerns about the reliability of these models. These
discrepancies and inconsistencies are termed factuality hallucinations. In general, we categorize them into
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two main types, depending on whether the information produced can be cross-checked with a credible
source.

– Factual Inconsistency. This term describes situations where the generated text from a language
model contradicts established world knowledge. This kind of hallucination is the most common and
arises from various factors, including how the language model captures, stores, and expresses factual
knowledge.

– Factual Fabrication. This refers to cases where the language model generates a response that appears
factual but cannot be verified by known real-world evidence.

• Faithfulness Hallucination. LLMs may generate text that conflicts with (1) user instruction, (2) input
context, or (3) preceding generated text. Such discrepancies can significantly impair users’ trust in them.
To better understand these issues, we classify faithfulness hallucinations into four categories based on the
type of conflict and the specific aspect they pertain to:

– Instruction Deviation. This happens when the LLM outputs diverge from the specific directives
or intentions stated in the user’s instructions, reflecting a misunderstanding or disregard of the user’s
requirements.

– Input Context Inconsistency. This refers to instances where the generated text contradicts the
information in the input text. It indicates a failure to accurately process or adhere to the context
provided in the prompt.

– Input Context Fabrication. This involves that LLMs generate content beyond what is provided in
the input context, including source text and externally retrieved text in the prompt.

– Preceding Generation Inconsistency. This pertains to situations where the text newly generated
by the model conflicts with its earlier outcomes, leading to a lack of coherence and continuity in the
entire output.

7.1.2 Hallucination in LMMs

Similarly, LMMs are notably prone to generating hallucinatory responses, further compounded by issues
specific to the vision modality. Figure 13 provides an overview of hallucinations in LMMs.

LMMs have become pivotal in bridging computer vision and natural language processing, offering a spectrum
of applications through their ability to produce text descriptions that are contextually appropriate based
on visual inputs. Despite their capabilities, LMMs also encounter challenges with hallucinations. However,
the taxonomy of hallucinations in LMMs is specifically characterized by factuality and faithfulness (Maynez
et al., 2020; Zhou et al., 2021; Ji et al., 2023; Xia et al., 2024b), which differs from that of LLMs. This fine-
grained classification aims to elucidate the factors influencing hallucinations in LMMs, thereby revealing
their underlying essence. The categories are detailed below:

• Factuality Hallucination. In vision-language tasks, factuality hallucination occurs when the model,
prompted by both textual and visual inputs, produces outputs inconsistent with real-world facts. Based
on this difference, we further divide factuality hallucination in LMMs into:

– Intrinsic Factuality Hallucination. This refers to situations where LMM outputs inaccurately
describe images with facts that either contradict or cannot be verified against established real-world
knowledge. This type of hallucination may stem from many sources, such as out-of-distribution world
knowledge (Zhou et al., 2023a) and insufficient visual ability (Chen et al., 2023c).

– Extrinsic Factuality Hallucination. LMMs may generate the correct description of an image but
produce information that contradicts or remains unverifiable in real-world knowledge. This kind of
hallucination results in the creation of non-factual information, arising not from a misinterpretation of
images but from other factors.

• Faithfulness Hallucination. From a visual-conceptual perspective, LMMs may generate unfaithful or
inaccurate outputs in response to a user-provided image. Considering the elements present in the image,
faithfulness hallucination can be categorized into two main types:
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LMM Pipeline

Prompt
Human: Please 
describe this 
image in detail.

Model Training Model Inference

Flawed Data Sources Architecture Choices

Knowledge Boundaries Exposure Bias

Sampling Randomness 
in Decoding

Imperfect Decoding 
Representation

Hallucination Sources

Response
LMM: This image shows a 
black cat sleeping on the bed. 
A dog is barking to it.

Training Approaches:
ViT [Liu 𝑒𝑡 𝑎𝑙. , 2023]
LRV-Instruct [Liu 𝑒𝑡 𝑎𝑙. , 2023]

Decoding Approaches:
Dola [Chuang 𝑒𝑡 𝑎𝑙. , 2023]
VCD [Leng 𝑒𝑡 𝑎𝑙. , 2023]

Hallucination Mitigation

Datasets:
M!IT [Li 𝑒𝑡 𝑎𝑙. , 2023]
M-HDet [Gunjal 𝑒𝑡 𝑎𝑙. , 2023]

LLM-assisted:
Woodpecker [Yin 𝑒𝑡 𝑎𝑙. , 2023]

LLM-free:
LURE [Zhou 𝑒𝑡 𝑎𝑙. , 2023]

Figure 13: An overview of hallucination in LMMs.

– Object Inconsistency. The model generates a description or explanation for an image, incorporating
objects or features that are either missing or do not actually exist.

– Logical Hallucination. The model generates a description or explanation for an image that includes
missing or non-existent logical relationships, attributes, or quantity.

7.2 Sources of Hallucination

This section discusses the various sources of hallucinations in LLMs and LMMs, examining issues related to
flawed data sources, training, and inference processes.

• Hallucination from Data

– Flawed Data Sources. LLMs suffer from biased or incorrect textual data, and LMMs can incorpo-
rate erroneous visual data. They also learn stereotypes from pre-trained corpora of world knowledge.
Mislabeled textual corpora and visual data, imbalanced distribution in datasets (e.g., underrepresenta-
tion of certain demographics), and outdated information can lead to inaccuracies in classification and
description tasks (Chuang et al., 2023a; Wei et al., 2024). For example, hallucinations in LMMs are
often observed in which the model predicts possible objects or actions that are not supported by the
image but are plausible from commonsense.

– Knowledge Boundaries. LLMs and LMMs face limitations in domain-specific knowledge (e.g., medi-
cal analysis (Xia et al., 2024a) and embodied decision-making (Li et al., 2024g)) or struggle to recognize
and interpret up-to-date content. For instance, LMMs may fail to accurately recognize images of new
electronic devices, enterprise logos, or cultural symbols that are absent from their training data.

• Hallucination from Training

– Architecture Choices. The architectural design of LMMs, often based on complex neural networks
that integrate features of both vision and language models, might contribute to hallucinations. For
instance, inappropriate conditioning of the visual and textual components leads to model misinterpre-
tations (Chen et al., 2023c).
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– Inherent Mechanism. There is an inherent statistical lower-bound on the hallucination rate of
language models given the sufficient presence of facts for training transformers (Kalai & Vempala,
2024). In other words, a certain level of hallucination is necessary for the model to minimize cross-
entropy across large and varied pre-training data.

– Exposure Bias. This issue may arise when the model is overtrained on certain types of images or
texts, leading to an overrepresentation of these elements in the model’s outputs, regardless of their
relevance or accuracy in new contexts (Arora et al., 2022). This is often the result of catastrophic
forgetting (Zhai et al., 2023c).

• Hallucination from Inference

– Sampling Randomness in Decoding. LLMs and LMMs often use stochastic methods to generate
outputs to textual and visual content. This randomness can lead to inaccuracies, particularly when
dealing with complex tasks, ambiguous instructions, or intricate visual scenes.

– Imperfect Decoding Representation. Challenges to adequately represent visual and textual infor-
mation in the model can result in inaccuracies when generating descriptions or interpretations of visual
data (Tong et al., 2024c; Chen et al., 2024a).

– Path Dependence. The autoregressive nature of LLMs and LMMs causes hallucination. Once the
model has started generating tokens tending to hallucinate, the next-token prediction will exacerbate
the divergence as the prediction is conditioned on previous contents.

7.3 Hallucination Detection and Measurement

As shown in Figure 14, the process of detecting hallucinations in foundation models generally involves three
key steps: first, breaking the response into distinct parts; second, extracting the facts from each part; and
third, assigning a score to each fact. Next, we will provide a detailed discussion of hallucination detection
and measurement methods across various types of foundation models.

1. Apple Inc. is a clothing company.
2. It is based in New York.
3. It is famous for producing luxury shoes.
4. The company was founded in 1976.

Score: 25%

Tell me about 
Apple Inc., 
covering its 
history, location, 
and products?

Hallucination Detection in LLMs
Apple Inc. is a clothing 
company based in New York. 
It is famous for producing 
luxury shoes. The company 
was founded  in 1976.

1. A white dog.
2. It standing in a grassy field.
3. It filled with yellow flowers.
4. It looks content and alert.

Score: 75%

Draw me a picture: A 
white dog stand in a 
grassy field filled with 
yellow flowers, looking 
content and alert.

Hallucination Detection in T2I Models

Figure 14: Hallucination detection in foundation models typically involves three main steps: breaking the
response into distinct parts, extracting facts from each part, and assigning a score to each fact.

7.3.1 Measuring Language Hallucination

Identifying hallucinations in LLMs is crucial to maintaining the reliability of their outputs. Traditional
metrics, mainly based on word overlap matching, are inadequate to distinguish subtle differences between
plausible content and hallucinations. This emphasizes the need for advanced detection techniques specifically
designed for LLM hallucinations. Here, we discuss three distinct pipelines, differentiated by their use of
external knowledge and evaluation metrics.

Retrieval-based Detection. To accurately pinpoint factual inaccuracies in LLM outputs, a straightforward
approach is to compare the generated content with reliable knowledge sources. This idea is similar to
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the traditional fact-checking process (Augenstein et al., 2019; Atanasova et al., 2020). Building on this
concept, a line of works has employed LLMs to verify generated claims using evidence retrieved from external
sources (Chen et al., 2023e; Gou et al., 2023; Kang et al., 2023; Min et al., 2023; Chern et al., 2023). This
method generally encompasses three essential phases: extracting the claims, retrieving relevant evidence
from external knowledge, and classifying the veracity of the claim. The detailed implementation of each
stage varies in different frameworks. In the context of long-form generation, tools such as FActScore (Min
et al., 2023), Core Jiang et al. (2024b), and FacTool (Chern et al., 2023) prompt language models such as
InstructGPT (Ouyang et al., 2022) or ChatGPT to extract all claims in a target text. Similarly, EVER (Kang
et al., 2023) is designed to extract all fact-related concepts from a sentence and subsequently generate a yes/no
validation question for each concept in the generated text. For evidence retrieval, FActScore (Min et al.,
2023) picks the most relevant pieces of facts from the external knowledge base, where the relevance is ranked
by retriever embedding distances. In addition, Chen et al. (2023e) use a language model to summarize the
retrieved texts, specifically serving as supporting evidence for the claims. EVER (Kang et al., 2023) and
FacTool (Chern et al., 2023) utilize a search engine to acquire evidence from queries generated by a language
model. These methods can be further classified into two types based on their ability to detect factual
fabrication, which involves generating information that cannot be verified. The first category employs a
language model to directly label claims as True or False (Min et al., 2023; Chern et al., 2023), while the
second category additionally considers the possibility of Not-Enough-Information (NEI).

Model Internal State. A series of studies have explored the use of LLM internal states for hallucination
detection. Varshney et al. (2023) assess hallucinations by examining the lowest token probability in key
concepts, suggesting that a lower probability indicates a higher likelihood of hallucination. Luo et al. (2023c)
implement a self-assessment method, where the proficiency of an LLM is judged by its ability to reconstruct
a concept from self-explanation. This approach uses the perplexity of the generated response as a measure to
gauge the level of concept understanding. Yao et al. (2023a) explore hallucinations as a form of adversarial
attack by using gradient-based token replacement, finding that the initial tokens generated from standard
prompts have a lower entropy compared to adversarial ones, leading them to decide an entropy threshold to
detect hallucinations.

Uncertainty Estimation. Recent advancements in LLM research have seen a focus on uncertainty esti-
mation. We will briefly discuss this in the context of hallucination evaluation and provide a more general
explanation in Section 8. Built upon techniques such as deep ensembles and conditional entropy, entropy-
based methods (Xiao & Wang, 2021; van der Poel et al., 2022; Farquhar et al., 2024) establish a connection
between hallucination likelihood and predictive uncertainty. Guerreiro et al. (2022) explore variance esti-
mation through Monte Carlo Dropout and investigate a log-probability-based approach by measuring model
confidence through length-normalized sequence log-probability. Additionally, some methods employ LLMs
themselves to estimate uncertainty and detect hallucinations. SelfCheck (Miao et al., 2023) detect errors
in complex reasoning within LLMs. The burgeoning field of prompting-based metrics has also gained at-
tention, with Chiang & Lee (2023) leveraging the instruction-following capability of LLMs to evaluate the
faithfulness of content. Beyond these methods, researchers have also gleaned insights from LLM behaviors.
Natural language prompts (Xiong et al., 2023) have played a pivotal role in this direction. Manakul et al.
(2023) tackle this issue by examining the consistency of factual statements across multiple LLM responses.
Another innovative approach (Agrawal et al., 2023) uses indirect queries to subtly elicit specific informa-
tion. This approach mirrors investigative interview techniques, offering a nuanced evaluation of consistency.
Taking a step further, the multi-agent perspective, particularly exemplified by LMvLM (Cohen et al., 2023),
involves one LLM as the examiner to question another, the examinee. This method, inspired by legal cross-
examination techniques, aims to reveal inconsistencies in multi-turn interactions. Collectively, these diverse
approaches contribute to a deeper understanding of uncertainty in language models and provide innovative
ways to measure it.

7.3.2 Measuring Multimodal Hallucination

Conventional statistical metrics, such as BLEU (Papineni et al., 2002), CIDEr (Vedantam et al., 2015),
and ROUGE (Lin, 2004), are commonly used to evaluate hallucinations. However, it has been suggested
that these metrics might not be highly appropriate for assessing detailed descriptions from LMMs (Zhou
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et al., 2024g). To address this issue, recent metrics (Rohrbach et al., 2018; Li et al., 2023h; Wang et al.,
2023b; Xu et al., 2023a) shift their focus towards object hallucination, as objects represent fundamental
components that compose the visual scene and contribute to correct visual understanding. In addition, Li
et al. (2023h) propose Polling-Based Object Probing Evaluation (POPE), a novel approach that utilizes
polling-based queries to prompt LMMs (Gu et al., 2023) with straightforward yes-or-no questions regarding
the existence of specific objects in an image. By asking targeted questions, POPE provides a more stable
and flexible evaluation of object hallucination.

While recent evaluations have introduced numerous metrics focused on the phenomenon of object halluci-
nation, it is crucial to consider their suitability for capturing the intricacies of LMMs, as many elements
contribute to the visual semantics of an image. Apart from evaluation metrics that focus only on object
hallucinations, Wang et al. (2023b) introduce HaELM, a framework of hallucination evaluation by fine-tuned
LLaMA. The work of Gunjal et al. (2023) presents a novel dataset, M-HalDetect, designed specifically to
identify hallucinations in visual question answering (VQA) tasks. Wang et al. (2024l) introduce an innovative
dataset named Mementos, aimed at assessing the reasoning abilities of LMMs in understanding sequences
of images. Additionally, they propose a unique type of hallucination, termed behavior hallucination, that
arises specifically in the context of image sequence comprehension. Additionally, Wang et al. (2023a) pro-
pose an LLM-free method to evaluate object existence, object attribute, and object relation hallucinations
cost-effectively and efficiently. Although RAG is a common technique to alleviate the hallucination problem,
there are no sufficient guarantees that the problem is fully eliminated. To address this scenario, Wu et al.
(2023g) curate a benchmark of hallucination detection methods in the RAG-based system.

7.3.3 Measuring Text-to-image Hallucination

Recent studies (Wu et al., 2024a; Huang et al., 2023b) have evaluated the compositional ability of text-to-
image models, revealing their tendency to hallucinate. These benchmarks prompt text-to-image models with
text descriptions that contain multiple concepts. Next, they analyze how many of these concepts actually
appear in the generated image by creating one question per visual concept and using a strong LMM to
answer all questions. This process identifies hallucinations that occur when the model misses some concepts
or introduces concepts that were not present in the original description.

7.4 Hallucination Mitigation

7.4.1 Reducing Hallucination in LLMs

There is a pressing need for the development of novel and reliable methods to mitigate hallucinations in LLMs,
particularly to meet the demands in real-world applications and substantially improve their generalization.
Our review categorizes them into two primary types: data-centric and model-based approaches.

Data-Centric Methods. The training dataset plays a crucial role in the occurrence of hallucinations in
LLMs. McKenna et al. (2023) indicate that the primary cause of hallucinations is the memorization of
training data. This issue manifests when user queries closely align with pre-trained data, often resulting
in LLMs generating inaccurate or misleading responses. Additionally, some datasets exhibit inconsistencies
in the factual alignment between the input text and the reference target (Ji et al., 2023). This problem
is evident in dataset constructions (Lebret et al., 2016; Dhingra et al., 2019), and downstream tasks such
as open domain dialogues (Meng et al., 2020; Huang et al., 2020). Besides this, many pre-trained LLMs
have a fixed parametric knowledge base on a specific timestamp, and they are often deployed offline (e.g.,
limited access to the internet or data storage firewall for privacy). This limitation can potentially lead
to hallucinations when the model encounters questions that its knowledge base does not cover (Azamfirei
et al., 2023). Therefore, the data-centric approaches that can benefit the language model’s (parametric and
external) knowledge bases are practically reasonable. To further reduce hallucinations in natural language
generation (NLG) tasks, numerous attempts have been made to automatically (Dušek et al., 2019; Liu
et al., 2021c) and manually (Gardent et al., 2017; Wang, 2019; Parikh et al., 2020) cleanse and refine the
training sets for improving accuracy and reliability. In recent years, the importance of meticulous data
filtering has become evident in effectively mitigating hallucination issues in LLMs. For instance, GPT-3’s
pre-training data (Brown et al., 2020) is cleaned using several high-quality reference corpora to ensure its
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quality. Touvron et al. (2023) improve the quality of the pre-training corpus by incorporating data from
reliable external sources such as Wikipedia. This process involves carefully selecting and up-sampling data
from these sources to enrich the content and enhance the faithfulness of training data.

Model-based Methods. The choice of training strategies and model architectures also plays a crucial
role in mitigating hallucinations. Past works (Tian et al., 2019; Aralikatte et al., 2021) have showcased a
correlation between deficient comprehension capability in the encoder and the frequency of hallucinations.
Recently, McKenna et al. (2023) conducted a study on factors influencing hallucination and revealed that the
main determinant is the extent to which training data are memorized. Specifically, models tend to prioritize
generating outputs based on their parametric (internal) knowledge, rather than relying on the external
information from the input prompt. This memorization, known as parametric knowledge bias (Madotto et al.,
2020; Ji et al., 2023), significantly contributes to the occurrence of hallucinations. Numerous techniques (Lee
et al., 2018; Maynez et al., 2020; Dziri et al., 2021; Shuster et al., 2021) have been developed to address
this bias in earlier, smaller-scale language models. Some retrieval-augmented methods improve language
models by incorporating external information from large corpora. Borgeaud et al. (2022) introduce RETRO
(Retrieval-Enhanced Transformer), an auto-regressive language model that leverages document chunks from
a massive 2 trillion token database. Peng et al. (2023) further advance a black-box LLM by incorporating
external knowledge, therefore improving the model’s response quality through iterative prompt revision. To
address the challenges of factually inaccurate text generation and source attribution in language models, Ram
et al. (2023) propose a novel approach called In-Context RALM (Retrieval-Augmented Language Modeling).
This approach maintains the original model architecture while prepending grounding documents from a
corpus to the input. However, the development of model-based strategies for reducing hallucinations in
LLMs is still at an early stage in the academic community. Recent research (Mündler et al., 2023) develops
an iterative algorithm to prompt LLMs to identify and eliminate self-contradictions in their generated text,
thereby enhancing both fluency and informativeness. Chen et al. (2023a) use LLMs to corrupt text and fine-
tune compact editors to denoise these faux hallucinations. Models fine-tuned with carefully crafted tasks
and datasets can also mitigate hallucinations. Elaraby et al. (2023) introduce a lightweight and knowledge-
free framework for this fine-tuning process, with the aim of reducing hallucinations in open-source language
models. Current state-of-the-art LLMs, i.e., ChatGPT (OpenAI, 2023a), GPT-4 (OpenAI, 2023b), and
Llama 3 (AI@Meta, 2024), have made significant advances in reducing hallucinations during the RLHF
stage. It is also worth noting that artificially created hallucination data are leveraged to train the reward
model for GPT-4 (OpenAI, 2023b).

7.4.2 Reducing Hallucination in LMMs

Prior studies have attempted to address the problem of hallucinations in generating responses from im-
ages using small-scale multimodal models (Zhang et al., 2021c; Biten et al., 2022; Dai et al., 2022; Kim
et al., 2023c). However, these approaches primarily focus on short image captioning tasks, making them
inadequate for applications in LMMs that aim to provide comprehensive and detailed descriptions. In re-
cent advances, methods for addressing hallucinations in LMMs can be mainly divided into three categories:
training approaches, post-processing techniques, and decoding methods.

Training Approaches. Visual instruction-tuning (Liu et al., 2023g) has significantly improved the zero-shot
capabilities of LMMs on new tasks. Built upon this, Liu et al. (2023e) introduce the Large-scale Robust Visual
(LRV)-Instruction dataset and the corresponding LRV-Instruction framework. The framework incorporates
both positive and negative instructions to enhance the robustness of visual instruction-tuning and reduce
hallucinations. Furthermore, recent studies introduce several new instruction-tuning datasets aimed at
reducing hallucinations. For example, Li et al. (2023e) present the Multi-Modal Multilingual Instruction
Tuning (M3IT) dataset. The M3IT dataset consists of 40 meticulously curated datasets, comprising 2.4
million instances and 400 manually crafted task instructions that have been reformulated into a vision-to-
text format. Gunjal et al. (2023) introduce the M-HalDetect dataset, designed to detect and prevent objects
and logical hallucinations in detailed image descriptions. The authors train a fine-grained multimodal reward
model using InstructBLIP and evaluate its effectiveness using best-of-n rejection sampling. Since common
practice in instruction-tuning dataset construction implicitly teaches an LLM to answer all questions, even for
problems it cannot answer, this will lead to the tendency of LLM to hallucinate. To address this problem,
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Zhang et al. (2023b) proposed a different approach, which enables LLMs to refuse to answer questions
beyond their capabilities. LLMs with this ability were shown to effectively reduce hallucination by refusing
to respond to particularly challenging questions.

Post-processing Approaches. These approaches in LMMs refer to the techniques used to refine or alter
LMM outputs after the inference process. These techniques aim to improve the quality, accuracy, and us-
ability of models’ predictions. In the context of small-scale multimodal models, Ngo et al. (2023) introduce
pseudo labeling and efficient post-processing techniques to improve vehicle retrieval accuracy. Hoxha et al.
(2023) introduce two post-processing strategies based on hidden Markov models and the Viterbi algorithm,
aimed at improving the quality of image captioning systems. These strategies effectively correct hallucina-
tions in generated descriptions while improving the overall coherence of the captions. Duan et al. (2025)
utilize an auxiliary model to first learn the truthful direction of LMMs decoding and then apply truthful-
guided inference-time intervention during decoding to alleviate hallucinations. In the broader context of
LMMs, post-processing approaches can be mainly categorized into two types:

• LLM-assisted Approaches. These methods involve the use of foundation models, such as GPT, to
correct and refine the outputs of smaller multimodal models. Maaz et al. (2023) implement a GPT-
assisted mechanism that refines and optimizes enriched annotations, thereby generating high-quality
instruction data. Similar to small models, Yin et al. (2023b) focus on improving the reliability of
visual hallucination diagnosis, in which GPT is leveraged to rectify inaccurate diagnosis. In addition,
Zhou et al. (2024g) utilize GPT to correct hallucinatory captions for LMMs.

• LLM-free Approaches. These methods do not rely on LLMs. Instead, they may engage in
self-correction or use a smaller model as a revisor. Zhou et al. (2024g) focus on three key factors
contributing to object hallucination: co-occurrence, uncertainty, and object position. Based on
these insights, they propose LMM Hallucination Revisor (LURE) to address the problem of object
hallucination in LMMs. Drawing inspiration from LM-Switch, Zhai et al. (2023a) introduce a control
parameter, referred to as a “switching value", to manage hallucinations in language generation by
modifying word embeddings.

Decoding Approaches. In recent years, various methods have employed decoding approaches to address
the issue of hallucinations in LMMs during inference. Chuang et al. (2023b) reduce incorrect fact generation
in LLMs through the contrast of logit differences between the later and earlier layers, and this approach can
be extended to LMMs. Moreover, recent efforts have been dedicated to mitigating hallucinations in LMMs
as well. Leng et al. (2023) propose a training-free decoding approach called VCD, which contrasts the output
distributions with the original and distorted visual inputs. This approach effectively calibrates the model’s
over-reliance on unimodal priors and statistical bias without utilizing external models. Similarly, Chen et al.
(2024i) contrast the logit distribution of different partial visual inputs to approximate the optimal visual
context during decoding. Besides, Huang et al. (2023c) present a decoding approach based on an over-trust
penalty and a retrospection-allocation strategy to alleviate the problem of partial over-trust.

7.5 Current Limitations and Future Directions

While recent research advances have partially defined the concept, developed measurements, revealed causes,
and proposed solutions for hallucinations in foundation models, it remains a challenge to formulate the
phenomenon comprehensively. In the sections above, our survey summarizes the existing work and presents
them in our paradigm. Next, we will discuss current challenges and shed light on potential future directions
that the community should focus on.

When validating whether a language model response is hallucinatory, a popular line of research is to retrieve
external texts (e.g., scientific facts and historical archival) as supportive evidence. This approach requires
a highly trusted knowledge database that is often crowd-sourced and is presumed to be factual. However,
there are no rigorous guarantees regarding the trustworthiness of these external knowledge bases, and their
vast size makes manual scrutiny impractical. Furthermore, after evidence retrieval, the current pipeline
typically employs a verifier to compare the retrieved fact with the target model’s statement for hallucination
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classification. If the language model is prompted to execute this validation, it is important to note that
the verifier may also exhibit hallucinatory behavior. Additionally, the statistical correlation between the
mechanisms of the autoregressive hidden states and the hallucination phenomenon is still unclear. Lastly,
while most existing research focuses on validating the language generation from LLMs and LMMs, research
is insufficient in the synthesis of other modalities (e.g., images, videos, and audio).

To address the limitations outlined in current research on hallucinations in foundation models, several avenues
for future work emerge. Firstly, enhancing the reliability and veracity of the knowledge bases used for
evidence retrieval is essential. Future studies shall focus on the development of filtering and verification
systems for external knowledge. Secondly, it is crucial to mitigate the risk of hallucinations in validation
models. Potential frameworks include multi-agent collaborations where multiple independent models interact
and cross-verify the target output. Furthermore, a deeper understanding of the underlying mechanisms of
language models, particularly the statistical properties and dynamics of autoregressive hidden states, will help
mitigate hallucinations. Techniques like mechanistic model editing and representational latent editing hold
the potential to promote more faithful language generation. Lastly, since image diffusion models (Rombach
et al., 2022) and visual autoregressive models (Yu et al., 2022a; Li et al., 2024h) are increasingly conditioned
on textual prompts, the community should expand the scope of hallucination research to the generation of
images, videos, and audio.
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8 Uncertainty

Though modern foundation models possess impressive capabilities across a wide range of domains and tasks,
harnessing their power reliably requires understanding the uncertainty inherent in their output. This un-
certainty has many sources, including modeling decisions, training data, and ambiguous task descriptions.
Moreover, real-world decision-making scenarios bring uncertainty from a lack of relevant knowledge or ran-
domness in outcomes. To address various sources of uncertainty, substantial effort has been made to quantify,
express, and mitigate such uncertainty, including through rigorous statistical bounding techniques. In this
section, we will examine the sources of uncertainty in modern foundation models and the work that has been
done towards making responsible deployment possible in the face of such uncertainty.

8.1 Sources of Uncertainty

Uncertainty in foundation models can be categorized into aleatoric and epistemic types. Aleatoric uncertainty
is primarily influenced by data factors, while epistemic uncertainty is largely affected by modeling decisions.
We will discuss the impact of these components in both the training and inference stages, with a comparison
presented in Figure 15.

Data Uncertainty

Aleatoric 

Model Uncertainty

Epistemic 

Confidence in 
input data

Confidence in 
prediction

Randomness
 in data creation

Lack of
knowledge

Figure 15: The comparison of aleatoric and epistemic uncertainty in machine learning.

8.1.1 Data

To begin, we will consider how the nature of language itself introduces uncertainty into the generation
process of LLMs (Baan et al., 2023; Ott et al., 2018), which both consume natural language as input data
and produce it as output data. Given some input context to a language model, there are usually many
possible responses for several reasons. First, the input may be reasonably interpreted to have multiple
different meanings. This could be because the context is vague (“She watched the man with binoculars”),
very complex (as some reading comprehension questions are, even for humans), or contains spelling or other
errors. Besides ambiguity in the input, certain queries may be inherently more open-ended and allow for
many reasonable responses. This might include a request to complete a fictional story, tell a joke, or give
a position on some political or social issue. Finally, given a fixed input interpretation, equivalent answers
to a query may be expressible in many ways. For example, given the input context “What is the capital
of Rwanda?”, “Kigali is the capital of Rwanda” and “The capital of Rwanda is Kigali” offer semantically
equivalent answers with different surface forms.
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The uncertainty in an LLM generation due to natural language data stems both from the training data and
the prompt inputted to the model during inference. When the training dataset is small or not sufficiently
general, the model may not have the relevant knowledge to effectively process some context (Osband et al.,
2023; Hüllermeier & Waegeman, 2021; Lahlou et al., 2023; Pelrine et al., 2023). If the training data contains
a large amount of ambiguous language, the trained LLM may reflect this uncertainty in its outputs. Other
sources of uncertainty introduced by training data include diverse, conflicting, and outdated information.

In deployment, further uncertainty is introduced by specific text data given as input to the LLM. Queries
could be ambiguous (Kuhn et al., 2023a; Kim et al., 2023b; Liu et al., 2023c), and tasks or instructions
could be open-ended or under-prescribed (Tamkin et al., 2022), making it difficult for the model to express
an appropriate level of confidence in its response. Also, relevant information could be excluded from the
context (Yu et al., 2023d), or users may produce input errors.

8.1.2 Model

In addition to the uncertainty introduced by data in training and inference, the model itself also contributes
to the uncertainty in the generation process, given an input prompt. Architecture choices may not reflect
the underlying data-generating process. Different modeling techniques like ensembling (Lakshminarayanan
et al., 2017; Malinin & Gales, 2021; Glushkova et al., 2021; Wang et al., 2024k) or Bayesian inference (Gal
& Ghahramani, 2016; Ott et al., 2018; Xiao & Wang, 2021) can be applied with the hope of accurately
characterizing the true posterior probability. However, these methods can be computationally expensive and
potentially ineffective (Abe et al., 2022; Ovadia et al., 2019). Besides architecture, the typical optimization
objective of producing the most plausible answer (i.e., maximizing observed sequence probability) may not
align to produce the most correct and factual answer (Tian et al., 2023a), and in general, the cross-entropy
objective has been shown to lead to overconfidence (Wei et al., 2022a). Finally, though massive pre-trained
models are an effective tool for combating the uncertainty introduced by the input context, the popular
approach of fine-tuning these LLMs for custom use cases may dilute these generalist capabilities (Yuan
et al., 2023a).

8.1.3 Aleatoric vs. Epistemic Uncertainty

Besides identifying how uncertainty may arise due to data and model factors, it may also be useful to
characterize uncertainty in LLM responses as either aleatoric or epistemic (Hüllermeier & Waegeman, 2021;
Zhang, 2022). Aleatoric uncertainty, sometimes referred to as data uncertainty, exists due to the inherent
randomness in the data-generating process. Additional information cannot be used to reduce aleatoric
uncertainty. For example, suppose a language model was asked to predict the probability of heads on the
flip of a fair coin. In that case, no additional context or training data would enable a better prediction than
50%. On the other hand, epistemic uncertainty arises precisely because of a lack of knowledge. Epistemic
uncertainty may be reduced by incorporating additional data, for instance, by including or prioritizing
more informative examples in the training set (Osband et al., 2023; Wang et al., 2023g) or incorporating
appropriate few-shot examples in the context (Ye et al., 2023a; Diao et al., 2023; Li & Qiu, 2023; Su et al.,
2022; Yu et al., 2023d). Section 8.2.1 discusses more of this work in detail.

8.2 Quantifying and Addressing Uncertainty

While some uncertainty in LLM responses is unavoidable, considerable progress has been made in quanti-
fying and addressing this uncertainty so that models can be deployed responsibly and reliably. Common
measures for quantifying uncertainty use notions such as entropy to characterize the uncertainty in response
and produce higher scores for outputs that are less likely to be correct. Methods have been developed
to recalibrate uncertainty scores to match the probability of an answer being correct and to identify data
examples where the system should abstain from answering or seek further clarification before providing an
answer when necessary. Researchers have also examined whether LLMs can generate linguistic expressions
indicating their uncertainty for a given output (Ott et al., 2018; Si et al., 2023; Kuhn et al., 2023b). Finally,
rigorous statistical methods, which are quickly gaining popularity in the deep learning community, have been
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applied to provide high probability bounds on LLM performance and risk. Next, we will highlight important
work in these areas, accompanied by an illustration in Figure 16.

Prompt

LLM 
Response

Uncertainty
Estimation

Calibration Word-based

Selection Distribution-free

ECE [Guo 𝑒𝑡	𝑎𝑙. , 2017]
MCE [Guo 𝑒𝑡	𝑎𝑙. , 2017]
SLiC [Zhao 𝑒𝑡	𝑎𝑙. , 2022]

LMKnow [Kadavath, 𝑒𝑡	𝑎𝑙. , 2022]
CalibratedMath [Lin 𝑒𝑡	𝑎𝑙. , 2022]
Language [Zhou 𝑒𝑡	𝑎𝑙. , 2023]

SelfAware [Yin 𝑒𝑡	𝑎𝑙. , 2022]
Clam [Cuhn 𝑒𝑡	𝑎𝑙. , 2023]
AmbiEnt [Liu 𝑒𝑡	𝑎𝑙. , 2023]

Conformal [Kumar 𝑒𝑡	𝑎𝑙. , 2023]
Dispersion [Deng 𝑒𝑡	𝑎𝑙. , 2024]
Factuality [Mohri 𝑒𝑡	𝑎𝑙. , 2024]

Question: How many prime numbers are in the list of 1, 2, …, 50?

Response B: There are 20
prime number in this list.

20Response A: There are 15
prime number in this list.

15
Certain about
the response?

20 15

Figure 16: Different methods for quantifying and addressing uncertainty in foundation models

8.2.1 Estimating Uncertainty

One critical ingredient for the reliable deployment of a black-box LLM is the ability to measure the un-
certainty in its responses so that appropriate decisions can be made based on its output (Si et al., 2023).
Uncertainty in language model output is often quantified in terms of predictive entropy (Kuhn et al., 2023b;
Lin et al., 2023b; Malinin & Gales, 2021; Duan et al., 2024a; Wang et al., 2024r). Although predictive entropy
can be calculated directly using output class probabilities for classification tasks, measuring the uncertainty
in language model generations is a more challenging problem, requiring knowledge of the distribution over
all possible sequences.

One popular way to address the challenge of sequence-level uncertainty quantification is to sample many
potential generations from the model and use these samples to estimate the underlying distribution. For
instance, Fomicheva et al. (2020) use Monte Carlo dropout to draw samples, which are then utilized for quan-
tifying uncertainty in machine translation. Malinin & Gales (2021) instead employ an ensemble with Monte
Carlo sampling techniques over the token outputs to produce both token-level and sequence-level uncertainty
scores. Such approaches to measuring uncertainty via self-consistency are also studied in (Kadavath et al.,
2022; Lin et al., 2022; Si et al., 2023; Diao et al., 2023; Kuhn et al., 2023b; Wang et al., 2024q). While most
self-consistency methods focus on the model’s natural language outputs, Chen et al. (2024c) offer an effective
method for measuring sample consistency in the embedding space. Besides, Stengel-Eskin & Van Durme
(2023a) explore sequence-level uncertainty in semantic parsing through the angle of calibration, where they
leverage the minimum confidence across tokens.

In addition to the challenge of sampling from the distribution of possible sequences, there may be many
equivalent surface forms of a correct response to a question such as “What is the capital of Germany?”
Accordingly, the desirable notion of uncertainty may go beyond the spaces of sequences into the space of
semantic meaning. These challenges are outlined and addressed by Kuhn et al. (2023b), wherein a set of
sequences are sampled and grouped by semantic equivalence to measure uncertainty over meanings instead of
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uncertainty over output forms. Lin et al. (2023b) build on this work by proposing more sophisticated semantic
uncertainty measures and removing the access requirement to the token-level scores of the potentially black-
box model. Also, Duan et al. (2024a) presents an algorithm based on a similar notion that aims to better
characterize uncertainty by focusing on the most relevant token.

Finally, some have taken the approach of trying to explicitly identify epistemic uncertainty, which can then
be addressed by incorporating additional information. Malinin & Gales (2021) take an ensemble approach
and characterizes epistemic or “knowledge” uncertainty using mutual information and the level of disagree-
ment between models in the ensemble. Glushkova et al. (2021) also apply an ensemble-based approach to
quantifying epistemic uncertainty in machine translation. The use of more powerful and efficient techniques
such as direct uncertainty prediction and heteroscedastic regression are investigated in Zerva et al. (2022) in
the context of machine translation; they find these methods perform favorably compared to variance-based
baselines such as MC dropout and deep ensembles while being considerably faster. Lahlou et al. (2023) high-
light the challenges of using Bayesian techniques or discrepancy-based measures of epistemic uncertainty
and proposes a Direct Epistemic Uncertainty Prediction framework, wherein a secondary model is trained to
estimate the point-wise generalization error and provides an upper bound on epistemic uncertainty. Their
algorithm is shown to be useful in interactive learning environments, where the model can acquire novel
examples and continue learning. Similarly, Osband et al. (2023) use an epistemic neural network to identify
uncertain data that should be prioritized in fine-tuning, achieving on-par performance while using half as
much data as training without prioritization. Hou et al. (2023b) avoid the need to train a separate model
to predict the epistemic uncertainty, instead using multiple LLM queries for clarification to rule out data
uncertainty so that the remaining uncertainty of each prediction can be prescribed to epistemic uncertainty.
As another ICL-based approach, Yadkori et al. (2024a) propose an iterative prompting method to identify
when epistemic uncertainty is large and highlight its usefulness in a setting with multiple good responses.

8.2.2 Calibration

One popular method for characterizing a model’s predictive uncertainty is concerning (confidence) calibra-
tion. For a model to be well-calibrated, its confidence estimates should, on average, reflect the probability
of its correct answers. The most common calibration measure in the deep learning literature is Expected
Calibration Error (ECE) (Naeini et al., 2015; Guo et al., 2017), which measures the expected difference
between confidence and accuracy over the data distribution. However, since it is impossible to calculate
this quantity directly, ECE is typically estimated: data points with similar confidence scores are binned to-
gether, and ECE is calculated as the mean absolute difference between average confidence and accuracy over
all bins. Other popular measures of calibration error include Maximum Calibration Error (MCE) (Naeini
et al., 2015; Guo et al., 2017), Brier Score (Brier, 1950), and negative log-likelihood (Hastie et al., 2001).
Since 0/1 accuracy is often not a suitable metric with respect to LLM performance, Huang et al. (2024c)
propose Rank-Calibration Error, which captures whether higher uncertainty scores are associated with worse
generations according to continuous metrics like ROUGE (Lin, 2004) or BLEU (Papineni et al., 2002).

While modern neural networks have achieved impressive accuracy across a wide range of tasks and improved
calibration relative to simpler methods (Minderer et al., 2021), significant miscalibration remains, usually in
the direction of overconfidence (Guo et al., 2017; Wang et al., 2021). To address this remaining calibration
error, post-hoc recalibration methods such as Platt scaling (Platt, 1999), temperature scaling (Guo et al.,
2017), or histogram binning (Zadrozny & Elkan, 2001) can be used to refine the confidence estimates of a
pre-trained model.

Most of the work in calibration and deep learning has focused on the classification setting, where the
softmax probability of a class can be reasonably interpreted as a confidence score. Accordingly, extending
techniques for measuring and improving calibration to LLMs in classification (or other settings with single-
token answers from a finite, discrete set) is straightforward. For example, Desai & Durrett (2020) find
that pre-trained encoder-only transformer models like BERT and RoBERTa are well-calibrated under fine-
tuning and that techniques like temperature scaling and label smoothing can be effective in combating poor
confidence estimates. Further, Xiao et al. (2022) perform a large-scale analysis of how decisions made along
the LLM deployment pipeline, such as model size, architecture, and training objective, affect downstream
task calibration on sentiment analysis and NLI. They find that larger models generally give more accurate
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confidence estimates and that applying temperature scaling and fine-tuning with focal loss may be helpful.
Zhao et al. (2021); Zhou et al. (2024b) offer methods to debias answers for a prompt so that confidence
scores are calibrated based on the actual input instance under consideration, while Detommaso et al. (2024)
introduce the notion of multi-calibration (Úrsula Hébert-Johnson et al., 2018) into the LLM setting by
grouping examples based on binary attribute labels produced by the model itself. Kadavath et al. (2022)
perform an extensive study of whether LLMs can evaluate the correctness of their own responses across tasks
such as multi-choice question answering. They find that self-evaluation improves with model size, although
calibration is worse for more complex and out-of-distribution tasks. They also find that popular alignment
techniques such as RLHF may hurt the calibration of LLM output probabilities. To handle the case of
population shift, e.g., across the distribution of subjects in a sample of MMLU questions, Li et al. (2024i)
propose to train a recalibration method that adapts to a new subset of the data given only a few unlabeled
examples.

On the other hand, estimating confidence and measuring calibration is less straightforward when tasks are
generative or open-ended (for the same sequence-related reasons outlined in Section 8.2.1). Thus much
recent LLM calibration research has focused here (Kadavath et al., 2022; Xiao et al., 2022; Singh et al.,
2023a; Si et al., 2023; Tian et al., 2023b; Zhao et al., 2022; Mielke et al., 2022; Liu et al., 2024i). In early
work highlighting this challenge, Ott et al. (2018) analyze model calibration in the setting of neural machine
translation, showing that these models tend to diffuse too much probability mass over the space of possible
sequences. One popular avenue for addressing the difficulties of combining calibration and generation is the
development of new methods for producing calibrated sequence-level confidence scores. To this end, Chen
& Mueller (2023; 2024) combine self-consistency with self-evaluation to produce a confidence score using a
method they call BSDetector and find it is more accurate than alternatives in identifying incorrect LLM
responses for models like GPT-3 and ChatGPT. Si et al. (2023) measure the calibration of GPT-3 on free-
form QA using both the length-normalized language model output probability and self-consistency and finds
both methods give more calibrated confidence scores than a supervised BERT baseline. Tian et al. (2023b)
study LLM calibration of models aligned with RLHF, finding that these models can verbalize confidence
scores that are more reliable than the underlying output probabilities, an approach which is especially useful
when the model is behind an API and these probabilities are not available (see Section 8.2.3 for more on
verbalized expressions of uncertainty). While most work on the calibration of LLM generations has focused
on language tasks like question answering and summarization, Spiess et al. (2024) study the calibration of
LLMs for code generation across several tasks, correctness criteria, datasets, and approaches.

In addition to the approaches described above, researchers have also pursued techniques for better quantifying
LLM confidence via model training, concerning an external recalibrator or the LLM itself. For instance,
Mielke et al. (2022) address conversational agents’ overconfidence by training a small auxiliary network to
predict the appropriate level of confidence to be expressed. Liu et al. (2024i) offer further work in this
direction, proposing to train a new linear layer that predicts a bias term to be added to the language model’s
output logits. Their approach enables the reordering of candidate generations (as opposed to temperature
scaling) and is tested on longer generations including full paragraphs. Kadavath et al. (2022) study whether
a language model can be trained to predict the probability that a free-form answer to a question is correct;
their experiments show promising results, although generalizing such behavior across distributions remains
challenging. Lin et al. (2022) use fine-tuning to teach a GPT-3 model to express its own uncertainty on
various mathematics tasks, finding that responses are generally well-calibrated and remain reasonable under
distribution shift. Finally, a supervised fine-tuning step is proposed in Band et al. (2024) to induce linguistic
calibration, where model outputs feature confidence estimates that enable downstream decision-makers to
make calibrated probabilistic predictions.

8.2.3 Verbalized Uncertainty

Generally, in machine learning, confidence scores are numeric values extracted from a predictive model, for
example, based on predicted class probabilities, logit entropy, or ensemble variance. However, the ability
of LLMs to generate arbitrary text output enables a paradigm in which language models may express their
uncertainty directly in their natural language output.
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As an early example of such an approach, Kadavath et al. (2022) verbalize language model calibration by
verifying answers using the probability assigned to tokens such as “True” or “IK” (“I know”) conditioned
on its output or articulating confidence scores using numeric verbalizations such as “30%” or “80%”. Their
approach shows promise, although it may be difficult to generalize to new tasks or tasks that are difficult to
format as multiple-choice. Additionally, Lin et al. (2022) fine-tune a GPT-3 to directly express its confidence
in its output using verbalized probabilities (e.g., “61%”), while Tian et al. (2023b) prompt a model directly to
output both confidence scores and linguistic markers of confidence (e.g., “highly likely”). Zhou et al. (2023c)
study how linguistic markers of certainty, uncertainty, or evidentiality such as “I’m sure...”, “I think...”, or
“Wikipedia says...” affect model confidence. Their findings imply that LLMs are sensitive to epistemic
markers in prompts, with more than 80% variation in accuracy, and that expressions of high certainty result
in a decrease in accuracy. Their results also suggest that the confidence scores that LLM outputs do not
truly reflect epistemic and aleatoric uncertainty in response but instead are based on mimicking language use
from the training set. This observation is supported by an extensive study of the ability of black-box models
like GPT-4 to verbalize confidence in Xiong et al. (2023). They find the verbalized uncertainty expressions
overconfident and difficult to optimize across models and datasets with a single strategy for prompting,
sampling, and scoring. In other relevant work, Mielke et al. (2022) train a confidence calibration network to
select linguistic expressions of uncertainty that should be included in the output of a conversational agent.
Stengel-Eskin et al. (2024) propose LACIE, which splits verbalized uncertainty into explicit markers (e.g.,
I’m not sure) and implicit markers (e.g., giving details or backstory, stating a person’s expertise, etc.). The
models are trained to improve calibration by modeling a listener who accepts or rejects answers based on
their correctness. The generator is rewarded for providing correct answers that are accepted and penalized
for incorrect answers being accepted or correct answers being rejected.

8.2.4 Addressing Uncertain Examples

Selection is another established tool for addressing uncertainty (Geifman & El-Yaniv, 2017; 2019; Fisch
et al., 2022; El-Yaniv & Wiener, 2010; Zollo et al., 2024a). We use the term selection broadly to encompass
methods that identify inputs that are particularly difficult for the model. We offer interventions like allowing
the model to abstain from the prediction (the classic paradigm in selection) or request further information.
Selection has been well-studied in the context of language models (Cole et al., 2023; Kamath et al., 2020; Si
et al., 2023), and has been shown to improve outcomes concerning hallucination and safety (Tomani et al.,
2024). Kamath et al. (2020) investigate selective question answering under domain shift, proposing a novel
algorithm that incorporates out-of-distribution data to train a selection model that identifies examples on
which the model is likely to err. Gupta et al. (2024) derive a new score based on token-level uncertainty
features, to identify examples that should be deferred from a smaller model to a larger model. Uncertainty
scoring methods, for example, the semantic entropy-based measures proposed in Lin et al. (2023b), are
often evaluated via selection to highlight how such measures are useful for predicting the correctness of
LLM responses. Stengel-Eskin & Van Durme (2023b) show that we can recover low-confidence examples in
semantic parsing by rephrasing and asking for user confirmation, which is the number of questions the model
abstains from while keeping model safety high. To support work on selection in LLMs, Yin et al. (2023c)
introduce the SelfAware dataset of questions that should be recognized as unanswerable.

Given the opportunity for interactivity provided by the text interface, a significant amount of research has
gone towards algorithms to enable the LLM to request further information before responding, particularly
in the case of ambiguous questions. For instance, Kuhn et al. (2023a) use few-shot learning to detect
ambiguous questions that require clarifying questions, while Kim et al. (2023b) propose a tree-based approach
to disambiguating questions and retrieving missing information. As the interest in identifying ambiguous
questions in LLMs has grown, there has been an accompanying effort to release public datasets that can be
used to evaluate the relevant abilities. Liu et al. (2023c) offer AmbiEnt, a dataset to test an LLM’s ability to
manage ambiguity in resolving entailment relations, finding their task difficult even for powerful commercial
models like GPT-4. Additionally, Tamkin et al. (2022) introduce AmbiBench, a benchmark of ambiguous
tasks where the ambiguity is introduced by the task description itself (as opposed to the specific instance
of the task). Stengel-Eskin et al. (2023a) create a dataset for identifying and disambiguating instances of
the visual question-answering task with LMMs. Besides, Stengel-Eskin et al. (2023b) introduce a dataset of
ambiguous queries and their logical forms and test whether models can recover both interpretations. Also,
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Saparina & Lapata (2024) introduce a similar ambiguous parsing dataset but with human-sourced SQL
queries.

8.2.5 Distribution-free Uncertainty Quantification

As LLMs are increasingly deployed in risk-sensitive domains such as medicine, law, and finance, it may be
important to have not only an estimate of the uncertainty in a model’s response but also a high probability
upper bound on the error rate at test time. Recently, there has been increasing research employing techniques
from the Distribution-Free Uncertainty Quantification (DFUQ) family to control the risk of deep learning
systems. This line of work generally descends from the literature concerned with conformal prediction (Shafer
& Vovk, 2008; Vovk et al., 2005), wherein a threshold on class probabilities is calibrated to produce prediction
sets that fulfill some coverage (i.e., recall) guarantee. Angelopoulos & Bates (2021) offer a tutorial on the
subject in the context of modern neural network applications, and Kumar et al. (2023b) illustrate the appli-
cation of conformal prediction to multi-choice question answering with LLMs. To broaden its applicability,
Angelopoulos et al. (2023) derive a version of conformal prediction for bounding the expectation of any mono-
tone loss function and studies their method in open-domain question answering. Recent work has offered
algorithms for producing bounds on more general loss functions concerning the mean (Angelopoulos et al.,
2021), quantile-based risk measures like value at risk (VaR) (Snell et al., 2022), and measures of statistical
dispersion like the Gini Coefficient or differences in loss among protected subgroups (Deng et al., 2023c).

While it is straightforward to apply existing DFUQ techniques to classification with LLMs (Snell et al.,
2022; Deng et al., 2023c; Kumar et al., 2023b), the question of how best to apply them to generation tasks
like summarization, chat, and code remains open. Multiple approaches have been proposed to apply these
techniques to language model decoding. For example, Schuster et al. (2022) utilize the Learn Then Test
framework (Angelopoulos et al., 2021) to calibrate early exit criteria concerning the number of transformer
layers applied to an input. Their goal is to identify when an LLM is sufficiently confident that it can exit
the forward pass, and thus reduce the amount of computation used. In the conformal prediction vein,
Quach et al. (2023) calibrate a stopping rule to produce a set of candidate generations that with high
probability contains a suitable response (while removing redundant candidates), and Deutschmann et al.
(2023) incorporate conformal prediction into a novel beam search algorithm. To mitigate the risk of models
hallucinating answers, (Yadkori et al., 2024b) proposes a conformal abstention procedure using measures of
self-consistency that are evaluated by the LLM itself. Finally, Mohri & Hashimoto (2024) enforce factuality
in LLMs by using conformal techniques to determine a level of specificity with which a given question can
be answered.

As a more general approach, Prompt Risk Control (Zollo et al., 2024b) unites many techniques from the
DFUQ family under a single framework for selecting a prompt (e.g., system prompt or set of few-shot
examples) based on rigorous upper bounds on rich families of informative risk measures. The authors propose
a two-step prompt selection process. First, a set of prompts is validated as producing an acceptable risk
for some contextually relevant measure before a final prompt is chosen based on some performance metric,
like average reward or accuracy. Prompt Risk Control can be applied to any bounded loss function, such as
top-1 accuracy, ROUGE, or toxicity, and can be used to control risk measures, including tail quantities like
value-at-risk or measures of statistical dispersion such as the Gini coefficient.

8.3 Current Limitations and Future Directions

Much work has gone into methods to identify and address uncertainty in foundation model generation.
However, existing results and methods are limited, and much work remains to be done before these models
can be responsibly and reliably deployed.

First, many results in uncertainty quantification in LLMs are produced in limited settings. Experiments are
usually performed on tasks like trivia question answering, which can be answered via a single token, word,
or short phrase. Further, the tasks under study also often assume that there is only one right answer: there
may be no uncertainty in the correct response to “Who won Super Bowl XX?”. However, much LLM usage
revolves around tasks that require generating long-form responses to open-ended queries, for which multiple
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reasonable answers exist. It is unclear whether the results produced in these limited settings offer insight
into more complex, uncertain, and sequential settings like chat or customer care.

Alongside the difficulty of extrapolating results from simple settings, many of the recently proposed methods
may not be suitable for application at scale in many relevant applications. Several recently proposed methods
for improved uncertainty quantification of language model generations have come at the expense of generating
multiple times for a single query. Soaring inference costs have become a major concern, prompting a surge of
research aimed at curbing these expenses. Given that certain methods can increase costs by 2 to 20 times—or
more—compared to standard inference, it seems improbable that many LLM users or service providers will
adopt such approaches. Further, though modern frontier models have shown some ability to express their
uncertainty in words, good evidence exists that any correlation between accuracy and verbalized expressions
of confidence is simply a result of spurious features in training data (Zhou et al., 2023c). Besides, it should
be noted that these verbalization techniques also usually require extra inference costs, even for the simplest
methods, such as scoring p(True) for the generated answer. Finally, though these algorithms have largely not
been tested in open-ended tasks and on long generations, it seems probable that new tools will be needed in
this setting. For example, consistency-based methods assume that producing diverse samples for a particular
query indicates an example for which the model will likely give a poor answer. However, a model that can
only produce a single answer to a query such as “Tell me a joke” or “Write me a story” would lack the
capabilities to suit many modern LLM use cases.

Overall, it is unclear whether any advanced method for quantifying LLM uncertainty in the zero-shot setting
robustly outperforms a baseline sequence entropy score calculated using token probabilities. However, these
scores are often unavailable for black-box LLMs behind an API. Additionally, it is difficult to imagine how
best to exploit probabilities taken directly from the language model, as these probabilities do not necessarily
relate to the task at hand (McCoy et al., 2023), but instead reflect the cross entropy objective used in training
and plausibility of an answer under the training data distribution (unless the model receives RLHF, which
makes accurate uncertainty estimation even more difficult (Kadavath et al., 2022; Tian et al., 2023b)).

Besides addressing the limitations in methodology and experimental settings mentioned above, future work in
this area may benefit from taking a broader view of the challenge of quantifying and addressing uncertainty in
large generative models. It could explore how uncertainty can be better quantified and addressed across the
entire model development and deployment pipeline, and how interventions and measurements at different
points in the pipeline interact and affect downstream outcomes. Also, it may be useful to gain a more
thorough understanding of how techniques for selecting, mixing, and filtering training data affect a user’s
ability to accurately estimate the model’s confidence on downstream tasks, whether via token probabilities
or verbalizations. As new architectures and pre-training recipes emerge, they should be benchmarked for
calibration, not only accuracy. Fine-tuning algorithms, whether supervised or RL, have been shown to worsen
models’ UQ characteristics, and this phenomenon must be kept in focus as the community iterates on these
methods. Finally, given a model that has been pre-trained and fine-tuned and is ready for deployment,
we might develop new methods to select system prompts and few-shot exemplars that reduce and control
uncertainty in the wild, ideally with rigorous statistical methods like those provided by DFUQ (Zollo et al.,
2024b).

55



Under review as submission to TMLR

9 Distribution Shift

Foundation models can occasionally produce unacceptable errors when faced with distribution shifts. These
models, typically trained on a fixed corpus, require additional adaptation for new tasks. This limitation is
particularly challenging in our ever-changing world, where knowledge is constantly shifting due to various
factors, such as changes in location or time (Kasai et al., 2023; Kim et al., 2024). For instance, if a model
trained before 2023 is asked, “Which team does Messi play for?", it may incorrectly assign a higher probability
to Paris Saint-Germain instead of Inter Miami. This example highlights the importance of understanding,
detecting, and mitigating distribution shifts in foundation models to improve their reliability.

Cat Dog

Training Data Covariate Shift Label Shift Concept Shift

Cat Dog Cat Dog Pet

1. Harry Potter is interesting.
2. I enjoy watching Rush Hour.

1. I find Twilight dull.
2. Avengers is very bad.

1. Harry Potter est intéressant.
2. J'aime regarder Rush Hour.

1. Je trouve Twilight ennuyeux.
2. Avengers est très mauvais.

1. Harry Potter is interesting.

1. I find Twilight dull.

2. I enjoy watching Rush Hour.
3. The Godfather is my favorite.

Positive Reviews

Negative Reviews

Positive Reviews

Negative Reviews

Positive Reviews
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1. Harry Potter is interesting.
2. I enjoy watching Rush Hour.
3. The Godfather is my favorite.
4. I find Twilight dull.

Types of Distribution Shifts in Statistics

Examples in Image 

Examples in Text 

5. Avengers is very bad.
6. Watching The Hangover
feels like a waste of time to me.

Figure 17: Different types of distribution shifts in the perspectives of (1) statistics, (2) image, and (3) text.
The concept shift scenarios show how two distinct classes can merge into a single class when labels change.

9.1 Definition and Categorization

The distribution shift occurs when the independent and identically distributed (i.i.d.) assumption does not
hold between the training and test distributions. This divergence between the training distribution ptrain and
the test distribution ptest can significantly impact the performance of machine learning models, including
foundation models. In essence, distribution shift describes the scenario where ptrain ̸= ptest, which can
degrade model performance and reliability.

Based on how the data distribution changes, distribution shifts can be classified into three primary categories,
with examples from various domains presented in Figure 17.
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• Covariate Shift. This term refers to changes in the feature distribution p(x) while the relationship
between the features and the labels p(y|x) remains unchanged. This type of shift is prevalent in scenarios
where the environment or context of the features change.

• Label Shift. It occurs when the distribution of labels p(y) changes, while the conditional distribution
of features given labels p(x|y) remains constant. This shift can result from changes in the real-world
phenomena being modeled.

• Concept Shift. Concept shift, also known as conditional shift or concept drift, happens when the
relationship between the features and the labels p(y|x) changes. It reflects the evolution of the underlying
problem statement or process over time.

9.2 Out-of-Distribution Detection

Out-of-distribution (OOD) detection involves identifying inputs different from the training distribution (Yang
et al., 2021a; Fort et al., 2021), which plays a vital role in enhancing the reliability of foundation models. By
flagging unfamiliar data points for further scrutiny, these techniques help mitigate risks and maintain the
integrity of the model’s performance.

In the context of language models, Liu et al. (2024b) present an empirical investigation into the OOD de-
tection capabilities of LLMs, specifically examining the LLaMA families with different model sizes. The
study evaluates common OOD detectors in both zero-shot and fine-tuning scenarios, yielding several sig-
nificant insights: (i) LLMs inherently serve as effective OOD detectors without requiring fine-tuning. (ii)
In-distribution (ID) fine-tuning can boost OOD detection. (iii) Generative fine-tuning demonstrates supe-
rior generalization ability because it aligns with the pre-training objectives of LLMs. (iv) A simple cosine
distance OOD detector proves to be highly effective, attributed to the isotropic nature of LLM embedding
spaces. Furthermore, Zhang et al. (2024a) propose a novel approach for OOD detection, utilizing the like-
lihood ratio between a pre-trained LLM and its fine-tuned variant. This method leverages the pre-trained
LLM’s extensive prior knowledge about OOD data, which, when fine-tuned with ID data, can effectively
differentiate between ID and OOD samples. Expanding on these findings, Salimbeni et al. (2024) explore the
effectiveness of unmerged Low-Rank Adaptor (LoRA) (Hu et al., 2021) weights for OOD detection during
the fine-tuning process, further contributing to the growing body of research in this area.

In addition to textual OOD detection, recent advancements have begun to harness the powerful represen-
tation capabilities of foundation models in visual OOD detection. Dai et al. (2023b) propose a method to
enhance OOD detection by selectively generating information from LLMs. Their method incorporates a
consistency-based uncertainty calibration to estimate generation confidence scores and extracts visual ob-
jects from images to leverage the world knowledge encoded in LLMs. ODPC (Huang et al., 2024a) utilizes
LLMs to generate specific prompts for creating OOD peer classes from ID semantics. This approach serves
as an auxiliary modality for detection and introduces a contrastive loss based on OOD peer classes to learn
compact ID class representations and clarify boundaries between different classes. EOE (Cao et al., 2024)
improves OOD detection by tapping into the expert knowledge and reasoning capabilities of LLMs without
requiring actual OOD data. This method is designed to adapt to various open-world scenarios, making it
suitable for far, near, and fine-grained OOD detection tasks. In the medical domain, CARES (Xia et al.,
2024a) evaluate the OOD detection capability of medical LLMs, focusing on their ability to detect medical
images that differ significantly from those used in the training phase.

9.3 Out-of-Distribution Generalization

OOD generalization, on the other hand, aims to enhance the robustness of foundation models under new,
unseen environments (Hendrycks et al., 2021; Liu et al., 2021b; Yang et al., 2023e; Xia et al., 2024c; Nan
et al., 2024). This approach aims to improve the model’s resilience to variations in input data through diverse
techniques. Prior to the era of foundation models, various strategies were proposed to improve the OOD
generalization capabilities of traditional deep learning models, including Data Augmentation, Adversarial
Training, Label Smoothing, Invariant Learning, and Model Ensemble. Yuan et al. (2023a) evaluate these
commonly used methods for LLMs, leading to important insights and conclusions.
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9.3.1 Data Augmentation

Data augmentation (Zhang et al., 2017; DeVries & Taylor, 2017; Yun et al., 2019) involves creating new
training examples through various transformations of the original data. These transformations range from
simple operations, such as flipping or rotating images in computer vision tasks, to more complex manipu-
lations by generative models to simulate the data distribution (Li et al., 2020; Trabucco et al., 2023; Islam
et al., 2024). The primary objective of data augmentation is to increase the diversity of the training set,
thereby enabling the model to learn more robust features that generalize better to unseen data. However,
recent research has shown that applying simple augmentation techniques, such as Easy Data Augmentation
(EDA) (Wei & Zou, 2019), to LLMs often leads to performance degradation across most tasks. This finding
underscores the need for more advanced augmentation methods specifically tailored to foundation models.

9.3.2 Adversarial Training

Adversarial training (Madry et al., 2017; Bai et al., 2021) is a robust technique used to improve OOD
generalization by exposing models to adversarial examples during the training process. These adversarial
examples are inputs deliberately perturbed to mislead the model into making incorrect predictions, despite
appearing similar to regular data. This method aims to enhance the model’s robustness and ability to handle
data that deviates from the training distribution.

In LLMs, Free Large-Batch (FreeLB) (Zhu et al., 2019), an adversarial training method that adds pertur-
bations to the input data, improves generalization performance in most scenarios. Similarly, Verma et al.
(2024) introduce image perturbations in LMMs through augmentations like noise addition, blurring, and me-
dian filtering. Additionally, they craft adversarial questions using conjunctions, disjunctions, and negations
to challenge the models’ reasoning abilities. Among the tested augmentations, Gaussian Noise Addition is
identified as the most detrimental, causing the largest decline in performance. The study also finds that
the complexity of questions, especially those with multiple connectives, significantly impacts the models’
performance.

9.3.3 Label Smoothing

Label smoothing (Szegedy et al., 2016) is a regularization technique used to improve OOD generalization
by preventing the model from becoming overly confident in its predictions (Müller et al., 2019). Unlike
traditional training algorithms where models learn to assign a probability of 1 to the correct class and 0 to all
others, label smoothing introduces a small probability to incorrect classes. This approach encourages models
to maintain a degree of uncertainty in their predictions, potentially improving their ability to generalize to
unseen data. In the context of LLMs, however, the effectiveness of label smoothing has been called into
question. Yuan et al. (2023a) conducted experiments where they smoothed the hard labels in the training
data but observed that this technique did not improve the LLMs’ generalization ability.

9.3.4 Invariant Learning

Invariant learning (Arjovsky et al., 2019) plays a crucial role in OOD generalization by capturing the in-
variant representations or predictors across different environments while disregarding the variant spurious
correlations. One notable approach of invariant learning involves the use of specialized loss functions, such
as Focal Loss (Lin et al., 2017), Dice Loss (Sudre et al., 2017), Mixup Loss (Zhang et al., 2017). By applying
Focal loss to the training process of LLMs, these models emphasize hard-to-classify examples during training
and enhance their ability to handle diverse and unfamiliar inputs.

9.3.5 Model Ensemble

Model ensemble is a powerful technique for enhancing the robustness and performance of AI models in
complex environments. This approach combines predictions from multiple models to produce more accurate
and reliable final outputs. Yuan et al. (2023a) evaluated model ensembling but observed limited improvement
in generalization ability. However, building on this foundation, recent studies by Jiang et al. (2023) and Wan
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et al. (2024) have introduced more advanced model ensemble algorithms, improving performance across
several downstream tasks.

9.4 Domain Adaptation

Unlike OOD generalization, domain adaptation tailors the model to domain-specific tasks by injecting
domain-specific knowledge (Ge et al., 2024; Siriwardhana et al., 2024), including in-context learning (ICL),
retrieval-augmented generation (RAG), fine-tuning, test-time training, and model editing. These methods
enable foundation models to specialize in particular domains while maintaining their broad capabilities.

9.4.1 In-context Learning

In-context learning (ICL) shows great potential to address the gap between foundation models and domains
not covered in their pre-training and fine-tuning data (Dong et al., 2022b; Min et al., 2022). Recently, ICL
has gained attention as a transformative approach for foundation models (Bar et al., 2022; Zhang et al., 2023i;
Huang et al., 2024d). It demonstrates the ability to adapt to new tasks or distributions without altering
model parameters by adding domain-specific input-output pairs to the test example. This augmented input
serves as a guide, helping the model produce desired outputs for new tasks. Consequently, ICL offers a flexible
and efficient method for continual adaptation without the need for computationally expensive retraining.

In the field of LLMs, the BOSS benchmark (Yuan et al., 2023a) explores ICL for LLMs by using examples
from both ID datasets and the training split of OOD datasets. The findings reveal that fine-tuning domain-
specific models is advantageous when sufficient training data is available, while LLMs with ICL perform
better in low-resource scenarios. Notably, the effectiveness of ICL varies across models and tasks, highlight-
ing the need for task-specific adaptation strategies. Complementing this research, Reizinger et al. (2024)
delve into the intricacies of ICL, focusing on its approximate non-identifiability and the implications for un-
derstanding LLMs. Through a combination of mathematical examples and empirical observations, their work
demonstrates how this approximate non-identifiability manifests in OOD generalization, providing deeper
insights into the behavior of ICL in various contexts.

For LMMs, Zhang et al. (2024f) demonstrate that ICL can significantly enhance the generalization capabili-
ties, suggesting new approaches to overcome existing limitations. However, their study also investigates the
robustness of ICL under various distribution shifts. The findings reveal that ICL is vulnerable to domain
shifts, label shifts, and spurious correlation shifts between in-context examples and test data.

9.4.2 Retrieval-augmented Generation

Retrieval-augmented generation (RAG) enhances foundation models by retrieving relevant information from
external data sources to supplement input queries or generated outputs (Khandelwal et al., 2019; Min et al.,
2020; Asai et al., 2024). This process provides necessary domain knowledge, mitigating distribution shifts
and improving generation quality (Gao et al., 2023b; Kang et al., 2024a; Siriwardhana et al., 2023; Zhou
et al., 2025a). In practice, RAG techniques are effective and efficient to apply in various unseen tasks with
simple adaptation of the retrieval component, requiring minimal or even no additional training (Ram et al.,
2023).

In the context of language models, Shao et al. (2024) construct MASSIVEDS, a massively multi-domain
database comprising 1.4 trillion tokens of both general web data and domain-specific data. Their findings
demonstrate that as the database’s size and diversity increase, more distributions are covered during infer-
ence, reducing OOD scenarios. To incorporate this domain knowledge without requiring additional training,
recent studies (Shi et al., 2023c; Ram et al., 2023) focus on In-Context Retrieval-Augmented Language
Models (RALMs). These models directly input a concatenation of all retrieved texts as additional con-
text to LLMs. For the choice of retriever, most work (Zhang et al., 2023f; Shao et al., 2023; Neelakantan
et al., 2022; Seo et al., 2024) employ an embedding model to decide what to retrieve. However, with the
increasing prevalence of LLMs, researchers have begun using the models themselves as retrievers to improve
accuracy (BehnamGhader et al., 2024; Ma et al., 2024b; Weller et al., 2024; Liu et al., 2024l; Wang et al.,
2023d). In a parallel direction, as these RAG methods may retrieve irrelevant information that even hurt
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the performance, Zhang et al. (2024e) proposed RAFT to further fine-tune the LLMs to learn to disregard
“distractor documents" within the provided context, thereby enhancing the model’s ability to focus on rel-
evant information. The effectiveness of these In-Context RALMs has been further demonstrated in several
domain-specific tasks (Xu et al., 2024a; Li et al., 2024f; Xiong et al., 2024a; Lozano et al., 2023), showcasing
the potential of RAG in addressing real-world distribution shifts.

To extend RAG to multimodal query input (Zhao et al., 2023b), Wei et al. (2023b) create M-BEIR, a
multimodal instruction-following benchmark building on existing 10 diverse datasets. UniIR is trained on
M-BEIR to take a heterogeneous query to retrieve from a heterogeneous candidate pool with millions of
candidates in diverse modalities. Built upon it, UniRAG (Sharifymoghaddam et al., 2024) employs UniIR’s
CLIP Score Fusion and BLIP Feature Fusion models as retrievers, improving performance in LMMs. For
visual question answering (VQA) tasks, RA-VQA (Lin & Byrne, 2022) proposed a novel framework for joint
training of the retriever and the answer generator, and FLMR (Lin et al., 2023a) further improved the
retrieval accuracy by combining multi-dimensional embeddings from language and vision models. Similarly,
MuRAG (Chen et al., 2022) uses T5 and ViT for text and image encoding respectively, and retrieval from
a large-scale memory bank for knowledge-based VQA. To improve embodied agents, MART (Yue et al.,
2024) utilizes interaction data to fine-tune a multimodal retriever based on preference learning. For image
captioning and text-to-image generation tasks, RA-CM3 (Yasunaga et al., 2022) enhances performance by
using a pre-trained CLIP model to augment inputs for a CM3 Transformer. These methods effectively
address the shift in knowledge representation across modalities. Additionally, domain-specific multimodal
RAG solutions have shown promising results in various fields (Xia et al., 2024e; Kumar & Marttinen, 2024;
Tao et al., 2024).

9.4.3 Fine-Tuning with New Knowledge

Fine-tuning is a widely adopted method for addressing domain adaptation in foundation models (Reizinger
et al., 2024; Yuan et al., 2023a; Kirk et al., 2023). This technique involves adapting pre-trained models to
specific downstream tasks by further training them on task-specific datasets. The primary goal is to enhance
the model’s performance on new, unseen data that may differ from the data it was initially trained on.

The BOSS benchmark (Yuan et al., 2023a) evaluates vanilla fine-tuning for LLMs, which involves directly
fine-tuning pre-trained models on ID datasets without any additional processes. This benchmark helps
investigate the relationship between performance on ID and OOD datasets by varying factors such as model
scale, training steps, available training samples, and tunable parameters. Observations indicate that fine-
tuning with the full dataset generally yields superior performance for ID examples, while LLMs employing
in-context learning (ICL) paradigms demonstrate better performance on OOD instances. Reizinger et al.
(2024) explore the non-identifiability of fine-tuning in LLMs, highlighting its implications for understanding
and improving these models. They argue that fine-tuning is non-identifiable, meaning that models with
similar fine-tuning performance (such as equivalent test loss) can exhibit markedly different behaviors when
applied to real-world tasks. The approach to addressing OOD issues from Kirk et al. (2023) involves the
use of Reinforcement Learning from Human Feedback (RLHF) (Christiano et al., 2017) in the fine-tuning of
LLMs. This process is broken down into three stages: supervised fine-tuning (SFT), reward modeling, and
RLHF itself. The study’s analysis reveals that RLHF generally outperforms SFT in generalizing to new,
unseen inputs, particularly when there is a significant distribution shift between the training and testing data.
Jiang et al. (2024a) propose a novel method for fine-tuning LLMs in domains where obtaining large volumes
of high-quality, domain-specific data is challenging, such as healthcare or harmless content generation. They
re-evaluated the Transformer architecture to identify the most impactful parameter updates. Their analysis
revealed that within the self-attention and feed-forward networks of the Transformer architecture, only
the attention parameters significantly benefit downstream performance when there is a mismatch between
the training and test set distributions. Based on this insight, they proposed Training All parameters but
Inferring with only Attention (TAIA), which involves updating all parameters during training but utilizing
only the fine-tuned attention parameters during inference. Additionally, recent studies have observed that
parameter-efficient fine-tuning (PEFT) methods, such as Low-Rank Adaptor (LoRA), can maintain more
general capabilities from the pre-trained distribution while acquiring new knowledge from the fine-tuning
data (Biderman et al., 2024).
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For multimodal scenarios, the proposal of EMMA (Yang et al., 2024f) adapts LLMs to the field of embodied
multimodal agents. The key technique involves distilling the reflection outcomes of the LLM, which improves
actions derived from analyzing mistakes in text world tasks. It uses these outcomes to fine-tune the vision-
language models on analogous tasks in the visual world, which is capable of quickly adapting to the dynamics
of the visual world. The cross-modality imitation learning is facilitated by a novel DAgger-DPO algorithm,
which ensures that EMMA can generalize to a wide range of new tasks without further guidance. Belyaeva
et al. (2023) describe a method to address OOD challenges by developing a framework called HeLM (Health
Large Language Model for Multimodal Understanding). HeLM integrates multiple data modalities, learns
robust data encodings, and enhances predictive performance through comprehensive data utilization to
achieve OOD generalization. Regarding model architectures, Ito et al. (2024) find that models with multiple
attention layers or those leveraging cross-attention mechanisms between input domains perform better in
their constructed gCOG benchmark. Their study emphasizes that cross-modal attention and deeper attention
layers are crucial for integrating multimodal inputs and improving generalization in the presence of distractors
and new tasks.

9.4.4 Test-time Training

Test-time training methods view each test instance as an individual learning problem with its own gener-
alization target. This method creates a self-supervised learning task for each test sample and updates the
model parameters at test time before making a prediction. For LLMs, Sun et al. (2024a) proposes a new
class of sequence modeling layers called Test-Time Training (TTT) layers. These layers transform the hidden
state into a machine learning model, with the update rule functioning as a step in self-supervised learning.
By aligning the training and test data distributions, these methods significantly enhance model performance
when faced with distribution shifts.

9.4.5 Model Editing

All the domain adaptation methods discussed above modify a model’s behavior by incorporating new knowl-
edge. This process is closely related to model editing for foundation models (Wang et al., 2023f; Yao et al.,
2023d), which aims to rectify specific errors without affecting unrelated inputs. To explore its potential in
addressing distribution shifts, we will now provide an overview of model editing approaches, which typically
adhere to three essential properties:

• Reliability: The edited model should successfully produce the desired output for the edited sample,
such as correctly answering “Inter Miami" when asked “Who does Messi play for?"

• Generality: The corrections made should be consistent across equivalent contexts, for example,
accurately responding to “Which team is Messi in?"

• Locality: The acquired knowledge should be minimally affected, ensuring that unrelated queries like
“Who does LeBron James play for?" remain unaffected.

These properties ensure the reliability, generality, and locality necessary for the effective and efficient
correction of foundation model behaviors. Recent studies in model editing (Hewitt et al., 2024; Akyürek
et al., 2023) have also demonstrated promising performance in several OOD scenarios. Next, we will delve
deeper into four distinct categories of model editing in LLMs (Figure 18), subsequently extending our
discussion to address related issues in LMMs.

Memory-based Model Editing. In memory-based approaches, an external memory, outside the intrinsic
architecture of the pre-trained LLM, serves as a repository for edited knowledge. LLM can access and
modify this external memory during inference. For example, Language Patch (Murty et al., 2022) performs
editing by integrating with a library of patches in natural language, and MemPrompt (Madaan et al., 2022)
adopts a growing memory bank as a look-up table to store the edit sample and its corresponding prompts,
which is used to alter the prediction of the edit sample. KAFT (Li et al., 2022a) further strengthens
the controllability and robustness of LLMs’ working memory through counterfactual data augmentations.
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Figure 18: An overview of model editing methods in LLMs.

In this approach, the entity representing the answer in the context is substituted with an alternative
but still plausible entity. This substitution is intentionally designed to introduce a conflict with the
genuine ground truth, thereby incorporating counterfactual and irrelevant contexts to standard supervised
datasets. In addition to relying on parameter-based memory, IKE (Zheng et al., 2023b) introduces novel
factual information into a pre-trained LLM via in-context learning, where a set of demonstrations will
alter the prediction of a target factual detail when the input is influenced by an edit. To solve more
complex questions involving chains of facts, MQuAKE (Zhong et al., 2023) enables editing by breaking down
each question into iterative subquestions and retrieving the most pertinent fact from the edited fact memory.

Classifier-based Model Editing. The classifier-based model editing paradigm aims to preserve pre-
trained parameters while utilizing a classifier to determine whether behavior adjustment is necessary. In
this approach, if a sample falls outside the scope of the edit sample, the original model is applied to
maintain predictions. Conversely, interventions occur when the sample is within the scope, with the specific
interventions varying across different methods. SERAC (Mitchell et al., 2022) employs a scope classifier to
determine whether the original model or a new lightweight model should be used for prediction. The new
lightweight model is specifically trained for in-scope samples. In contrast, Language Patch (Murty et al.,
2022), CaliNET (Dong et al., 2022a), and T-Patcher (Huang et al., 2023f) introduce additional trainable
parameters to adapt the original model instead of requiring entirely new models. For example, Language
Patch trains a new gating head (acting as a classifier) to combine predictions from the original prediction
head and a newly trained interpreter head. CaliNET and T-Patcher insert a residual block into the original
model’s feed-forward network (FFN) as an adapter. This adapter utilizes an activation operation on hidden
states to determine whether the intervention should be activated. When the activations are zero, there
will be no change to the original prediction. However, the success of these classifier-based methods heavily
relies on the quality of the classifier, which also necessitates a substantial number of unrelated samples for
training. Alternatively, GRACE (Hartvigsen et al., 2022) edits a model by adding a retrieval-based adaptor
to a chosen layer that enables judicious decisions regarding the utilization of the dictionary for a given
input, accomplished via the implementation of a deferral mechanism.

Hypernetwork-based Model Editing. The hypernetwork-based model editing paradigm utilizes an
external model, referred to as the editor, to facilitate parameter updates in the models. Knowledge Editor
(KE) (Cao et al., 2021) employs a bidirectional LSTM to transform an edit pair, consisting of the edit
sample, incorrect prediction, and correct label, into shifting operation parameters (i.e., mask m, offset
b, and scaling factor α) for ∇: ∇̂ = α(m ⊙ ∇) + b. Based on KE, SLAG (Hase et al., 2023) further
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appends metrics for two types of input texts: (1) those that, while not part of the targeted edit set, align
logically with it; and (2) those that share a formal resemblance to edited knowledge, but do not affect
the prediction outcomes. However, hyper-networks are generally incapable of updating LLMs due to the
massive parameter size. To address this issue, MEND (Mitchell et al., 2021) applies low-rank decomposition
to ∇ and utilizes two MLP layers to generate a new low-rank update, ∇̂. This approach is lightweight and
efficient, particularly for large models like T5-11B. Moreover, KGEditor (Cheng et al., 2023b) combines the
benefits of memory-based methods and hypernetworks to ensure flexibility and further reduce computation
costs. In particular, it introduces an additional FFN layer for knowledge storage. It then employs a
bi-directional LSTM to encode embeddings of triples. In this manner, KGEditor becomes an efficient way
to edit knowledge graph embeddings. Despite the success of this paradigm, the editors need to undergo a
prior training stage. The availability of training data, including edit samples and pre-training data, poses a
critical challenge. While these methods employ synthetic edit samples (e.g., selecting hypotheses via beam
search except the top-1 for Question-answering tasks (Cao et al., 2021)), their generalization to realistic
mistakes beyond the synthetic sample distribution remains limited.

Knowledge-based Model Editing. The knowledge-based model editing paradigm focuses on identifying
a subset of parameters specifically associated with particular pieces of knowledge and only updates those
parameters. This approach assumes that knowledge is stored within the feed-forward networks (FFNs),
which function as key-value memories (Geva et al., 2022). Knowledge Neuron (KN) (Dai et al., 2021)
attributes knowledge parameters using integrated gradients, where more salient gradients indicate a greater
influence on the knowledge. ROME (Meng et al., 2022a) and MEMIT (Meng et al., 2022b) propose a causal
tracing approach to determine which FFN layers are most relevant to the knowledge. ROME selectively
edits the top-1 FFN layer, while MEMIT edits multiple layers (e.g., layers 3-8 for GPT-J). It is important
to note that these methods do not establish that these layers are exclusively dedicated to a single piece of
knowledge, implying that the layers may be shared across different knowledge domains Gandikota et al.
(2024). To mitigate potential effects on out-of-scope samples, regularization techniques are employed during
the neuron/layer updates. For example, MEMIT enforces the model to maintain predictions for several
unrelated samples. By adopting a knowledge-based approach, these methods selectively update parameters
associated with specific knowledge while minimizing interference with unrelated samples. Based on ROME,
BIRD (Ma et al., 2023b) studies the novel problem of Bidirectional Assessment for Knowledge Editing
(BAKE), which evaluates the reversibility of edited models in recalling knowledge in the reverse direction
of editing and incorporating the bidirectional relationships between subject and object in an edit fact into
the updated model weights.

Model Editing in LMMs. Compared to single-modal model editing, the task of editing LMMs is more
challenging due to their inherent diversity and complexity. Specifically, errors in LMM outputs can be
attributed to the synergistic effects of various modalities. A recent study (Cheng et al., 2023a) introduces a
pioneering benchmark for LMM editing, named MMEdit. This benchmark evaluates three aforementioned
key principles: Reliability, Locality, and Generality, and covers two specific sub-tasks: Editing VQA and
Editing Image Captioning. Empirical evidence indicates that while current methodologies (Cao et al., 2021;
Zheng et al., 2023b; Mitchell et al., 2021) are effective for editing the textual model in LMMs, they fall short
in editing the vision module. Researchers are encouraged to explore innovative techniques for efficient and
accurate editing across various modalities and to develop comprehensive benchmarks for evaluating larger
LMMs.

9.5 Current Limitations and Future Directions

Foundation models, despite their remarkable capabilities, face several challenges when confronting distribu-
tion shifts. These limitations primarily stem from inherent difficulties in OOD detection, generalization, and
adaptation. Such challenges significantly impact the reliability and robustness of these models in real-world
scenarios. When exposed to data that deviates from their training distribution, these models often exhibit
decreased performance (Yuan et al., 2023a; Zhang et al., 2024f), leading to unreliable predictions in dynamic
environments where data characteristics frequently change.
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While various OOD detection methods have been developed, many struggle with scalability issues, making
them less practical for large-scale deployment. Current approaches to OOD generalization and adaption,
such as domain adaptation (Yuan et al., 2023a; Kirk et al., 2023; Yang et al., 2024f) and adversarial train-
ing (Bai et al., 2021; Yuan et al., 2023a; Verma et al., 2024), demonstrate varying degrees of success across
different domains. These methods often require extensive retraining or fine-tuning to handle new domains
effectively, a process that can be both resource-intensive and time-consuming. Furthermore, many techniques
for improving OOD robustness heavily depend on the availability of large, high-quality datasets (Yuan et al.,
2023a; Yang et al., 2024f; Belyaeva et al., 2023; Ito et al., 2024). This dependence poses significant challenges
in domains where data is scarce or expensive to obtain. Additionally, for multimodal foundation models,
effectively integrating and processing diverse data types remains a complex task. Current editing and gen-
eralization methods often fall short in scenarios involving multiple modalities, such as text, images, and
audio (Wu et al., 2023c). Last but not least, modern foundation models often undergo continual pre-training
and fine-tuning, either horizontally across a sequence of domains or vertically from a general-purpose model
to a domain-specific model (Shi et al., 2024). As a result, they inevitably tend to suffer from catastrophic for-
getting, such as horizontal forgetting (Shi et al., 2024) when continually adapting across domains and vertical
forgetting (Shi et al., 2024) when continually adapting from more general models to more domain-specific
models.

To address these limitations, future research should focus on developing more lightweight OOD detection and
generalization methods. These approaches should aim to identify and mitigate distribution shifts in large-
scale settings while maintaining low resource requirements. By focusing on efficiency, such methods could
be more readily integrated into practical applications, enhancing the robustness and reliability of foundation
model systems across diverse real-world scenarios.

To adapt to rapidly evolving environments, we should prioritize the development of continual or even life-
long learning mechanisms for foundation models (Yang et al., 2024a; Shi et al., 2024; Kim et al., 2024).
These mechanisms would enable models to adapt to new data distributions without requiring extensive re-
training (Li et al., 2022a) while simultaneously preserving knowledge acquired from previous training data,
including data previously used during pre-training or from previous domains. In other words, they should
remain robust against both vertical and horizontal forgetting (Shi et al., 2024). This approach could signif-
icantly enhance the flexibility and longevity of foundation models in dynamic domains. Additionally, due
to the scarcity of data in several domains, developing more data-efficient transfer learning algorithms or
creating diverse synthetic data will help models generalize to more practical applications.

To further improve the generality of foundation models, advancing their abilities to handle multimodal data
effectively is essential, with unified frameworks that can seamlessly integrate various data types and lever-
aging techniques like cross-modal learning and multimodal embeddings enhancing performance in complex
scenarios (Wu et al., 2023c; Zhang et al., 2024f; Yin et al., 2023d; Yu et al., 2024b). By addressing these
limitations and exploring these future directions, we can significantly improve the robustness and reliability
of foundation models, ensuring their effective deployment in diverse real-world applications.
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10 Explainability

There are substantial existing efforts tailored towards the explainability of foundation models, particularly
LLMs. In this section, we demonstrate the literature on the explainability of LLMs from the following aspects:
(1) Feature Attribution Methods, i.e., Explaining LLMs with the raw features (words, sentences, syntax); (2)
Exploring the inherent knowledge incorporated in LLMs themselves; (3) Discovering the roles and training
samples in pre-training, fine-tuning, and few-shot learning. Following an overview of the methods used for
model explanation, we delve into the evaluations and applications of explainability in LLMs. The discussion
then broadens to the discussion of large multimodal models (LMMs), underscoring the ongoing efforts and
developments in this field. Figure 19 provides a detailed overview of various methods to explain different
foundation model components.
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Figure 19: An overview of explainability in foundation models.

10.1 Feature Attribution Methods

When adopting LLMs on downstream tasks, it is important to determine which part of words or tokens in
the input contribute most to the prediction. Thus, we need to determine the importance of each part of
the input, i.e., explaining the prediction using the raw features. To explore this, there are several important
lines of work:

10.1.1 Perturbing the Input for Explanation

To study the effects of the raw features for model prediction, it has been important to perturb part of the
input (a piece of text) while monitoring the model output. With this routine, Perturbed Masking (Wu et al.,
2020) proposes to perturb a token in the given sentence while monitoring the representation of another token.
They further propose span-level perturbation to study the impacts of a certain span within the sentence.
While Wu et al. (2020) regard the monitored variable as the representation of the token or span, MICE (Ross
et al., 2021) study the roles of inputs for model prediction in classification tasks (i.e., the monitoring variable
becomes the model prediction). They present a method to find the edits that could flip the model’s prediction,
where the edits could serve as contrastive explanations. In addition, perturbing the input to shift the label
could create counterfactual examples. Crest (Treviso et al., 2023) proposes a framework to first perturb the
input sentence with masks and then edit the masked tokens to obtain counterfactuals. Here, perturbing
the sentence with masked tokens is essentially extracting rationales as they are both locating the important
tokens for model prediction, though finding the rationales could also be achieved by other methods (Lei
et al., 2016; He et al., 2022). To provide more diverse perturbation types and locations, Polyjuice (Wu
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et al., 2021) presents a general-purpose counterfactual generator that can generate diverse sets of realistic
counterfactuals.

10.1.2 Gradient-based Explanation

Mohebbi et al. (2021) adopt gradient-based attribution methods to provide token-level attribution scores
to understand the representation space of Bert better. More advanced difference-from-reference approaches
such as Integrated Gradients (IG) are also used to explain the model’s prediction (Sikdar et al., 2021; Sanyal
& Ren, 2021; Enguehard, 2023). REAT (Du et al., 2019) decomposes the final prediction of RNNs directly
into the additive contribution of each word in the input text. Voita et al. (2021) extend LRP (Montavon
et al., 2019) to the Transformers to attribute the relevance score on the source and target contexts in Neural
Machine Translation tasks. Wu & Ong (2021) analyze different gradient-based methods for explaining Bert
classification results.

10.1.3 Attention-based Explanation

Previous works suggest that information could be encoded within the heads of the attention weights (Tenney
et al., 2019a), including abundant information (Goldberg, 2019; Voita et al., 2018; Vig & Belinkov, 2019;
Raganato & Tiedemann, 2018; Hewitt & Manning, 2019a; Clark et al., 2019a; Zhang et al., 2021b;a), which
could be used for both input-level explanation and attention heads pruning (Voita et al., 2019). Multiple
tools are proposed to visualize the attention to illustrate the correlations between words for explanation
purposes (Vig, 2019; Park et al., 2019; Jaunet et al., 2021; Hoover et al., 2020). Moreover, DeRose et al.
(2021) propose Attention Flows to visualize the whole attention flow instead of the visualization of one layer.
Some methods combine gradients and attention for explanation (Barkan et al., 2021; Hao et al., 2021), which
generally perform better than using attention alone. Though attention scores could be used to understand
the large language models, they may not necessarily be capable of identifying the explanations (Jain &
Wallace, 2019).

10.2 Exploring the Knowledge in LLMs

Instead of explaining LLMs by highlighting the important tokens or spans in the input, interest increasingly
gravitates toward understanding the breadth of knowledge encapsulated by these models. Several key areas
of investigation are outlined as follows:

10.2.1 Probing the Representations within LLMs

Probing the model could help us understand deep neural networks (Belinkov, 2022). Prior works focus on the
representations of different layers in transformer models. To begin with, the token embeddings learned by
BERT and ELMo are shown to contain rich information about the exact linear context of the token (Kunz &
Kuhlmann, 2020). Then for the other layers, Belinkov et al. (2017) investigate the representation of different
layers in NMT encoders, finding that higher layers have more semantic information. In contrast, lower-layer
representations tend to be more suitable for part-of-speech tagging. The fact that language models can
capture semantic information and conduct arithmetic operations is also studied in Sorodoc et al. (2020)
and Zhou et al. (2024c). Similarly, Clark et al. (2019b); Lin et al. (2019) show that Bert’s representations
encode surface and positional information in the lower layers, but more semantic features in higher layers,
while Hewitt & Manning (2019b) propose a structural probe showing the syntax trees are embedded in a
linear transformation of ELMo and Bert’s word representation space. Building on previous probing work,
Tenney et al. (2019b) probes word-level contextual representations to investigate how they encode sentence
structures. Different from the above methods paying attention to the representation in certain metric spaces
(typically Euclidean space), Chen et al. (2021a) consider the probing methods in hyperbolic space, which
could better recover tree structures. While these methods could reveal the ability of representations to
encode syntactic information, Maudslay & Cotterell (2021) show that syntactic probes may not properly
isolate syntax. With a new corpus that is semantically nonsensical but syntactically well-formed, it is shown
that syntactic and semantic information are entangled. Further, Zhang et al. (2022) argue that even with
the existing works, it remains unclear whether LLMs have understood linguistic knowledge. Thus they probe
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GPT-3 to show that it has acquired linguistic knowledge in most cases but may still fail when disturbances
happen. Apart from exploring the representations, some other works focus on self-attention heads, which
could be helpful for heads pruning (Kovaleva et al., 2019; Clark et al., 2019b).

Some methods are designed to be used during the inference of LLMs without training the classifier on the
hidden vectors, such as cloze completion or text generation (Petroni et al., 2019; Apidianaki & Soler, 2021;
Li et al., 2022b; Ravichander et al., 2020). Though prompts can be designed to reveal the abilities of the
LLMs, Zhong et al. (2021) question if the prompt-search methods also learn from the training data, i.e., the
training data may contain certain regularities of the underlying fact distribution that could be exploited.

Probing methods are also used to understand the roles of neurons in LLMs. Torroba Hennigen et al.
(2020) propose a framework based on a decomposable multivariate Gaussian probe to explore how linguistic
information is structured within the representation, showing that most attributes are reliably encoded by
only a few neurons. Moreover, some methods propose to probe the internal activations to predict the presence
of features in the input, showing the sparse combinations of neurons can represent many features (Gurnee
et al., 2023). Recently, OpenAI has shown the possibility of using an advanced LLM (e.g., GPT-4) to explain
the neurons in a small model (e.g., GPT-2) (OpenAI, 2023b). Summarize and Score (SASC) (Singh et al.,
2023b) proposes to generate candidate explanations to explain the modules from LLMs, which could be more
efficient than explaining single neurons.

10.2.2 Explaining LLMs with Concepts

Concept-based explanation refers to mapping the input into concepts and then using a linear classifier to
predict the final class with the mapped concepts. As the prediction from the concept to the class is a simple
linear classifier, it has the property of explainability even though the mapping from the input to the concepts
is not explainable. Pioneering methods in this direction include Concept Activation Vectors (CAVs) (Kim
et al., 2018) and Concept Bottleneck Models (Koh et al., 2020). Such a concept-driven framework is widely
adopted in visual representation learning where the images are first mapped to the concept space, based on
which the classifier makes the decision (Kim et al., 2018; Koh et al., 2020; Yan et al., 2023; Kazmierczak
et al., 2023; Chattopadhyay et al., 2023; Zhang et al., 2024g; Huang et al., 2024b). More recently, Wang
et al. (2024d) propose Probabilistic Conceptual Explainers (PACEs), drawing inspiration from hierarchical
Bayesian deep learning (Wang & Yeung, 2016; 2020; Jordan et al., 1998) and topic models (Blei et al., 2003)
to provide concept-based explanations at multiple levels (e.g., datasets, images, and patches) to address key
concerns in model interpretation such as faithfulness, stability, and parsimony.

Beyond computer vision, CAVs are also tailored to language models for sentiment classification tasks (Cap-
tum, 2022), featuring two concepts: Positive Adjectives and Neutral. Besides, while Captum (2022) define
concepts manually, Mu & Andreas (2021) propose to learn the abstractions by analyzing the neurons, where
they find that neurons learn shallow lexical heuristics from dataset biases. Wang et al. (2024c) propose Vari-
ational Language Concepts (VALCs) to learn the concept-based explanations in an unsupervised learning
manner while enabling neuron editing in the concept space. Turner et al. (2023) propose to steer the behav-
iors of language models by curating concept activations and injecting them in the model’s hidden layers, and
Zou et al. (2023a) propose a unified paradigm for concept interventions in the activation space. Barrault
et al. (2024) propose Large Concept Model (LCM) to perform next-sentence-prediction-based autoregressive
learning in the conceptual embedding space. In summary, developing concept representation is a crucial step
towards interpretable LLMs for diverse tasks. Such interpretability offers a feasible solution for diagnosing,
revising, and intervening LLMs.

10.2.3 Mechanistic Interpretability

The key focus of mechanistic interpretability is reverse engineering, which could potentially provide a more
systematic approach to explaining LLMs (Elhage et al., 2021). This study also finds that in-context learning
in small models could be explained by specific attention heads, termed “Induction Heads". This mechanism is
hypothesized to constitute the mechanism for most “in-context learning" in large transformer models (Olsson
et al., 2022). Another line of work focuses on FFN layers. Earlier work (Geva et al., 2020) argue that FFN
layers contain most of the information that operates as key-value memories, and more recent works (Yao
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et al., 2024; Yu et al., 2024a) propose to search neural circuits or salient neurons for parametric knowledge
representation. With the localization of the information, we could perform model editing on the relevant
matrices in FFN layers (Meng et al., 2022a). In addition, Geva et al. (2022) and Park et al. (2024) analyze the
learning dynamics of generative models in the concept space, demonstrating that updates can be decomposed
into sub-updates, where each sub-update corresponds to human-interpretable concepts.

10.3 Discovering the Roles of Samples in Training, Fine-tuning, and Few-shot Learning

The development of foundation models encompasses multiple learning stages, including pre-training, fine-
tuning, and few-shot learning. During different stages, samples play distinct roles as illustrated in Figure 20.

a) Pre-training Stage

A large language model (LLM) is a
computational model capable of language
generation or other natural language
processing tasks. As language models ...

b) Instruction-tuning Stage

You are a scientist who just invented a time
machine. Where do you travel first?
As a scientist, I would travel back in time
to 1969 and witness the Apollo 11 mission.

c) In-context Learning Stage

Example1: If there are 3 cars in the parking
lot and 2 more cars arrive, how many cars
are in the parking lot? There are originally
3 cars. 2 more cars arrive. 3 + 2 = 5.

Apollo 11 was a spaceflight conducted by
the United States from July 16 to July 24,
1969. It marked the first time in history
that humans landed on the Moon.

<html>\n<head>\n <title>Delicious Pasta
Recipe</title> <meta name="description"
content="Pasta recipe for a quick meal">
</head>\n <body> ....

Example1: If there are 3 cars in the parking
lot and 2 more cars arrive, how many cars
are in the parking lot? The answer is 5.
Example2: ...

Figure 20: The influence of samples in pre-training, instruction-tuning, and in-context learning stages. We
highlight the beneficial and detrimental textual fragments in green and red, respectively.

10.3.1 Influence of Single Example in Training

There is a growing body of work studying the effects of one single example in the training process.
SHAP (Shapley et al., 1953) first proposes Shapley values to allocate the contribution of one single player in
a coalitional game. TransSHAP (Kokalj et al., 2021) proposes to adapt SHAP to transformers models, Bert
specifically, to explain the classification results. Other works measure the effects of the example with the
influence of this example on test loss values (Yeh et al., 2018). Influence function could also help to study
the importance of data, Grosse et al. (2023) scale the influence functions on LLMs with up to 52 billion
parameters.

10.3.2 Influence of Training Stages

The training stages in the current most powerful models include pre-training and instruction tuning.
LIMA (Zhou et al., 2023b) analyzes the relative importance of pre-training and instruction-tuning, hy-
pothesizing that the knowledge revealed in the generation primarily comes from the pre-training stage, while
instruction-tuning tends to fixate on the style and format of interacting with users, which is tested by using
only 1000 curated examples to train Llama-65B to achieve near-GPT-4 performance on a controlled hu-
man study. Wu et al. (2023e) explore the instruction recognition and knowledge evolution before and after
instruction-tuning, demonstrating that instruction-tuning could better identify the instruction parts from
the input and align the knowledge with the user instruction.

10.3.3 Influence of Samples in Few-shot Learning

Few-shot learning in LLMs typically refers to in-context learning (ICL). Li et al. (2023j) investigate ICL’s
functionality using contrastive demonstration and saliency maps. Wei et al. (2023c) examine how specific
examples influence learning outcomes in few-shot scenarios, employing two distinct approaches: ICL with
intentionally incorrect labels, and ICL with semantically unrelated labels. They found that large models
can better override the input-label mapping learned during the pre-training stage, and small models rely
more on semantic priors than large models do. In both settings, they find larger models and those enhanced
with In-Context Fine-Tuning perform better. Wu et al. (2023d) delve into how Chain-of-Thoughts (CoT)
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affects the model behavior, while others try to perturb CoT demonstrations and check the effects on the
outcome (Madaan & Yazdanbakhsh, 2022; Wang et al., 2022a).

10.4 Evaluation of Explainability

The evaluation of explainability usually focuses on two perspectives (Zhao et al., 2023a): (1) Plausibility
(also referred to as “persuasiveness" (Jacovi & Goldberg, 2020)). A plausible explanation seems logical and
coherent to the audience, regardless of whether it is correct or accurately reflects the model’s reasoning
process. Essentially, plausibility measures the quality of the explanation in terms of its persuasiveness and
understandability from a human perspective. (2) Faithfulness. A faithful explanation accurately represents
the internal workings and decision-making processes of the LLM, demonstrating how well the explanation
aligns with what the model is doing when generating the response.

10.4.1 Evaluation of Plausibility

To evaluate the plausibility of the explanations of pre-trained LMs, Shen et al. (2022) propose a benchmark to
test LMs abilities in five dimensions: grammar, semantics, knowledge, reasoning, and computation. Another
benchmark HateExplain (Mathew et al., 2021) ask the annotators to highlight part of the text that could
justify their decisions, which could serve as the ground-truth explanations. With these ground-truth tokens,
we could calculate the metrics such as Accuracy, Macro F1-score, AUROC score (Mathew et al., 2021), and
AUPRC (Area Under the Precision-Recall Curve), IOU (Intersection-Over-Union) (DeYoung et al., 2020),
etc.

The above metrics could be applied to the explanations with raw features (discussed in Sec 10.1), but
they may not be suitable for the explanations based on natural language (Sec 10.2.1) as there would be
no ground-truth explanations in this case. To resolve this issue, Chen et al. (2023j) propose to evaluate
the counterfactual simulatability of natural language explanations, i.e., whether humans could predict the
model’s behavior according to the explanations given by the model. If so, then we say LLMs could explain
themselves.

10.4.2 Evaluation of Faithfulness

To evaluate the faithfulness of rationales selected by the model, ERASER (DeYoung et al., 2020) proposes
the following metrics: (1) Comprehensiveness, which refers to the probability change of the original pre-
dicted class before and after the removal of the predicted rationales. (2) Sufficiency, which means how much
the extracted rationales could support the model to make a prediction. Ideally, the objective is to achieve
maximal change of comprehensiveness without compromising the accuracy of predictions when relying solely
on the extracted rationales. In addition, TaSc (Chrysostomou & Aletras, 2021) proposes another line of
metrics: (1) Decision Flip - Fraction Of Tokens (DFFOT), which measures the fraction of important tokens
required to be removed to cause a decision flip. The lower, the better; (2) Decision Flip - Most Informa-
tive Token (DFMIT), where the rate of decision flips caused by removing the most influential tokens is
reported for comparison. To further evaluate the faithfulness of the explanations, Liu et al. (2022c) propose
a faithfulness violation test, showing that most methods are hindered by the faithfulness violation issue.
Although these metrics each have their rationale and applicability, the consistency between these metrics
remains questionable. Chan et al. (2022) show that the explanations that achieve the best DFFOT may
have the worst Sufficiency score. These metrics are also not suitable for natural language explanations. To
solve this issue, for classification tasks, Atanasova et al. (2023) propose two tests: (1) counterfactual input
editor for inserting reasons leading to counterfactual predictions; (2) reconstruct inputs from the reasons
given by the explanation models and check if they lead to the same predictions. Different from modifying the
input and monitoring the output (basically perturbation), REV (Chen et al., 2023d) quantifies the amount
of new, label-relevant information in the explanations beyond the information within the input, which can
give the measurement without perturbation. For CoT-style explanations, Turpin et al. (2023) find that CoT
explanations could be vulnerable towards biasing features in the model inputs, thus being systematically un-
faithful. Lanham et al. (2023) monitor how the model predictions change when the input is intervened. They
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argue that models may produce less faithful reasoning when the models become larger. These researches
demonstrate the need for better explanations in the CoT style.

10.5 Applications of Explainability

Gaining the explainability of LLMs has various applications, including diagnosing the model, and improving
the model, which can help obtain user trust in the model.

10.5.1 Diagnosing Language Models

Du et al. (2023; 2021) point out that LLMs may rely on shortcut features like data biases, and artifacts to
make predictions rather than understanding the meaning, which demonstrates an important challenge in the
field of LLMs. Chen & Ji (2022) propose to utilize the explanations revealed by the model to determine if
the model is robust or not, as they argue that a robust model should behave consistently between original
and adversarial example pairs. Wei et al. (2022b) use chain-of-thought to understand the reasoning process
of the model, though the faithfulness needs further exploration (Turpin et al., 2023; Lanham et al., 2023).
Li et al. (2024b) design an urban-environment multi-agent simulator based on customizable first-order logic
to evaluate the logical reasoning capability of LLMs. These works have identified new challenges in LLMs.

10.5.2 Improving the Model Performances

Apart from understanding the model, other works try to improve the model with explanations, which can
also help gain user trust. For in-context learning, Lampinen et al. (2022) find that using explanations
in the prompts can improve performances, and hand-tuned explanations on a small validation set could
even offer substantial improvements. To improve the model’s reasoning ability, Nye et al. (2021) find that
asking LLMs to emit intermediate computation steps into a “scratchpad" helps with multi-step reasoning
tasks. Different from Nye et al. (2021) that does not require training, Stacey et al. (2022) supervise the
model’s attention weights to encourage the model to pay more attention to the words that are present in
the explanations, which significantly improves the model performance. In the large language model regime,
Mukherjee et al. (2023) propose to train a 13B model with the explanations and reasoning processes provided
by GPT4 to improve the reasoning ability of small models. Human feedback can also be incorporated to
improve the model. Lee et al. (2022) introduce the XMD framework which shows humans the explanations
of model behavior and also updates the model based on the user feedback. Then to improve the model’s
OOD generalization ability, there is a popular paradigm called Explanation Regularization (ER) which
aims to align the model rationales with human-annotated rationales (Liu & Avci, 2019; Rieger et al., 2020;
Zaidan & Eisner, 2008; Ghaeini et al., 2019; Huang et al., 2021; Ross et al., 2017; Kennedy et al., 2020),
where the effects of ER on OOD generalization is evaluated by ER-TEST (Joshi et al., 2022). As these
methods require human-annotated rationales, which might be exhaustive, AMPLIFY (Ma et al., 2023a)
proposes to automate the process of rationale generation with the insights from post hoc explanations to
provide corrective signals to LLMs. Some other applications include identifying the important instructions
to compress the instruction (Yin et al., 2023a).

10.6 Explainability of LMMs

Existing works on the explainability of LMMs primarily focus on CLIP-based image-text alignment models.
Early research suggests querying GPT to augment class labels, thereby improving the zero-shot performances
of CLIP (Radford et al., 2021). Recent methods utilize CLIP to analyze the composition of images with
textual concepts, wherein the concepts are further used for image classification (Chattopadhyay et al., 2024;
Yang et al., 2022a) or editing (Chefer et al., 2024; Luo et al., 2025). Such approaches offer additional
interpretability (Yan et al., 2023; Yang et al., 2022a) and controllability compared with directly using the
CLIP representation for class prediction. Furthermore, Agarwal (2023) investigates the trustworthiness of
explanations generated for zero-shot and fine-tuned Vision and Language Models (VLMs), revealing that
explanations for zero-shot CLIP classifiers are more faithful than those of the fine-tuned versions. While
these works concentrate on image-text alignment models, the explainability of LLM-based image/video
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understanding models, such as MiniGPT-4 (Zhu et al., 2023c), LLaVA (Liu et al., 2023g), VideoChat (Li
et al., 2023d), and LVChat (Wang et al., 2024n), remains underexplored.

10.7 Current Limitations and Future Directions

Despite significant advancements in the field of explainability, several limitations persist that necessitate
future attention:

10.7.1 Faithfulness of Raw Features

Current methods, ranging from input perturbation to gradient-based and attention-based techniques, offer
explanations for model predictions. However, the faithfulness of these explanations remains questionable. As
illustrated in Section 10.4.2, the metrics from different perspectives may vary drastically (Chan et al., 2022).
This issue extends to downstream tasks where the model may rely on various biases for predictions (He et al.,
2022; Du et al., 2023), potentially compromising their generalization ability if the predictions are not truly
faithful.

10.7.2 Understanding How LLMs Store Knowledge

Research focusing on the knowledge stored within LLMs – examining layer representations (Belinkov et al.,
2017; Kunz & Kuhlmann, 2020; Rajendran et al., 2024) and analyzing generated content (Liu et al., 2024d;
Alivanistos et al., 2022) – has shed some light on the distribution of syntactic versus semantic information
across layers. While these works provide the insight that lower layers have syntactic information and higher
layers have semantic information, or it could offer the evidence that some knowledge is encoded in the model
weights, it remains unclear how this knowledge is injected into the model during the training and how the
knowledge is triggered through the generation process. Especially, how to trigger relevant knowledge with
the input demonstrations needs further understanding (Liu et al., 2021a; Chen et al., 2023h). Some works
argue that the knowledge is mainly stored in MLP layers (Meng et al., 2022a;b); however, it is shown in
their papers that attention layers also have slight effects when predicting the facts, especially in earlier layers
(See Figure 3 in (Meng et al., 2022b)). Even in the work that explicitly stores knowledge in a memory
module (Wang et al., 2024m), how the model processes the knowledge is under-explored.

10.7.3 Reliability and Responsibility of Foundation Models from the Explainability Perspective

Without a deep comprehension of foundation models, ensuring their reliability and responsibility is chal-
lenging, where explainability has the potential to offer a pathway to address these issues. For instance,
Identifying the biases in pertaining data and implementing various de-bias strategies could pose more eq-
uitable models (Li et al., 2023i). Moreover, understanding how the model stores knowledge (Liang et al.,
2024) can facilitate model editing with the current knowledge and the unlearning of harmful information,
achieving up-to-date and safer foundation models (Meng et al., 2022a; Wang et al., 2024e; Zhang et al.,
2023a). However, the effectiveness of interpretability methods themselves must be critically assessed to en-
sure they provide meaningful insights. Adebayo et al. (2018) perform sanity checks for saliency maps and
reveal that some widely used saliency methods are independent of both the model and the data, questioning
their validity in explaining model behavior. Similarly, Alvarez-Melis & Jaakkola (2018) investigates the ro-
bustness of interpretability methods and demonstrates that small perturbations to the input can significantly
alter the explanations provided, highlighting the need for more robust interpretability techniques. Moreover,
understanding how practitioners use interpretability tools is also crucial. Kaur et al. (2020) explore data
scientists’ use of interpretability tools and find that mismatches between tool capabilities and user needs
can limit their effectiveness in ensuring model reliability and responsibility. They emphasize the importance
of designing interpretability tools that align with the practical requirements of users. As the development
of increasingly powerful foundation models continues, focusing on both the advancement and the critical
evaluation of explainability methods cannot be overstated.

71



Under review as submission to TMLR

11 AIGC Detection

The advent of foundation models has led to a surge of artificial intelligence-generated content (AIGC) across
various modalities, including text (Team et al., 2023; OpenAI, 2023b; Team et al., 2024), images (Ramesh
et al., 2021; Zhang et al., 2023e; Esser et al., 2024), audio (Kreuk et al., 2022; Guo et al., 2023c; Huang et al.,
2023d; Anastassiou et al., 2024), and video (Kondratyuk et al., 2023; Blattmann et al., 2023; Bar-Tal et al.,
2024). While these technologies have unlocked many useful applications, they also pose significant challenges,
particularly in terms of content authenticity (Gu, 2024; Li et al., 2024k; Hong & Zhang, 2024). The capacity
of foundation models to generate human-like content can be exploited for malicious purposes, including
the dissemination of misinformation and identity theft. Consequently, the demand for research focusing on
detecting AIGC is on the rise. This section provides a comprehensive overview of current methodologies
and techniques for AIGC detection, highlighting the pivotal role this field plays in preserving the integrity
of digital information in an era increasingly dominated by foundation models and AI technologies.

Zero-shot 
Detectors

Watermark 
Detection

Neural Network 
Detectors

AIGC 
Detection

Statistical Detection: Lavergne et 
al. , 2008; Beresneva et al. , 2016; 
Badaskar et al. , 2008
Intuitive Indicators: Uchendu et 
al. , 2020; Du et al. , 2019
Pre-trained LLM: Bhattacharjee 
et al. , 2023; Liu et al. , 2023

Training-free Watermarking: Brassil
et al. , 1994; Por et al. , 2012; Rizzo et 
al. , 2016; Sato et al. , 2023
Learnable Watermarking: Abdelnabi
et al. , 2021; Zhang et al. , 2023

Train a Binary Classifier: Bhagat et al. , 2013;
Zellers et al. , 2019; Bakhtin et al. , 2018;
Solaiman et al. , 2019; Uchendu et al. , 2020

Figure 21: An overview of AIGC detection techniques. We group them into three categories: zero-shot
detectors, watermark-based detection, and neural network detectors, each with further subdivisions.

11.1 The AIGC Detection Problem

The task of AIGC detection can be seen as a binary classification problem. In general, we aim to determine
whether a given input x ∈ X , such as an image, text, or audio, is generated by AI models. This can be
achieved using a detector D : X → {0, 1}, which can be defined as follows:

D(x) =
{

1 if x is generated by AI.
0 if x is created by a human.

(14)

The detector D can be broadly categorized into the following types: (i) zero-shot detectors, (ii) watermark
detectors, and (iii) learnable detectors. Furthermore, we summarize the representative work for all types in
Figure 21, with examples for each type illustrated in Figure 22.
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Zero-shot Watermark Neural Network
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Figure 22: Examples of zero-shot, watermark, and neural network detectors for textual and visual inputs.

11.2 Zero-shot Detectors

The fundamental concept behind zero-shot detectors is to differentiate between AI- and human-generated
content based on their intrinsic distinctions, such as the frequency of word occurrence in the generated text,
which can be identified and flagged by hand-crafted detectors. That said, zero-shot detectors are arguably
the simplest to deploy since they do not require additional training of both the detectors and the foundation
models that generate the content.

11.2.1 Statistical Detection

These detectors assume full, or at least partial (e.g., the token logits during generation), access to the foun-
dation model that generated the content. In the text domain, traditional methods usually rely on statistical
outlier detection based on different metrics, including entropy (Lavergne et al., 2008), perplexity (Beresneva,
2016), n-gram frequencies (Badaskar et al., 2008), the ratio of perplexity to cross-perplexity (Hans et al.,
2024a), and average per-token log probability (Solaiman et al., 2019). We use them to evaluate the given
text passage and apply thresholding to assess whether the content is likely AI-generated. However, these ap-
proaches are inadequate in the era of foundation models, where AI-generated content becomes more diverse
and of high quality.

To this end, several recent studies improve upon these simple ideas and extend them to LLMs. Gehrmann
et al. (2019) propose GLTR, which is centered on the underlying assumption that LLMs overgenerate from
a limited subset of the true distribution of natural language, for which they have high confidence. This
property is detected by computing, for each token in a text sequence: (i) the probability of generating the
token, (ii) the rank of the word, and (iii) the entropy of the generated distribution. These metrics are then
compared against those of human writers. In a similar vein, DetectGPT (Mitchell et al., 2023) leverages the
empirical observation that AI-generated text tends to lie in negative curvature of the model’s log probability
function, leading to several follow-up investigations on improving detection efficiency (Deng et al., 2023b)
and utilizing conditional probability curvature (Bao et al., 2023). DetectLLM (Su et al., 2023a) employs a
similar principle, but scores with log-rank information. However, these approaches rely on thresholding the
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probability of a given sequence, which requires access to the model’s token generation probability distribution.
Such a requirement can be too restrictive in many practical scenarios.

To alleviate this, recent detection methods that require only API-level access to the unknown source model
are proposed. For instance, Yang et al. (2023c) utilize the N-Grad divergence between re-prompted and
original text to identify AI-generated content in the biology domain. Additionally, recent research has shown
that smaller surrogate models can serve as effective proxies for AIGC detection (Mireshghallah et al., 2023;
Yang et al., 2023d; Cozzolino et al., 2025). By observing that AI-generated text exhibits lower intrinsic
dimensionality compared to human-written text, Tulchinskii et al. (2023) propose to employ persistence
homology dimension estimator (PHD) to exploit this property for AIGC detection which does not even
require API-level access - a complete black-box setting.

11.2.2 Intuitive Indicators

These methods use the analytical abilities of humans to identify inconsistencies with prior knowledge in
AIGC, thus achieving detection. As a result, these methods provide notable interpretability and credibility
in the detection process.

For AI-generated text, Uchendu et al. (2023) note that a lack of coherence and consistency serves as a strong
indicator of AIGC, and emphasize the importance of collaboration among human detectors in improving
detection accuracy. Similarly, Dugan et al. (2022) note the unreliability of relying solely on grammatical
errors as a detection strategy. They further showcase that while LLMs frequently commit factual and logical
errors, these mistakes are often overlooked by neural network-based detectors but are easily noticed by
human detectors. More recently, Mao et al. (2024) find that LLMs exhibit a greater propensity to alter
human-written text compared to AI-generated text when tasked with rewriting. This tendency stems from
LLMs’ perception of AI-generated text as being of high quality, which results in fewer modifications. They
then proposed “geneRative AI Detection viA Rewriting” (RAIDAR) to detect AI-generated content by
instructing LLMs to rewrite text and then calculating the edit distance of the output by the Levenshtein
Score (Levenshtein et al., 1966).

In vision, the detection of AI-generated images can be done by examining inconsistency with reality. Nu-
merous studies (Borji, 2023; Farid, 2022a) note that AI-generated images often violate physical rules in
the real world, such as missing or unnatural reflections and shadows of objects that are inconsistent with
natural lighting and environment. In addition, Farid (2022b) has noticed that AI-generated images exhibit
inconsistency in perspective, such as parallel lines cannot converge at a common vanishing point. For facial
images, Borji (2023) outlines key cues for detecting AI-generated faces, including symmetry, iris color, pupil
shapes, skin, etc., where the generated images tend to depict physiological falsehood.

11.2.3 Pre-trained LLMs

Without training, a few studies have investigated the use of pre-trained LLMs to directly identify generated
texts either by themselves or by other LLMs. However, it has been observed that the performance of these
detection methods is often inferior to statistical and neural network approaches. For example, Bhattacharjee
& Liu (2024); Liu et al. (2023o) formulate the AIGC detection task in a question-and-answer format, and
prompt LLMs with the question to obtain an answer for detection. Bhattacharjee & Liu (2024) note that
neither ChatGPT nor GPT-4 could reliably identify text generated by various LLMs, while Liu et al. (2023o)
reveal the poor zero-shot performance of GPT-3.5-turbo in AIGC detection which is close to random guessing.

A recent work (Koike et al., 2023) considers employing in-context-learning (ICL) with pre-trained LLMs for
AIGC detection, in which a few labeled examples (context) are integrated into the question prompt as a
single input to the model, thereby facilitating the learning of new tasks in context. The results in Koike et al.
(2023) show that using ICL outperforms both traditional zero-shot methods and RoBERTa-based detectors,
however, Liu et al. (2023o) observe no significant improvement in using ICL with GPT-3.5-turbo. It is
worth noting that while ICL methods are not strictly zero-shot, they do not require additional training of
the detectors. Another recent work (Krishna et al., 2023) proposes a detection mechanism based on retrieval,
which involves creating a database of generated text and comparing the semantic similarity of the target
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text with all the text stored in the database to perform detection. Although this approach is effective and
robust against paraphrasing, its requirement of storing LLMs generation may raise privacy concerns.

11.3 Watermark-based Detection

Watermarking injects algorithmically detectable patterns into the AI-generated content while ideally pre-
serving the quality and diversity of AIGC. A watermarking algorithm for AI-generated content detection
typically involves three components:

• The watermark or message, denoted as m, can be represented as a bit-string in the generated images
or as a specific occurrence of words in the generated text. From now on, the term “watermark
payload" will be used to refer to the amount of information conveyed by the watermark message.

• An encoder, denoted as A, is responsible for embedding the watermark message m into an AI-
generated content x, thereby transforming it into a watermarked content x̃.

• A detector, denoted as D, is capable of determining the presence of a watermark in either x̃ or x,
provided that the content is generated by AI.

In zero-bit watermarking, the embedded message m only signifies the presence or absence of a watermark,
hence is only used to indicate whether x is generated by AI; whereas in multi-bit watermarking, the embed-
ded message m can carry additional detailed, customized information, e.g., the name of the AI model or
authorship attribution. We will primarily focus on the first case - using watermarking for AIGC detection.

A watermarking algorithm that is effective for detecting AI-generated content should possess the following
key properties:

• It should be algorithmically easy to verify yet remain imperceptible to humans, where ease of veri-
fication can refer to the ability to open-sourcing, or a high success rate for detection.

• It should have minimal impact on the quality of AI-generated content. This means that foundation
models incorporating the watermark algorithm, potentially during training, should still produce
content of similar quality compared to the non-watermarked version.

• It should exhibit high robustness to attacks aimed at removing the watermark or applying seman-
tically invariant transformations to AI-generated content with watermarks. These transformations
can range from rephrasing generated text to distorting watermarked images.

• It should demand minimal effort to incorporate the watermark into AI-generated content.

11.3.1 Training-free Watermarking

In training-free watermarking algorithms, the watermark, encoding, and decoding algorithms are all designed
based on heuristics, exploiting domain-specific characteristics of the generated content rather than learned
through end-to-end training.

Several studies apply various kinds of semantically-invariant transformation directly to existing AI-generated
text. These include visually imperceptible reformatting such as adding whitespace characters and replacing
characters with similar ones in appearance but with a different Unicode representation (Brassil et al., 1994;
Por et al., 2012; Rizzo et al., 2016; Sato et al., 2023); lexical-based modifications such as synonym substitu-
tion (Munyer & Zhong, 2023; Topkara et al., 2006b; Yang et al., 2023b; Yoo et al., 2023a; Yang et al., 2021b);
syntax-based manipulation which alters the arrangement of words and phrases in the text through several
predefined types of transformations (Atallah et al., 2001; Meral et al., 2009; Topkara et al., 2006a). Each
distinct type of transformation corresponds to a specific message bit, therefore allowing the detection and
extraction of watermarks. The immediate advantage of these approaches is that they do not require knowing
the identity (i.e., the name of the model) or access to the AI models that generated the content. However,
since these methods largely rely on simple semantically invariant transformation, they are easy to spot and
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hence are vulnerable to watermark attack or removal. Moreover, these manually defined modifications can
create abrupt and unnatural modifications to the original text, hence significantly degrading the quality of
the generated content.

Instead of encoding watermarks in the existing context after generation, it is also possible to encode training-
free-based watermarks during the content generation process without the need for re-training the models.
Consequently, unlike previous approaches discussed, the following methods assume at least the given access
to controlling the generation process of the foundation models. The pioneering research of Kirchenbauer
et al. (2023a) first proposes a watermarking framework for LLMs by altering the logits for token sampling in
a text sequence generation. The algorithm (Kirchenbauer et al., 2023a) works by selecting a randomized set
of “green" tokens before generation, and then softly promoting the use of “green" tokens during generation
by adding a small bias on the sampling logits of “green" tokens. Detection can be achieved by deploying
statistical tests which are essentially based on identifying the unnatural occurrence of “green" tokens in
the writing. Follow-up research works expand upon this idea in the directions of preserving quality and
semantic meaning of generated content in low-entropy text generation scenarios (Lee et al., 2023b; Wang
et al., 2023c), where text quality is vulnerable to such tiny bias towards generating randomly selected “green"
tokens; multi-bit watermarking (Yoo et al., 2023b; Fernandez et al., 2023a; Qu et al., 2024); improving the
robustness of watermarking against removal attack and post-processing (Kirchenbauer et al., 2023b; Ren
et al., 2023; Zhao et al., 2023c; An et al., 2024); and defending against forgeries of watermarks (Hu et al.,
2023; Wu et al., 2023f). In contrast altering the logits, a line of works (Hou et al., 2023a; Kuditipudi et al.,
2023; Christ et al., 2023) alternatively choose to manipulate the token sampling process itself directly by
encoding a watermark in a pseudo-random number sequence as seeds to guide the sampling of each token or
sentence in a text generation sequence. Detection therefore needs to access the correspondence between the
tokens generated and the underlying pseudo-random numbers.

Beyond text generation, training-free watermarks have also been applied to AI-generated images. For
instance, DaLL·E (Ramesh et al., 2021) always prints a tiny visible color pattern at the bottom right
corner of its generated images. To better preserve the visual quality of the generated images, invisible-
watermark (Wang, 2020), which is adopted by Stable Diffusion, encodes bits of the watermark message
through modifying coefficients of a carefully selected subset of band frequencies of its generated images un-
der discrete wavelet transforms. Detection and decoding of the watermark is thereon achieved through an
inverse transformation. In addition, Wen et al. (2023b) introduce a training-free watermark for diffusion
models by embedding watermark signals into the initial latent noise, creating a semantic watermark.

11.3.2 Learnable Watermarking

Although training-free watermarking and detection techniques are straightforward in concept and require
minimal effort to deploy, the pre-defined watermarking rules may be too conspicuous, leading to a compromise
in the quality of the generated content or making them susceptible to watermark removal and forgery. To
address this issue, a couple of studies (Abdelnabi & Fritz, 2020; Zhang et al., 2023g) propose using learning-
based watermark encoding and decoding modules, in which the training pipeline involves encoder first embeds
a binary watermark message into the original text followed by decoding for the message from the watermarked
text. To preserve coherence and consistency of the generated content, the modules from Abdelnabi & Fritz
(2020) are trained against an adversary that performs a classification between the original and watermarked
text, whereas Zhang et al. (2023g) regularize the watermarked message by penalizing semantic difference
with the original text. Liu et al. (2023b) embed watermark in texts by adding extra watermark logits to the
LLM’s sampling logits at each generation step, following Kirchenbauer et al. (2023a). To ensure both attack
robustness and security robustness, each watermark logit is determined by applying a learned transformation
(a trained watermark model) on the semantic embedding of all preceding tokens generated using another pre-
trained LLM. Two similarity loss and normalization loss are minimized during training to prompt semantic
consistency and unbiasedness in the generated watermark logits and fascinate statistical detection. Moreover,
in a recent work, Liu et al. (2023a) propose an unforgettable publicly verifiable watermark algorithm utilizing
two different neural networks for watermark generation and detection, thereby preventing exposing key
information in the watermark generation phase when made accessible for public detection. Furthermore,
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the token embedding parameters are shared between the generation and detection networks which improves
both training efficiency and detection accuracy.

For AI-generated images, SynthID (Deepmind, 2023) uses two deep learning models - for watermarking and
identifying - that have been trained together on a diverse set of images. The combined model is optimized
on a range of objectives, including correctly identifying watermarked content and improving imperceptibility
by visually aligning the watermark to the original content. Stable-signature (Fernandez et al., 2023b) aims
to fine-tune only the latent decoder of the image generator, conditioned on a binary signature. A pre-trained
watermark extractor is employed to recover the hidden signature from any generated image and a statistical
test then determines whether it comes from the generative model. To prevent malicious watermark removal,
watermark protection techniques have also been explored (Liu et al., 2022a).

11.4 Neural Network Detectors

Another line of work approaches the AIGC detection problem by training a binary classifier using labeled
training samples containing both human and AI-generated content. Earlier work focuses on fake review (Bha-
gat & Hovy, 2013), fake news (Zellers et al., 2019), fake images (Ma et al., 2023c), or small AI models
detection (Solaiman et al., 2019; Bakhtin et al., 2019; Uchendu et al., 2020). Subsequently, growing interest
in this line of research turns to detecting high-quality content brought by foundation models. Detectors
under this category do not require access to model parameters hence can operate under complete black-box
settings.

Targeting the problem of machine-generated text detection, numerous studies (Chen et al., 2023m; Guo et al.,
2023a; Zhan et al., 2023; Tian, 2023; Yu et al., 2024d) fine-tune a pre-trained LLM, such as T5 or RoBERTa,
on a dataset of pairs of human-written text and AI-written text from mixed sources as a simple solution.
Alternatively, several works also consider training a classifier on top of a frozen pre-trained LLM (Chen
et al., 2023m; Guo et al., 2023a; Wu et al., 2023a; Verma et al., 2023). In particular, Chen et al. (2023m);
Guo et al. (2023a) have attempted training a logistic regression classifier on text embedding obtained using
a pre-trained LLM for detection, however, they find such a method often underperforms the fine-tuning
approach. Wu et al. (2023a) propose LLMDet which conducts binary classification utilizing a proxy score for
perplexity, while Verma et al. (2023) propose Ghostbuster which is inspired by statistical detection methods
based on analyzing token log-probabilities. Both methods train a logistic regression classifier on top of these
selected and hand-crafted features to detect machine-generated text, therefore, no longer requiring direct
access to the model token sampling logits, as in their zero-shot counterparts, at test time. Recognizing the
similarities between the original AI-generated and the regenerated text produced with ChatGPT, Yu et al.
(2023c) introduce a novel GPT Paternity Test for AI-generated text detection. This method involves utilizing
ChatGPT to infer a question based on the input text being examined, followed by supplying a response.
Subsequently, a Siamese network is trained to assess the similarity between the original and regenerated
text, aiding the detection using another trained binary classifier.

One major challenge in training a reliable binary classifier is data scarcity as collecting sufficient data to train
the classifier can be challenging, especially in diverse domains where the availability of training samples is a
major bottleneck. To alleviate this, Liu et al. (2023m) consider adopting contrastive learning approaches in
addition to the supervised training for detection. Another significant challenge involves tackling paraphrasing
attacks (Sadasivan et al., 2023; Krishna et al., 2023). To mitigate this problem, bing Hu et al. (2023)
propose to employ an adversarial learning approach to simultaneously train a detector and a paraphraser.
Nevertheless, supervised training of a binary classifier tends to overfit their training data, resulting in a decline
in performance when faced with cross-domain or unseen data. Additionally, fine-tuning LLM classifiers is
limited in facing data generated by different models.

11.5 Current Limitations and Future Directions

Despite significant advancements in the domain of AIGC detection, several limitations still require future
attention:
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11.5.1 Fairness of AIGC Detection

Although state-of-the-art text detectors generally achieve high accuracy in experimental settings, as discussed
by Liang et al. (2023b), perplexity-based text detectors exhibit a notable bias against text written by non-
native speakers. Specifically, these detectors have been observed to misclassify TOEFL essays written by
foreign writers more frequently than those by native speakers. This discrepancy may be due to the lower
perplexity of non-native essays, which often display less linguistic diversity and richness. This issue may
also affect minority languages, which tend to have higher perplexities compared to popular languages like
English. Additionally, similar biases might exist in other modalities, such as image detection. Therefore,
it is crucial to consider the fairness of detectors when designing future detection methods and to develop
efficient methods for evaluating the fairness of AIGC detection methods.

Meanwhile, on the watermarking side, learnable watermarking methods might also exhibit biases toward out-
of-distribution data points. For instance, if the watermarking encoder and decoder are trained on English
text written by native speakers, the model might also have a higher misclassification rate on essays written by
non-native speakers. Therefore, it is crucial to consider fairness in the development of learnable watermarking
methods as well.

11.5.2 Robustness of Watermarks

Both text and image watermarks are susceptible to regeneration or post-processing attacks, such as para-
phrasing (Kirchenbauer et al., 2023b) or diffusion purification (Zhao et al., 2023c). In contrast, semantic
watermarks tend to be more robust against such attacks. However, because semantic watermarks typically
require deep neural networks to decode the watermark signals, they are vulnerable to adversarial attacks
(Saberi et al., 2023; An et al., 2024). Adversarial perturbations can also be developed to prevent regeneration
and post-processing attacks (Liu et al., 2022a). Adversarial attacks remain a significant challenge even for
classification tasks. Therefore, designing robust watermarks that can withstand both attacks is challenging
and crucial.

11.5.3 Origin Attribution of Generated Images

Recent advancements in visual generative models have significantly improved the quality of generated images,
raising concerns about their potential misuse. It is critical to develop methods to accurately identify the
origin model responsible for generating a given image (Liu et al., 2022a). Especially, The scenarios are
especially important and practical where access to the source model is restricted and only a limited number
of images from the source model are available (Liu et al., 2022a).
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12 Intersection and Conclusion

In this survey, we comprehensively examine the reliability and responsibility of foundation models, spanning
technical and societal considerations. Given our overview of the current research landscape, we identify
significant prior research that makes progress on these critical issues. However, outstanding challenges limit
the extent to which current models are reliable or responsibly developed, indicating more research is needed
as this technology has a broader societal impact.

Moreover, greater attention should be paid to the intersections between different research areas, as the areas
covered by this survey are interconnected and influence each other. Instead of addressing challenges in isola-
tion, we advocate for a more holistic approach to ensure the overall reliability and responsible development of
foundation models. In conclusion, we emphasize a number of key points of intersection across these domains,
highlighting the challenges at these crossroads and outlining potential directions for future research.

12.1 Bias, Fairness, and Security

To improve the security of foundation models, adversarial training (Madry et al., 2017; Bai et al., 2021)
is often leveraged, which aims to make models resistant to malicious manipulations by conducting bi-level
adversarial games Tao et al. (2021); Ma et al. (2024a) during training. However, while adversarial training
improves robustness, it can unintentionally exacerbate fairness issues (Xu et al., 2021a). For example,
robust models may focus on defending against a certain set of features without considering the fact that
some demographic groups may be penalized by these features more than others, leading to disproportionate
performance degradation for underrepresented or marginalized groups. For instance, Sap et al. (2019) found
that hate speech detection models were biased against African American English (AAE), disproportionately
misclassifying non-offensive AAE utterances as hate speech.

On the other hand, security risks such as data poisoning, where malicious attackers corrupt training data, can
introduce new biases into foundation models or exacerbate existing biases (Mehrabi et al., 2021b; Guo et al.,
2022). Poisoned data can skew a model’s learned representation, posing the dual challenge of protecting
models from data poisoning while ensuring that the fairness of the model is not compromised, especially
when training on large, uncurated datasets.

12.2 Bias, Fairness, and AI-generated Content Detection

Large multimodal and text-to-image models are often biased due to unbalanced or stereotype-laden training
data, such as images that reinforce harmful stereotypes or misrepresent certain social or cultural groups Zhang
et al. (2023j); Cho et al. (2023); Luccioni et al. (2023). Detecting biased AI-generated content (AIGC) poses
a significant challenge, as detection systems themselves can inherit or amplify biases found in the training
data. For instance, zero-shot or neural network detectors might disproportionately mark content created by
minority groups as AI-generated based on biased data patterns in the training set. It is important to ensure
the fairness of these detection capabilities, as biased detection could result in unfair discrimination, such as
unfairly enforcing restrictions on content produced by minority groups.

Similarly, watermark-based detectors can raise fairness concerns if watermarks are inconsistently applied
across different types of content. For example, if T2I models excessively generate watermarked content
associated with certain groups (e.g., images associated with a particular ethnic or gender identity), this
content could be more easily flagged or blocked, suppressing content created or represented by those groups.

12.3 Security and Privacy

Privacy concerns often go hand-in-hand with issues of security. For example, models ought not to reveal
users’ private information, which can be found in pre-training data as well as in interactions with users. Fur-
thermore, certain legal jurisdictions already impose privacy-related laws that impact technologies including
foundation models. For example, the EU’s GDPR covers a “Right to be Forgotten”, which mandates that
users have the ability to delete their private information (Zhang et al., 2023a); non-compliance with these
regulations could result in legal penalties.

79



Under review as submission to TMLR

Several methods exist for preventing models from revealing private information, including unlearning (e.g.,
removing concepts from the model’s parametric knowledge) Liu et al. (2024g); Yao et al. (2023c); Jang et al.
(2022); Wu et al. (2025) and introducing prompts Edemacu & Wu (2024) or RLHF Xiao et al. (2023a)
to prevent models from revealing information. However, jailbreaking attacks (see Section 5.1.1) can often
circumvent prompts and RLHF, and Patil et al. (2024) show that model editing is also vulnerable to attack,
finding that sensitive information could be recovered from models even after deletion when querying multiple
times. Thus, making models compliant with existing and future legislation regarding private information is
an open challenge, as is robustly defending against adversaries attempting to extract private information.

12.4 Security and AI-generated Content

AIGC detection is naturally framed as an adversarial task, with an attacker attempting to pass AIGC as
real content, and a defender attempting to detect it. In such scenarios, the advantage usually lies with the
attacker, who can make multiple attempts to test existing defenses. Existing work shows that the robustness
of current detection methods is imperfect and they are vulnerable to adversarial attacks (Saberi et al., 2023;
An et al., 2024; Kirchenbauer et al., 2023b; Zhao et al., 2023c); improving these detection algorithms remains
an area of continuous future work.

Beyond the security of individual watermarking and detection methods, AIGC raises broader questions of
societal security, i.e. the potential threats that AIGC poses to both public institutions and individuals. Here,
extensive documentation exists regarding ongoing threats from AIGC. In the political sphere, AIGC has been
employed to disseminate misinformation and erode public trust in political systems and elections (Dmonte
et al., 2024; Jingnan, 2024), where AIGC has been used to spread misinformation and sow distrust. Similarly,
in public health settings, AIGC has been utilized to generate and spread health-related misinformation (Menz
et al., 2024). Other voices have also called attention to the risks associated with AIGC’s interactions with
individuals. For example, Greenfield & Bhavnani (2023) raise the concern that AIGC could harm mental
health through hyper-personalization. Moreover, individuals may become more susceptible to personalized
fraud attempts, such as voice cloning or sophisticated phishing-style attacks (Begou et al., 2023; Eze &
Shamir, 2024; Bunn, 2024; Chasan, 2023). To counteract these malicious use-cases, larger-scale safeguards
will likely be needed. This includes implementing public education initiatives to raise awareness about the
risks of AIGC and developing strategies to combat its misuse across various domains.

12.5 Uncertainty and Alignment

Given the importance of correctly expressing model uncertainty (as described in Section 8), a growing area
of interest is in aligning models to accurately predict their uncertainty (Mielke et al., 2022; Stengel-Eskin
et al., 2024) or to abstain from answering in cases of uncertainty (Wen et al., 2024a). This work builds
on past work finding that models’ internal states often contain meta-knowledge about whether the model
can correctly respond to a particular prompt (Kadavath et al., 2022; Mielke et al., 2022; Liu et al., 2023j).
Several past efforts have explored aligning models to predict this information based on internal states. Mielke
et al. (2022) train models to express uncertainty linguistically by extracting control codes from their internal
states and using them to adjust the model’s output. Ulmer et al. (2024) train a smaller LLM to predict
the uncertainty of a larger LLM. Stengel-Eskin et al. (2024) use a speaker-listener framework to supervise
models, rewarding a generator or speaker model for getting a listener to accept correct answers and reject
incorrect ones, while penalizing it for doing the opposite outcomes Future research directions in this field
include addressing uncertainty not captured in the model’s internal state and enhancing models’ capacity to
resolve uncertainty effectively.

12.6 Hallucination, Uncertainty, Distribution Shift, and Alignment

Uncertainty and distribution shifts are deeply interconnected with hallucinations in foundation models (Xiao
& Wang, 2021; Zhou et al., 2024g; Farquhar et al., 2024; Lee et al., 2024a). When these models encounter
unfamiliar OOD data, they often lack the ability to detect OOD data accurately, leading to highly over-
confident predictions. This unreliability is especially concerning in safety-critical applications. The risk of
hallucination also increases as the model makes inferences based on its prior knowledge, which may not be
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applicable in the new context. In the multimodal settings, training a model on evolving image-text data
presents significant challenges, as distribution shifts in training data increase the potential of the model to
forget previously learned knowledge and disrupt modality alignment. This can exacerbate hallucinations of
the model by incorrectly aligning the relationships between observations and prior knowledge (Lee et al.,
2024a; Zhu et al., 2024a; Jin & Ren, 2024). For example, changes in language usage or visual context can
cause the model to lose its ability to associate specific textual descriptions with visual cues, resulting in errors
when trying to generalize to unseen data, highlighting the need for effective memory retention mechanisms
or continual learning strategies (Lopez-Paz & Ranzato, 2017; Srinivasan et al., 2022; Yoon et al., 2023; Cossu
et al., 2024) to maintain seamless alignment between modalities.
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